

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Blaze 0.8.0-96-g04fdee5 documentation

 [image: _images/blaze_med.png]
Blaze translates a subset of modified NumPy and Pandas-like syntax to
databases and other computing systems. Blaze allows Python users a familiar
interface to query data living in other data storage systems.

Ecosystem

Several projects have come out of Blaze development other than the Blaze
project itself.

	Blaze: Translates NumPy/Pandas-like syntax to systems like databases.

Blaze presents a pleasant and familiar interface to us regardless of
what computational solution or database we use. It mediates our
interaction with files, data structures, and databases, optimizing and
translating our query as appropriate to provide a smooth and interactive
session.

	Odo [http://odo.pydata.org/]: Migrates data between formats.

Odo moves data between formats (CSV, JSON, databases) and locations
(local, remote, HDFS) efficiently and robustly with a dead-simple interface
by leveraging a sophisticated and extensible network of conversions.

	Dask.array [http://dask.pydata.org/]: Multi-core / on-disk NumPy arrays

Dask.arrays provide blocked algorithms on top of NumPy to handle
larger-than-memory arrays and to leverage multiple cores. They are a
drop-in replacement for a commonly used subset of NumPy algorithms.

	DyND [https://github.com/libdynd/libdynd]: In-memory dynamic arrays

DyND is a dynamic ND-array library like NumPy. It supports variable length
strings, ragged arrays, and GPUs. It is a standalone C++ codebase with
Python bindings. Generally it is more extensible than NumPy but also less
mature.

These projects are mutually independent. The rest of this documentation is
just about the Blaze project itself. See the pages linked to above for odo
or dask.array.

Blaze

Blaze is a high-level user interface for databases and array computing systems.
It consists of the following components:

	A symbolic expression system to describe and reason about analytic queries

	A set of interpreters from that query system to various databases / computational engines

This architecture allows a single Blaze code to run against several
computational backends. Blaze interacts rapidly with the user and only
communicates with the database when necessary. Blaze is also able to analyze
and optimize queries to improve the interactive experience.

Presentations

	See previous presentations about Blaze

	See previous blog posts about Blaze [http://continuum.io/blog/tags/blaze]

Index

User facing

	Overview

	Install

	Quickstart

	Basic Queries

	Split-Apply-Combine – Grouping

	Pandas to Blaze

	URI strings

	Tips for working with CSV files

	Interacting with SQL Databases

	Out of Core Processing

	Server

	Datashape

	What Blaze Doesn’t Do

	API

	Release Notes

	Legal

Internal

	Expression Design

	Expressions

	Backends

	Interactive Expressions

	Developer Workflow

	Expressions and Computation

	Computation Pipeline

Older Versions

Older versions of these documents can be found here.

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Overview

Blaze Abstracts Computation and Storage

[image: _images/numpy_plus.png]
Several projects provide rich and performant data analytics. Competition
between these projects gives rise to a vibrant and dynamic ecosystem.
Blaze augments this ecosystem with a uniform and adaptable interface. Blaze
orchestrates computation and data access among these external projects. It
provides a consistent backdrop to build standard interfaces usable by the
current Python community.

Demonstration

Blaze separates the computations that we want to perform:

>>> from blaze import *
>>> accounts = Symbol('accounts', 'var * {id: int, name: string, amount: int}')

>>> deadbeats = accounts[accounts.amount < 0].name

From the representation of data

>>> L = [[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Denis', 400],
... [5, 'Edith', -500]]

Blaze enables users to solve data-oriented problems

>>> list(compute(deadbeats, L))
['Bob', 'Edith']

But the separation of expression from data allows us to switch between
different backends.

Here we solve the same problem using Pandas instead of Pure Python.

>>> df = DataFrame(L, columns=['id', 'name', 'amount'])

>>> compute(deadbeats, df)
1 Bob
4 Edith
Name: name, dtype: object

Blaze doesn’t compute these results, Blaze intelligently drives other projects
to compute them instead. These projects range from simple Pure Python
iterators to powerful distributed Spark clusters. Blaze is built to be
extended to new systems as they evolve.

Scope

Blaze speaks Python and Pandas as seen above and also several other
technologies, including NumPy, SQL, Mongo, Spark, PyTables, etc.. Blaze is
built to make connecting to a new technology easy.

Blaze currently targets database and array technologies used for analytic
queries. It strives to orchestrate and provide interfaces on top of and in
between other computational systems. We provide performance by providing data
scientists with intuitive access to a variety of tools.

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Install

Installing

Blaze can be most easily installed from conda [http://conda.pydata.org/]

$ conda install blaze

More up-to-date builds are available on the blaze anaconda channel:
http://anaconda.org/blaze

conda install -c blaze blaze

Blaze may also be installed using pip:

pip install blaze --upgrade
or
pip install git+https://github.com/ContinuumIO/blaze --upgrade

If you are interested in the development version of Blaze you can
obtain the source from Github.

$ git clone git@github.com:ContinuumIO/blaze.git

Anaconda can be downloaded for all platforms here:
http://continuum.io/anaconda.html .

Introduction

To build project from source:

$ python setup.py install

To build documentation on a unix-based system:

$ cd docs
$ make docs

To run tests:

$ py.test --doctest-modules --pyargs blaze

Strict Dependencies

Blaze depends on NumPy, Pandas, and a few pure-python libraries. It should be
easy to install on any Numeric Python setup.

	numpy [http://www.numpy.org/] >= 1.7

	datashape [https://github.com/ContinuumIO/datashape] >= 0.4.4

	odo [https://github.com/ContinuumIO/odo] >= 0.3.1

	toolz [http://toolz.readthedocs.org/] >= 0.7.0

	cytoolz [https://github.com/pytoolz/cytoolz/]

	multipledispatch [http://multiple-dispatch.readthedocs.org/] >= 0.4.7

	pandas [http://pandas.pydata.org/]

Optional Dependencies

Blaze can help you use a variety of other libraries like sqlalchemy or
h5py. If these are installed then Blaze will use them. Some of these are
non-trivial to install. We recommend installation throgh conda.

	dynd-python [https://github.com/ContinuumIO/dynd-python] >= 0.6.5

	sqlalchemy [http://www.sqlalchemy.org/]

	h5py [http://docs.h5py.org/en/latest/]

	spark [http://spark.apache.org/] >= 1.1.0

	pymongo [http://api.mongodb.org/python/current/]

	pytables [http://www.pytables.org/moin]

	bcolz [https://github.com/Blosc/bcolz]

	flask [http://flask.pocoo.org/] >= 0.10.1

	pytest [http://pytest.org/latest/] (for running tests)

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Quickstart

This quickstart is here to show some simple ways to get started created
and manipulating Blaze Symbols. To run these examples, import blaze
as follows.

>>> from blaze import *

Blaze Interactive Data

Create simple Blaze expressions from nested lists/tuples. Blaze will deduce the
dimensionality and data type to use.

>>> t = Data([(1, 'Alice', 100),
... (2, 'Bob', -200),
... (3, 'Charlie', 300),
... (4, 'Denis', 400),
... (5, 'Edith', -500)],
... fields=['id', 'name', 'balance'])

>>> t
 id name balance
0 1 Alice 100
1 2 Bob -200
2 3 Charlie 300
3 4 Denis 400
4 5 Edith -500

Simple Calculations

Blaze supports simple computations like column selection and filtering
with familiar Pandas getitem or attribute syntax.

>>> t[t.balance < 0]
 id name balance
0 2 Bob -200
1 5 Edith -500

>>> t[t.balance < 0].name
 name
0 Bob
1 Edith

Stored Data

Define Blaze expressions directly from storage like CSV or HDF5 files. Here we
operate on a CSV file of the traditional iris dataset [https://raw.githubusercontent.com/ContinuumIO/blaze/master/blaze/examples/data/iris.csv].

>>> iris = Data('blaze/examples/data/iris.csv')
>>> iris
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
5 5.4 3.9 1.7 0.4 Iris-setosa
6 4.6 3.4 1.4 0.3 Iris-setosa
7 5.0 3.4 1.5 0.2 Iris-setosa
8 4.4 2.9 1.4 0.2 Iris-setosa
9 4.9 3.1 1.5 0.1 Iris-setosa
...

Use remote data like SQL databases or Spark resilient distributed
data-structures in exactly the same way. Here we operate on a SQL database
stored in a sqlite file [https://raw.githubusercontent.com/ContinuumIO/blaze/master/blaze/examples/data/iris.db].

>>> iris = Data('sqlite:///blaze/examples/data/iris.db::iris')
>>> iris
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
5 5.4 3.9 1.7 0.4 Iris-setosa
6 4.6 3.4 1.4 0.3 Iris-setosa
7 5.0 3.4 1.5 0.2 Iris-setosa
8 4.4 2.9 1.4 0.2 Iris-setosa
9 4.9 3.1 1.5 0.1 Iris-setosa
...

More Computations

Common operations like Joins and split-apply-combine are available on any kind
of data

>>> by(iris.species, # Group by species
... min=iris.petal_width.min(), # Minimum of petal_width per group
... max=iris.petal_width.max()) # Maximum of petal_width per group
 species max min
0 Iris-setosa 0.6 0.1
1 Iris-versicolor 1.8 1.0
2 Iris-virginica 2.5 1.4

Finishing Up

Blaze computes only as much as is necessary to present the results on screen.
Fully evaluate the computation, returning an output similar to the input type
by calling compute.

>>> t[t.balance < 0].name # Still an Expression
 name
0 Bob
1 Edith

>>> list(compute(t[t.balance < 0].name)) # Just a raw list
['Bob', 'Edith']

Alternatively use the odo operation to push your output into a suitable
container type.

>>> result = by(iris.species,
... avg=iris.petal_width.mean())

>>> result_list = odo(result, list) # Push result into a list

>>> odo(result, DataFrame) # Push result into a DataFrame
 species avg
0 Iris-setosa 0.246
1 Iris-versicolor 1.326
2 Iris-virginica 2.026

>>> # Write result to CSV file
>>> odo(result, 'blaze/examples/data/output.csv')
<odo.backends.csv.CSV object at ...>

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Basic Queries

Here we give a quick overview of some of the more common query functionality.

We use the well known iris dataset

>>> from blaze import *
>>> iris = Data('blaze/examples/data/iris.csv')
>>> iris
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
...

Column Access

Select individual columns using attributes

>>> iris.species
 species
0 Iris-setosa
1 Iris-setosa
2 Iris-setosa
3 Iris-setosa
...

Or item access

>>> iris['species']
 species
0 Iris-setosa
1 Iris-setosa
2 Iris-setosa
3 Iris-setosa
...

Select many columns using a list of names

>>> iris[['sepal_length', 'species']]
 sepal_length species
0 5.1 Iris-setosa
1 4.9 Iris-setosa
2 4.7 Iris-setosa
3 4.6 Iris-setosa
...

Mathematical operations

Use mathematical operators and functions as normal

>>> log(iris.sepal_length * 10)
 sepal_length
0 3.931826
1 3.891820
2 3.850148
3 3.828641
...

Note that mathematical functions like log should be imported from blaze.
These will translate to np.log, math.log, sqlalchemy.sql.func.log,
etc. based on the backend.

Reductions

As with many Blaze operations reductions like sum and mean may be used
either as methods or as base functions.

>>> iris.sepal_length.mean()
5.843333333333334

>>> mean(iris.sepal_length)
5.843333333333334

Split-Apply-Combine

The by operation expresses split-apply-combine computations. It has the
general format

>>> by(table.grouping_columns, name_1=table.column.reduction(),
... name_2=table.column.reduction(),
... ...)

Here is a concrete example. Find the shortest, longest, and average petal
length by species.

>>> by(iris.species, shortest=iris.petal_length.min(),
... longest=iris.petal_length.max(),
... average=iris.petal_length.mean())
 species average longest shortest
0 Iris-setosa 1.462 1.9 1.0
1 Iris-versicolor 4.260 5.1 3.0
2 Iris-virginica 5.552 6.9 4.5

This simple model can be extended to include more complex groupers and more
complex reduction expressions.

Add Computed Columns

Add new columns using the transform function

>>> transform(iris, sepal_ratio = iris.sepal_length / iris.sepal_width,
... petal_ratio = iris.petal_length / iris.petal_width)
 sepal_length sepal_width petal_length petal_width species \
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa

 sepal_ratio petal_ratio
0 1.457143 7.000000
1 1.633333 7.000000
2 1.468750 6.500000
3 1.483871 7.500000
...

Text Matching

Match text with glob strings, specifying columns with keyword arguments.

>>> iris.like(species='*versicolor')
 sepal_length sepal_width petal_length petal_width species
50 7.0 3.2 4.7 1.4 Iris-versicolor
51 6.4 3.2 4.5 1.5 Iris-versicolor
52 6.9 3.1 4.9 1.5 Iris-versicolor

Relabel Column names

>>> iris.relabel(petal_length='PETAL-LENGTH', petal_width='PETAL-WIDTH')
 sepal_length sepal_width PETAL-LENGTH PETAL-WIDTH species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Split-Apply-Combine – Grouping

Grouping operations break a table into pieces and perform some reduction on
each piece. Consider the iris dataset:

>>> from blaze import Data, by
>>> d = Data('sqlite:///blaze/examples/data/iris.db::iris')
>>> d
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa

We find the average petal length, grouped by species:

>>> by(d.species, avg=d.petal_length.mean())
 species avg
0 Iris-setosa 1.462
1 Iris-versicolor 4.260
2 Iris-virginica 5.552

Split-apply-combine operations are a concise but powerful way to describe many
useful transformations. They are well supported in all backends and are
generally efficient.

Arguments

The by function takes one positional argument, the expression on which we
group the table, in this case d.species, and any number of keyword
arguments which define reductions to perform on each group. These must be
named and they must be reductions.

>>> by(grouper, name=reduction, name=reduction, ...)

>>> by(d.species, minimum=d.petal_length.min(),
... maximum=d.petal_length.max(),
... ratio=d.petal_length.max() - d.petal_length.min())
 species maximum minimum ratio
0 Iris-setosa 1.9 1.0 0.9
1 Iris-versicolor 5.1 3.0 2.1
2 Iris-virginica 6.9 4.5 2.4

Limitations

This interface is restrictive in two ways when compared to in-memory dataframes
like pandas or dplyr.

	You must specify both the grouper and the reduction at the same time

	The “apply” step must be a reduction

These restrictions make it much easier to translate your intent to databases
and to efficiently distribute and parallelize your computation.

Things that you can’t do

So, as an example, you can’t “just group” a table separately from a reduction

>>> groups = by(mytable.mycolumn) # Can't do this

You also can’t do non-reducing apply operations (although this could change for
some backends with work)

>>> groups = by(d.A, result=d.B / d.B.max()) # Can't do this

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Pandas to Blaze

This page maps pandas constructs to blaze constructs.

Imports and Construction

import numpy as np
import pandas as pd
from blaze import Data, by, join, merge

construct a DataFrame
df = pd.DataFrame({
 'name': ['Alice', 'Bob', 'Joe', 'Bob'],
 'amount': [100, 200, 300, 400],
 'id': [1, 2, 3, 4],
})

put the `df` DataFrame into a Blaze Data object
df = Data(df)

	Computation
	Pandas
	Blaze

	Column
Arithmetic
	df.amount * 2

	df.amount * 2

	Multiple
Columns
	df[['id', 'amount']]

	df[['id', 'amount']]

	Selection
	df[df.amount > 300]

	df[df.amount > 300]

	Group By
	df.groupby('name').amount.mean()
df.groupby(['name', 'id']).amount.mean()

	by(df.name, amount=df.amount.mean())
by(merge(df.name, df.id),
 amount=df.amount.mean())

	Join
	pd.merge(df, df2, on='name')

	join(df, df2, 'name')

	Map
	df.amount.map(lambda x: x + 1)

	df.amount.map(lambda x: x + 1,
 'int64')

	Relabel Columns
	df.rename(columns={'name': 'alias',
 'amount': 'dollars'})

	df.relabel(name='alias',
 amount='dollars')

	Drop duplicates
	df.drop_duplicates()
df.name.drop_duplicates()

	df.distinct()
df.name.distinct()

	Reductions
	df.amount.mean()
df.amount.value_counts()

	df.amount.mean()
df.amount.count_values()

	Column Type
Information
	df.dtypes
df.amount.dtype

	df.dshape
df.amount.dshape

Blaze can simplify and make more readable some common IO tasks that one would want to do with pandas. These examples make use of the odo [https://github.com/ContinuumIO/odo] library. In many cases, blaze will able to handle datasets that can’t fit into main memory, which is something that can’t be easily done with pandas.

from odo import odo

	Operation
	Pandas
	Blaze

	Load
directory of
CSV files
	df = pd.concat([pd.read_csv(filename)
 for filename in
 glob.glob('path/to/*.csv')])

	df = Data('path/to/*.csv')

	Save result
to CSV file
	df[df.amount < 0].to_csv('output.csv')

	odo(df[df.amount < 0],
 'output.csv')

	Read from
SQL database
	import sqlalchemy as sa
engine = sa.create_engine('sqlite://db.db')
df = pd.read_sql('select * from t',
 con=engine)

	df = Data('sqlite://db.db::t')

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

URI strings

Blaze uses strings to specify data resources. This is purely for ease of use.

Example

Interact with a set of CSV files or a SQL database

>>> from blaze import *
>>> t = Data('blaze/examples/data/accounts_*.csv')
>>> t
 id name amount
0 1 Alice 100
1 2 Bob 200
2 3 Charlie 300
3 4 Dan 400
4 5 Edith 500

>>> t = Data('sqlite:///blaze/examples/data/iris.db::iris')
>>> t
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
5 5.4 3.9 1.7 0.4 Iris-setosa
6 4.6 3.4 1.4 0.3 Iris-setosa
7 5.0 3.4 1.5 0.2 Iris-setosa
8 4.4 2.9 1.4 0.2 Iris-setosa
9 4.9 3.1 1.5 0.1 Iris-setosa
...

Migrate CSV files into a SQL database

>>> from odo import odo
>>> odo('blaze/examples/data/iris.csv', 'sqlite:///myfile.db::iris')
Table('iris', MetaData(bind=Engine(sqlite:///myfile.db)), ...)

What sorts of URIs does Blaze support?

	
	Paths to files on disk, including the following extensions

	
	.csv

	.json

	.csv.gz/json.gz

	.hdf5 (uses h5py)

	.hdf5::/datapath

	hdfstore://filename.hdf5 (uses special pandas.HDFStore format)

	.bcolz

	.xls(x)

	
	SQLAlchemy strings like the following

	
	sqlite:////absolute/path/to/myfile.db::tablename

	sqlite:////absolute/path/to/myfile.db (specify a particular table)

	postgresql://username:password@hostname:port

	impala://hostname (uses impyla)

	anything supported by SQLAlchemy

	
	MongoDB Connection strings of the following form

	
	mongodb://username:password@hostname:port/database_name::collection_name

	
	Blaze server strings of the following form

	
	blaze://hostname:port (port defaults to 6363)

In all cases when a location or table name is required in addition to the traditional URI (e.g. a data path within an HDF5 file or a Table/Collection name within a database) then that information follows on the end of the URI after a separator of two colons ::.

How it works

Blaze depends on the Odo [https://github.com/ContinuumIO/odo] library to handle URIs.
URIs are managed through the resource function which is dispatched based on regular expressions. For example a simple resource function to handle .json files might look like the following (although Blaze’s actual solution is a bit more comprehensive):

from blaze import resource
import json

@resource.register('.+\.json')
def resource_json(uri):
 with open(uri):
 data = json.load(uri)
 return data

Can I extend this to my own types?

Absolutely. Import and extend resource as shown in the “How it works” section. The rest of Blaze will pick up your change automatically.

