

Welcome to artery.fe’s documentation!

Contents:

	Getting started
	Installation and dependencies

	Running artery.fe

	License

	Tutorial
	Running a simulation

	Visualising the output

	Blood flow dynamics in 1D
	Nomenclature

	Governing equations

	Boundary conditions

	Numerical implementation
	Time discretisation

	Finite element discretisation

	Boundary conditions

Indices and tables

	Index

	Module Index

	Search Page

Getting started

artery.fe is a Python package that simulates blood flow through arterial trees in 1D using the finite element (FE) method implemented in FEniCS [https://fenicsproject.org/].

Installation and dependencies

Clone the repository:

$ git clone https://github.com/KVSlab/bloodflow.git

We recommend installing artery.fe using the provided Dockerfile. This
ensures all dependencies are correctly installed. Build the Docker image
by running:

$ docker build --no-cache -t arteryfe:2017.2.0 .

To create and enter a Docker container run:

$ docker run -ti -p 127.0.0.1:8000:8000 -v $(pwd):/home/fenics/shared -w /home/fenics/shared "arteryfe:2017.2.0"

Alternatively, artery.fe can be installed using the provided setup.py file by running:

$ python3 setup.py install

artery.fe requires FEniCS [https://fenicsproject.org/] version 2017.2.0 or higher and Python 3.5 or higher

Running artery.fe

The file run_from_config.py provides an example for running a simulation using artery.fe and reproduces the results presented in reference [Kolachalama:2007]:

$ python3 demo_arterybranch.py config/demo_arterybranch.cfg

to run a simulation over four cardiac cycles, storing the output for the final cardiac cycle only. This automatically creates a directory inside the output directory, which has the same name as the .cfg file used in the simulation. All output is stored in this directory. Additionally, the simulation creates a file ‘data.cfg’ inside the output directory, which can be used to configure postprocessing and create figures from the output. To produce figures from the output use:

$ python3 postprocess.py output/4cycles_last/data.cfg

This creates three directories area, flow, and pressure inside the output directory, which contain the corresponding figures.

License

artery.fe is free software made available under the BSD 3-clause
License. For details see the LICENSE file.

Tutorial

This tutorial provides a description of the demo files provided with artery.fe.

Running a simulation

The base folder of the artery.fe repository contains the demo file run_from_config.py, which we will disect here to demonstrate how to run a simulation. Start by importing artery.fe and applying the short name ‘af’ for convenience:

import arteryfe as af

Parameters are loaded from a .cfg file using the class ParamParser, where the .cfg file is stored in config_location:

param = af.ParamParser(config_location)

Parameters can then be explicitly loaded using the syntax:

order = param.param['order']

Inlet flow rates for the parent artery should be prescribed using a .csv file whose location is provided in the parameter inlet_flow_location. It should not contain any header lines. The first column should correspond to time points, while the second column should correspond to the flow rate values.

Parameters are nondimensionalised and the Reynold’s number is calculated using:

Ru, Rd, L, k1, k2, k3, Re, nu, p0, R1, R2, CT, q_ins, T =\
 af.nondimensionalise_parameters(rc, qc, Ru, Rd, L, k1, k2, k3,
 rho, nu, p0, R1, R2, CT, q_ins, T)

We are now ready to create an ArteryNetwork object. This is done in three steps, where the first step calls the ArteryNetwork constructor, the second step calls a function to set up the geometry of the artery, and the third step calls a function to set up the solver for the problem:

an = af.ArteryNetwork(order, rc, qc, Ru, Rd, L, k1, k2,
 k3, rho, Re, nu, p0, R1, R2, CT)
an.define_geometry(Nx, Nt, T, N_cycles)
an.define_solution(output_location, q_ins[0], theta)

The solution is then calculated using:

an.solve(q_ins, Nt_store, N_cycles_store, store_area, store_pressure)

The solution is stored in output in a separate folder defined in the parameter output_location.

Visualising the output

The base folder of artery.fe additionally includes a file postprocess.py, which handles the postprocessing and visualisation of results. As before we import artery.fe, and here also numpy:

import arteryfe as af
import numpy as np

To read parameters back from the output use:

order, Nx, Nt, T0, T, L, rc, qc, rho, mesh_locations, names, locations =
 read_output(data_location)

In the example case provided in the demo the simulation runs for four cardiac cycles, but we are only interested in plotting the solution for the last cardiac cycle. We use a Numpy array to define the time variable on the redimensionalised time parameters:

T0 = redimensionalise(rc, qc, rho, T0, 'time')
T = redimensionalise(rc, qc, rho, T, 'time')
t = np.linspace(T0, T, Nt)

The variable names contains the names of the unknowns computed during the artery.fe simulation, which are flow rate (‘flow’), cross-sectional area (‘area’) and arterial pressure (‘pressure’). Thus, the first for loop:

for i, name in enumerate(names):

creates the same visualisation for each unknown, while the second for loop:

for j in range(2**order-1):

iterates over all arteries in the geometry. FEniCS writes data to XDMF and HDF5 files, and these can be converted to Numpy matrices using:

M = XDMF_to_matrix(Nx, Nt, mesh_locations[j],
 '%s/%s_%i.xdmf' % (locations[i], name, j), name)
M = redimensionalise(rc, qc, rho, M, name)

Redimensionalised pressure is given in units of Pa, but for clinical purposes the use of mmHg (millimetres of mercury) is much more common:

if name == 'pressure':
 M = unit_to_mmHg(M)

The spatial variable for the plots for each artery is given by:

x = np.linspace(0, L[j], Nx+1)

And lastly, the plots are created using:

plot_matrix(t, x, M, name, '%s/%s_%i.png' % (locations[i], name, j))

Blood flow dynamics in 1D

artery.fe implements the 1D system of equations derived by [Olufsen:2000] that is commonly used to numerically model blood flow dynamics. We assume that the reader is familiar with the general methods of modelling laminar fluid flow in 1D and provide a derivation for completeness.

