

Blockchain

This is the documentation of Blockchain a simple implementation in Python to get familiar with Python and the basic concepts of Blockchains.

Short Disclaimer:
It is just a private Python 3.7.2 project. Its purposes is to get a little bit familiar with the Python projects and the concepts of Blockchains.
Therefore it is not intended for production usage, and any warranties are excluded.

Getting Started

The easiest way to get up a single miner or a whole blockchain network is to use Docker. This repository offers the needed Dockerfile and docker-compose.yaml in the directory docker.
Do the following steps:

	Change to docker directory

	Run docker build --no-cache -t blockchain .

	Run docker-compose up

This starts a Blockchain network with 3 miners and forwards their ports (12345, 12346, 12347) to your host system.
It uses the directory ~/.blockchain/ on your host system to save the created files for each miner.

Install the CLI Locally

	Clone this repository: git clone git@github.com:se-jaeger/blockchain.git

	Open the clone directory: cd blockchain

	Create a virtual env: python -m venv venv

	Activate the virtual env: source venv/bin/activate

	Install all dependencies: pip install -r requirements.txt

	Install the blockchain CLI, run the following in the root directory of this project: pip install -e .

	Check available commands: blockchain --help

How Does This Blockchain Implementation Work?

This implementation produces a simple CLI, Miner and UI. It is necessary to get up and running a local Miner.
The CLI, as well as the UI, uses the Miners REST interface to interact with it.
Created messages get synchronized with all other known Miners (neighbours) in the Blockchain network.
A Miner asks all its neighbours periodically (if not max amount of neighbours is reached) to send unknown Miner and connects to them.
Also in a periodical manner, Miner synchronizes their local Blockchain with the chains of there neighbours and use the longest valid chain in the network.

Miner Implementation

This Miner implementation offers a REST API with the following endpoints:

	
	/add (PUT): needs the URL parameter message. Adds the message to the local cache of unprocessed data.

	
	response (200): JSON with message: ‘Message added!’

	response (400): JSON with message: ‘No Message added!’

	
	/chain (GET): Returns the miners local chain.

	
	response (200): JSON with the actual chain and its length.

	
	/neighbours (GET): Returns the miners neighbours.

	
	response (200): JSON with the actual neighbours and its length.

	
	/data (GET): Returns the miners local cache of unprocessed data.

	
	response (200): JSON with the actual list of unprocessed data.

The miner uses a set of files for normal operation:

	<filename>.chain: Representation of the actual file.

	<filename>.hash: SHA-256 of the actual chain file. Is used to check if the local chain differs from its on disc representation.

	<filename>_<date>_<time>: Older versions of the chain file. Created at <date>_<time>.

	miner.log: Log file and up to three backup files named miner.log.x where x is a number.

The Miner runs several Threads and a Process to run parallel and periodical tasks:

	Gossip Job (Thread): Implementation of a simple Gossip Protocol. Fetches periodical all neighbours of its neighbours.

	Sync Chain Job (Thread): To get the actual longest global chain. Fetches periodical the chain of all neighbours.

	Sync Unprocessed Data Job (Thread): To propagate unprocessed data through the network. Fetches periodical the set of unprocessed data of all neighbours.

	Backup Local Chain Job (Thread): To backup the local chain to disc. Backups periodical the local chain to disc if they differ from each other.

	Server Process (Process): Servers the Miners REST API in a separate process.

	Communication Job (Thread): Communication thread to exchange message with the server process.

Web-based User Interface

The CLI offers a subcommand ui, this allows to start an webserver for convenient interaction with the blockchain system.

Proof of Work

A very simple implementation of a Proof of Work algorithm.
The SHA-256 hash value of the concatenation of the previous proof and the proof of the new Block has to start with difficulty trailing 0s.

Improvements

	Miner endpoint (health) to check availability and provide opportunity to delete a neighbour

	More Error handling -> chain probably gets corrupt when killing miner

	Use locking for (chain, neighbours, data)

Contents

	License

	Authors

	Changelog
	Version 0.1

	Version 0.2

	Module Reference
	blockchain package

Indices and tables

	Index

	Module Index

	Search Page

License

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

	Definitions.

“License” shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity
exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

“Object” form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, “submitted”
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

	Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

	You must give any other recipients of the Work or
Derivative Works a copy of this License; and

	You must cause any modified files to carry prominent notices
stating that You changed the files; and

	You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

	If the Work includes a “NOTICE” text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets “{}”
replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same “printed page” as the copyright notice for easier
identification within third-party archives.