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Tips for working with CSV files

How to

Typically one provides a csv filename to the Data constructor like so

>>> d = Data('myfile.csv')

GZip extensions or collections of csv files are handled in the same manner.

>>> d = Data('myfile-2014-01-*.csv.gz')

In the case of collections of CSV files the files are sorted by filename and
then considered to be concatenated into a single table.

How does it work?

Blaze primarily relies on Pandas to parse CSV files into DataFrames. In the
case of large CSV files it may parse them into several DataFrames and then use
techniques laid out in the out-of-core section.

What to do when things go wrong

The same thing that makes CSV files so popular with humans, simple
readability/writability, makes them challenging for computers to reason about
robustly.

Interacting with CSV files often breaks down in one of two ways

	We incorrectly guess the dialect of the CSV file (e.g. wrong delimiter, presence or absense of a header, ...)

	We incorrectly guess the type of a column with the CSV file (e.g. an integer column turns out to have floats in it)

Because Blaze operates in a lazy way, giving you access to large CSV files
without reading the entire file into memory it is forced to do some guesswork.
By default it guesses the dialect and types on the first few hundred lines of
text. When this guesswork fails the user must supply additional information.

Correcting CSV Dialects

In the first case of incorrect guessing of CSV dialect (e.g. delimiter) Blaze
respects and passes through all keyword arguments to pandas.read_csv [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.io.parsers.read_csv.html].

Correcting Column Types

In the second case of incorrect guessing of column types Blaze accepts a
datashape as an additional keyword argument. Common practice is to create a
Data object around a csv file, ask for its datashape, tweak that datashape
and then recreate the data object.

>>> d = Data('myfile.csv')
>>> d
Exception: Integer column has NA values

>>> d.dshape # Perhaps that integer column should be a float
dshape("var * {name: string, amount: int64}")

<Copy-Paste>
>>> ds = dshape("var * {name: string, amount: float64}") # change int to float

>>> d = Data('myfile.csv', dshape=ds)

Migrate to Binary Storage Formats

If you plan to reuse the same CSV files many times it may make sense to convert
them to an efficient binary store like HDF5 (common) or BColz (less common but
faster). These storage formats provide better performance on your data and
also avoid the ambiguity that surrounds CSV files.

One can migrate from CSV files to a binary storage format using the odo
function.

>>> from odo import odo
>>> odo('myfiles-*.csv', 'myfile.bcolz')

or

>>> odo('myfiles-*.csv', 'myfile.hdf5::/mydataset')

or

>>> odo('myfiles-*.csv', 'sqlite:///mydb.db::mytable')

When migrating from a loosely formatted system like CSV to a more strict system
like HDF5 or BColz there are a few things to keep in mind

	Neither supports variable length strings well

	But each supports fixed-length strings well and supports compression to
cover up overly large/wasteful fixed-lengths

	HDF5 does not support datetimes well but can easily encode datetimes as
strings

	BColz is a column store, offering much better performance on tables with
many columns

	HDF5 is a standard technology with excellent library support outside of
the Python ecosystem

To ensure that you encode your dataset appropriately we recommend passing a
datashape explicitly. As in our previous example this can often be done by
editing automatically generated datashapes

>>> d = Data('myfile.csv')
>>> d.dshape
dshape("var * {name: string, amount: int64}")

<Copy-Paste>
>>> ds = dshape("var * {name: string[20, 'ascii'], amount: float64}")

>>> from odo import odo
>>> odo('myfiles-*.csv', 'myfile.bcolz', dshape=ds)

Providing a datashape removes data type ambiguity from the transfer.

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Interacting with SQL Databases

How to

Typically one provides a SQL connection string to the Data constructor

>>> db = Data('postgresql:///user:pass@hostname')

or

>>> t = Data('postgresql://user:pass@hostname::my-table-name')

Alternatively users familiar with SQLAlchemy can pass any SQLAlchemy engine,
metadata, or Table objects to Data. This can be useful if you need to
specify more information that does not fit comfortably into a URI (like a
desired schema.)

>>> import sqlalchemy
>>> engine = sqlalchemy.create_engine('postgreqsql://hostname')

>>> db = Data(engine)

How does it work?

As you manipulate a Blaze expression Blaze in turn manipulates a SQLAlchemy
expression. When you ask for a result SQLAlchemy generates the SQL appropriate
for your database and sends the query to the database to be run.

What databases does Blaze support?

Blaze derives all SQL support from SQLAlchemy so really one should ask, What
databases does SQLAlchemy support?. The answer is quite a few in the main
SQLAlchemy project and most when you include third party libraries.

However, URI support within Blaze is limited to a smaller set. For exotic
databases you may have to create a sqlalchemy.engine explicitly as shown
above.

What operations work on SQL databases?

Most tabular operations, but not all. SQLAlchemy translation is a high
priority. Failures include array operations like slicing and dot products don’t
make sense in SQL. Additionally some operations like datetime access are not
yet well supported through SQLAlchemy. Finally some databases, like SQLite,
have limited support for common mathematical functions like sin.

How can I try this out?

The easiest way to play with SQL is to download a SQLite database. We
recommend the Lahman baseball statistics database [https://github.com/jknecht/baseball-archive-sqlite/raw/master/lahman2013.sqlite]. After downloading one could connect blaze
to that database with the following code

>>> from blaze import *

>>> db = Data('sqlite:///Downloads/lahman2013.sqlite')

>>> db.<tab> # see available tables
db.AllstarFull db.FieldingOF db.Schools db.fields
db.Appearances db.FieldingPost db.SchoolsPlayers db.isidentical
db.AwardsManagers db.HallOfFame db.SeriesPost db.like
db.AwardsPlayers db.Managers db.Teams db.map
db.AwardsShareManagers db.ManagersHalf db.TeamsFranchises db.relabel
db.AwardsSharePlayers db.Master db.TeamsHalf db.schema
db.Batting db.Pitching db.apply db.temp
db.BattingPost db.PitchingPost db.data
db.Fielding db.Salaries db.dshape

>>> db.Teams # view one particular database
 yearID lgID teamID franchID divID Rank G Ghome W L ... \
0 1871 NA BS1 BNA None 3 31 NaN 20 10 ...
1 1871 NA CH1 CNA None 2 28 NaN 19 9 ...
2 1871 NA CL1 CFC None 8 29 NaN 10 19 ...
3 1871 NA FW1 KEK None 7 19 NaN 7 12 ...

 DP FP name park \
0 NaN 0.83 Boston Red Stockings South End Grounds I
1 NaN 0.82 Chicago White Stockings Union Base-Ball Grounds
2 NaN 0.81 Cleveland Forest Citys National Association Grounds
3 NaN 0.80 Fort Wayne Kekiongas Hamilton Field

 attendance BPF PPF teamIDBR teamIDlahman45 teamIDretro
0 NaN 103 98 BOS BS1 BS1
1 NaN 104 102 CHI CH1 CH1
2 NaN 96 100 CLE CL1 CL1
3 NaN 101 107 KEK FW1 FW1
...

One can then query and compute results as with a normal blaze workflow.

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Out of Core Processing

Blaze includes nascent support for out-of-core processing with Pandas
DataFrames and NumPy NDArrays. It combines a computationally-rich in-memory
solution (like pandas/numpy) with a computationally-poor out-of-core solution.

How do I use this?

Naive use of Blaze triggers out-of-core systems automatically when called on
large files.

>>> d = Data('my-small-file.csv')
>>> d.my_column.count() # Uses Pandas

>>> d = Data('my-large-file.csv')
>>> d.my_column.count() # Uses Chunked Pandas

How does it work?

Blaze breaks up the data resource into a sequence of chunks. It pulls one
chunk into memory, operates on it, pulls in the next, etc.. After all chunks
are processed it often has to finalize the computation with another operation
on the intermediate results.

In the example above one might accomplish the computation above, counting the
number of non-null elements, with pure Pandas as follows:

Operate on each chunk
intermediate = []
for chunk in pd.read_csv('my-large-file.csv', chunksize=1000000):
 intermediate.append(chunk.my_column.count())

Finish computation by operating on the intermediate result
result = sum(intermediate)

This example accomplishes a single computation on the entire dataset, d.my_column.count(), by separating it into two stages

	compute chunk.my_column.count() on each in-memory chunk

	compute intermediate.sum() on the aggregated intermediate results

Blaze figures out this process for you. The code above only serves as an
example of the kind of thing that Blaze does automatically. Blaze knows how to
separate a broad range of computations. Notable exceptions include joins and
sorts. Blaze does not currently support out-of-core computation on joins and
sorts.

Complex Example

To investigate further try out the split function in blaze.expr.split.
It will tell you exactly how Blaze intends to break up your computation. Here
is a more complex example doing an out-of-core split-apply-combine operation:

>>> from blaze import *
>>> from blaze.expr.split import split

>>> bank = symbol('bank', 'var * {name: string, balance: int}')

>>> expr = by(bank.name, avg=bank.balance.mean())

>>> split(bank, expr)
((chunk,
 by(chunk.name, avg_count=count(chunk.balance),
 avg_total=sum(chunk.balance))),
(aggregate,
 by(aggregate.name, avg=(sum(aggregate.avg_total)) /
 sum(aggregate.avg_count))))

As in the first example this chunked split-apply-combine operation translates
the intended results into two different computations, one to perform on each
in-memory chunk of the data and one to perform on the aggregated results.

Note that you do not need to use split yourself. Blaze does this for you
automatically.

Parallel Processing

If a data source is easily separable into chunks in a parallel manner then
computation may be accelerated by a parallel map function provided by
the multiprocessing module (or any similar module).

For example a dataset comprised of many CSV files may be easily split up (one
csv file = one chunk.) To supply a parallel map function one currently must
use the explicit compute function.

>>> d = Data('my-many-csv-files-*.csv')
>>> d.my_column.count() # Single core by default
...

>>> import multiprocessing
>>> pool = multiprocessing.Pool(4) # Four processes

>>> compute(d.my_column.count(), map=pool.map) # Parallel over four cores
...

Note that one can only parallelize over datasets that can be easily split in a
non-serial fashion. In particular one can not parallelize computation over
a single CSV file. Collections of CSV files and binary storage systems like
HDF5 and BColz all support multiprocessing.

Beyond CSVs

While pervasive, CSV files may not be the best choice for speedy processing.
Binary storage formats like HDF5 and BColz provide more opportunities for
parallelism and are generally much faster for large datasets.

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Server

Blaze provides uniform access to a variety of common data formats. Blaze
Server builds off of this uniform interface to host data remotely through a
JSON web API.

Setting up a Blaze Server

To demonstrate the use of the Blaze server we serve the iris csv file.

>>> # Server code, run this once. Leave running.

>>> from blaze import *
>>> csv = CSV('blaze/examples/data/iris.csv')
>>> Data(csv)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
5 5.4 3.9 1.7 0.4 Iris-setosa
6 4.6 3.4 1.4 0.3 Iris-setosa
7 5.0 3.4 1.5 0.2 Iris-setosa
8 4.4 2.9 1.4 0.2 Iris-setosa
9 4.9 3.1 1.5 0.1 Iris-setosa
...

Then we host this publicly on port 6363

from blaze.server import Server
server = Server(csv)
server.run(host='0.0.0.0', port=6363)

A Server is the following

	A dataset that blaze understands or dictionary of such datasets

	A Flask [http://flask.pocoo.org/docs/0.10/quickstart/#a-minimal-application] app.

With this code our machine is now hosting our CSV file through a
web-application on port 6363. We can now access our CSV file, through Blaze,
as a service from a variety of applications.

Interacting with the Web Server from the Client

Computation is now available on this server at
hostname:6363/compute.json. To communicate the computation to be done
we pass Blaze expressions in JSON format through the request. See the examples
below.

Using curl

We can use standard command line tools to interact with this web service:

$ curl \
 -H "Content-Type: application/json" \
 -d '{"expr": {"op": "Field", "args": [":leaf", "species"]}}' \
 localhost:6363/compute.json

{
 "data": [
 "Iris-setosa",
 "Iris-setosa",
 ...
],
 "datashape": "var * {species: string}",
}

$ curl \
 -H "Content-Type: application/json" \
 -d '{"expr": {"op": "sum", \
 "args": [{"op": "Field", \
 "args": [":leaf", "petal_Length"]}]}}' \
 localhost:6363/compute.json

{
 "data": 563.8000000000004,
 "datashape": "{petal_length_sum: float64}",
}

These queries deconstruct the Blaze expression as nested JSON. The ":leaf"
string is a special case pointing to the base data. Constructing these queries
can be difficult to do by hand, fortunately Blaze can help you to build them.

Using the Python Requests Library

First we repeat the same experiment as before, this time using the Python
requests library instead of the command line tool curl.

 # Client code, run this in a separate process from the Server

 import json
 import requests

 query = {'expr': {'op': 'sum',
 'args': [{'op': 'Field',
 'args': [':leaf', 'petal_length']}]}}

 r = requests.get('http://localhost:6363/compute.json',
 data=json.dumps(query),
 headers={'Content-Type': 'application/json'})

 json.loads(r.content)

{u'data': 563.8000000000004,
 u'datashape': u'{petal_length_sum: float64}'}

Now we use Blaze to generate the query programmatically

>>> from blaze import *

>>> # Build a Symbol like our served iris data
>>> dshape= "var * {sepal_length: float64, sepal_width: float64, petal_length: float64, petal_width: float64, species: string}" # matching schema to csv file
>>> t = symbol('t', dshape)
>>> expr = t.petal_length.sum()

>>> from blaze.server import to_tree

>>> d = to_tree(expr, names={t: ':leaf'})

>>> query = {'expr': d}
>>> query
{'expr': {'args': [{'args': [':leaf', 'petal_length'],
 'op': 'Field'},
 [0],
 False],
 'op': 'sum'}}

Alternatively we build a query to grab a single column

>>> to_tree(t.species, names={t: ':leaf'})
{'args': [':leaf', 'species'], 'op': 'Field'}

Fully Interactive Python-to-Python Remote work

Alternatively we can use this API to have one Blaze process control another.
Given our iris web server we can use Blaze on the client to drive the server to
do work for us

Client code, run this in a separate process from the Server

>>> from blaze import Data, by
>>> t = Data('blaze://localhost:6363') # doctest: +SKIP

>>> t # doctest: +SKIP
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
5 5.4 3.9 1.7 0.4 Iris-setosa
6 4.6 3.4 1.4 0.3 Iris-setosa
7 5.0 3.4 1.5 0.2 Iris-setosa
8 4.4 2.9 1.4 0.2 Iris-setosa
9 4.9 3.1 1.5 0.1 Iris-setosa
...

>>> by(t.species, min=t.petal_length.min(),
... max=t.petal_length.max()) # doctest: +SKIP
 species max min
0 Iris-virginica 6.9 4.5
1 Iris-setosa 1.9 1.0
2 Iris-versicolor 5.1 3.0

We interact on the client machine through the data object but computations on
this object cause communications through the web API, resulting in seemlessly
interactive remote computation.

Advanced Use

Blaze servers may host any data that Blaze understands from a single integer

>>> server = Server(1)

To a dictionary of several heterogeneous datasets

>>> server = Server({'my-dataframe': df,
... 'iris': resource('iris.csv'),
... 'baseball': resource('sqlite:///baseball-statistics.db')})

A variety of hosting options are available through the Flask [http://flask.pocoo.org/docs/0.10/quickstart/#a-minimal-application] project

>>> help(server.app.run)
Help on method run in module flask.app:

run(self, host=None, port=None, debug=None, **options) method of flask.app.Flask instance
Runs the application on a local development server. If the
:attr:`debug` flag is set the server will automatically reload
for code changes and show a debugger in case an exception happened.

...

Caching

Caching results on frequently run queries may significantly improve user
experience in some cases. One may wrap a Blaze server in a traditional
web-based caching system like memcached or use a data centric solution.

The Blaze CachedDataset might be appropriate in some situations. A cached
dataset holds a normal dataset and a dict like object.

>>> dset = {'my-dataframe': df,
... 'iris': resource('iris.csv'),
... 'baseball': resource('sqlite:///baseball-statistics.db')}

>>> from blaze.cached import CachedDataset
>>> cached = CachedDataset(dset, cache=dict())

Queries and results executed against a cached dataset are stored in the cache
(here a normal Python dict) for fast future access.

If accumulated results are likely to fill up memory then other, on-disk
dict-like structures can be used like Shove [https://pypi.python.org/pypi/shove/0.5.6] or Chest [https://github.com/mrocklin/chest].

>>> from chest import Chest
>>> cached = CachedDataset(dset, cache=Chest())

These cached objects can be used anywhere normal objects can be used in Blaze,
including an interactive (and now performance cached) Data object

>>> d = Data(cached)

or a Blaze server

>>> server = Server(cached)

Flask Blueprint

If you would like to use the blaze server endpoints from within another flask
application, you can register the blaze api blueprint with your app. For
example:

>>> from blaze.server import api
>>> my_app.register_blueprint(api, data=my_data)

When registering the api, you must pass the data that the api endpoints will
serve.

Conclusion

Because this process builds off Blaze expressions it works equally well for data
stored in any format on which Blaze is trained, including in-memory DataFrames,
SQL/Mongo databases, or even Spark clusters.

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Datashape

Blaze uses datashape, a data layout language for array programming,
as its type system.

	Documentation [http://datashape.pydata.org/]

	Source [https://github.com/ContinuumIO/datashape]

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

What Blaze Doesn’t Do

Blaze occasionally suffers from over-hype. The terms Big-Data and Pandas
inevitably conflate in people’s minds to become something unattainable and lead
to disappointment. Blaze is limited; learning those limitations can direct
you to greater productivity.

First and foremost, Blaze does not replace Pandas. Pandas will always be more
feature rich and more mature than Blaze. There are things that you simply
can’t do if you want to generalize out of memory.

If your data fits nicely in memory then use NumPy/Pandas. Your data probably
fits nicely in memory.

Some concrete things Blaze doesn’t do

	Clean unstructured data. Blaze only handles analytic queries on structured
data.

	Most things in SciPy. Including things like FFT, and gradient descent.

	Most things in SciKit Learn/Image/etc..

	Statistical inference - We invite you to build this (this one is actually pretty doable.)

	Parallelize your existing Python code

	Replace Spark - Blaze may operate on top of Spark, it doesn’t compete with it.

	Compute quickly - Blaze uses other things to compute, it doesn’t compute
anything itself. So asking questions about how fast Blaze is are
determined entirely by how fast other things are.

That’s not to say that these can’t be done

Blaze aims to be a foundational data interface like numpy/pandas
rather than try to implement the entire PyData stack (scipy, scikit-learn,
etc..) Only by keeping scope small do we have a chance at relevance.

Of course, others can build off of Blaze in the same way that scipy and
scikit-learn built off of numpy/pandas. Blaze devs often also do this
work (it’s important) but we generally don’t include it in the Blaze library.

It’s also worth mentioning that different classes of algorithms work well on
small vs large datasets. It could be that the algorithm that you like most may
not easily extend beyond the scope of memory. A direct translation of
scikit-learn algorithms to Blaze would likely be computationally disastrous.

What Blaze Does

Blaze is a query system that looks like NumPy/Pandas. You write Blaze
queries, Blaze translates those queries to something else (like SQL), and ships
those queries to various database to run on other people’s fast code. It
smoothes out this process to make interacting with foreign data as accessible
as using Pandas. This is actually quite difficult.

Blaze increases human accessibility, not computational performance.

But we work on other things

Blaze devs interact with a lot of other computational systems. Sometimes we
find holes where systems should exist, but don’t. In these cases we may write
our own computational system. In these cases we naturally hook up Blaze to
serve as a front-end query system. We often write about these experiments.

As a result you may see us doing some of the things we just said “Blaze doesn’t
do”. These things aren’t Blaze (but you can use Blaze use them easily.)