Nomenclature

We use the nomenclature listed in the table below.

	Symbol

	Interpretation

	\(r\)

	radial direction

	\(z\)

	axial direction

	\(t\)

	time

	\(\boldsymbol{u} = (u_z, u_r)\)

	velocity

	\(A\)

	cross-sectional area

	\(R\)

	radius

	\(q\)

	flow rate

	\(p\)

	pressure

	\(\rho\)

	density

	\(\nu\)

	viscosity

	\(Q\)

	characteristic flow rate

	\(T\)

	cardiac cycle length

	\(\delta\)

	artery boundary layer

	\(\bar{\cdot}\)

	average

	\(E\)

	Young’s modulus

	\(h\)

	artery wall thickness

	\(k_i\)

	elastic parameters

	\(f\)

	elastic relation

	\(\mathcal{Re}\)

	Reynold’s number

	\(\Delta t\)

	discrete time step size

	\(\Delta x\)

	discrete spatial step size

	\(m\)

	grid location

	\(M\)

	outlet grid location

	\(\mathcal{M}\)

	bifurcation grid location, that is \(M\) for the parent vessel and 0 for its daughter vessels

	\(n\)

	time point

	\(R_i\)

	resistance parameters

	\(C\)

	compliance parameters

Governing equations

Consider an arterial segment that we model as an axisymmetric tube in a cylindrical coordinate system with radial direction \(r\) and axial direction \(z\). Therefore, the governing equation reduces to

\[\frac{\partial u_z(r,z,t)}{\partial z} + \frac{1}{r} \frac{\partial(ru_r(r,z,t))}{\partial r} = 0 \qquad (1),\]

where \(\boldsymbol{u} = (u_z(r,z,t), u_r(r,z,t))\). Integration of (1) over the cross-sectional area with \(A(z,t) = \pi R(z,t)^2\) yields

\[\begin{split}2 \pi \int_0^{R(z,t)} \left(\frac{\partial u_z(r,z,t)}{\partial z} + \frac{1}{r} \frac{\partial(ru_r(r,z,t))}{\partial r} \right) r dr = 0,\\
2 \pi \int_0^{R(z,t)} \frac{\partial u_z(r,z,t)}{\partial z} r dr + 2 \pi \left[r u_r(r,z,t) \right]_0^{R(z,t)} = 0 \qquad (2)\end{split}\]

where \(R(z,t)\) describes the vessel radius.

The first term of (2) can be evaluated using Leibniz’ integral rule (“differentiation under the integral sign”), which states

\[\frac{\partial}{\partial x} \int_{a(x)}^{b(x)} f(x, y) dy = \int_{a(x)}^{b(x)} \frac{\partial f(x,y)}{\partial x} dy + f(x,b(x)) \frac{\partial b(x)}{\partial x} - f(x,a(x)) \frac{\partial a(x)}{\partial x}.\]

Applying this rule to (2) results in

\[2 \pi \frac{\partial}{\partial z} \int_0^{R(z,t)} u_z(r,z,t) r dr - 2 \pi \frac{\partial R(z,t)}{\partial z}\left[r u_z(r,z,t) \right]_{R(z,t)} + 2 \pi \left[r u_r(r,z,t) \right]_0^{R(z,t)} = 0.\]

Defining flux through the vessel as

\[q(r,z,t) = 2\pi \int_0^{R(z,t)} u_z(r,z,t) r dr\]

yields

\[\frac{\partial q(r,z,t)}{\partial z} - 2 \pi \frac{\partial R(z,t)}{\partial z}\left[r u_z(r,z,t) \right]_{R(z,t)} + 2 \pi \left[r u_r(r,z,t) \right]_0^{R(z,t)} = 0. \qquad (3)\]

Due to no-slip \(u_z\) vanishes at the boundary \(r = R(z,t)\)

\[\left. u_z(r,z,t) \right|_{R(z,t)} = 0. \qquad (4)\]

An arterial segment is embedded within an arterial tree and thus stretch along the \(z\)-direction is restricted (tether). Thus

\[\left. u_r(r,z,t) \right|_{R(z,t)} = \frac{\partial R(z,t)}{\partial t}, \qquad(5)\]

which allows us to write the continuity equation (1) in terms of flow rate \(q\) and cross-sectional area \(A\)

\[\frac{\partial q(r,z,t)}{\partial z} + \frac{\partial A(z,t)}{\partial t} = 0. \qquad (6)\]