Copyright {yyyy} {name of copyright owner}

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Contributors

	Sebastian Jäger <se.jaeger@web.de>

Changelog

Version 0.1

	Implement core functionality

Version 0.2

	Implement Web-based user interface

src

	blockchain package
	Subpackages
	blockchain.blockchain package
	Submodules

	blockchain.blockchain.block module

	blockchain.blockchain.blockchain module

	blockchain.blockchain.data module

	Module contents

	blockchain.cli package
	Submodules

	blockchain.cli.cli module

	Module contents

	blockchain.client package
	Submodules

	blockchain.client.miner module

	blockchain.client.server module

	Module contents

	blockchain.ui package
	Submodules

	blockchain.ui.forms module

	blockchain.ui.routes module

	Module contents

	blockchain.utils package
	Submodules

	blockchain.utils.constants module

	blockchain.utils.errors module

	blockchain.utils.utils module

	Module contents

	Module contents

blockchain package

Subpackages

	blockchain.blockchain package
	Submodules

	blockchain.blockchain.block module

	blockchain.blockchain.blockchain module

	blockchain.blockchain.data module

	Module contents

	blockchain.cli package
	Submodules

	blockchain.cli.cli module

	Module contents

	blockchain.client package
	Submodules

	blockchain.client.miner module

	blockchain.client.server module

	Module contents

	blockchain.ui package
	Submodules

	blockchain.ui.forms module

	blockchain.ui.routes module

	Module contents

	blockchain.utils package
	Submodules

	blockchain.utils.constants module

	blockchain.utils.errors module

	blockchain.utils.utils module

	Module contents

Module contents

blockchain.blockchain package

Submodules

blockchain.blockchain.block module

	
class blockchain.blockchain.block.Block(index: int, data: blockchain.blockchain.data.Data, proof: int, previous_hash: str)

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
__bytes__() → bytes

	Uses the encoded string representation of this Block object as bytes representation.

	Returns

	byte representation of Block object.

	Return type

	bytes [https://docs.python.org/3.7/library/stdtypes.html#bytes]

	
__eq__(other: object) → bool

	Method for comparing two Block objects.

	Parameters

	other (Block) – Block object to compare with self.

	Returns

	True if blocks are equal. False otherwise.

	Return type

	bool [https://docs.python.org/3.7/library/functions.html#bool]

	
__repr__() → str

	String representation of Block object.

	Returns

	String representation of Block object.

	Return type

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
data

	

	
index

	

	
previous_hash

	

	
proof

	

	
timestamp

	

blockchain.blockchain.blockchain module

	
class blockchain.blockchain.blockchain.Blockchain(path_to_chain: str, json_format: bool, force_new_chain: bool)

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
_load_chain() → None

	Helper method to load chain from disk. Raises an error if no chain is found.

	Raises

	ChainNotFoundError – Will be raised if no local chain could be found.

	
add_new_block(data: blockchain.blockchain.data.Data, proof: int, previous_hash: str) → blockchain.blockchain.block.Block

	Adds a new Block to the existing chain.

	Parameters

	
	data (Data) – Data that is attached to this block.

	proof (int [https://docs.python.org/3.7/library/functions.html#int]) – The proof value for this block.

	previous_hash (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Hash value of previous block in chain.

	
chain

	

	
genesis_block

 blockchain.cli package

blockchain.cli package

Submodules

blockchain.cli.cli module

Module contents

 blockchain.client package

blockchain.client package

Submodules

blockchain.client.miner module

	
class blockchain.client.miner.Miner(path_to_chain: str, json_format: bool, port: int, difficulty: int, neighbours: list, force_new_chain: bool)

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

	
_backup_local_chain() → None

	Periodical thread to backup the local chain to disc.

	
_check_for_longest_chain() → None

	Consensus Algorithm:

Ask each neighbour for that neighbours.
Add all unknown miner to neighbours set until maximum amount of neighbours is reached.

	
_communicate() → None

	Periodical thread to communicate with server process.

	
_fetch_unprocessed_data() → None

	Periodical thread to get unprocessed data form neighbours.
=> Broadcasts unprocessed data around the network.

	
static _hash(block: blockchain.blockchain.block.Block) → str

	Hash a Block object with SHA-256.

	Parameters

	block (Block) – Object of class Block to hash.

	Returns

	Hex representation of block hash.

	Return type

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	Raises

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – Will be raised if no Block object is passed.

	
_is_chain_valid(chain: list = None) → bool

	
	Checks if the given chain satisfies the following rules:

	
	
	The first (genesis) block:

	
	index = 0

	previous_hash = None

	proof = None

	
	each and every following block:

	
	index: step size 1 and monotonically increasing (1, 2, 3, 4, …)

	previous_hash: SHA-256 of the string representation of the preceding block

	proof: has to be valid -> see: is_proof_of_work_valid()

	timestamp: higher than the timestamp of of preceding block

	Parameters

	chain (list [https://docs.python.org/3.7/library/stdtypes.html#list]) – Optional chain if None internal representation is used.