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

API

This page contains a comprehensive list of functionality within blaze.
Docstrings should provide sufficient understanding for any individual function.

Interactive Use

	Data(data[,dshape,name,fields,columns,...])
	Interactive data.

Table Expressions

	Projection(*args,**kwargs)
	Select fields from data

	Field(*args,**kwargs)
	A single field from an expression

	Selection(*args,**kwargs)
	Filter elements of expression based on predicate

	ElemWise(*args,**kwargs)
	Elementwise operation.

	Label(*args,**kwargs)
	A Labeled expression

	ReLabel(*args,**kwargs)
	Table with same content but with new labels

	Map(*args,**kwargs)
	Map an arbitrary Python function across elements in a collection

	Reduction(_child[,axis,keepdims])
	A column-wise reduction

	Sort(*args,**kwargs)
	Table in sorted order

	Distinct(*args,**kwargs)
	Removes duplicate rows from the table, so every row is distinct

	Head(*args,**kwargs)
	First n elements of collection

	Merge(*args,**kwargs)
	Merge many fields together

	Join(*args,**kwargs)
	Join two tables on common columns

	By(*args,**kwargs)
	Split-Apply-Combine Operator

Data Server

	Server
	

	to_tree
	

	from_tree
	

	Client
	

Definitions

	
blaze.interactive.Data(data, dshape=None, name=None, fields=None, columns=None, schema=None, **kwargs)

	Interactive data.

The Data object presents a familiar view onto a variety of forms of
data. This user-level object provides an interactive experience to using
Blaze’s abstract expressions.

	Parameters:	data : object

Any type with discover and compute implementations

fields : list, optional

Field or column names, will be inferred from datasource if possible

dshape : str or DataShape, optional

DataShape describing input data

name : str, optional

A name for the data.

Examples

>>> t = Data([(1, 'Alice', 100),
... (2, 'Bob', -200),
... (3, 'Charlie', 300),
... (4, 'Denis', 400),
... (5, 'Edith', -500)],
... fields=['id', 'name', 'balance'])
>>> t[t.balance < 0].name
 name
0 Bob
1 Edith

	
blaze.interactive.Table(*args, **kwargs)

	Deprecated, see Data instead

	
class blaze.expr.collections.Sort(*args, **kwargs)

	Table in sorted order

Examples

>>> from blaze import symbol
>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> accounts.sort('amount', ascending=False).schema
dshape("{name: string, amount: int32}")

Some backends support sorting by arbitrary rowwise tables, e.g.

>>> accounts.sort(-accounts.amount)

Attributes

	dshape
	

	fields
	

	key
	

	schema
	

Methods

	
class blaze.expr.collections.Distinct(*args, **kwargs)

	Removes duplicate rows from the table, so every row is distinct

Examples

>>> from blaze import symbol
>>> t = symbol('t', 'var * {name: string, amount: int, id: int}')
>>> e = distinct(t)

>>> data = [('Alice', 100, 1),
... ('Bob', 200, 2),
... ('Alice', 100, 1)]

>>> from blaze.compute.python import compute
>>> sorted(compute(e, data))
[('Alice', 100, 1), ('Bob', 200, 2)]

Attributes

	dshape
	

	fields
	

	schema
	

Methods

	
class blaze.expr.collections.Head(*args, **kwargs)

	First n elements of collection

Examples

>>> from blaze import symbol
>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> accounts.head(5).dshape
dshape("5 * {name: string, amount: int32}")

Attributes

	dshape
	

	fields
	

	schema
	

Methods

	
class blaze.expr.collections.Merge(*args, **kwargs)

	Merge many fields together

Examples

>>> from blaze import symbol
>>> accounts = symbol('accounts', 'var * {name: string, x: int, y: real}')
>>> merge(accounts.name, z=accounts.x + accounts.y).fields
['name', 'z']

Attributes

	dshape
	

	fields
	

	schema
	

Methods

	
class blaze.expr.collections.IsIn(*args, **kwargs)

	Return a boolean expression indicating whether another expression
contains values that are members of a collection.

Attributes

	dshape
	

	fields
	

	schema
	

Methods

	
blaze.expr.collections.head(child, n=10)

	First n elements of collection

Examples

>>> from blaze import symbol
>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> accounts.head(5).dshape
dshape("5 * {name: string, amount: int32}")

	
blaze.expr.collections.sort(child, key=None, ascending=True)

	Sort collection

	Parameters:	key: string, list of strings, Expr

	Defines by what you want to sort. Either:

	A single column string, t.sort('amount')
A list of column strings, t.sort(['name', 'amount'])
A Table Expression, t.sort(-t.amount)

ascending: bool

Determines order of the sort

	
class blaze.expr.collections.Join(*args, **kwargs)

	Join two tables on common columns

	Parameters:	lhs : Expr

rhs : Expr

on_left : string

on_right : string

See also

blaze.expr.collections.Merge

Examples

>>> from blaze import symbol
>>> names = symbol('names', 'var * {name: string, id: int}')
>>> amounts = symbol('amounts', 'var * {amount: int, id: int}')

Join tables based on shared column name
>>> joined = join(names, amounts, ‘id’)

Join based on different column names
>>> amounts = symbol(‘amounts’, ‘var * {amount: int, acctNumber: int}’)
>>> joined = join(names, amounts, ‘id’, ‘acctNumber’)

Attributes

	dshape
	

	fields
	

	on_left
	

	on_right
	

	schema
	Examples

Methods

	
schema

	Examples

>>> from blaze import symbol
>>> t = symbol('t', 'var * {name: string, amount: int}')
>>> s = symbol('t', 'var * {name: string, id: int}')

>>> join(t, s).schema
dshape("{name: string, amount: int32, id: int32}")

>>> join(t, s, how='left').schema
dshape("{name: string, amount: int32, id: ?int32}")

Overlapping but non-joined fields append _left, _right
>>> a = symbol(‘a’, ‘var * {x: int, y: int}’)
>>> b = symbol(‘b’, ‘var * {x: int, y: int}’)
>>> join(a, b, ‘x’).fields
[‘x’, ‘y_left’, ‘y_right’]

	
blaze.expr.collections.join(lhs, rhs, on_left=None, on_right=None, how='inner')

	Join two tables on common columns

	Parameters:	lhs : Expr

rhs : Expr

on_left : string

on_right : string

See also

blaze.expr.collections.Merge

Examples

>>> from blaze import symbol
>>> names = symbol('names', 'var * {name: string, id: int}')
>>> amounts = symbol('amounts', 'var * {amount: int, id: int}')

Join tables based on shared column name
>>> joined = join(names, amounts, ‘id’)

Join based on different column names
>>> amounts = symbol(‘amounts’, ‘var * {amount: int, acctNumber: int}’)
>>> joined = join(names, amounts, ‘id’, ‘acctNumber’)

	
blaze.expr.collections.transform(t, replace=True, **kwargs)

	Add named columns to table

>>> from blaze import symbol
>>> t = symbol('t', 'var * {x: int, y: int}')
>>> transform(t, z=t.x + t.y).fields
['x', 'y', 'z']

	
class blaze.expr.expressions.Expr(*args, **kwargs)

	Symbolic expression of a computation

All Blaze expressions (Join, By, Sort, ...) descend from this class. It
contains shared logic and syntax. It in turn inherits from Node which
holds all tree traversal logic

Attributes

	fields
	

	schema
	

Methods

	map(func[,schema,name])
	

	
class blaze.expr.expressions.ElemWise(*args, **kwargs)

	Elementwise operation.

The shape of this expression matches the shape of the child.

Attributes

	dshape
	

	fields
	

	schema
	

Methods

	map(func[,schema,name])
	

	
class blaze.expr.expressions.Field(*args, **kwargs)

	A single field from an expression

Get a single field from an expression with record-type schema. Collapses
that record. We store the name of the field in the _name attribute.

SELECT a
FROM table

>>> points = symbol('points', '5 * 3 * {x: int32, y: int32}')
>>> points.x.dshape
dshape("5 * 3 * int32")

Attributes

	dshape
	

	fields
	

	schema
	

Methods

	map(func[,schema,name])
	

	
class blaze.expr.expressions.Symbol(name, dshape, token=None)

	Symbolic data. The leaf of a Blaze expression

Attributes

	fields
	

	schema
	

Methods

	map(func[,schema,name])
	

	
class blaze.expr.expressions.Projection(*args, **kwargs)

	Select fields from data

SELECT a, b, c
FROM table

See also

blaze.expr.expressions.Field

Examples

>>> accounts = symbol('accounts',
... 'var * {name: string, amount: int, id: int}')
>>> accounts[['name', 'amount']].schema
dshape("{name: string, amount: int32}")

>>> accounts[['name', 'amount']]
accounts[['name', 'amount']]

Attributes

	dshape
	

	fields
	

	schema
	

Methods

	map(func[,schema,name])
	

	
blaze.expr.expressions.projection(expr, names)

	Select fields from data

SELECT a, b, c
FROM table

See also

blaze.expr.expressions.Field

Examples

>>> accounts = symbol('accounts',
... 'var * {name: string, amount: int, id: int}')
>>> accounts[['name', 'amount']].schema
dshape("{name: string, amount: int32}")

>>> accounts[['name', 'amount']]
accounts[['name', 'amount']]

	
class blaze.expr.expressions.Selection(*args, **kwargs)

	Filter elements of expression based on predicate

Examples

>>> accounts = symbol('accounts',
... 'var * {name: string, amount: int, id: int}')
>>> deadbeats = accounts[accounts.amount < 0]

Attributes

	dshape
	

	fields
	

	schema
	

Methods

	map(func[,schema,name])
	

	
blaze.expr.expressions.selection(table, predicate)

	Filter elements of expression based on predicate

Examples

>>> accounts = symbol('accounts',
... 'var * {name: string, amount: int, id: int}')
>>> deadbeats = accounts[accounts.amount < 0]

	
class blaze.expr.expressions.Label(*args, **kwargs)

	A Labeled expression

See also

blaze.expr.expressions.ReLabel

Examples

>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> expr = accounts.amount * 100
>>> expr._name
'amount'
>>> expr.label('new_amount')._name
'new_amount'

Attributes

	dshape
	

	fields
	

	schema
	

Methods

	map(func[,schema,name])
	

	
blaze.expr.expressions.label(expr, lab)

	A Labeled expression

See also

blaze.expr.expressions.ReLabel

Examples

>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> expr = accounts.amount * 100
>>> expr._name
'amount'
>>> expr.label('new_amount')._name
'new_amount'

	
class blaze.expr.expressions.Map(*args, **kwargs)

	Map an arbitrary Python function across elements in a collection

See also

blaze.expr.expresions.Apply

Examples

>>> from datetime import datetime

>>> t = symbol('t', 'var * {price: real, time: int64}') # times as integers
>>> datetimes = t.time.map(datetime.utcfromtimestamp)

Optionally provide extra schema information

>>> datetimes = t.time.map(datetime.utcfromtimestamp,
... schema='{time: datetime}')

Attributes

	dshape
	

	fields
	

	ndim
	

	schema
	

	shape
	

Methods

	label(name)
	

	map(func[,schema,name])
	

	
class blaze.expr.expressions.ReLabel(*args, **kwargs)

	Table with same content but with new labels

See also

blaze.expr.expressions.Label

Notes

When names are not valid Python names, such as integers, you must pass a
dictionary to relabel. For example

s = symbol('s', 'var * {"0": int64}')
s.relabel({'0': 'foo'})

Examples

>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> accounts.schema
dshape("{name: string, amount: int32}")
>>> accounts.relabel(amount='balance').schema
dshape("{name: string, balance: int32}")
>>> accounts.relabel(not_a_column='definitely_not_a_column')
Traceback (most recent call last):
 ...
ValueError: Cannot relabel non-existent child fields: {'not_a_column'}
>>> s = symbol('s', 'var * {"0": int64}')
>>> s.relabel({'0': 'foo'})
s.relabel({'0': 'foo'})
>>> s.relabel(0='foo')
Traceback (most recent call last):
 ...
SyntaxError: keyword can't be an expression

Attributes

	dshape
	

	fields
	

	schema
	

Methods

	map(func[,schema,name])
	

	
blaze.expr.expressions.relabel(child, labels=None, **kwargs)

	Table with same content but with new labels

See also

blaze.expr.expressions.Label

Notes

When names are not valid Python names, such as integers, you must pass a
dictionary to relabel. For example

s = symbol('s', 'var * {"0": int64}')
s.relabel({'0': 'foo'})

Examples

>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> accounts.schema
dshape("{name: string, amount: int32}")
>>> accounts.relabel(amount='balance').schema
dshape("{name: string, balance: int32}")
>>> accounts.relabel(not_a_column='definitely_not_a_column')
Traceback (most recent call last):
 ...
ValueError: Cannot relabel non-existent child fields: {'not_a_column'}
>>> s = symbol('s', 'var * {"0": int64}')
>>> s.relabel({'0': 'foo'})
s.relabel({'0': 'foo'})
>>> s.relabel(0='foo')
Traceback (most recent call last):
 ...
SyntaxError: keyword can't be an expression

	
class blaze.expr.expressions.Apply(*args, **kwargs)

	Apply an arbitrary Python function onto an expression

See also

blaze.expr.expressions.Map

Examples

>>> t = symbol('t', 'var * {name: string, amount: int}')
>>> h = t.apply(hash, dshape='int64') # Hash value of resultant dataset

You must provide the datashape of the result with the dshape= keyword.
For datashape examples see

http://datashape.pydata.org/grammar.html#some-simple-examples

If using a chunking backend and your operation may be safely split and
concatenated then add the splittable=True keyword argument

>>> t.apply(f, dshape='...', splittable=True)

Attributes

	dshape
	

	fields
	

	schema
	

Methods

	map(func[,schema,name])
	

	
blaze.expr.expressions.ndim(expr)

	Number of dimensions of expression

>>> symbol('s', '3 * var * int32').ndim
2

	
blaze.expr.expressions.label(expr, lab)

	A Labeled expression

See also

blaze.expr.expressions.ReLabel

Examples

>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> expr = accounts.amount * 100
>>> expr._name
'amount'
>>> expr.label('new_amount')._name
'new_amount'

	
class blaze.expr.reductions.Reduction(_child, axis=None, keepdims=False)

	A column-wise reduction

Blaze supports the same class of reductions as NumPy and Pandas.

sum, min, max, any, all, mean, var, std, count, nunique

Examples

>>> from blaze import symbol
>>> t = symbol('t', 'var * {name: string, amount: int, id: int}')
>>> e = t['amount'].sum()

>>> data = [['Alice', 100, 1],
... ['Bob', 200, 2],
... ['Alice', 50, 3]]

>>> from blaze.compute.python import compute
>>> compute(e, data)
350

Attributes

	dshape
	

	fields
	

	schema
	

	symbol
	

Methods

	
class blaze.expr.reductions.Summary(_child, names, values, axis=None, keepdims=False)

	A collection of named reductions

Examples

>>> from blaze import symbol
>>> t = symbol('t', 'var * {name: string, amount: int, id: int}')
>>> expr = summary(number=t.id.nunique(), sum=t.amount.sum())

>>> data = [['Alice', 100, 1],
... ['Bob', 200, 2],
... ['Alice', 50, 1]]

>>> from blaze import compute
>>> compute(expr, data)
(2, 350)

Attributes

	dshape
	

	fields
	

	schema
	

Methods

	
class blaze.expr.reductions.count(_child, axis=None, keepdims=False)

	The number of non-null elements

Attributes

	dshape
	

	fields
	

	symbol
	

Methods

	
class blaze.expr.reductions.nelements(_child, axis=None, keepdims=False)

	Compute the number of elements in a collection, including missing values.

See also

	blaze.expr.reductions.count

	compute the number of non-null elements

Examples

>>> from blaze import symbol
>>> t = symbol('t', 'var * {name: string, amount: float64}')
>>> t[t.amount < 1].nelements()
nelements(t[t.amount < 1])

Attributes

	dshape
	

	fields
	

	symbol
	

Methods

	
class blaze.expr.reductions.std(child, unbiased=False, *args, **kwargs)

	Standard Deviation

	Parameters:	child : Expr

An expression

unbiased : bool, optional

Compute the square root of an unbiased estimate of the population
variance if this is True.

Warning

This does not return an unbiased estimate of the population
standard deviation.

See also

var

Attributes

	dshape
	

	fields
	

	symbol
	

Methods

	
blaze.expr.reductions.summary(keepdims=False, axis=None, **kwargs)

	A collection of named reductions

Examples

>>> from blaze import symbol
>>> t = symbol('t', 'var * {name: string, amount: int, id: int}')
>>> expr = summary(number=t.id.nunique(), sum=t.amount.sum())

>>> data = [['Alice', 100, 1],
... ['Bob', 200, 2],
... ['Alice', 50, 1]]

>>> from blaze import compute
>>> compute(expr, data)
(2, 350)

	
class blaze.expr.reductions.var(child, unbiased=False, *args, **kwargs)

	Variance

	Parameters:	child : Expr

An expression

unbiased : bool, optional

Compute an unbiased estimate of the population variance if this is
True. In NumPy and pandas, this parameter is called ddof (delta
degrees of freedom) and is equal to 1 for unbiased and 0 for biased.

Attributes

	dshape
	

	fields
	

	symbol
	

Methods

	
blaze.expr.reductions.vnorm(expr, ord=None, axis=None, keepdims=False)

	Vector norm

See np.linalg.norm

	
class blaze.expr.arrays.Transpose(*args, **kwargs)

	Transpose dimensions in an N-Dimensional array

Examples

>>> x = symbol('x', '10 * 20 * int32')
>>> x.T
transpose(x)
>>> x.T.shape
(20, 10)

Specify axis ordering with axes keyword argument

>>> x = symbol('x', '10 * 20 * 30 * int32')
>>> x.transpose([2, 0, 1])
transpose(x, axes=[2, 0, 1])
>>> x.transpose([2, 0, 1]).shape
(30, 10, 20)

Attributes

	dshape
	

	fields
	

	schema
	

Methods

	
class blaze.expr.arrays.TensorDot(*args, **kwargs)

	Dot Product: Contract and sum dimensions of two arrays

>>> x = symbol('x', '20 * 20 * int32')
>>> y = symbol('y', '20 * 30 * int32')

>>> x.dot(y)
tensordot(x, y)

>>> tensordot(x, y, axes=[0, 0])
tensordot(x, y, axes=[0, 0])

Attributes

	dshape
	

	fields
	

	schema
	

Methods

	
blaze.expr.arrays.transpose(expr, axes=None)

	Transpose dimensions in an N-Dimensional array

Examples

>>> x = symbol('x', '10 * 20 * int32')
>>> x.T
transpose(x)
>>> x.T.shape
(20, 10)

Specify axis ordering with axes keyword argument

>>> x = symbol('x', '10 * 20 * 30 * int32')
>>> x.transpose([2, 0, 1])
transpose(x, axes=[2, 0, 1])
>>> x.transpose([2, 0, 1]).shape
(30, 10, 20)

	
blaze.expr.arrays.tensordot(lhs, rhs, axes=None)

	Dot Product: Contract and sum dimensions of two arrays

>>> x = symbol('x', '20 * 20 * int32')
>>> y = symbol('y', '20 * 30 * int32')

>>> x.dot(y)
tensordot(x, y)

>>> tensordot(x, y, axes=[0, 0])
tensordot(x, y, axes=[0, 0])

	
class blaze.expr.arithmetic.Arithmetic(lhs, rhs)

	Super class for arithmetic operators like add or mul

Attributes

	dshape
	

	fields
	

	schema
	

Methods

	
class blaze.expr.math.RealMath(child)

	Mathematical unary operator with real valued dshape like sin, or exp

Attributes

	dshape
	

	fields
	

	schema
	

	symbol
	

Methods

	
class blaze.expr.math.IntegerMath(child)

	Mathematical unary operator with int valued dshape like ceil, floor

Attributes

	dshape
	

	fields
	

	schema
	

	symbol
	

Methods

	
class blaze.expr.math.BooleanMath(child)

	Mathematical unary operator with bool valued dshape like isnan

Attributes

	dshape
	

	fields
	

	schema
	

	symbol
	

Methods

	
class blaze.expr.broadcast.Broadcast(*args, **kwargs)

	Fuse scalar expressions over collections

Given elementwise operations on collections, e.g.