We treat the momentum equation in the same coordinate system in a similar fashion. For Poiseuille flow it reads

\[\begin{split}\begin{split}
 \frac{\partial u_z(r,z,t)}{\partial t} + u_z(r,z,t) \frac{\partial u_z(r,z,t)}{\partial z} + u_r(r,z,t) \frac{\partial u_z(r,z,t)}{\partial r} +& \frac{1}{\rho} \frac{\partial p(z,t)}{\partial z} =\\
 & \frac{\nu}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_z(r,z,t)}{\partial r} \right), \qquad (7)
\end{split}\end{split}\]

where \(p(z,t)\) denotes pressure and \(\nu\) kinematic viscosity. Nondimensionalisation of (7) shows that the longitudinal viscous term \(\nu \partial^2 u_z / \partial z^2\) is much smaller than the radial viscous term, due to the much longer length scale of arteries compared to the radius, and was therefore eliminated. Integrating over cross-sectional area, whilst recognising that \(p(z,t)\) is constant over this area, yields

\[\begin{split}\begin{split}
2\pi \int_0^{R(z,t)} \frac{\partial u_z(r,z,t)}{\partial t} r dr + 2\pi \int_0^{R(z,t)} u_z(r,z,t) \frac{\partial u_z(r,z,t)}{\partial z} r dr &\\
+ 2\pi \int_0^{R(z,t)} u_r(r,z,t) \frac{\partial u_z(r,z,t)}{\partial r} r dr + \frac{A(z,t)}{\rho} \frac{\partial p(z,t)}{\partial z} & =\\
2 \pi \nu R(z,t) \frac{\partial u_z(r,z,t)}{\partial r} & \left. \right|_{r = R(z,t)}. \qquad (8)
\end{split}\end{split}\]

Application of Leibniz’ integral rule to the first term on the left-hand side (LHS) in (8) and using (4) gives

\[\frac{\partial}{\partial t} \int_0^{R(z,t)} u_z(r,z,t) r dr = \frac{\partial}{\partial t} \int_0^{R(z,t)} u_z(r,z,t) r dr - \frac{\partial R(z,t)}{\partial t} \left[u_z(r,z,t) r \right]_{R(z,t)} = \frac{\partial q(r,z,t)}{\partial t}.\]

Integration by parts of the third LHS term of (8) results in

\[\begin{split}\begin{split}
2\pi \int_0^{R(z,t)} u_r(r,z,t) & \frac{\partial u_z(r,z,t)}{\partial r} r dr =\\
2\pi &[u_r(r,z,t) u_z(r,z,t) r]_0^{R(z,t)} - 2\pi \int_{R(z,t)} u_z(r,z,t) \frac{\partial r u_r(r,z,t)}{\partial r} dr
\end{split}\end{split}\]

and using (1) and (4) leads to

\[\begin{split}\begin{split}
2\pi \int_0^{R(z,t)} u_r(r,z,t) \frac{\partial u_z(r,z,t)}{\partial r} r dr = 2 \pi \int_0^{R(z,t)} u_z(r,z,t) & \frac{\partial u_z(r,z,t)}{\partial z} r dr =\\
\pi & \int_0^{R(z,t)}\frac{\partial u_z(r,z,t)^2}{\partial z} r dr.
\end{split}\end{split}\]

Using these results in (8) gives

\[\begin{split}\begin{split}
\frac{\partial q(r,z,t)}{\partial t} + 2\pi \frac{\partial}{\partial z} \int_0^{R(z,t)} u_z(r,z,t)^2 r dr + \frac{A(z,t)}{\rho} \frac{\partial p(z,t)}{\partial z} &=\\
2\pi & \nu R(z,t) \left. \frac{\partial u_z(r,z,t)}{\partial r} \right|_{R(z,t)}. \qquad (9)
\end{split}\end{split}\]

To solve the remaining terms it is necessary to make assumptions about the velocity profile of blood flow through an artery. Blood flow is considered positively pulsatile and laminar, and vessels can be considered slightly tapered, therefore the velocity profile is assumed to be mostly flat with a thin boundary layer with cardiac cycle length \(T\) and width \(\delta = (\nu T / (2\pi))^{0.5}\), such that \(\delta \ll R(z,t)\). The axial velocity \(u_z(r,z,t)\) thus has the form

\[\begin{split}u_z(r,z,t) = \begin{cases}
\bar{u}_z(z,t) & r \leq R(z,t)-\delta\\
\bar{u}_z(z,t) (R(z,t)-r)/\delta & R(z,t)-\delta < r \leq R(z,t),
\end{cases} \qquad (10)\end{split}\]

where \(\bar{u}_z(z,t)\) is the average axial velocity outside the boundary layer. This leads to a flat velocity profile outside the boundary layer and linearly increasing profile (from 0 to \(\bar{u}_z(z,t)\)) inside the boundary layer. Note that a physiological cardiac cycle at rest has between 60 and 70 beats per minute (0.6 s \(\leq T \leq\) 1.1 s), therefore the boundary layer is 0.07–0.09 cm in size. This is much smaller than the minimal inlet radius of arteries considered in this work, namely 0.14 cm, and therefore (10) is appropriate for the desired velocity profile. The first and second terms of (9) can then be expressed as a power series in \(\delta\)

\[\begin{split}q = 2\pi \int_0^{R(z,t)} u_z(r,z,t) r dr = A \bar{u}_z(z,t) \left(1 - \frac{\delta}{R(z,t)} + \mathcal{O}(\delta^2) \right),\\
2\pi \frac{\partial}{\partial z} \int_0^{R(z,t)} u_z(r,z,t)^2 r dr = A \bar{u}_z(z,t) \left(1 - \frac{4}{3} \frac{\delta}{R(z,t)} + \mathcal{O}(\delta^2) \right).\end{split}\]