	Returns

	True if chain is valid, False otherwise.

	Return type

	bool [https://docs.python.org/3.7/library/functions.html#bool]

	
_is_data_processed(data: blockchain.blockchain.data.Data) → bool

	Checks if data is already in local chain.

	Parameters

	data (Data) – Data object to check if it exists in the actual chain.

	Returns

	True if unprocessed.

	Return type

	bool [https://docs.python.org/3.7/library/functions.html#bool]

	
static _is_proof_of_work_valid(last_proof: int, proof: int, difficulty: int) → bool

	Checks if the proof of work was correct.
The hash value of last_proof concatenated with proof has to be difficulty trailing 0s.

	Parameters

	
	last_proof (int [https://docs.python.org/3.7/library/functions.html#int]) – Value of the proof of the preceding block.

	proof (int [https://docs.python.org/3.7/library/functions.html#int]) – proof of the actual block.

	difficulty (int [https://docs.python.org/3.7/library/functions.html#int]) – Amount of trailing 0s.

	Returns

	True if proof of work is correct, False otherwise.

	Return type

	bool [https://docs.python.org/3.7/library/functions.html#bool]

	Raises

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – Will be raised if difficulty is not a positive integer value.

	
_mine() → None

	Blocking Mining loop.

If not_processed_messages are available it uses a random message an mines a new block.

	
_new_message(message: str) → None

	
Adds the new message to its local cache.

	Parameters

	message (str [https://docs.python.org/3.7/library/stdtypes.html#str]) –

	
_proof_of_work(last_proof: int, difficulty: int) → int

	Simple proof of work:

Find a number p that when hashed with the previous block’s solution a hash with difficulty trailing 0s is produced.

	Parameters

	
	last_proof (int [https://docs.python.org/3.7/library/functions.html#int]) – Solution of the last blocks’ proof of work

	difficulty (int [https://docs.python.org/3.7/library/functions.html#int]) – Amount of trailing 0s for a valid proof of work.

	Returns

	Solution for this proof of work quiz.

	Return type

	int [https://docs.python.org/3.7/library/functions.html#int]

	Raises

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – Will be raised if difficulty is not a positive integer value.

	
_update_neighbours() → None

	Periodical thread to update neighbours if limit is not exceeded.

	
blockchain

	

	
difficulty

	

	
jobs

	

	
neighbours

	

	
port

	

	
queue

	

	
server_process

	

	
start() → None

	Starts some background Job s for the Gossip Protocol, Chain syncing, Data syncing, communication thread as well as the server functionalities as process.
Starts the blocking function mine().

	
stop() → None

	Function that gets called when Python was killed. Takes care to shutting down all threads/process and saves the chain to disc.

	
unprocessed_data

	

blockchain.client.server module

	
blockchain.client.server.start_server(queue: multiprocessing.context.BaseContext.Queue, port: int)

	

Module contents

 blockchain.ui package

blockchain.ui package

Submodules

blockchain.ui.forms module

blockchain.ui.routes module

Module contents

 blockchain.utils package

blockchain.utils package

Submodules

blockchain.utils.constants module

blockchain.utils.errors module

	
exception blockchain.utils.errors.ChainNotFoundError

	Bases: Exception [https://docs.python.org/3.7/library/exceptions.html#Exception]

Error if no local chain could be found.

	
exception blockchain.utils.errors.ChainNotValidError

	Bases: Exception [https://docs.python.org/3.7/library/exceptions.html#Exception]

Error if loaded chain is not valid.

	
exception blockchain.utils.errors.PortValueError

	Bases: ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError]

Error if given port is out af valid range (1 - 65535).

	
exception blockchain.utils.errors.ProgramKilledError

	Bases: Exception [https://docs.python.org/3.7/library/exceptions.html#Exception]

Error if process get killed.

blockchain.utils.utils module

	
class blockchain.utils.utils.Job(interval: datetime.timedelta, execute, *args, **kwargs)

	Bases: threading.Thread [https://docs.python.org/3.7/library/threading.html#threading.Thread]

	
run() → None

	Runs the background Job

	
stop() → None

	Stops the background Job.

	
blockchain.utils.utils.colorize(text: str, color: str) → str

	

	
blockchain.utils.utils.create_proper_url_string(host_port: (<class 'str'>, <class 'int'>), path: str) → str

	Takes the internal representation of neighbours and a endpoint path to create a proper URL string for requests.