>>> a = symbol('a', '100 * int')
>>> t = symbol('t', '100 * {x: int, y: int}')

>>> expr = sin(a) + t.y**2

It may be best to represent this as a scalar expression mapped over a
collection

>>> sa = symbol('a', 'int')
>>> st = symbol('t', '{x: int, y: int}')

>>> sexpr = sin(sa) + st.y**2

>>> expr = Broadcast((a, t), (sa, st), sexpr)

This provides opportunities for optimized computation.

In practice, expressions are often collected into Broadcast expressions
automatically. This class is mainly intented for internal use.

Attributes

	dshape
	

	fields
	

	schema
	

Methods

	
blaze.expr.broadcast.scalar_symbols(exprs)

	Gives a sequence of scalar symbols to mirror these expressions

Examples

>>> x = symbol('x', '5 * 3 * int32')
>>> y = symbol('y', '5 * 3 * int32')

>>> xx, yy = scalar_symbols([x, y])

>>> xx._name, xx.dshape
('x', dshape("int32"))
>>> yy._name, yy.dshape
('y', dshape("int32"))

	
class blaze.expr.datetime.DateTime(*args, **kwargs)

	Superclass for datetime accessors

Attributes

	attr
	

	dshape
	

	fields
	

	schema
	

Methods

	
class blaze.expr.split_apply_combine.By(*args, **kwargs)

	Split-Apply-Combine Operator

Examples

>>> t = symbol('t', 'var * {name: string, amount: int, id: int}')
>>> e = by(t['name'], total=t['amount'].sum())

>>> data = [['Alice', 100, 1],
... ['Bob', 200, 2],
... ['Alice', 50, 3]]

>>> from blaze.compute.python import compute
>>> sorted(compute(e, data))
[('Alice', 150), ('Bob', 200)]

Attributes

	dshape
	

	fields
	

	schema
	

Methods

	
blaze.expr.split_apply_combine.count_values(expr, sort=True)

	Count occurrences of elements in this column

Sort by counts by default
Add sort=False keyword to avoid this behavior.

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Blaze 0.8.0-96-g04fdee5 documentation

Release Notes

Release 0.7.3

	General maturation of many backends through use.

	Renamed into to odo

Release 0.7.0

	Pull out data migration utilities to into project

	Out-of-core CSV support now depends on chunked pandas computation

	h5py and bcolz backends support multi-threading/processing

	Remove data directory including SQL, HDF5 objects. Depend on
standard types within other projects instead (e.g. sqlalchemy.Table,
h5py.Dataset, ...)

	Better support SQL nested queries for complex queries

	Support databases, h5py files, servers as first class datasets

Release 0.6.6

	Not intended for public use, mostly for internal build systems

	Bugfix

Release 0.6.5

	Improve uri string handling #715

	Various bug fixes #715

Release 0.6.4

	Back CSV with pandas.read_csv. Better performance and more robust
unicode support but less robust missing value support (some regressions) #597

	Much improved SQL support #626 #650 #652 #662

	Server supports remote execution of computations, not just indexing #631

	Better PyTables and datetime support #608 #639

	Support SparkSQL #592

Release 0.6.3

	by takes only two arguments, the grouper and apply
child is inferred using common_subexpression

	Better handling of pandas Series object

	Better printing of empty results in interactive mode

	
	Regex dispatched resource function bound to Table, e.g.

	Table('/path/to/file.csv')

Release 0.6.2

	Efficient CSV to SQL migration using native tools #454

	Dispatched drop and create_index functions #495

	DPlyr interface at blaze.api.dplyr. #484

	
	Various bits borrowed from that interface

	
	transform function adopted to main namespace

	Summary object for named reductions

	Keyword syntax in by and merge e.g.
by(t, t.col, label=t.col2.max(), label2=t.col2.min())

	New Computation Server #527

	Better PyTables support #487 #496 #526

Release 0.6.1

	More consistent behavior of into

	bcolz backend

	Control namespace leakage

Release 0.6

	Nearly complete rewrite

	Add abstract table expression system

	Translate expressions onto a variety of backends

	Support Python, NumPy, Pandas, h5py, sqlalchemy,
pyspark, PyTables, pymongo

Release 0.5

	HDF5 in catalog.

	Reductions like any, all, sum, product, min, max.

	Datetime design and some initial functionality.

	Change how Storage and ddesc works.

	Some preliminary rolling window code.

	Python 3.4 now in the test harness.

Release 0.4.2

	Fix bug for compatibility with numba 0.12

	Add sql formats

	Add hdf5 formats

	Add support for numpy ufunc operators

Release 0.4.1

	Fix bug with compatibility for numba 0.12

Release 0.4

	Split the datashape and blz modules out.

	Add catalog and server for blaze arrays.

	Add remote arrays.

	Add csv and json persistence formats.

	Add python3 support

	Add scidb interface

Release 0.3

	Solidifies the execution subsystem around an IR based
on the pykit project, as well as a ckernel abstraction
at the ABI level.

	Supports ufuncs running on ragged array data.

	Cleans out previous low level data descriptor code,
the data descriptor will have a higher level focus.

	Example out of core groupby operation using BLZ.

Release 0.2

	Brings in dynd as a required dependency
for in-memory data.

Release 0.1

	Initial preview release

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Legal

Blaze is a community project much like Numpy. It is released
under a permissive BSD license.

The BSD 2-clause license allows you almost unlimited freedom with the
software so long as you include the BSD copyright notice in it (found
below).

Continuum Analytics sponsors development on Blaze.

License:

Copyright (c) 2014, Continuum Analytics, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Expression Design

At its core Blaze expresses analytics queries symbolicly. It represents these
queries as an abstract expression tree. This tree dictates user interaction,
optimizations, and is eventually walked to translate into other computational
systems. Deep knowledge of abstact expressions is not necessary to use Blaze;
it is essential to develop in it.

[image: A simple Blaze expression tree]
Consider the following example:

>>> from blaze import symbol, log
>>> x = symbol('x', 'int64')
>>> y = symbol('y', 'float32')
>>> z = log(x - 1)**y

We represent the mathematical expression log(x - 1)**y as a tree where
every operator (e.g. log, pow) is a node whose children are its
arguments. All Blaze expressions and indeed all expressions in any
programming language can be represnted this way. Blaze encodes this tree as a
data structure where every node is an object with type corresponding to its
operation. For example there exists the following classes

class pow(Expr):
 ...
class sub(Expr):
 ...
class log(Expr):
 ...

And our expression, written explicitly as Blaze sees it, would look like the
following:

>>> from blaze.expr import Pow, Sub, log, symbol
>>> z = Pow(log(Sub(symbol('x', 'int64'), 1)),
... symbol('y', 'float32'))
>>> z
(log(x - 1)) ** y

Common Expression Attributes

There are a few important attributes and methods to investigate a Blaze
expression.

	__class__: The type of a node corresponds to its operation:

type(z) == pow

	._args: All children of a node, including parameters. Args may include both Blaze expressions and other variables like strings:

z._args == (log(x - 1), y)
x._args == ('x', 'int64')

	._inputs: All children of a node, excluding parameters. All inputs are Blaze expressions.:

z._inputs == (log(x - 1), y)
x._inputs == ()

	._leaves(): The symbols at the bottom of the expression tree:

z._leaves() == (x, y)
x._leaves() == (x,)

By recursively traversing either ._args or ._inputs you may inspect or
transform either all information pertaining to the tree or just the
expressions.

To clear up confusion between ._args from ._inputs consider the
following tabular example with sort. ._inputs contains only other Blaze
expressions while ._args also contains parameters like the string
'balance'.

>>> t = symbol('t', 'var * {name: string, balance: int}')
>>> expr = t.sort('balance', ascending=True)
>>> expr._args
(t, 'balance', True)
>>> expr._inputs
(t,)

Some convenience functions for common traversals already exist:

	._subs: replace nodes in the tree according to replacement dictionary:

>>> z
(log(x - 1)) ** y
>>> z._subs({'x': 'a', 'y': 'b'})
(log(a - 1)) ** b

	._subterms, a traversal along ._inputs:

>>> list(z._subterms())
[(log(x - 1)) ** y, log(x - 1), x - 1, x, y]

	._traverse, a traversal along ._args:

>>> list(z._traverse())
[(log(x - 1)) ** y,
 log(x - 1),
 x - 1,
 x,
 'x',
 dshape("int64"),
 None,
 1,
 y,
 'y',
 dshape("float32"),
 None]

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Expressions

Blaze expressions describe computational workflows symbolically. They allow
developers to architect and check their computations rapidly before applying
them to data. These expressions can then be compiled down to a variety of
supported backends.

Tables

Table expressions track operations found in relational algebra or your standard
Pandas/R DataFrame object. Operations include projecting columns, filtering, mapping and basic mathematics, reductions, split-apply-combine (groupby) operations, and joining. This compact set of operations can express a surprisingly large set of common computations. They are widely supported.

Symbol

A Symbol refers to a single collection of data. It must be given a name
and a datashape.

>>> from blaze import *
>>> accounts = Symbol('accounts', 'var * {id: int, name: string, balance: int}')

Projections, Selection, Arithmetic

Many operations follow from standard Python syntax, familiar from systems like
NumPy and Pandas.

The following example defines a collection, accounts, and then selects the
names of those accounts with negative balance.

>>> accounts = Symbol('accounts', 'var * {id: int, name: string, balance: int}')

>>> deadbeats = accounts[accounts.balance < 0].name

Internally this doesn’t do any actual work (we haven’t specified a data
source.) Instead it builds a symbolic representation of a comutation to
execute in the future.

>>> deadbeats
accounts[accounts.balance < 0].name

>>> deadbeats.dshape
dshape("var * string")

Split-apply-combine, Reductions

Blaze borrows the by operation from R and Julia. The by
operation is a combined groupby and reduction, fulfilling
split-apply-combine workflows.

>>> by(accounts.name, # Splitting/grouping element
... total=accounts.balance.sum()) # Apply and reduction
by(accounts.name, total=sum(accounts.balance))

This operation groups the collection by name and then sums the balance of each
group. It finds out how much all of the “Alice”s, “Bob”s, etc. of the world
have in total.

Note the reduction sum in the third apply argument. Blaze supports the
standard reductions of numpy like sum, min, max and also the
reductions of Pandas like count and nunique.

Join

Collections can be joined with the join operation, which allows for advanced
queries to span multiple collections.

>>> accounts = Symbol('accounts', 'var * {id: int, name: string, balance: int}')
>>> cities = Symbol('cities', 'var * {name: string, city: string}')

>>> join(accounts, cities, 'name')
Join(lhs=accounts, rhs=cities, _on_left='name', _on_right='name', how='inner')

If given no inputs, join will join on all columns with shared names between
the two collections.

>>> shared_names = join(accounts, cities)

Other

Blaze supports a variety of other operations common to our supported backends.
See our API docs for more details.

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Backends

Blaze backends include projects like streaming Python, Pandas, SQLAlchemy,
MongoDB, PyTables, and Spark. Most Blaze expressions can run well on any of
these backends, allowing developers to easily transition their computation to
changing performance needs.

Existing Backends

Streaming Python

via toolz [http://toolz.readthedocs.org/en/latest/] and cytoolz [https://github.com/pytoolz/cytoolz/]

Blaze can operate on core Python data structures like lists, tuples, ints and
strings. This can be useful both in small cases like rapid prototyping or unit
testing but also in large cases where streaming computation is desired.

The performance of Python data structures like dict make Python a
surprisingly powerful platform for data-structure bound computations commonly
found in split-apply-combine and join operations. Additionally, Python’s
support for lazy iterators (i.e. generators) means that it can easily support
streaming computations that pull data in from disk, taking up relatively
little memory.

Pandas [http://pandas.pydata.org]

Pandas DataFrames are the gold standard for in-memory data analytics. They are
fast, intuitive, and come with a wealth of additional features like plotting,
and data I/O.

SQLAlchemy [http://www.sqlalchemy.org]

Blaze levarages the SQLAlchemy project, which provides a uniform interface over
the varied landscape of SQL systems. Blaze manipulates SQLAlchemy expressions
which are then compiled down to SQL query strings of the appropriate backend.

The prevalance of SQL among data technologies makes this backend particularly
useful. Databases like Impala and Hive have SQLAlchemy dialects, enabling
easy Blaze interoperation.

MongoDB [http://www.mongodb.org/]

Blaze drives MongoDB through the pymongo [http://api.mongodb.org/python/current/api/pymongo/index.html] interface and
is able to use many of the built in operations such as aggregration and group
by.

PyTables [http://www.pytables.org]

PyTables provides compressed Table objects backed by the popular HDF5 library.
Blaze can compute simple expressions using PyTables, such as elementwise
operations and row-wise selections.

Spark [https://spark.apache.org/]

Spark provides resilient distributed in-memory computing and easy access to
HDFS storage. Blaze drives Spark through the PySpark [https://spark.apache.org/docs/0.9.0/python-programming-guide.html]
interface.

Benefits of Backend Agnostic Computation

For maximum performance and expressivity it is best to use the backends
directly. Blaze is here when absolute customization is not required.

Familiarity

Users within the numeric Python ecosystem may be familiar with the NumPy and
Pandas interfaces but relatively unfamiliar with SQL or the functional idioms
behind Spark or Streaming Python. In this case Blaze provides a familiar
interface which can drive common computations in these more exotic backends.

Prototyping and Testing

Blaze allows you to prototype and test your computation on a small dataset
using Python or Pandas and then scale that computation up to larger
computational systems with confidence that nothing will break.

A changing hardware landscape drives a changing software landscape. Analytic
code written for systems today may not be relevant for systems five years from
now. Symbolic systems like Blaze provide some stability on top of this
rapidly changing ecosystem.

Static Analysis

Not yet implemented

Blaze is able to inspect and optimize your computation before it is run.
Common optimizations include loop fusion, rearranging joins and projections to
minimize data flow, etc..

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Interactive Expressions

Internally Blaze is abstract; this limits interactivity. Blaze interactive
expressions resolve this issue and provide a smooth experience to handling
foreign data.

Expressions with Data

Internally Blaze separates the intent of the computation from the data/backend.
While powerful, this abstract separation limits interactivity, one of the
core goals of Blaze.

Blaze interactive expressions are like normal expressions but their leaves
may hold on to a concrete data resource (like a DataFrame or SQL database.)
This embeds a specific data context, providing user interface improvements at
the cost of full generality.

Example

We create an interactive expression by calling the Data constructor on any
object or URI with which Blaze is familiar.

>>> from blaze import *
>>> db = Data('sqlite:///blaze/examples/data/iris.db') # an interactive expression
>>> db.iris
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
5 5.4 3.9 1.7 0.4 Iris-setosa
6 4.6 3.4 1.4 0.3 Iris-setosa
7 5.0 3.4 1.5 0.2 Iris-setosa
8 4.4 2.9 1.4 0.2 Iris-setosa
9 4.9 3.1 1.5 0.1 Iris-setosa
...

>>> db.iris.species.<tab>
db.iris.species.columns db.iris.species.max
db.iris.species.count db.iris.species.min
db.iris.species.count_values db.iris.species.ndim
db.iris.species.distinct db.iris.species.nunique
db.iris.species.dshape db.iris.species.relabel
db.iris.species.expr db.iris.species.resources
db.iris.species.fields db.iris.species.schema
db.iris.species.head db.iris.species.shape
db.iris.species.isidentical db.iris.species.sort
db.iris.species.label db.iris.species.species
db.iris.species.like db.iris.species.to_html
db.iris.species.map

>>> db.iris.species.distinct()
 species
0 Iris-setosa
1 Iris-versicolor
2 Iris-virginica

In the case above db is a Symbol, just like any normal Blaze leaf
expresion

>>> isinstance(db, Symbol)
True

But db has one additional field, db.data which points to
a SQLAlchemy Table.

>>> db.data
<sqlalchemy.Table at 0x7f0f64ffbdd0>

Compute calls including db may omit the customary namespace, e.g.

>>> expr = db.iris.species.distinct()

>>> # compute(expr, {db: some_sql_object}) # Usually provide a namespace
>>> compute(expr)
['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']

This implicit namespace can be found with the ._resources method

>>> expr._resources()
{db: <sqlalchemy.Table object>}

Additionally, we override the __repr__ and _repr_html_ methods to
include calls to compute. This way, whenever an expression is printed to
the screen a small computation is done to print the computed data instead.

As an example, this __repr__ function looks something like the following:

def __repr__(expr):
 expr = expr.head(10) # Only need enough to print to the screen
 result = compute(expr) # Do the work necessary to get a result
 df = odo(result, DataFrame) # Shove into a DataFrame
 return repr(df) # Use pandas' nice printing

Expr.__repr__ = __repr__ # Override normal __repr__ method

This provides smooth interactive feel of interactive expressions. Work is only
done when an expression is printed to the screen and excessive results are
avoided by wrapping all computations in a .head(10).

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Developer Workflow

This page describes how to install and improve the development version of Blaze.

If this documentation isn’t sufficiently clear or if you have other questions
then please email blaze-dev@continuum.io.

Installing Development Blaze

Blaze depends on many other projects, both projects that develop alongside
blaze (like odo) as well a number of community projects (like pandas).

Blaze development happens in the following projects, all of which are available
on github.com/ContinuumIO/project-name

	Blaze [https://github.com/ContinuumIO/blaze]

	DataShape [https://github.com/ContinuumIO/datashape]

	Odo [https://github.com/ContinuumIO/odo]

	Dask [https://github.com/ContinuumIO/dask]

	DyND [https://github.com/ContinuumIO/dynd-python]

Bleeding edge binaries are kept up-to-date on the blaze conda channel.
New developers likely only need to interact with one or two of these libraries so we recommend downloading everything by the conda channel and then only cloning those git repositories that you actively need:

conda install -c blaze blaze # install everything from dev channel
git clone git://github.com/ContinuumIO/blaze.git # only clone blaze and odo
git clone git://github.com/ContinuumIO/odo.git # only clone blaze and odo

GitHub Flow

Source code and issue management are hosted in this github page [https://github.com/ContinuumIO/blaze],
and usage of git roughly follows GitHub Flow [http://scottchacon.com/2011/08/31/github-flow.html]. What this means
is that the master branch is generally expected to be stable,
with tests passing on all platforms, and features are developed in
descriptively named feature branches and merged via github’s
Pull Requests.

Coding Standards

Unified Python 2 and 3 Codebase:

Blaze source code simultaneously supports both Python 2 and Python 3 with a
single codebase.

To support this, all .py files must begin with a few __future__
imports, as follows.:

from __future__ import absolute_import, division, print_function

Testing:

In order to keep the master branch functioning with passing tests,
there are two automated testing mechanisms being used. First is
Travis CI [https://travis-ci.org/], which is configured to automatically build any pull
requests that are made. This provides a smoke test against both
Python 2 and Python 3 before a merge.