Using these solutions the second term of (9) becomes

\[2\pi \frac{\partial}{\partial z} \int_0^{R(z,t)} u_z(r,z,t)^2 r dr = \frac{q(z,t)^2}{A(z,t)} \left(1 + \frac{2}{3} \frac{\delta}{R(z,t)} + \mathcal{O}(\delta^2) \right).\]

This leaves the term on the right-hand side (RHS) of (9) to be evaluated using the velocity profile

\[2 \pi \nu R(z,t) \frac{\partial u_z(r,z,t)}{\partial r} = - \frac{2 \pi \nu R(z,t)}{\delta} \frac{q(z,t)}{A(z,t)} + \mathcal{O}(\delta)\]

such that finally, keeping only leading order terms in \(\delta\), the momentum equation reads

\[\frac{\partial q(z,t)}{\partial t} + \frac{\partial}{\partial z} \left(\frac{q(z,t)^2}{A(z,t)} \right) + \frac{A(z,t)}{\rho} \frac{\partial p(z,t)}{\partial z} = - \frac{2 \pi \nu R(z,t)}{\delta} \frac{q(z,t)}{A(z,t)}. \qquad (11)\]

In order to solve the system of (6) and (11) they need to be written in conservation form

\[\frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \boldsymbol{F}}{\partial z} = \boldsymbol{S}. \qquad (12)\]

The quantity \(B\) is introduced and chosen to fulfill

\[B(r_0(z), p(z,t)) = \frac{1}{\rho} \int A(z,t) dp(z,t),\]

with \(r_0(z)\) initial radius at rest such that

\[\frac{\partial B(r_0(z), p(z,t))}{\partial z} = \frac{A}{\rho} \frac{\partial p(z,t)}{\partial z} + \frac{\partial B(r_0(z), p(z,t))}{\partial r_0(z)} \frac{\partial r_0(z)}{\partial z}\]

Then, adding the term \((\partial B / \partial r_0) (\partial r_0 / \partial z)\) to both sides of (11), the system of equations can be written in conservation form

\[\begin{split}\begin{split}
\dfrac{\partial}{\partial t} \begin{pmatrix} A(z,t) \\ q(z,t) \end{pmatrix} + \dfrac{\partial}{\partial z} & \begin{pmatrix} q(z,t)\\ \dfrac{q(z,t)^2}{A(z,t)} + B(r_0(z), p(z,t)) \end{pmatrix} =\\ & \qquad \begin{pmatrix} 0 \\ - \dfrac{2 \pi \nu R(z,t)}{\delta} \dfrac{q(z,t)}{A(z,t)} + \dfrac{\partial B(r_0(z), p(z,t))}{\partial r_0(z)} \dfrac{\partial r_0(z)}{\partial z} \end{pmatrix}. \qquad (13)
\end{split}\end{split}\]

Currently, (13) contains three unknowns (\(q, A, p\)) for two equations, thus a third relation is needed to solve the system of equations. The aforementioned equation, referred to as the state equation, describes the relationship between \(A(z,t)\) and \(p(z,t)\). One choice for the state equation is the linearly elastic relation

\[p(z,t) - p_0 = \frac{4}{3} \frac{Eh}{r_0(z)} \left(1 - \sqrt{\frac{A_0(z)}{A(z,t)}} \right) \qquad (14),\]

where the constant \(p_0\) is the diastolic pressure, \(E\) is the Young’s modulus of the vessel wall, \(h\) is the wall width and \(A_0(z) = \pi r_0(z)^2\). The relationship \(Eh/r_0\) is based on compliance estimates

\[\frac{Eh}{r_0(z)} = k_1 \exp (k_2 r_0(z)) + k_3, \qquad (15)\]

with \(k_1, k_2, k_3\) as constants. Using (14) and defining \(f(r_0) = 4Eh/(3r_0)\) the quantities \(B(r_0, p), (\partial B / \partial r_0) (\partial r_0 / \partial z)\) can be evaluated from (13)

\[\begin{split}B(r_0(z), p(z,t)) = \frac{1}{\rho} \int \frac{f(r_0) A_0(r_0)}{p(z,t)^2/f(r_0) - 2p(z,t) + f(r_0)} dp = \frac{1}{\rho} \frac{f(r_0) A_0(r_0)}{(1 - p(z,t)/f(r_0))},\\
\begin{split}
\frac{\partial B(r_0(z), p(z,t))}{\partial r_0(z)} \frac{\partial r_0(z)}{\partial z} &=\\
&\frac{1}{\rho} \left(2 \sqrt{A(r_0)} \left(\sqrt{\pi} f(r_0) + \sqrt{A_0} \frac{df(r_0)}{dr_0 } \right) - A(r_0) \frac{df(r_0)}{dr_0} \right) \frac{dr_0}{dz},
\end{split}\end{split}\]

thus, (13) becomes

\[\begin{split}\begin{split}
&\dfrac{\partial}{\partial t} \begin{pmatrix} A(z,t) \\ q(z,t) \end{pmatrix} + \dfrac{\partial}{\partial z} \begin{pmatrix} q(z,t)\\ \dfrac{q(z,t)^2}{A(z,t)} + \frac{f(r_0)}{\rho} \sqrt{A_0(z) A(z,t)} \end{pmatrix} =\\
&\begin{pmatrix} 0 \\ -\dfrac{2 \pi \nu q(z,t) R(z,t)}{\delta A(z,t)} + \dfrac{1}{\rho} \left(2 \sqrt{A(z,t)} \left(\sqrt{\pi} f(r_0) + \sqrt{A_0(z)} \frac{df(r_0)}{dr_0 } \right) - A(z,t) \dfrac{df(r_0)}{dr_0} \right) \dfrac{dr_0(z)}{dz} \end{pmatrix}. \qquad (16)
\end{split}\end{split}\]