	Parameters

	
	host_port (str [https://docs.python.org/3.7/library/stdtypes.html#str], int [https://docs.python.org/3.7/library/functions.html#int]) – Internal representation of IP address/hostname and port combination.

	path (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The endpoint of the API.

	Returns

	Correct URL string for address and path.

	Return type

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
blockchain.utils.utils.encode_file_path_properly(file_path: str) → str

	Encode each and every input filepath as absolute pathes.

	Parameters

	file_path (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Path to encode properly

	Returns

	Absolute and properly encoded file_path

	Return type

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
blockchain.utils.utils.signal_handler(signum, frame)

	Signal handler used to raise special ProgramKilledError.

	Raises

	ProgramKilledError – To intercept for graceful shutdown.

	
blockchain.utils.utils.split_url_string(host_port: str) -> (<class 'str'>, <class 'int'>)

	Parses the given URL string and returns the IP address/hostname and the port/default port.

	Parameters

	host_port (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Representation of the miner as URL string, e.g.: 127.0.0.1:12345, miner1:8888, miner, http://localhost, …

	Returns

	Tuple of IPv4 Address or hostname string and port number.

	Return type

	(str [https://docs.python.org/3.7/library/stdtypes.html#str], int [https://docs.python.org/3.7/library/functions.html#int])

	Raises

	
	PortValueError – Will be raised if given port is out of range.

	AddressValueError – Will be raised if given address is not a valid IPv4 address or “localhost”.

Module contents

 Python Module Index

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 blockchain	

 	
 	
 blockchain.blockchain	

 	
 	
 blockchain.blockchain.block	

 	
 	
 blockchain.blockchain.blockchain	

 	
 	
 blockchain.blockchain.data	

 	
 	
 blockchain.cli	

 	
 	
 blockchain.cli.cli	

 	
 	
 blockchain.client	

 	
 	
 blockchain.client.miner	

 	
 	
 blockchain.client.server	

 	
 	
 blockchain.utils	

 	
 	
 blockchain.utils.constants	

 	
 	
 blockchain.utils.errors	

 	
 	
 blockchain.utils.utils	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | G
 | I
 | J
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U

_

 	
 	__bytes__() (blockchain.blockchain.block.Block method)

 	__eq__() (blockchain.blockchain.block.Block method)

 	__hash__() (blockchain.blockchain.data.Data method)

 	__repr__() (blockchain.blockchain.block.Block method)

 	_backup_local_chain() (blockchain.client.miner.Miner method)

 	_check_for_longest_chain() (blockchain.client.miner.Miner method)

 	_communicate() (blockchain.client.miner.Miner method)

 	_fetch_unprocessed_data() (blockchain.client.miner.Miner method)

 	
 	_hash() (blockchain.client.miner.Miner static method)

 	_is_chain_valid() (blockchain.client.miner.Miner method)

 	_is_data_processed() (blockchain.client.miner.Miner method)

 	_is_proof_of_work_valid() (blockchain.client.miner.Miner static method)

 	_load_chain() (blockchain.blockchain.blockchain.Blockchain method)

 	_mine() (blockchain.client.miner.Miner method)

 	_new_message() (blockchain.client.miner.Miner method)

 	_proof_of_work() (blockchain.client.miner.Miner method)

 	_update_neighbours() (blockchain.client.miner.Miner method)

A

 	
 	add_new_block() (blockchain.blockchain.blockchain.Blockchain method)

B

 	
 	Block (class in blockchain.blockchain.block)

 	blockchain (blockchain.client.miner.Miner attribute)

 	Blockchain (class in blockchain.blockchain.blockchain)

 	blockchain (module)

 	blockchain.blockchain (module)

 	blockchain.blockchain.block (module)

 	blockchain.blockchain.blockchain (module)

 	blockchain.blockchain.data (module)

 	
 	blockchain.cli (module)

 	blockchain.cli.cli (module)

 	blockchain.client (module)

 	blockchain.client.miner (module)

 	blockchain.client.server (module)

 	blockchain.utils (module)

 	blockchain.utils.constants (module)

 	blockchain.utils.errors (module)

 	blockchain.utils.utils (module)

C

 	
 	chain (blockchain.blockchain.blockchain.Blockchain attribute)

 	ChainNotFoundError

 	
 	ChainNotValidError

 	colorize() (in module blockchain.utils.utils)

 	create_proper_url_string() (in module blockchain.utils.utils)

D

 	
 	data (blockchain.blockchain.block.Block attribute)

 	
 	Data (class in blockchain.blockchain.data)

 	difficulty (blockchain.client.miner.Miner attribute)

E

 	
 	encode_file_path_properly() (in module blockchain.utils.utils)

G

 	
 	genesis_block (blockchain.blockchain.blockchain.Blockchain attribute)

 	