The Travis tests only run on Linux, but Blaze is supported on Linux,
OS X, and Windows. Further tests and bleeding-edge builds are carried out
using Anaconda build which tests and builds Blaze on the following
platforms/versions

	Python versions 2.6, 2.7, 3.3, 3.4

	Operating systems Windows, OS-X, Linux

	32-bit and 64-bit

Relative Imports:

To avoid the side effects of top level imports, e.g. import blaze, all internal code should be imported relatively. Thus:

#file: blaze/objects/table.py
from blaze import Array

should be:

#file: blaze/objects/table.py
from .array import Array

For cross submodule imports, import from the module api. For example:

#file: blaze/objects/table.py
from ..io import printing

Relation with Continuum

Blaze is developed in part by Continuum Analytics [http://continuum.io/], a for profit company.
Continuum’s efforts on Blaze are open source and freely available to the public.
The open nature of Blaze is protected by a BSD license.

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Expressions and Computation

This is a developer level document. It conveys some of the design decisions
around the use of expressions and their lowering to computational backends. It
is intended for new developers. It is not necessary to understand this
document in order to use Blaze.

Expressions

Blaze represents expressions as Python objects. Classes include

	Symbol: leaf expression, t

	Projection: subset of columns, t[['name', 'amount']]

	Selection: subset of rows t[t.amount < 0]

	Field: single column of data or field of record dataset t.name

	Broadcast: a scalar expression broadcast to a collection, t.amount + 1

	Join: join two expressions on shared fields , join(t, s, 'id')

	Reduction: perform a sum or min or max on a collection, t.amount.sum()

	By: split-apply-combine operation, by(t.name, total=t.amount.sum())

	Also: Sort, Distinct, Head, Label, Map, Merge, ...

In each case an operation (like Selection) is a Python class. Each
expression defines a fixed set of fields in the __slots__ attribute

class Selection(Expr):
 __slots__ = '_child', 'predicate'

class Field(ElemWise):
 __slots__ = '_child', 'fieldname'

To create a node in the tree explicitly we create a Python object of this class

>>> from blaze.expr import *
>>> t = Symbol('t', 'var * {id: int, name: string, amount: int}')
>>> amounts = Field(t, 'amount')

This object contains its information in a .args attribute

>>> amounts._args
(t, 'amount')

And the set of input expressions in a ._inputs attribute

>>> amounts._inputs
(t,)

By traversing ._args one can traverse the tree of all identifying
information (including annotating strings and values like 'amount') or by
traversing ._inputs one can inspect the much sparser tree of just the major
expressions, skipping parameters like the particular field name to be
selected.

Most terms have only a single child input. And so often the ._inputs tree
is just a single line of nodes. Notable exceptions include operations like
Join and BinOp which contain two inputs.

Expression Invariants

Blaze expressions adhere to the following properties:

	They and all of their stored fields are immutable

	Their string representations evaluate to themselves. E.g.
eval(str(expr)) == expr

	They have simple __init__ constructors that only copy in fields to the
object. For intelligent argument handling they have functions. E.g. the
Join class has an analagous join function that should be used by
users. Same with the internal By class as the user-level by
function.

	They can compute their datashape .dshape given the datashape of their
children and their arguments.

Organization

All expr code occurs in blaze/expr/. This directory should be
self-contained and not dependent on other parts of Blaze like compute or
api.

	blaze/expr/core.py contains code related to abstract tree traversal

	blaze/expr/expr.py contains code related to datashape imbued expressions

	blaze/expr/collections.py contains operations related to expressions with
datashapes that contain a dimension. Operations like Selection and
Join live here

	blaze/expr/datetime.py, blaze/expr/string.py, ... all contain
specialized operations for particular domains.

Computation

Once we have a Blaze expression like the following:

>>> deadbeats = t[t.amount < 0].name

and some data like the following:

>>> data = [[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300]]

and a mapping of Symbols to data like the following:

>>> namespace = {t: data}

then we need to evaluate the intent of the expression on the data. We do this
in a step-by-step system outlined by various compute functions. The user
experience is as follows

>>> from blaze import compute
>>> list(compute(deadbeats, namespace))
['Bob']

But internally compute traverses our expression from the leaves (like
t) on up, transforming data as it goes. At each step it looks at a
node in the Blaze expression graph like the following:

>>> selection_t = t[t.amount < 0]

and transforms the data appropriately, like the following:

>>> predicate = lambda amt: amt < 0
>>> data = filter(predicate, data)

This step-by-step approach is easy to define through dispatched compute_up
functions. We create a small recipe for how to compute each expression type
(e.g. Projection, Selection, By) against each data type (e.g.,
list, DataFrame, sqlalchemy.Table,) Here is the recipe
mapping a Selection to a DataFrame:

>>> @dispatch(Selection, DataFrame)
... def compute_up(t, df, **kwargs):
... predicate = compute(t.predicate, df)
... return df[predicate]

This approach is modular and allows interpretation systems to be built up as a
collection of small pieces. One can begin the construction of a new backend by
showing Blaze how to perform each individual operation on a new data type. For
example here is a start of a backend for PyTables:

>>> @dispatch(Selection, tb.Table)
... def compute_up(expr, data):
... s = eval_str(expr.predicate) # Produce string like 'amount < 0'
... return data.read_where(s) # Use PyTables read_where method

>>> @dispatch(Head, tb.Table)
... def compute_up(expr, data):
... return data[:expr.n] # PyTables supports standard indexing

>>> @dispatch(Field, tb.Table)
... def compute_up(expr, data):
... return data.col(expr._name) # Use the PyTables .col method

These small functions are isolated enough from Blaze to be easy for new
developers to write, even without deep knowledge of Blaze internals.

Compute Traversal

The compute_up functions expect to be given:

	The expression containing information about the computation to be performed

	The data elements corresponding to the .inputs of that expression

The compute function orchestrates compute_up functions and performs
the actual traversal, accruing intermediate results from the use of
compute_up. By default compute performs a bottom_up traversal.
First it evaluates the leaves of the computation by swapping out keys for
values in the input dictionary, {t: data}. It then calls compute_up
functions on these leaves to find intermediate nodes in the tree. It repeats
this process, walking up the tree, and at each stage translating a Blaze
expression into the matching data element given the data elements of the
expression’s children. It continues this process until it reaches the root
node, at which point it can return the result to the user.

Sometimes we want to perform pre-processing or post-processing on the
expression or the result. For example when calling compute on a
blaze.data.SQL object we actually want to pre-process this input to extract
out the sqlalchemy.Table object and call compute_up on that. When
we’re finished and have successfully translated our Blaze expression to a
SQLAlchemy expression we want to post-process this result by actually running
the query in our SQL database and returning the concrete results.

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Blaze 0.8.0-96-g04fdee5 documentation

Computation Pipeline

This is a developer level document. It conveys some of the design decisions
around the use of expressions and their lowering to computational backends. It
is intended for developers. It is not necessary to understand this document in
order to use Blaze.

Problem

Given an expression:

x = Symbol('x', '5 * int')
y = Symbol('y', '5 * int')
expr = sum(x**2 + y)

And data arranged into a namespace

xdata = np.array([1, 2, 3, 4, 5])
ydata = np.array([10, 20, 30, 40, 50])

ns = {x: xdata, y: ydata}

Our goal is to produce the result implied by the expression

205

Using many small functions defined for each backend to do small pieces of this
computation

@dispatch(blaze.expr.sum, numpy.ndarray)
def compute_up(expr, data):
 return numpy.sum(data)

Simple Solution

A simple solution to this problem is to walk from the leaves of the expression
tree, applying compute_up functions to data resources until we reach the
top. In cases like the above example this suffices. This is called a bottom
up traversal.

Complications

Some backends require more sophistication. In principle we may want to do the
following:

	Modify/optimize the expression tree for a given backend.
optimize(expr, data) -> expr

	Modify the data resources before we start execution.
pre_compute(expr, data) -> data

	Modify the data resources as they change type throughout the computation
pre_compute(expr, data) -> data

	Clean up the data result after we complete execution.
post_compute(expr, data) -> data

	Process a leaf of the tree in a bottom up fashion as described above.
compute_up(expr, data) -> data

	Process large chunks of the tree at once, rather than always start from the
bottom. compute_down(expr, data) -> data

Each of these steps is critical to one backend or another. We describe each in
turn and then give the complete picture of the entire pipeline.

optimize :: expr, data -> expr

Optimize takes an expression and some data and changes the expression based on
the data type.

For example in columnar stores (like bcolz.ctable) we insert projections in
the expression to reduce the memory footprint. In numpy-based array backends
we insert Broadcast operations to perform loop fusion.

This function is applied throughout the tree at the top-most point at which it
is applicable. It is not applied at leaves which have little to optimize.

pre_compute :: expr, data -> data

Pre-compute is applied to leaf data elements prior to computation
(xdata and ydata in the example above). It might be used for example,
to load data into memory.

We apply pre_compute at two stages of the pipeline

	At the beginning of the computation

	Any time that the data significantly changes type

So for example for the dataset:

data = {'my_foo': Foo(...)}

If we apply the computation:

X -> X.my_foo.distinct()

Then after the X -> X.my_foo computation as the type changes from dict
to Foo we will call pre_compute again on the Foo object with the
remaining expression:

data = pre_compute(X.my_foo.distinct(), Foo(...))

A real use case is the streaming Python backend which consumes either sequences
of tuples or sequences of dicts. precompute(expr, Sequence) detects which
case we are in and normalizes to sequences of tuples. This pre-computation
allows the rest of the Python backend to make useful assumptions.

Another use case is computation on CSV files. If the CSV file is small we’d
like to transform it into a pandas DataFrame. If it is large we’d like to
transform it into a Python iterator. This logic can be encoded as a
pre_compute function and so will be triggered whenever a CSV object is
first found.

post_compute :: expr, data -> data

Post-compute finishes a computation. It is handed the data after all
computation has been done.

For example, in the case of SQLAlchemy queries the post_compute function
actually sends the query to the SQL engine and collects results. This occurs
only after Blaze finishes translating everything.

compute_up :: expr, data -> data

Compute up walks the expression tree bottom up and processes data step by step.

Compute up is the most prolific function in the computation pipeline and
encodes most of the logic. A brief example

@dispatch(blaze.expr.Add, np.ndarray, np.ndarray)
def compute_up(expr, lhs, rhs):
 return lhs + rhs

compute_down :: expr, data -> data

In some cases we want to process large chunks of the expression tree at once.
Compute-down operates on the tree top-down, being given the root node / full
expression first, and proceeding down the tree while it can not find a match.

Compute-down is less common than compute-up. It is most often used when one
backend wants to ship an entire expression over to another. This is done, for
example, in the SparkSQL backend in which we take the entire expression and
execute it against a SQL backend, and then finally apply that computation onto
the SchemaRDD.

It is also used extensively in backends that leverage chunking. These backends
want to process a large part of the expression tree at once.

Full Pipeline

The full pipeline looks like the following

	Pre-compute all leaves of data

	Optimize the expression

	Try calling compute_down on the entire expression tree

	Otherwise, traverse up the tree from the leaves, calling compute_up.
Repeat this until the data significantly changes type (e.g. list to
int after a sum operation)

	Reevaluate optimize on the expression and pre_compute on all of the
data elements.

	Go to step 3

	Call post_compute on the result

This is outlined in blaze/compute/core.py in the functions compute(Expr,
dict) and top_then_bottom_then_top_again_etc.

History

This design is ad-hoc. Each of the stages listed above arose from need, not
from principled fore-thought. Undoubtedly this system could be improved. In
particular much of the complexity comes from the fact that compute_up/down
functions may transform our data arbitrarily. This, along with various
particular needs from all of the different data types, forces the
flip-flopping between top-down and bottom-up traversals. Please note that
while this strategy works well most of the time pathalogical cases do exist.

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	Blaze 0.8.0-96-g04fdee5 documentation

 Python Module Index

 b

 			

 		
 b	

 	[image: -]
 	
 blaze	

 	
 	
 blaze.expr.arithmetic	

 	
 	
 blaze.expr.arrays	

 	
 	
 blaze.expr.broadcast	

 	
 	
 blaze.expr.collections	

 	
 	
 blaze.expr.datetime	

 	
 	
 blaze.expr.expressions	

 	
 	
 blaze.expr.math	

 	
 	
 blaze.expr.reductions	

 	
 	
 blaze.expr.split_apply_combine	

 	
 	
 blaze.interactive	

 Copyright 2012, Continuum Analytics.

 Navigation

 	
 index

 	
 modules |

 	Blaze 0.8.0-96-g04fdee5 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V

A

 	

 	Apply (class in blaze.expr.expressions)

 	

 	Arithmetic (class in blaze.expr.arithmetic)

B

 	

 	blaze.expr.arithmetic (module)

 	blaze.expr.arrays (module)

 	blaze.expr.broadcast (module)

 	blaze.expr.collections (module)

 	blaze.expr.datetime (module)

 	blaze.expr.expressions (module)

 	blaze.expr.math (module)

 	

 	blaze.expr.reductions (module)

 	blaze.expr.split_apply_combine (module)

 	blaze.interactive (module)

 	BooleanMath (class in blaze.expr.math)

 	Broadcast (class in blaze.expr.broadcast)

 	By (class in blaze.expr.split_apply_combine)

C

 	

 	count (class in blaze.expr.reductions)

 	

 	count_values() (in module blaze.expr.split_apply_combine)

D

 	

 	Data() (in module blaze.interactive)

 	DateTime (class in blaze.expr.datetime)

 	

 	Distinct (class in blaze.expr.collections)

E

 	

 	ElemWise (class in blaze.expr.expressions)

 	

 	Expr (class in blaze.expr.expressions)

F

 	

 	Field (class in blaze.expr.expressions)

H

 	

 	Head (class in blaze.expr.collections)

 	

 	head() (in module blaze.expr.collections)

I

 	

 	IntegerMath (class in blaze.expr.math)

 	

 	IsIn (class in blaze.expr.collections)

J

 	

 	Join (class in blaze.expr.collections)

 	

 	join() (in module blaze.expr.collections)

L

 	

 	Label (class in blaze.expr.expressions)

 	

 	label() (in module blaze.expr.expressions), [1]

M

 	

 	Map (class in blaze.expr.expressions)

 	

 	Merge (class in blaze.expr.collections)

N

 	

 	ndim() (in module blaze.expr.expressions)

 	

 	nelements (class in blaze.expr.reductions)

P

 	

 	Projection (class in blaze.expr.expressions)

 	

 	projection() (in module blaze.expr.expressions)

R

 	

 	RealMath (class in blaze.expr.math)

 	Reduction (class in blaze.expr.reductions)

 	

 	ReLabel (class in blaze.expr.expressions)

 	relabel() (in module blaze.expr.expressions)

S

 	

 	scalar_symbols() (in module blaze.expr.broadcast)

 	schema (blaze.expr.collections.Join attribute)

 	Selection (class in blaze.expr.expressions)

 	selection() (in module blaze.expr.expressions)

 	Sort (class in blaze.expr.collections)

 	

 	sort() (in module blaze.expr.collections)

 	std (class in blaze.expr.reductions)

 	Summary (class in blaze.expr.reductions)

 	summary() (in module blaze.expr.reductions)

 	Symbol (class in blaze.expr.expressions)

T

 	

 	Table() (in module blaze.interactive)

 	TensorDot (class in blaze.expr.arrays)

 	tensordot() (in module blaze.expr.arrays)

 	

 	transform() (in module blaze.expr.collections)

 	Transpose (class in blaze.expr.arrays)

 	transpose() (in module blaze.expr.arrays)

V

 	

 	var (class in blaze.expr.reductions)

 	

 	vnorm() (in module blaze.expr.reductions)

 Copyright 2012, Continuum Analytics.

 _build/json/_static/presentations/markdown/into.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

into(target, source)

[image:]

Q: How do you migrate a CSV file into a Mongo Database?

Q: How do you migrate a CSV file into a Mongo Database?

CSV -> DataFrames: pd.read_csv()
DataFrames -> NumPy Arrays: DataFrame.to_records()
NumPy Arrays -> Iterator: ndarray.tolist()
Iterator -> pymongo.Collection: Collection.insert

Q: How do you migrate a CSV file into a Mongo Database?

>>> # target source
>>> into('mongodb://localhost/db::mycollection', 'myfile.csv')

Q: How do you Load a JSON file on S3 into Postgres?

Q: How do you Load a JSON file on S3 into Postgres?

JSON on S3 -> Local JSON: boto
JSON to Python iterator: json library
Python iterator to DataFrames: partition_all() and DataFrame()
DataFrames -> CSV files: DataFrame.to_csv()
CSV -> Postgres: LOAD command in Postgres

Q: How do you Load a JSON file on S3 into Postgres?

>>> # target source
>>> into('postgresql://postgres:postgres@localhost::mytable',
... 's3://mybucket/myfile.json')

Data Science is hard

		Each step is straightforward

		The entire process is hell

Into embraces the complexity

[image:]

		Nodes are data types (DataFrame, list, sqlalchemy.Table, ...)

		Edges are functions (DataFrame -> CSV via read_csv, ...)

		Edges are weighted by speed, we search for the minimum path.

		Red nodes can be larger than memory. Transfers between two red nodes only
use the red subgraph

Today’s graph

[image:]

How to get and use into

conda install into
or
pip install into

>>> from into import into
>>> into(target, source)

or
$ into source target

		Inputs can be
		types – list – Create new target

		objects – [1, 2, 3] – Append to target

		strings – 'myfile.csv' – Use regex magic

How to extend into

from into import convert, resource

@convert.register(np.ndarray, pd.DataFrame, cost=1.0)
def dataframe_to_numpy(df, **kwargs):
 return df.to_records(index=False)

@convert.register(list, np.ndarray, cost=10.0)
def numpy_to_list(x, **kwargs):
 return x.tolist()

Questions?

		Source: https://github.com/ContinuumIO/into

		Docs: http://into.readthedocs.org/en/latest/

		Blog: http://matthewrocklin.com/blog

>>> from into import into
>>> happiness = into(target, source)

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/foundations.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

PyData builds off of NumPy and Pandas

NumPy and Pandas provide foundational data structures

[image:]

Data structures enable composition

... cross-project interactions without coordination

But NumPy is old

mrocklin@notebook:~/scipy$ git log | tail

Author: Travis Oliphant <oliphant@enthought.com>
Date: Fri Feb 2 05:08:11 2001 +0000

 shouldn't work

commit 02de46a5464f182d3d64be5a7ee1087ae8be8646
Author: Eric Jones <eric@enthought.com>
Date: Thu Feb 1 08:32:30 2001 +0000

 Initial revision

NumPy and Pandas have limitations

		Single Threaded (mostly)

		In-memory data (mostly)

		Poor support for variable length strings

		Poor support for missing data

		...

These limitations affect the PyData ecosystem

Hardware has changed since 2001

[image:]

		Multiple cores
		4 cores – cheap laptop

		32 cores – workstation

		Distributed memory clusters in big data warehousing

		Fast Solid State Drives (disk is now extended memory)

Hardware has changed since 2001

[image:]

		Multiple cores
		4 cores – cheap laptop

		32 cores – workstation

		Distributed memory clusters in big data warehousing

		Fast Solid State Drives (disk is now extended memory)

Problems have changed since 2001

		Larger datasets

		Messier data

		More text data

Python has limitations

		Started in 1991

		Heritage outside of numerics

		Poor support for in-process parallelism

Global Interpreter Lock

		The Global Interpreter Lock (GIL) stops two Python threads from
manipulating Python objects simultaneously

		Solutions:
		Compute in separate processes (hard to share data)

		Release the GIL and use C/Fortran code

PyData rests on single-threaded foundations

[image:]

		Incredible domain expertise

		Optimal single-core execution (Scientific heritage)

		But painful to parallelize

Can we parallelize the ecosystem without touching downstream projects?

probably not

But this work might be straightforward

And we have an effective community

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/functions.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze functions

Blaze uses a handful of functions:

		discover(data) – Get metadata

		compute(expr, data) – Execute expr on data

		into(type, data) – Migrate data to new container

		resource(uri) – Get the data behind uri string

		... drop, create_index, chunks, ...