To nondimensionalise we choose appropriate scaling parameters for the system variables:

	Variable

	Physical meaning

	\(z \sim R\)

	length scale

	\(r_0(z) \sim R\)

	radius at rest

	\(q(z,t) \sim Q\)

	flow rate

	\(t \sim R^3/Q\)

	time

	\(A(z,t) \sim R^2\)

	cross-sectional area

	\(p(z,t) \sim \rho Q^2/R^4\)

	pressure

The resulting dimensionless system of equations is

\[\begin{split}\begin{split}
&\dfrac{\partial}{\partial t} \begin{pmatrix} A(z,t) \\ q(z,t) \end{pmatrix} + \dfrac{\partial}{\partial z} \begin{pmatrix} q(z,t)\\ \dfrac{q(z,t)^2}{A(z,t)} + f(r_0) \sqrt{A_0(z) A(z,t)} \end{pmatrix} =\\
&\begin{pmatrix} 0 \\ -\dfrac{2 \pi R(z,t)}{\delta \mathcal{Re}} \dfrac{q(z,t)}{A(z,t)} +\left(2 \sqrt{A(z,t)} \left(\sqrt{\pi} f(r_0) + \sqrt{A_0(z)} \frac{df(r_0)}{dr_0 } \right) - A(z,t) \dfrac{df(r_0)}{dr_0} \right) \dfrac{dr_0(z)}{dz} \end{pmatrix}. \qquad (17)
\end{split}\end{split}\]

Boundary conditions

Boundary conditions are applied at both ends of each vessel and are either an inlet, outlet or bifurcation condition.

Inlet

The inlet boundary condition only used at the inlet of the parent vessel. For a given \(q_0^{n+1}\) \(A_0^{n+1}\) is calculated as

\[A_0^{n+1} = A_0^n - \frac{\Delta t}{\Delta z} \left(q_{1/2}^{n+1/2} - q_{-1/2}^{n+1/2} \right), \qquad (18)\]

where \(q_{-1/2}^{n+1/2}\) can be evaluated using

\[q_0^{n+1/2} = (q_{1/2}^{n+1/2} + q_{-1/2}^{n+1/2})/2 \qquad (19)\]

with \(q_0^{n+1/2}\) evaluated directly from the inlet flux function and \(q_{1/2}^{n+1/2}\), evaluated from the Lax-Wendroff approximation

\[\boldsymbol{U}_j^{n+1/2} = \frac{\boldsymbol{U}_{j+1/2}^n + \boldsymbol{U}_{j-1/2}^n}{2} + \frac{\Delta t}{2} \left(- \frac{\boldsymbol{F}_{j+1/2}^n - \boldsymbol{F}_{j-1/2}^n}{\Delta z} + \frac{\boldsymbol{S}_{j+1/2}^n + \boldsymbol{S}_{j-1/2}^n}{2} \right) \qquad (20)\]

Outlet

The outlet boundary condition is a three-element Windkessel (3WK), which is given by

\[\frac{\partial p(z,t)}{\partial t} = R_1 \frac{\partial q(z,t)}{\partial t} - \frac{p(z,t)}{R_2 C} + \frac{q(z,t) (R_1 + R_2)}{R_2 C}.\]

The 3WK model uses an electrical circuit analog representation of the downstream arterial tree, where electrical current represents \(q\) and voltage represents \(p\), using resistance (\(R_i\)) and compliance (\(C\)) parameters . Discretisation yields

\[\frac{p_m^{n+1} - p_m^n}{\Delta t} = R_1 \frac{q_m^{n+1} - q_m^n}{\Delta t} - \frac{p_m^n}{R_2 C_T} + \frac{q_m^n (R_1 + R_2)}{R_2 C_T}, \qquad (21)\]

which is used as the outlet boundary condition. Solutions for \(A_m^{n+1}\) and the discretised state equation

\[p_m^{n+1} = \frac{4}{3} \frac{E h}{(r_0)_m} \left(1 - \sqrt{\frac{(A_0)_m}{A_m^{n+1}}} \right)\]

are found using an iterative scheme, starting with an initial guess for \(p_m^{n+1}\). Then, \(q_m^{n+1}\) can be evaluated using (21). Using

\[A_m^{n+1} = A_m^n - \frac{\Delta t}{\Delta z} \left(q_{m+1/2}^{n+1/2} - q_{m-1/2}^{n+1/2} \right)\]

the next iteration of \(p_m^{n+1}\) can then be calculated until the difference between two iterations has dropped below a threshold value.

Bifurcation

Lastly, bifurcation boundary conditions apply between a parent vessel p and two daughter vessels d1 and d2. Conservation of flow implies

\[\left(q^{(p)} \right)_M^n = \left(q^{(d1)} \right)_0^n + \left(q^{(d2)} \right)_0^n \qquad (22)\]

and continuity of pressure yields

\[\left(p^{(p)} \right)_M^n = \left(p^{(d1)} \right)_0^n = \left(p^{(d2)} \right)_0^n. \qquad (23)\]

Written in terms of A (23) becomes

\[\begin{split}\left(f^{(p)} \right)_M \left(1 - \sqrt{\frac{\left(A_0^{(p)} \right)_M}{\left(A^{(p)} \right)_M^n}} \right) = \left(f^{(d1)} \right)_0 \left(1 - \sqrt{\frac{\left(A_0^{(d1)} \right)_0}{\left(A^{(d1)} \right)_0^n}} \right), \qquad (24)\\
\left(f^{(p)} \right)_M \left(1 - \sqrt{\frac{\left(A_0^{(p)} \right)_M}{\left(A^{(p)} \right)_M^n}} \right) = \left(f^{(d2)} \right)_0 \left(1 - \sqrt{\frac{\left(A_0^{(d2)} \right)_0}{\left(A^{(d2)} \right)_0^n}} \right). \qquad (25)\end{split}\]

On both sides of the boundary q and A are calculated from the Lax-Wendroff discretisation

\[\begin{split}\left(A^{(i)} \right)_{\mathcal{M}}^{n+1} = \left(A^{(i)} \right)_{\mathcal{M}}^n - \frac{\Delta t}{\Delta z} \left(\left(F_1^{(i)} \right)_{\mathcal{M}+1/2}^{n+1/2} - \left(F_1^{(i)} \right)_{\mathcal{M}-1/2}^{n+1/2} \right) \qquad (26)\\
\begin{split}
\left(q^{(i)} \right)_{\mathcal{M}}^{n+1} = \left(q^{(i)} \right)_{\mathcal{M}}^n - \frac{\Delta t}{\Delta z} \left(\left(F_2^{(i)} \right)_{\mathcal{M}+1/2}^{n+1/2} - \right.&\left. \left(F_2^{(i)} \right)_{\mathcal{M}-1/2}^{n+1/2} \right) +\\
&\frac{\Delta t}{2} \left(\left(S_2^{(i)} \right)_{\mathcal{M}+1/2}^{n+1/2} + \left(S_2^{(i)} \right)_{\mathcal{M}-1/2}^{n+1/2} \right), \qquad (27)
\end{split}\end{split}\]

where \(i = p, d1, d2\) and \(\mathcal{M} = M\) if \(i = p\) and \(\mathcal{M} = 0\) otherwise. We introduce the ghost points \(q_{M+1/2}^{n+1/2}\) and \(A_{M+1/2}^{n+1/2}\), which are not part of the geometry of the parent vessel, but lie beyond the outlet point. These are, analogously to the inlet boundary condition, evaluated using

(22)–(29) defines a system of eighteen equations for eighteen unknowns

\[\begin{split}x_1 = \left(q^{(p)} \right)_M^{n+1} \qquad x_2 = \left(q^{(p)} \right)_M^{n+1/2} \qquad x_3 = \left(q^{(p)} \right)_{M+1/2}^{n+1/2}\\
x_4 = \left(q^{(d1)} \right)_0^{n+1} \qquad x_5 = \left(q^{(d1)} \right)_0^{n+1/2} \qquad x_6 = \left(q^{(d1)} \right)_{-1/2}^{n+1/2}\\
x_7 = \left(q^{(d1)} \right)_0^{n+1} \qquad x_8 = \left(q^{(d1)} \right)_0^{n+1/2} \qquad x_9 = \left(q^{(d1)} \right)_{-1/2}^{n+1/2}\\
x_{10} = \left(A^{(p)} \right)_M^{n+1} \qquad x_{11} = \left(A^{(p)} \right)_M^{n+1/2} \qquad x_{12} = \left(A^{(p)} \right)_{M+1/2}^{n+1/2}\\
x_{13} = \left(A^{(d1)} \right)_0^{n+1} \qquad x_{14} = \left(A^{(d1)} \right)_0^{n+1/2} \qquad x_{15} = \left(A^{(d1)} \right)_{-1/2}^{n+1/2}\\
x_{16} = \left(A^{(d1)} \right)_0^{n+1} \qquad x_{17} = \left(A^{(d1)} \right)_0^{n+1/2} \qquad x_{18} = \left(A^{(d1)} \right)_{-1/2}^{n+1/2}.\end{split}\]

The system of equations can be solved using Newton’s method

\[\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \left(\boldsymbol{J}(\boldsymbol{x}_k) \right)^{-1} \boldsymbol{f_J}(\boldsymbol{x}_k) \text{ for } k = 0, 1, 2, \ldots,\]

where k indicates the current iteration, \(\boldsymbol{x} = (x_1, x_2, \ldots, x_{18})\), \(\boldsymbol{J}(\boldsymbol{x}_k)\) is the Jacobian of the system of equations and \(\boldsymbol{f_J}(\boldsymbol{x})\) are the residual equations.