We implement these functions for many different types/backends

discover

Discover metadata.

Returns datashape, Blaze’s internal data type system.

>>> from datashape import discover

>>> discover(3.14)
dshape("float64")

>>> discover([1, 2, 3])
dshape("3 * int64")

>>> df = pd.read_csv('iris.csv')
>>> discover(df)
dshape("150 * { sepal_length : float64, sepal_width : float64,
 petal_length : float64, petal_width : float64,
 species : string }")

>>> discover(...)

compute

Execute expression against data

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

>>> L = [[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]]

>>> from blaze.compute import compute
>>> compute(deadbeats, L) # Iterator in, Iterator out
<itertools.imap at 0x7fab104693d0>

>>> list(_)
['Bob', 'Edith']

into

migrate data between containers

>>> into(set, [1, 2, 3])
{1, 2, 3}

>>> into(np.ndarray, df)
rec.array([(5.1, 3.5, 1.4, 0.2, 'Iris-setosa'),
 (4.9, 3.0, 1.4, 0.2, 'Iris-setosa'),
 (4.7, 3.2, 1.3, 0.2, 'Iris-setosa'),
 (4.6, 3.1, 1.5, 0.2, 'Iris-setosa'),
 ...
 (5.9, 3.0, 5.1, 1.8, 'Iris-virginica')],
 dtype=[('sepal_length', '<f8'), ('sepal_width', '<f8'),
 ('petal_length', '<f8'), ('petal_width', '<f8'),
 ('species', 'O')])

>>> db = pymongo.MongoClient().db
>>> into(db.mycollection, df)
Collection(Database(MongoClient('localhost', 27017), u'db'), u'mycoll')

resource

find data from uri

>>> resource('iris.csv')
<blaze.data.csv.CSV at 0x7fdca8f93d10>

>>> resource('sqlite:///iris.db::iris')
<blaze.data.sql.SQL at 0x7fdca8f22910>

>>> resource('mongodb://localhost:27017/db::mycoll')
Collection(Database(MongoClient('localhost', 27017), u'db'), u'mycoll')

>>> resource('accounts.h5::/accounts')
/accounts (Table(5,)) ''
 description := {
 "id": Int64Col(shape=(), dflt=0, pos=0),
 "name": StringCol(itemsize=7, shape=(), dflt='', pos=1),
 "balance": Int64Col(shape=(), dflt=0, pos=2)}
 byteorder := 'little'
 chunkshape := (2849,)

Extending Blaze

You can extend these functions from outside of the Blaze codebase
(you don’t need our permission)

from blaze import dispatch, resource

@dispatch(MyType)
def discover(obj):
 return datashape of obj

@dispatch(blaze.expr.Head, MyType)
def compute_up(expr, myobj):
 return myobj[expr.n]

@dispatch(list, MyType)
def into(_, myobj):
 return myobj.to_list()

@resource.register(regex)
def resource(uri):
 return MyType(information-gathered-from-uri)

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/REVEAL_README.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

reveal.js [image: Build Status] [https://travis-ci.org/hakimel/reveal.js]

A framework for easily creating beautiful presentations using HTML. Check out the live demo [http://lab.hakim.se/reveal-js/].

reveal.js comes with a broad range of features including nested slides [https://github.com/hakimel/reveal.js#markup], markdown contents [https://github.com/hakimel/reveal.js#markdown], PDF export [https://github.com/hakimel/reveal.js#pdf-export], speaker notes [https://github.com/hakimel/reveal.js#speaker-notes] and a JavaScript API [https://github.com/hakimel/reveal.js#api]. It’s best viewed in a browser with support for CSS 3D transforms but fallbacks [https://github.com/hakimel/reveal.js/wiki/Browser-Support] are available to make sure your presentation can still be viewed elsewhere.

More reading:

		Installation: Step-by-step instructions for getting reveal.js running on your computer.

		Changelog [https://github.com/hakimel/reveal.js/releases]: Up-to-date version history.

		Examples [https://github.com/hakimel/reveal.js/wiki/Example-Presentations]: Presentations created with reveal.js, add your own!

		Browser Support [https://github.com/hakimel/reveal.js/wiki/Browser-Support]: Explanation of browser support and fallbacks.

Online Editor

Presentations are written using HTML or markdown but there’s also an online editor for those of you who prefer a graphical interface. Give it a try at http://slid.es.

Instructions

Markup

Markup hierarchy needs to be <div class="reveal"> <div class="slides"> <section> where the <section> represents one slide and can be repeated indefinitely. If you place multiple <section>‘s inside of another <section> they will be shown as vertical slides. The first of the vertical slides is the “root” of the others (at the top), and it will be included in the horizontal sequence. For example:

<div class="reveal">
 <div class="slides">
 <section>Single Horizontal Slide</section>
 <section>
 <section>Vertical Slide 1</section>
 <section>Vertical Slide 2</section>
 </section>
 </div>
</div>

Markdown

It’s possible to write your slides using Markdown. To enable Markdown, add the data-markdown attribute to your <section> elements and wrap the contents in a <script type="text/template"> like the example below.

This is based on data-markdown [https://gist.github.com/1343518] from Paul Irish [https://github.com/paulirish] modified to use marked [https://github.com/chjj/marked] to support Github Flavoured Markdown [https://help.github.com/articles/github-flavored-markdown]. Sensitive to indentation (avoid mixing tabs and spaces) and line breaks (avoid consecutive breaks).

<section data-markdown>
 <script type="text/template">
 ## Page title

 A paragraph with some text and a [link](http://hakim.se).
 </script>
</section>

External Markdown

You can write your content as a separate file and have reveal.js load it at runtime. Note the separator arguments which determine how slides are delimited in the external file. The data-charset attribute is optional and specifies which charset to use when loading the external file.

When used locally, this feature requires that reveal.js runs from a local web server.

<section data-markdown="example.md"
 data-separator="^\n\n\n"
 data-vertical="^\n\n"
 data-notes="^Note:"
 data-charset="iso-8859-15">
</section>

Element Attributes

Special syntax (in html comment) is available for adding attributes to Markdown elements. This is useful for fragments, amongst other things.

<section data-markdown>
 <script type="text/template">
 - Item 1 <!-- .element: class="fragment" data-fragment-index="2" -->
 - Item 2 <!-- .element: class="fragment" data-fragment-index="1" -->
 </script>
</section>

Slide Attributes

Special syntax (in html comment) is available for adding attributes to the slide <section> elements generated by your Markdown.

<section data-markdown>
 <script type="text/template">
 <!-- .slide: data-background="#ff0000" -->
 Markdown content
 </script>
</section>

Configuration

At the end of your page you need to initialize reveal by running the following code. Note that all config values are optional and will default as specified below.

Reveal.initialize({

 // Display controls in the bottom right corner
 controls: true,

 // Display a presentation progress bar
 progress: true,

 // Display the page number of the current slide
 slideNumber: false,

 // Push each slide change to the browser history
 history: false,

 // Enable keyboard shortcuts for navigation
 keyboard: true,

 // Enable the slide overview mode
 overview: true,

 // Vertical centering of slides
 center: true,

 // Enables touch navigation on devices with touch input
 touch: true,

 // Loop the presentation
 loop: false,

 // Change the presentation direction to be RTL
 rtl: false,

 // Turns fragments on and off globally
 fragments: true,

 // Flags if the presentation is running in an embedded mode,
 // i.e. contained within a limited portion of the screen
 embedded: false,

 // Number of milliseconds between automatically proceeding to the
 // next slide, disabled when set to 0, this value can be overwritten
 // by using a data-autoslide attribute on your slides
 autoSlide: 0,

 // Stop auto-sliding after user input
 autoSlideStoppable: true,

 // Enable slide navigation via mouse wheel
 mouseWheel: false,

 // Hides the address bar on mobile devices
 hideAddressBar: true,

 // Opens links in an iframe preview overlay
 previewLinks: false,

 // Transition style
 transition: 'default', // default/cube/page/concave/zoom/linear/fade/none

 // Transition speed
 transitionSpeed: 'default', // default/fast/slow

 // Transition style for full page slide backgrounds
 backgroundTransition: 'default', // default/none/slide/concave/convex/zoom

 // Number of slides away from the current that are visible
 viewDistance: 3,

 // Parallax background image
 parallaxBackgroundImage: '', // e.g. "'https://s3.amazonaws.com/hakim-static/reveal-js/reveal-parallax-1.jpg'"

 // Parallax background size
 parallaxBackgroundSize: '' // CSS syntax, e.g. "2100px 900px"

});

Note that the new default vertical centering option will break compatibility with slides that were using transitions with backgrounds (cube and page). To restore the previous behavior, set center to false.

The configuration can be updated after initialization using the configure method:

// Turn autoSlide off
Reveal.configure({ autoSlide: 0 });

// Start auto-sliding every 5s
Reveal.configure({ autoSlide: 5000 });

Dependencies

Reveal.js doesn’t rely on any third party scripts to work but a few optional libraries are included by default. These libraries are loaded as dependencies in the order they appear, for example:

Reveal.initialize({
 dependencies: [
 // Cross-browser shim that fully implements classList - https://github.com/eligrey/classList.js/
 { src: 'lib/js/classList.js', condition: function() { return !document.body.classList; } },

 // Interpret Markdown in <section> elements
 { src: 'plugin/markdown/marked.js', condition: function() { return !!document.querySelector('[data-markdown]'); } },
 { src: 'plugin/markdown/markdown.js', condition: function() { return !!document.querySelector('[data-markdown]'); } },

 // Syntax highlight for <code> elements
 { src: 'plugin/highlight/highlight.js', async: true, callback: function() { hljs.initHighlightingOnLoad(); } },

 // Zoom in and out with Alt+click
 { src: 'plugin/zoom-js/zoom.js', async: true, condition: function() { return !!document.body.classList; } },

 // Speaker notes
 { src: 'plugin/notes/notes.js', async: true, condition: function() { return !!document.body.classList; } },

 // Remote control your reveal.js presentation using a touch device
 { src: 'plugin/remotes/remotes.js', async: true, condition: function() { return !!document.body.classList; } },

 // MathJax
 { src: 'plugin/math/math.js', async: true }
]
});

You can add your own extensions using the same syntax. The following properties are available for each dependency object:

		src: Path to the script to load

		async: [optional] Flags if the script should load after reveal.js has started, defaults to false

		callback: [optional] Function to execute when the script has loaded

		condition: [optional] Function which must return true for the script to be loaded

Presentation Size

All presentations have a normal size, that is the resolution at which they are authored. The framework will automatically scale presentations uniformly based on this size to ensure that everything fits on any given display or viewport.

See below for a list of configuration options related to sizing, including default values:

Reveal.initialize({

 ...

 // The "normal" size of the presentation, aspect ratio will be preserved
 // when the presentation is scaled to fit different resolutions. Can be
 // specified using percentage units.
 width: 960,
 height: 700,

 // Factor of the display size that should remain empty around the content
 margin: 0.1,

 // Bounds for smallest/largest possible scale to apply to content
 minScale: 0.2,
 maxScale: 1.0

});

Auto-sliding

Presentations can be configure to progress through slides automatically, without any user input. To enable this you will need to tell the framework how many milliseconds it should wait between slides:

// Slide every five seconds
Reveal.configure({
 autoSlide: 5000
});

When this is turned on a control element will appear that enables users to pause and resume auto-sliding. Sliding is also paused automatically as soon as the user starts navigating. You can disable these controls by specifying autoSlideStoppable: false in your reveal.js config.

You can also override the slide duration for individual slides by using the data-autoslide attribute on individual sections:

<section data-autoslide="10000">This will remain on screen for 10 seconds</section>

Keyboard Bindings

If you’re unhappy with any of the default keyboard bindings you can override them using the keyboard config option:

Reveal.configure({
 keyboard: {
 13: 'next', // go to the next slide when the ENTER key is pressed
 27: function() {}, // do something custom when ESC is pressed
 32: null // don't do anything when SPACE is pressed (i.e. disable a reveal.js default binding)
 }
});

API

The Reveal class provides a JavaScript API for controlling navigation and reading state:

// Navigation
Reveal.slide(indexh, indexv, indexf);
Reveal.left();
Reveal.right();
Reveal.up();
Reveal.down();
Reveal.prev();
Reveal.next();
Reveal.prevFragment();
Reveal.nextFragment();
Reveal.toggleOverview();
Reveal.togglePause();

// Retrieves the previous and current slide elements
Reveal.getPreviousSlide();
Reveal.getCurrentSlide();

Reveal.getIndices(); // { h: 0, v: 0 } }

// State checks
Reveal.isFirstSlide();
Reveal.isLastSlide();
Reveal.isOverview();
Reveal.isPaused();

Ready Event

The ‘ready’ event is fired when reveal.js has loaded all (synchronous) dependencies and is ready to start navigating.

Reveal.addEventListener('ready', function(event) {
 // event.currentSlide, event.indexh, event.indexv
});

Slide Changed Event

An ‘slidechanged’ event is fired each time the slide is changed (regardless of state). The event object holds the index values of the current slide as well as a reference to the previous and current slide HTML nodes.

Some libraries, like MathJax (see #226 [https://github.com/hakimel/reveal.js/issues/226#issuecomment-10261609]), get confused by the transforms and display states of slides. Often times, this can be fixed by calling their update or render function from this callback.

Reveal.addEventListener('slidechanged', function(event) {
 // event.previousSlide, event.currentSlide, event.indexh, event.indexv
});

States

If you set data-state="somestate" on a slide <section>, “somestate” will be applied as a class on the document element when that slide is opened. This allows you to apply broad style changes to the page based on the active slide.

Furthermore you can also listen to these changes in state via JavaScript:

Reveal.addEventListener('somestate', function() {
 // TODO: Sprinkle magic
}, false);

Slide Backgrounds

Slides are contained within a limited portion of the screen by default to allow them to fit any display and scale uniformly. You can apply full page background colors or images by applying a data-background attribute to your <section> elements. Below are a few examples.

<section data-background="#ff0000">
 <h2>All CSS color formats are supported, like rgba() or hsl().</h2>
</section>
<section data-background="http://example.com/image.png">
 <h2>This slide will have a full-size background image.</h2>
</section>
<section data-background="http://example.com/image.png" data-background-size="100px" data-background-repeat="repeat">
 <h2>This background image will be sized to 100px and repeated.</h2>
</section>

Backgrounds transition using a fade animation by default. This can be changed to a linear sliding transition by passing backgroundTransition: 'slide' to the Reveal.initialize() call. Alternatively you can set data-background-transition on any section with a background to override that specific transition.

Parallax Background

If you want to use a parallax scrolling background, set the two following config properties when initializing reveal.js (the third one is optional).

Reveal.initialize({

 // Parallax background image
 parallaxBackgroundImage: '', // e.g. "https://s3.amazonaws.com/hakim-static/reveal-js/reveal-parallax-1.jpg"

 // Parallax background size
 parallaxBackgroundSize: '', // CSS syntax, e.g. "2100px 900px" - currently only pixels are supported (don't use % or auto)

 // This slide transition gives best results:
 transition: linear

});

Make sure that the background size is much bigger than screen size to allow for some scrolling. View example [http://lab.hakim.se/reveal-js/?parallaxBackgroundImage=https%3A%2F%2Fs3.amazonaws.com%2Fhakim-static%2Freveal-js%2Freveal-parallax-1.jpg¶llaxBackgroundSize=2100px%20900px].

Slide Transitions

The global presentation transition is set using the transition config value. You can override the global transition for a specific slide by using the data-transition attribute:

<section data-transition="zoom">
 <h2>This slide will override the presentation transition and zoom!</h2>
</section>

<section data-transition-speed="fast">
 <h2>Choose from three transition speeds: default, fast or slow!</h2>
</section>

Note that this does not work with the page and cube transitions.

Internal links

It’s easy to link between slides. The first example below targets the index of another slide whereas the second targets a slide with an ID attribute (<section id="some-slide">):

Link
Link

You can also add relative navigation links, similar to the built in reveal.js controls, by appending one of the following classes on any element. Note that each element is automatically given an enabled class when it’s a valid navigation route based on the current slide.

 <!-- Previous vertical or horizontal slide -->
 <!-- Next vertical or horizontal slide -->

Fragments

Fragments are used to highlight individual elements on a slide. Every element with the class fragment will be stepped through before moving on to the next slide. Here’s an example: http://lab.hakim.se/reveal-js/#/fragments

The default fragment style is to start out invisible and fade in. This style can be changed by appending a different class to the fragment:

<section>
 <p class="fragment grow">grow</p>
 <p class="fragment shrink">shrink</p>
 <p class="fragment roll-in">roll-in</p>
 <p class="fragment fade-out">fade-out</p>
 <p class="fragment current-visible">visible only once</p>
 <p class="fragment highlight-current-blue">blue only once</p>
 <p class="fragment highlight-red">highlight-red</p>
 <p class="fragment highlight-green">highlight-green</p>
 <p class="fragment highlight-blue">highlight-blue</p>
</section>

Multiple fragments can be applied to the same element sequentially by wrapping it, this will fade in the text on the first step and fade it back out on the second.

<section>

 I'll fade in, then out

</section>

The display order of fragments can be controlled using the data-fragment-index attribute.

<section>
 <p class="fragment" data-fragment-index="3">Appears last</p>
 <p class="fragment" data-fragment-index="1">Appears first</p>
 <p class="fragment" data-fragment-index="2">Appears second</p>
</section>

Fragment events

When a slide fragment is either shown or hidden reveal.js will dispatch an event.

Some libraries, like MathJax (see #505), get confused by the initially hidden fragment elements. Often times this can be fixed by calling their update or render function from this callback.

Reveal.addEventListener('fragmentshown', function(event) {
 // event.fragment = the fragment DOM element
});
Reveal.addEventListener('fragmenthidden', function(event) {
 // event.fragment = the fragment DOM element
});

Code syntax highlighting

By default, Reveal is configured with highlight.js [http://softwaremaniacs.org/soft/highlight/en/] for code syntax highlighting. Below is an example with clojure code that will be syntax highlighted. When the data-trim attribute is present surrounding whitespace is automatically removed.

<section>
 <pre><code data-trim>
(def lazy-fib
 (concat
 [0 1]
 ((fn rfib [a b]
 (lazy-cons (+ a b) (rfib b (+ a b)))) 0 1)))
 </code></pre>
</section>

Slide number

If you would like to display the page number of the current slide you can do so using the slideNumber configuration value.

Reveal.configure({ slideNumber: true });

Overview mode

Press “Esc” or “o” keys to toggle the overview mode on and off. While you’re in this mode, you can still navigate between slides,
as if you were at 1,000 feet above your presentation. The overview mode comes with a few API hooks:

Reveal.addEventListener('overviewshown', function(event) { /* ... */ });
Reveal.addEventListener('overviewhidden', function(event) { /* ... */ });

// Toggle the overview mode programmatically
Reveal.toggleOverview();

Fullscreen mode

Just press »F« on your keyboard to show your presentation in fullscreen mode. Press the »ESC« key to exit fullscreen mode.

Embedded media

Embedded HTML5 <video>/<audio> and YouTube iframes are automatically paused when you navigate away from a slide. This can be disabled by decorating your element with a data-ignore attribute.

Add data-autoplay to your media element if you want it to automatically start playing when the slide is shown:

<video data-autoplay src="http://clips.vorwaerts-gmbh.de/big_buck_bunny.mp4"></video>

Additionally the framework automatically pushes two post messages [https://developer.mozilla.org/en-US/docs/Web/API/Window.postMessage] to all iframes, slide:start when the slide containing the iframe is made visible and slide:stop when it is hidden.