Numerical implementation

This page explains the numerical implementation of the equations derived in Blood flow dynamics in 1D. A solution is calculated for each vessel/artery within the network separately, and the relationship between parent and daughter vessels is governed via boundary conditions. Thus, time advancement is handled by the class ArteryNetwork, while the computation of a solution per time step is handled by the class Artery.

Time discretisation

Time is discretised using a finite difference \(\theta\)-rule based algorithm, that is given the previous solution \(U^n\) one can find the next solution \(U^{n+1}\) using

\[U^{n+1} = U^n + k \left[\theta U^{n+1} + (1-\theta) U^{n} \right]\]

with \(k = \delta t\) and \(0 \leq \theta \leq 1\), where \(\theta = 0.5\) is used by default and corresponds to the Crank-Nicolson method, which is second order and unconditionally stable. The method is implemented in arteryfe.Artery.define_solution():

Crank-Nicolson parameter
self.theta = theta

Variational form
self.variational_form = U_v_dx\
 - Un_v_dx\
 + self.dt*self.theta*dF_v_dx\
 + self.dt*(1-self.theta)*dFn_v_dx\
 - self.dt*self.theta*S_v_dx\
 - self.dt*(1-self.theta)*Sn_v_dx

Finite element discretisation

Arteries are discretised using the finite element (FE) method implemented in FEniCS [https://fenicsproject.org/documentation/]. Because we model arteries in 1D using their cross-sectional area along the longitudinal axis, we can use FEniCS built-in interval mesh to initialise the geometry using arteryfe.Artery.define_geometry():

self.mesh = IntervalMesh(self.Nx, 0, self.L)
self.elV = FiniteElement('CG', self.mesh.ufl_cell(), 1)
self.V = FunctionSpace(self.mesh, self.elV)
self.V2 = FunctionSpace(self.mesh, self.elV*self.elV)

Initial vessel-radius and deduced quantities
self.r0 = Expression('Ru*pow(Rd/Ru, x[0]/L)',
 degree=2, Ru=self.Ru, Rd=self.Rd, L=self.L)
self.A0 = Expression('pi*pow(r0, 2)', degree=2, r0=self.r0)
self.f = Expression('4.0/3.0*(k1*exp(k2*r0) + k3)', degree=2,
 k1=self.k1, k2=self.k2, k3=self.k3, r0=self.r0)
self.dfdr = Expression('4.0/3.0*k1*k2*exp(k2*r0)', degree=2,
 k1=self.k1, k2=self.k2, r0=self.r0)
self.drdx = Expression('logRdRu/L*r0', degree=2,
 logRdRu=np.log(self.Rd/self.Ru), L=self.L,
 r0=self.r0)

The FE method requires rewriting the system of equations in its variational form. For a basic introduction to deriving the variational form of a system of equations you can refer to the FEniCS tutorial [https://fenicsproject.org/pub/tutorial/html/._ftut1004.html#ch:poisson0:varform]. Recall from Blood flow dynamics in 1D that the final system of equations is

\[\begin{split}\begin{split}
&\dfrac{\partial}{\partial t} \begin{pmatrix} A(z,t) \\ q(z,t) \end{pmatrix} + \dfrac{\partial}{\partial z} \begin{pmatrix} q(z,t)\\ \dfrac{q(z,t)^2}{A(z,t)} + f(r_0) \sqrt{A_0(z) A(z,t)} \end{pmatrix} =\\
&\begin{pmatrix} 0 \\ -\dfrac{2 \pi R(z,t)}{\delta_b \mathcal{Re}} \dfrac{q(z,t)}{A(z,t)} +\left(2 \sqrt{A(z,t)} \left(\sqrt{\pi} f(r_0) + \sqrt{A_0(z)} \frac{df(r_0)}{dr_0 } \right) - A(z,t) \dfrac{df(r_0)}{dr_0} \right) \dfrac{dr_0(z)}{dz} \end{pmatrix},
\end{split}\end{split}\]

which is a conservation system of equations.

\[\dfrac{\partial}{\partial t} \boldsymbol{U} + \dfrac{\partial}{\partial z} \boldsymbol{F} =
\boldsymbol{S}.\]

The terms of the governing equations are hence implemented in terms of the vectors \(\boldsymbol{U}, \boldsymbol{F}, \boldsymbol{S}\) in arteryfe.ArteryNetwork.flux():

def flux(self, a, U, x):
 return np.array([U[1], U[1]**2 + a.f(x)*np.sqrt(a.A0(x)*U[0])])

and arteryfe.ArteryNetwork.source():

def source(self, a, U, x):
 S1 = 0
 S2 = -2*np.sqrt(np.pi)/a.db/a.Re*U[1]/np.sqrt(U[0])\
 + (2*np.sqrt(U[0])*(np.sqrt(np.pi)*a.f(x)\
 +np.sqrt(a.A0(x))*a.dfdr(x))\
 -U[0]*a.dfdr(x))*a.drdx(x)
 return np.array([S1, S2])

The variational form is implemented in arteryfe.Artery.define_solution() as:

Trial function
self.U = Function(self.V2)
A, q = split(self.U)

Test functions
v1, v2 = TestFunctions(self.V2)

Current solution, initialised
self.Un = Function(self.V2)
self.Un.assign(Expression(('A0', 'q0'), degree=2,
 A0=self.A0, q0=self.q0))

Current pressure, initialised
self.pn = Function(self.V)
self.pn.assign(Expression('p0', degree=2, p0=self.p0))