Stretching elements

Sometimes it’s desirable to have an element, like an image or video, stretch to consume as much space as possible within a given slide. This can be done by adding the .stretch class to an element as seen below:

<section>
 <h2>This video will use up the remaining space on the slide</h2>
 <video class="stretch" src="http://clips.vorwaerts-gmbh.de/big_buck_bunny.mp4"></video>
</section>

Limitations:

		Only direct descendants of a slide section can be stretched

		Only one descendant per slide section can be stretched

PDF Export

Presentations can be exported to PDF via a special print stylesheet. This feature requires that you use Google Chrome [http://google.com/chrome].
Here’s an example of an exported presentation that’s been uploaded to SlideShare: http://www.slideshare.net/hakimel/revealjs-13872948.

		Open your presentation with css/print/pdf.css [https://github.com/hakimel/reveal.js/blob/master/css/print/pdf.css] included on the page. The default index HTML lets you add print-pdf anywhere in the query to include the stylesheet, for example: lab.hakim.se/reveal-js?print-pdf [http://lab.hakim.se/reveal-js?print-pdf].

		Open the in-browser print dialog (CMD+P).

		Change the Destination setting to Save as PDF.

		Change the Layout to Landscape.

		Change the Margins to None.

		Click Save.

[image: Chrome Print Settings]

Theming

The framework comes with a few different themes included:

		default: Gray background, white text, blue links

		beige: Beige background, dark text, brown links

		sky: Blue background, thin white text, blue links

		night: Black background, thick white text, orange links

		serif: Cappuccino background, gray text, brown links

		simple: White background, black text, blue links

		solarized: Cream-colored background, dark green text, blue links

Each theme is available as a separate stylesheet. To change theme you will need to replace default below with your desired theme name in index.html:

<link rel="stylesheet" href="css/theme/default.css" id="theme">

If you want to add a theme of your own see the instructions here: /css/theme/README.md [https://github.com/hakimel/reveal.js/blob/master/css/theme/README.md].

Speaker Notes

reveal.js comes with a speaker notes plugin which can be used to present per-slide notes in a separate browser window. The notes window also gives you a preview of the next upcoming slide so it may be helpful even if you haven’t written any notes. Press the ‘s’ key on your keyboard to open the notes window.

Notes are defined by appending an <aside> element to a slide as seen below. You can add the data-markdown attribute to the aside element if you prefer writing notes using Markdown.

When used locally, this feature requires that reveal.js runs from a local web server.

<section>
 <h2>Some Slide</h2>

 <aside class="notes">
 Oh hey, these are some notes. They'll be hidden in your presentation, but you can see them if you open the speaker notes window (hit 's' on your keyboard).
 </aside>
</section>

If you’re using the external Markdown plugin, you can add notes with the help of a special delimiter:

<section data-markdown="example.md" data-separator="^\n\n\n" data-vertical="^\n\n" data-notes="^Note:"></section>

Title
Sub-title

Here is some content...

Note:
This will only display in the notes window.

Server Side Speaker Notes

In some cases it can be desirable to run notes on a separate device from the one you’re presenting on. The Node.js-based notes plugin lets you do this using the same note definitions as its client side counterpart. Include the required scripts by adding the following dependencies:

Reveal.initialize({
 ...

 dependencies: [
 { src: 'socket.io/socket.io.js', async: true },
 { src: 'plugin/notes-server/client.js', async: true }
]
});

Then:

		Install Node.js [http://nodejs.org/]

		Run npm install

		Run node plugin/notes-server

Multiplexing

The multiplex plugin allows your audience to view the slides of the presentation you are controlling on their own phone, tablet or laptop. As the master presentation navigates the slides, all client presentations will update in real time. See a demo at http://revealjs.jit.su/.

The multiplex plugin needs the following 3 things to operate:

		Master presentation that has control

		Client presentations that follow the master

		Socket.io server to broadcast events from the master to the clients

More details:

Master presentation

Served from a static file server accessible (preferably) only to the presenter. This need only be on your (the presenter’s) computer. (It’s safer to run the master presentation from your own computer, so if the venue’s Internet goes down it doesn’t stop the show.) An example would be to execute the following commands in the directory of your master presentation:

		npm install node-static

		static

If you want to use the speaker notes plugin with your master presentation then make sure you have the speaker notes plugin configured correctly along with the configuration shown below, then execute node plugin/notes-server in the directory of your master presentation. The configuration below will cause it to connect to the socket.io server as a master, as well as launch your speaker-notes/static-file server.

You can then access your master presentation at http://localhost:1947

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: '13652805320794272084', // Obtained from the socket.io server. Gives this (the master) control of the presentation
 id: '1ea875674b17ca76', // Obtained from socket.io server
 url: 'revealjs.jit.su:80' // Location of socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/master.js', async: true },

 // and if you want speaker notes
 { src: 'plugin/notes-server/client.js', async: true }

 // other dependencies...
]
});

Client presentation

Served from a publicly accessible static file server. Examples include: GitHub Pages, Amazon S3, Dreamhost, Akamai, etc. The more reliable, the better. Your audience can then access the client presentation via http://example.com/path/to/presentation/client/index.html, with the configuration below causing them to connect to the socket.io server as clients.

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: null, // null so the clients do not have control of the master presentation
 id: '1ea875674b17ca76', // id, obtained from socket.io server
 url: 'revealjs.jit.su:80' // Location of socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]
});

Socket.io server

Server that receives the slideChanged events from the master presentation and broadcasts them out to the connected client presentations. This needs to be publicly accessible. You can run your own socket.io server with the commands:

		npm install

		node plugin/multiplex

Or you use the socket.io server at http://revealjs.jit.su.

You’ll need to generate a unique secret and token pair for your master and client presentations. To do so, visit http://example.com/token, where http://example.com is the location of your socket.io server. Or if you’re going to use the socket.io server at http://revealjs.jit.su, visit http://revealjs.jit.su/token.

You are very welcome to point your presentations at the Socket.io server running at http://revealjs.jit.su, but availability and stability are not guaranteed. For anything mission critical I recommend you run your own server. It is simple to deploy to nodejitsu, heroku, your own environment, etc.

socket.io server as file static server

The socket.io server can play the role of static file server for your client presentation, as in the example at http://revealjs.jit.su. (Open http://revealjs.jit.su in two browsers. Navigate through the slides on one, and the other will update to match.)

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: null, // null so the clients do not have control of the master presentation
 id: '1ea875674b17ca76', // id, obtained from socket.io server
 url: 'example.com:80' // Location of your socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]

It can also play the role of static file server for your master presentation and client presentations at the same time (as long as you don’t want to use speaker notes). (Open http://revealjs.jit.su in two browsers. Navigate through the slides on one, and the other will update to match. Navigate through the slides on the second, and the first will update to match.) This is probably not desirable, because you don’t want your audience to mess with your slides while you’re presenting. ;)

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: '13652805320794272084', // Obtained from the socket.io server. Gives this (the master) control of the presentation
 id: '1ea875674b17ca76', // Obtained from socket.io server
 url: 'example.com:80' // Location of your socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/master.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]
});

Leap Motion

The Leap Motion plugin lets you utilize your Leap Motion [https://www.leapmotion.com/] device to control basic navigation of your presentation. The gestures currently supported are:

1 to 2 fingers

Pointer

—

 Point to anything on screen. Move your finger past the device to expand the pointer.

1 hand + 3 or more fingers (left/right/up/down)

Navigate through your slides. See config options to invert movements.

2 hands upwards

Toggle the overview mode. Do it a second time to exit the overview.

Config Options

You can edit the following options:

| Property | Default | Description
| —————– |:—————–:| :————-
| autoCenter | true | Center the pointer based on where you put your finger into the leap motions detection field.
| gestureDelay | 500 | How long to delay between gestures in milliseconds.
| naturalSwipe | true | Swipe as though you were touching a touch screen. Set to false to invert.
| pointerColor | #00aaff | The color of the pointer.
| pointerOpacity | 0.7 | The opacity of the pointer.
| pointerSize | 15 | The minimum height and width of the pointer.
| pointerTolerance | 120 | Bigger = slower pointer.

Example configuration:

Reveal.initialize({

 // other options...

 leap: {
 naturalSwipe : false, // Invert swipe gestures
 pointerOpacity : 0.5, // Set pointer opacity to 0.5
 pointerColor : '#d80000' // Red pointer
 },

 dependencies: [
 { src: 'plugin/leap/leap.js', async: true }
]

});

MathJax

If you want to display math equations in your presentation you can easily do so by including this plugin. The plugin is a very thin wrapper around the MathJax [http://www.mathjax.org/] library. To use it you’ll need to include it as a reveal.js dependency, find our more about dependencies here.

The plugin defaults to using LaTeX [http://en.wikipedia.org/wiki/LaTeX] but that can be adjusted through the math configuration object. Note that MathJax is loaded from a remote server. If you want to use it offline you’ll need to download a copy of the library and adjust the mathjax configuration value.

Below is an example of how the plugin can be configured. If you don’t intend to change these values you do not need to include the math config object at all.

Reveal.initialize({

 // other options ...

 math: {
 mathjax: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js',
 config: 'TeX-AMS_HTML-full' // See http://docs.mathjax.org/en/latest/config-files.html
 },

 dependencies: [
 { src: 'plugin/math/math.js', async: true }
]

});

Read MathJax’s documentation if you need HTTPS delivery [http://docs.mathjax.org/en/latest/start.html#secure-access-to-the-cdn] or serving of specific versions [http://docs.mathjax.org/en/latest/configuration.html#loading-mathjax-from-the-cdn] for stability.

Installation

The basic setup is for authoring presentations only. The full setup gives you access to all reveal.js features and plugins such as speaker notes as well as the development tasks needed to make changes to the source.

Basic setup

The core of reveal.js is very easy to install. You’ll simply need to download a copy of this repository and open the index.html file directly in your browser.

		Download the latest version of reveal.js from https://github.com/hakimel/reveal.js/releases

		Unzip and replace the example contents in index.html with your own

		Open index.html in a browser to view it

Full setup

Some reveal.js features, like external markdown and speaker notes, require that presentations run from a local web server. The following instructions will set up such a server as well as all of the development tasks needed to make edits to the reveal.js source code.

		Install Node.js [http://nodejs.org/]

		Install Grunt [http://gruntjs.com/getting-started#installing-the-cli]

		Clone the reveal.js repository

$ git clone https://github.com/hakimel/reveal.js.git

		Navigate to the reveal.js folder

$ cd reveal.js

		Install dependencies

$ npm install

		Serve the presentation and monitor source files for changes

$ grunt serve

		Open http://localhost:8000 to view your presentation

You can change the port by using grunt serve --port 8001.

Folder Structure

		css/ Core styles without which the project does not function

		js/ Like above but for JavaScript

		plugin/ Components that have been developed as extensions to reveal.js

		lib/ All other third party assets (JavaScript, CSS, fonts)

Contributing

Please keep the issue tracker [http://github.com/hakimel/reveal.js/issues] limited to bug reports, feature requests and pull requests. If you are reporting a bug make sure to include information about which browser and operating system you are using as well as the necessary steps to reproduce the issue.

If you have personal support questions use StackOverflow [http://stackoverflow.com/questions/tagged/reveal.js].

Pull requests

		Should follow the coding style of the file you work in, most importantly:
		Tabs to indent

		Single-quoted strings

		Should be made towards the dev branch

		Should be submitted from a feature/topic branch (not your master)

		Should not include the minified reveal.min.js file

License

MIT licensed

Copyright (C) 2014 Hakim El Hattab, http://hakim.se

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/dask-core.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

dask.core

Dead simple task scheduling

dask.pydata.org [http://dask.pydata.org/en/latest/]

We’ve seen dask.array

		Turns Numpy-ish code

 (2*x + 1) ** 3

		Into Graphs

[image:]

We’ve seen dask.array

		.

.

		Then executes those graphs

[image:]

Dask works for more than just arrays

		dask.array = numpy + threading

		dask.bag = toolz + multiprocessing

		dask.dataframe = pandas + multiprocessing/threading?

dask.bag

		Unordered collection of Python objects

		Good for log files, JSON blobs, etc..

		Uses multiprocessing by default

import dask.bag as db
b = db.from_filenames("data/2014-*.json.gz").map(json.loads)
b.groupby("username")

[image:]

dask.dataframe

		Partition Pandas DataDrames

		Uses single-threaded or multiprocessing

		Not yet robust for public use

import dask.dataframe as dd
df = dd.read_csv('data/data.*.csv', parse_dates=...)
df.groupby(df.account).balance.mean()

		Collections build graphs

		Schedulers execute graphs

[image:]

		Neither side needs the other

Q: What constitutes a dask graph?

[image: A simple dask dictionary]

Normal Python

def inc(i):
 return i + 1

def add(a, b):
 return a + b

x = 1
y = inc(x)
z = add(y, 10)

		CPython manages execution

Dask graph

d = {"x": 1,
 "y": (inc, "x"),
 "z": (add, "y", 10)}

		Schedulers manage execution

Example - dask.array

>>> import dask.array as da

>>> x = da.arange(15, chunks=(5,))
dask.array<x, shape=(15,), chunks=((5, 5, 5)), dtype=None>

>>> x.dask
{("x", 0): (np.arange, 0, 5),
 ("x", 1): (np.arange, 5, 10),
 ("x", 2): (np.arange, 10, 15)}

>>> (x + 100).dask
{("x", 0): (np.arange, 0, 5),
 ("x", 1): (np.arange, 5, 10),
 ("x", 2): (np.arange, 10, 15),
 ("y", 0): (add, ("x", 0), 100),
 ("y", 1): (add, ("x", 1), 100),
 ("y", 2): (add, ("x", 2), 100)}

Example - dask.array

>>> import dask.array as da

>>> x = da.arange(15, chunks=(5,))
dask.array<x, shape=(15,), chunks=((5, 5, 5)), dtype=None>

>>> x.dask
{("x", 0): (np.arange, 0, 5),
 ("x", 1): (np.arange, 5, 10),
 ("x", 2): (np.arange, 10, 15)}

>>> x.sum()
{("x", 0): (np.arange, 0, 5),
 ("x", 1): (np.arange, 5, 10),
 ("x", 2): (np.arange, 10, 15),
 ("y", 0): (np.sum, ("x", 0)),
 ("y", 1): (np.sum, ("x", 1)),
 ("y", 2): (np.sum, ("x", 2)),
 ("z",): (np.sum, [("y", 0), ("y", 1), ("y", 2)])}

Example - custom graph

def load(filename):
 ...
def clean(data):
 ...
def analyze(sequence_of_data):
 ...
def store(result):
 ...

dsk = {"load-1": (load, "myfile.a.data"),
 "load-2": (load, "myfile.b.data"),
 "load-3": (load, "myfile.c.data"),
 "preprocess-1": (clean, "load-1"),
 "preprocess-2": (clean, "load-2"),
 "preprocess-3": (clean, "load-3"),
 "analyze": (analyze, ["preprocess-%d" % i for i in [1, 2, 3]]),
 "store": (store, "analyze")}

.

from dask.multiprocessing import get
result = get(dsk, ["store"])

Dask’s schedulers enable sane parallelism

... even if your workflow isn’t arrays

		Simple description of computation with data dependencies

		Uses battle-tested schedulers

		Raw dicts probably not for end users

		But maybe for library developers

		Regardless, the community should search for a parallelism abstraction
(many good options)

 © Copyright 2012, Continuum Analytics.

_static/presentations/images/ghosted-blocks.png

_build/json/_static/presentations/markdown/blaze-server.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze Server

Blaze server exposes Python data through a JSON web API

		Easily spin up a data server

		Interact with that server through JSON

		Support many data resources (Lists, DataFrames, SQL databases, Hadoop clusters)

		Interact with server with Blaze on client side

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Query data through JSON API

$ curl \
 -H "Content-Type: application/json" \
 -d '{"expr": "iris"}' \
 localhost:5000/compute/iris.json
{
 "data": [
 [
 5.1,
 3.5,
 1.4,
 0.2,
 "Iris-setosa"
],
 [
 4.9,
 3.0,
 1.4,
 0.2,
 "Iris-setosa"
],

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Interact through Python (or any language)

>>> import json
>>> import requests

>>> query = {'expr': 'iris'}

>>> response = requests.get('http://localhost:5000/compute/iris.json',
... data=json.dumps(query),
... headers={'Content-Type': 'application/json'})

>>> json.loads(response.content)
{u'data': [[5.1, 3.5, 1.4, 0.2, u'Iris-setosa'],
 [4.9, 3.0, 1.4, 0.2, u'Iris-setosa'],
 [4.7, 3.2, 1.3, 0.2, u'Iris-setosa'],
 [4.6, 3.1, 1.5, 0.2, u'Iris-setosa'],
 [5.0, 3.6, 1.4, 0.2, u'Iris-setosa'],
...

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Interact from web applications like Bokeh-JS plots

[image: Iris with Bokeh]

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Send computations to the server

>>> import json
>>> import requests

>>> # Ask for petal_length column: t.petal_length
>>> query = {'expr': {'op': 'Column', 'args': ['iris', 'petal_length']}}

>>> response = requests.get('http://localhost:5000/compute/iris.json',
... data=json.dumps(query),
... headers={'Content-Type': 'application/json'})

>>> json.loads(response.content)
{u'data': [1.4,
 1.4,
 1.3,
 1.5,
 1.4,
 1.7,
...

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Generate computations with symbolic Blaze

>>> from blaze import *
>>> t = Symbol('t', 'var * { sepal_length : ?float64, sepal_width : ?float64, petal_length : ?float64, petal_width : ?float64, species : string }')

>>> expr = by(t.species, # more complex query to send to server
... min=t.petal_length.min(),
... max=t.petal_length.max())

>>> query = to_tree(expr, names={t: 'iris'})
>>> query
{'args': [{'args': ['iris', 'species'], 'op': 'Column'},
 {'args': [{'args': ['iris', 'petal_length'], 'op': 'Column'},
 ['max', 'min'],
 [{'args': [{'args': ['iris', 'petal_length'], 'op': 'Column'}],
 'op': 'max'},
 {'args': [{'args': ['iris', 'petal_length'], 'op': 'Column'}],
 'op': 'min'}]],
 'op': 'Summary'}],
 'op': 'By'}

...

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Or drive a remote server from a Python Client

>>> from blaze import *
>>> from blaze.server import *

>>> t = Table('blaze://localhost:5000::iris') # Drive remote dataset
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> by(t.species, min=t.petal_length.min(), max=t.petal_length.max())
 species max min
0 Iris-virginica 6.9 4.5
1 Iris-setosa 1.9 1.0
2 Iris-versicolor 5.1 3.0

Server

Operate on any Blaze supported type

>>> from blaze import *
>>> df = into(DataFrame, CSV('examples/data/iris.csv'))

>>> from blaze.server import Server
>>> server = Server({'iris': df})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Or just drive a remote server

>>> from blaze import *
>>> from blaze.server import *

>>> t = Table('blaze://localhost:5000::iris') # Drive remote dataset
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> by(t.species, min=t.petal_length.min(), max=t.petal_length.max())
 species max min
0 Iris-virginica 6.9 4.5
1 Iris-setosa 1.9 1.0
2 Iris-versicolor 5.1 3.0

Server

Operate on any Blaze supported type

>>> from blaze import *
>>> import pymongo
>>> db = pymongo.MongoClient().db

>>> from blaze.server import Server
>>> server = Server({'iris': db.iris_collection})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Or just drive a remote server

>>> from blaze import *
>>> from blaze.server import *

>>> t = Table('blaze://localhost:5000::iris') # Drive remote dataset
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> by(t.species, min=t.petal_length.min(), max=t.petal_length.max())
 species max min
0 Iris-virginica 6.9 4.5
1 Iris-setosa 1.9 1.0
2 Iris-versicolor 5.1 3.0

 © Copyright 2012, Continuum Analytics.