Terms for variational form
U_v_dx = A*v1*dx + q*v2*dx
Un_v_dx = self.Un[0]*v1*dx + self.Un[1]*v2*dx
F2_v2_ds = (pow(q, 2)/(A+DOLFIN_EPS)\
 +self.f*sqrt(self.A0*(A+DOLFIN_EPS)))*v2*ds
F2_dv2_dx = (pow(q, 2)/(A+DOLFIN_EPS)\
 +self.f*sqrt(self.A0*(A+DOLFIN_EPS)))*grad(v2)[0]*dx
dF_v_dx = grad(q)[0]*v1*dx + F2_v2_ds - F2_dv2_dx
Fn_v_ds = (pow(self.Un[1], 2)/(self.Un[0])\
 +self.f*sqrt(self.A0*(self.Un[0])))*v2*ds
Fn_dv_dx = (pow(self.Un[1], 2)/(self.Un[0])\
 +self.f*sqrt(self.A0*(self.Un[0])))*grad(v2)[0]*dx
dFn_v_dx = grad(self.Un[1])[0]*v1*dx + Fn_v_ds - Fn_dv_dx
S_v_dx = - 2*sqrt(pi)/self.db/self.Re*q/sqrt(A+DOLFIN_EPS)*v2*dx\
 + (2*sqrt(A+DOLFIN_EPS)*(sqrt(pi)*self.f
 +sqrt(self.A0)*self.dfdr)\
 -(A+DOLFIN_EPS)*self.dfdr)*self.drdx*v2*dx
Sn_v_dx = -2*sqrt(pi)/self.db/self.Re*self.Un[1]/sqrt(self.Un[0])*v2*dx\
 + (2*sqrt(self.Un[0])*(sqrt(pi)*self.f+sqrt(self.A0)*self.dfdr)\
 -(self.Un[0])*self.dfdr)*self.drdx*v2*dx

Variational form
self.variational_form = U_v_dx\
 - Un_v_dx\
 + self.dt*self.theta*dF_v_dx\
 + self.dt*(1-self.theta)*dFn_v_dx\
 - self.dt*self.theta*S_v_dx\
 - self.dt*(1-self.theta)*Sn_v_dx

The variable self.variational_form is solved in arteryfe.Artery.solve() using a nonlinear variational solver from FEniCS [https://fenicsproject.org/documentation/]:

F = self.variational_form
J = derivative(F, self.U)
solve(F == 0, self.U, self.bcs, J=J)

Boundary conditions

We prescribe the flow rate directly at the inlet of the root vessel, which is implemented in arteryfe.ArteryNetwork.set_bcs() using the inlet file provided in the .cfg file:

Update inlet boundary conditions
self.arteries[0].q_in = q_in

At the outlet of the terminal vessels a three-element Windkessel model is applied. This type of model is also called a lumped model and uses an electric circuit analog with specific resistance and compliance parameters to represent the downstream artery tree. Because the Windkessel model provides an estimate for pressure instead of cross-sectional area the boundary condition cannot be calculated directly. A fixed-point iterative scheme is implemented in arteryfe.ArteryNetwork.compute_A_out() with an initial guess for the outlet pressure:

Fixed point iteration
pn = a.compute_outlet_pressure(Um0[0])
p = pn
for k in range(k_max):
 p_old = p
 qm0 = Um0[1]\
 + (p-pn)/self.R1\
 + self.dt/self.R1/self.R2/self.CT*pn\
 - self.dt*(self.R1+self.R2)/self.R1/self.R2/self.CT*Um0[1]
 Am0 = Um0[0] - self.dt/a.dex*(qm0-qm1)
 p = a.compute_outlet_pressure(Am0)
 if abs(p-p_old) < tol:
 break

return Am0

The boundary conditions at a bifurcation are somewhat more complex. Three arteries are involved in a bifurcation, for which the current and next time step for each of the three variables need to be calculated. Thus, we arrive at a system of 18 equations for 18 variables. The solution of this system is implemented using Newton’s method in arteryfe.ArteryNetwork.newton():

for k in range(k_max):
 J = self.jacobian(p, d1, d2, x)
 func = self.problem_function(p, d1, d2, x)

 if npl.norm(func) < tol:
 break

 try:
 x -= npl.solve(J, func)
 except npl.LinAlgError:
 print('Singular')
 eps = 1.e-6 # Perturbation value
 J += eps*np.eye(18)
 func[0] += eps
 x -= npl.solve(J, func)

 return x

Index

arteryfe package

Submodules

arteryfe.artery module

arteryfe.artery_network module

arteryfe.utils module

Module contents

arteryfe

	arteryfe package
	Submodules

	arteryfe.artery module

	arteryfe.artery_network module

	arteryfe.utils module

	Module contents

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to artery.fe’s documentation!

 		
 Getting started

 		
 Installation and dependencies

 		
 Running artery.fe

 		
 License

 		
 Tutorial

 		
 Running a simulation

 		
 Visualising the output

 		
 Blood flow dynamics in 1D

 		
 Nomenclature

 		
 Governing equations

 		
 Boundary conditions

 		
 Inlet

 		
 Outlet

 		
 Bifurcation

 		
 Numerical implementation

 		
 Time discretisation

 		
 Finite element discretisation

 		
 Boundary conditions

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