_static/presentations/images/into-small.png
@ ° pandas.FrameFixed pandas. AppendableFrameTable

| /
pandas. DataFrame & /
@ into.Chunks_pandas_DataFrame

~ _abeoll.Tterator
into.Chunks_numpy_ndarray

e
wy

pymongo.Collection

sqlalchemy. Table

_static/presentations/images/jenga.png
Your code here

| B
Holds GIL [statsmodels I I I
GIL free pumbaod ptearn | | bokeh [seaborn
[Parallel || numba sk-learn| Pandas | Matplotlib
Numl
Fortran Python

_static/presentations/images/dask.read_csv.png.png
(2, 14)

getitem

A A

(£2,

13) | | (readesv-1', 14)

5

(£2,12)

(readesv-1', 13)

5

(readesv-1', 12) | | (£2! 11)

o

(2, 10)

(readesv-1', 11)

%

(£2,9) (readesv-1

', 10)

(readesv-1', 9)

(£2,8)

get_chunk

(£2,7) (readcsv

-1, 8)

get_chunk

(£2,6) (readesv-1', 7)
get_chunk
(readesv-1', 6) (£2,5)
get_chunk
(£2,4) (readesv-1', 5)
get_chunk
(£2,3) (readesv-1', 4)

get_chunk

@

(£2,0) (readesv-1', 1)

get_chunk

(readesv-1', 0)

get_chunk

e

(readesv-1', -1)

(£2,2) (readesv-1', 3)
get_chunk
(£2,1) (readesv-1', 2

_static/presentations/images/xeon-phi.jpg

_static/presentations/images/dask.frame-sum.png
(£3,0)

(£1,1) (-1, 0) (f1,2)
v A

(from-array-1', 1) | | (from-array-1',0) | | (‘from-array-1', 2)

O

_static/presentations/images/Matrix_multiplication_diagram.svg.png

_static/presentations/images/dask.read_csv.png
(£3,7)

getitem
v
(readesv-2', 7) (£3,6)
get_chunk
(readesv-2', 6) (£3,5)
get_chunk
(readesv-2, 5) (£3,4)
get_chunk
(readesv-2, 4) (£3,3)
get_chunk
(readesv-2, 3) (£3,2)
@ *
(£3, 1) (readesv-2, 2)

* -

U

(readesv-2, 1)

(£3,0)

@

oY

(readesv-2, 0)

get_chunk

N

(reades

V-2, -1)

_static/presentations/images/dask.ones-slice-sum.png
(x_14,)

(x_13,0) | | (x_13.1)

@ éD
v

(x_12,0) | | (x_12,1)

99

(x_11',0)

(x_11', 1)

(x_11,2)

:

g

(‘wrapped_2', 0)

(‘wrapped_2', 1)

(‘wrapped_2', 2)

_static/presentations/images/dask.from-array.png.png
(from-array-1', 1) | | (from-array-1', 16) (from-array-1', 8) | | (from-array-1', 12) | | (from-array-1\5) | | (from-array-119) | | (from-array-1,7) | | (from-array-1', 13) | | (from-array-I', 15) (from-array-1', 6) | | (from-array-1'4) | | (from-array-1,0) | | (from-array-1',2) | | (from-array-I' 14) | | (from-array-1', 11) (from-array-1', 3) | | (from-array-1',

5000000000000

_build/json/_static/presentations/markdown/blaze.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

blaze - a user interface

[image:]

>>> z = log(x - 1)**y

We often link interface and implementation

this yields both good and bad consequences

Blaze is a single interface to query many systems

demo

Blaze separates our intent:

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

from the data:

>>> L = [[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]]
...

then combines the two explicitly

>>> from blaze.compute import compute
>>> compute(deadbeats, L) # Iterator in, Iterator out
<itertools.imap at 0x7fce75a9f790>
>>> list(_)
['Bob', 'Edith']

Separating intent from data lets us switch backends

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

so we can drive Pandas instead

>>> df = DataFrame([[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]],
... columns=['id', 'name', 'balance'])

getting the same result through different means

>>> from blaze.compute import compute
>>> compute(deadbeats, df) # DataFrame in, DataFrame out
1 Bob
4 Edith
Name: name, dtype: object

Now we reach out into the ecosystem

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

and use newer technologies

>>> import pyspark
>>> sc = pyspark.SparkContext('local', 'Blaze-demo')

>>> rdd = into(sc, L) # migrate to Resilient Distributed Dataset (RDD)
>>> rdd
ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:315

evolving with the ecosystem

>>> from blaze.compute import compute
>>> compute(deadbeats, rdd) # RDD in, RDD out
PythonRDD[1] at RDD at PythonRDD.scala:43
>>> _.collect() # Pull results down to local Python
['Bob', 'Edith']

Why separate expressions from computation?

		Write once, run anywhere

		Scalable development

(start with CSV files, end with Impala/Spark)

		Rapid prototyping

(try Postgres, MongoDB, Spark, see what suits you best)

		Robust to changes in architecture

(assuming Blaze supports Hadoop++)

		Cross-backend query optimization

NYCTaxi CSV example [http://nbviewer.ipython.org/url/blaze.pydata.org/notebooks/timings-csv.ipynb]

Things Blaze Can’t Do

Blaze is generic (that’s the point) but we give up a lot:

		Blaze is not itself a database

		Blaze is not a Pandas/Spark replacement

		Blaze can’t do things that are hard to do in parallel (e.g. median,
full sorting, explicit groupings, quantiles)

		Blaze can’t do things that the underlying database can’t do (e.g. no joins
in Mongo)

Questions?

		Source: https://github.com/ContinuumIO/blaze

		Docs: http://blaze.pydata.org/

>>> import blaze as bz
>>> iris = bz.Data('iris.csv') # From the small
>>> db = bz.Data('impala://54.24.132.22/default') # To the large
...

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/blaze-conclusion.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze facilitates data science

		By connecting technologies to users

		By connecting technologies to each other

Learn: http://blaze.pydata.org/

Try: conda install blaze

Contribute:
http://github.com/ContinuumIO/blaze/

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/css/theme/README.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Dependencies

Themes are written using Sass to keep things modular and reduce the need for repeated selectors across files. Make sure that you have the reveal.js development environment including the Grunt dependencies installed before proceding: https://github.com/hakimel/reveal.js#full-setup

You also need to install Ruby and then Sass (with gem install sass).

Creating a Theme

To create your own theme, start by duplicating any .scss file in /css/theme/source [https://github.com/hakimel/reveal.js/blob/master/css/theme/source] and adding it to the compilation list in the Gruntfile [https://github.com/hakimel/reveal.js/blob/master/Gruntfile.js].

Each theme file does four things in the following order:

		Include /css/theme/template/mixins.scss [https://github.com/hakimel/reveal.js/blob/master/css/theme/template/mixins.scss]
Shared utility functions.

		Include /css/theme/template/settings.scss [https://github.com/hakimel/reveal.js/blob/master/css/theme/template/settings.scss]
Declares a set of custom variables that the template file (step 4) expects. Can be overridden in step 3.

		Override
This is where you override the default theme. Either by specifying variables (see settings.scss [https://github.com/hakimel/reveal.js/blob/master/css/theme/template/settings.scss] for reference) or by adding full selectors with hardcoded styles.

		Include /css/theme/template/theme.scss [https://github.com/hakimel/reveal.js/blob/master/css/theme/template/theme.scss]
The template theme file which will generate final CSS output based on the currently defined variables.

When you are done, run grunt themes to compile the Sass file to CSS and you are ready to use your new theme.

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/dask-array-meteorology.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Meteorological data

We have a pile of NetCDF files

$ ls
2014-01-01.nc 2014-03-18.nc 2014-06-02.nc 2014-08-17.nc 2014-11-01.nc
2014-01-02.nc 2014-03-19.nc 2014-06-03.nc 2014-08-18.nc 2014-11-02.nc
2014-01-03.nc 2014-03-20.nc 2014-06-04.nc 2014-08-19.nc 2014-11-03.nc
2014-01-04.nc 2014-03-21.nc 2014-06-05.nc 2014-08-20.nc 2014-11-04.nc
...

Four measurements per day, quarter degree resolution, for 2014

>>> import netCDF4
>>> t = netCDF4.Dataset('2014-01-01.nc').variables['t2m']
>>> t.shape
(4, 721, 1440)

Meteorological data

Point to a bunch of NetCDF datasets

>>> filenames = sorted(glob('2014-*.nc'))
>>> temps = [netCDF4.Dataset(fn).variables['t2m'] for fn in filenames]

Wrap each with dask.array

>>> import dask.array as da
>>> arrays = [da.from_array(t, chunks=(4, 200, 200)) for t in temps]

Manipulate arrays with numpy syntax

>>> x = da.concatenate(arrays, axis=0)
>>> x.shape
(1464, 721, 1440)

Meteorological data

Interact with the ecosystem

>>> from matplotlib import imshow
>>> imshow(x.mean(axis=0), cmap='bone')

[image:]

Meteorological data

Interact with the ecosystem

>>> from matplotlib import imshow
>>> imshow(x[1000] - x.mean(axis=0), cmap='RdBu_r')

[image:]

Meteorological data

Interact with the ecosystem

>>> from matplotlib import imshow
>>> imshow(x[::4].mean(axis=0) - x[2::4].mean(axis=0), cmap='RdBu_r')

[image:]

XRay

[image:]

Dask.array integrates with XRay.
http://xray.readthedocs.org

		Implements the netCDF model
		Set of associated ndarrays / variables

		Pandas index along each axis

		Index and reason using named axes with labels
		NumPy – x[40:100].mean(axis=2)

		XRay – ds.sel(time='2014-04').mean('time')

Written by Stephan Hoyer (@shoyer) at Climate Corp

 © Copyright 2012, Continuum Analytics.

_static/presentations/dask-frames.html

		

			

		

		
		

		

_static/presentations/dask-array.html

		

			

		

		
		

		

_static/presentations/pydata-nyc-2014.html

		

			

		

		
		

		

_static/presentations/ucar-sea-2015.html

		

			

		

		
		

		

_static/presentations/images/day-vs-night.png
100

200

300

400

500

600

700

Temperature Difference between 00:00 and 12:00 Averages

=

0

200

400

600

800

1000

1200

1400

_static/presentations/images/dask-simple.png

_static/presentations/images/dask.ones-sum.png
(x_10)

pON

(x8.0) (8,2 (8, 1)
(wrapped 2’ 0) 2) (‘wrapped_2', 1)

_static/presentations/images/dask.ones.png
(‘wrapped_L', 1)

(‘wrapped_LI', 2

(‘wrapped_L', 0)

_static/presentations/dask.html

		

			

		

		
		

		

_static/presentations/pydata-berlin.html

		

			

		

		
		

		

_static/presentations/index.html

 		Dask and Parallel PyData
 at PyData Berlin, 2015

 		Dask.array at UCAR SEA -- Boulder, CO April 12th -- video

 		Visualizing Blocked Algorithms

 		XRay
 -- nbviewer

 		Continuum Tech Share on Dask-Frames -- March 2015

 		Dask.Frame and the Importance of Shuffle

 		Python Data Science LA -- February 2015

 		into

 		blaze

 		dask

 		PyData NYC -- November, 2014

 		Blaze Foundations: Part 1

Associated Notebooks:

 		A Quick Tour
 -- nbviewer

 		SymPy Expressions
 -- nbviewer

 		Blaze Expressions
 -- nbviewer

 		Jumping Over Data Land Mines with Blaze: Part 2

		Webinar -- October 8th, 2014 -- Video

Associated Notebooks:

 		Comparing Pandas and Blaze
 -- nbviewer

 		MongoDB and Github
 -- nbviewer

 		PySpark and HMDA
 -- nbviewer

 		SF Python Meetup -- August, 2014

 		Expression Chunking
 -- nbviewer

 		 NYC TaxiCab benchmarks

 		Querying collections of Large CSV files
 -- nbviewer

 		Querying Binary Stores for Performance
 -- nbviewer

_static/presentations/images/dask.split-apply-aggregate.png
(-12,0)

(f-11',0) (f-11,2)

A

(from-array-1',0) | | (from-array-1', 1) | | (‘from-array-1', 2)

@

_static/presentations/images/fail-case.gif
[eoa] [wrao] [ersa] [wren

Eo [B=

M)

_static/presentations/images/dask.ones.png.png
(‘wrapped_L', 1)

(‘wrapped_LI', 2

(‘wrapped_L', 0)

_static/presentations/images/iris.png
25+

05+

0@®o

Plot

o @
o o
@m 000
0o
Q0
@
@o o
@O @00 O
o o
oo o [}
© @»e®
o oam o
O @ooono
@oo o
@
000 @

0%o

o

_static/presentations/images/dask.2d-dot.png
(x22.1,1) (x22.,0, 1)
many many
21,0 | | xa2r2a | |2

transpose transpose transpose

(x22.2,1) (x22,1,0) (x22,0,0) (x22.,2,0)
many many many many
(x_21,2,0) (x21',1,0) (x_21',0,0)
transpose transpose transpose

(wrapped_3), 1,0)

(x22,1,2) (x22.,0,2) (x22.,2,2)
many many many
(x21.1,2) (x21,0,2) (x21,2,2)
transpose transpose transpose

(wrapped_3, 1,2) | | (wrapped_3, 1, 1) | | (wrapped_3,0,2) | | (wrapped_3.0, 1)

(‘wrapped_3/, 0, 0)

(wrapped_3, 2, 1)

(wrapped_3,2,0) | | (wrapped_3, 2, 2)

ones

_static/presentations/images/dask.ones-plus-one.png
(x_I',0)

(x_1,2)

(x_I, 1)

O

:

(‘wrapped_L', 0)

(‘wrapped_L', 2)

(‘wrapped_L', 1)

_static/presentations/images/dask-bag-shuffle.png
(bag-11, 1)

(bag-11, 0)

(bag-11,2)

(bag-10, 2)

(bag-10, 1)

(bag-10, 0)

[

@

(bag9', 2)

(bag9', 1)

(bag9', 0)

X
®

list

(load-1', 2)=(4.)

(load-1', 1)=(2, 3)

(load-1', 0)=(0, 1)

_static/presentations/images/dask.from_array.png
(from-array4,7) | | (from-array<', 6) | | (from-array4'.4) | | (from-array<,5) | | (from-array4,2) | | (from-array<,0) | | (from-array4',3) | | (from-array4' I)

OEEOEEEEE

_static/presentations/images/array.png
e

e

8 8 8
(x',0,0) (x',0,1) (x',0,2)
(x',1,0) (x',1,1) (x',1,2)
(x',2,0) (x,2,1) (x',2,2)

(x', 3,0)

(x',3,1)

(x',3,2)

_static/presentations/images/dask.ones2.png
(x_4,0) (x4, 1) (x 4,2)
vy y A J
(x_3,0) (x_3,1) (x_3.,2)
vy y A J

(‘wrapped_L', 0)

(‘wrapped_L', 1)

(‘wrapped_L', 2)

_static/presentations/images/into-big.png
into.chunks(into.JSONLi into. Temp(HDFS(CSV)) - .
into.chunks(into. Temp(JSONLines)) - into. SSH(Directory(CSV))
w datetime.date

into.chunks(into.JSON) ' @
into. TableProxy ‘ . \

into.chunks(into. Temp(CSV))

into.chunks(into. Temp(JSON))
sqlalchemy. Select

- pymongo.Collection
Bt T
<~
'
=5 VA 2
<\

,. \
A S
e SN (S N =
" SIS o e SCOLTIET
S
\ 1= = PR
.\ "\.
i

into.JSONLines

@as.meeFixed

into.SSH(TextFile)

.,?;
‘,

tables. Table
into. Temp(SSH(TextFile))
into.SSHUSONLines)
pyspark.SchemaRDD

beolz.ctable ‘ into. Temp(SSHUSONLines))
@ pyspark PipelinedRDD
@ into. Directory(JSONLincs)
\
@ 7 pyspark. SQLContext

into. Temp(SSHUSON)) w

_static/presentations/images/dask.2d-mean.png
(x_16,0) (x_16, 1) (x_16,2)
func func func
vy vy vy
(x_15,2,0) (x_15', 1,0) (x_15',0,0) (x_15. 1, 1) (x_15. 2, (x_15.0, 1) (x_IS' (x_15.1,2) (x_15.0,2)

o ‘ ‘ @ @ ‘ @ o

(wrapped_3,2,0) | | (wrapped_3, 1,0) | | (wrapped_3,0,0) | | (wrapped_3, 1, 1) | | (wrapped_3,2,1) | | (wrapped_3,0, 1) | | (wrapped_3,2,2) | | (wrapped_3,1,2) | | (wrapped_3.0,2)

ones

_static/presentations/images/xray-logo.png
(Xray

_static/presentations/images/naive-frame.png
e

e

8

(dF' 0)

(dF' 1)

(dF' 2)

(dF' 3)

_static/presentations/images/collections-schedulers.png
Collections

Task Graph

Schedulers

array

synchronous
threaded

bag — %‘jﬂ

multiprocessing

dataframe

distributed

_static/presentations/images/dask_001.png
(storex_5', 1, 5)

!

store.

!

(x5 1,5)

|

compute_it

\

(x4, 1,5)

compute_it

|

(x_3,1,5)

compute_it

(store-x_5', 1, 6)

(x5, 1,6)

!

compute_it

\

(x_4,1,6)

)

compute_it

}

(x_3,1,6)

!

compute_it

(store-x_5', 1, 3)

}

store.

}

(x5 1, 3)

|

compute_it

!

(x4, 1,3)

compute_it

}

(x_3,1,3)

!

compute_it

(storex_5', 1, 7)

}

store.

\

(x5, 1,7)

!

compute_it

|

(x4, 1,7)

|

compute_it

!

(x_3,1,7)

!

compute_it

(store-x_5', 0, 4)

!

store.

\

(’x_5',0,4)

!

compute_it

!

(x_4,0,4)

\

compute_it

!

(’x_3.,0,4)

!

compute_it

(store-x_5', 0, 5)

!

store.

compute_it

}

(x_4,0,5)

compute_it

}

(x_3.,0,5)

compute_it

(store-x_5', 0, 7)

}

store.

(’x_5,0,7)

compute_it

!

(x_4,0,7)

}

compute_it

!

(x_3,0,7)

)

compute_it

(store-x_5', 0, 1)

'

store.

(x50, 1)

compute_it

!

(x_4,0,1)

!

compute_it

!

(x_3.,0,1)

!

compute_it

(store=x_5', 1,2,

'

store.

compute_it

!

(x4, 1,2

!

compute_it

}

(x3, 1,2

!

compute_it

(store-x_S', 0, 2] (storex_5, 1,0) | | (storex_5, 1,1) | | (storex_5,0,3) | | (storex_5. 1,4) | | (storex_5,0,0) | | (store-x_5'0, 6)

' ' ' ' / / '

store. store. store. store. store. store. store.
(’x_5', 0,2 (x_5', 1,0) (x5, 1, 1) (x_5',0,3) (x5, 1, 4) ('’x_5',0,0) (x_5.,0,6)

! ! ! ' ' /

compute_it compute_it compute_it compute_it compute_it compute_it compute_it

! I } ! ! ! !

(x_4,0,2] (x4, 1,0) (x4, 1, 1) (x_4,0,3) (x4, 1,4) (’x_4',0,0) (x_4,0,6)

! ‘ ' ' ' ! '

compute_it compute_it compute_it compute_it compute_it compute_it compute_it

' ' ! } ! ! }

(’x_3,0,2 (x_3,1,0) (x_3, 1, 1) (x_3.0,3) (x_3,1,4) (’x_3,0,0) (x_3,0,6)

' ' ! ' ! ! '

compute_it compute_it

compute_it

compute_it compute_it compute_it compute_it

_static/presentations/images/dask.ghost.png
(x29.,9)

rec_concatenate

(x29.7)

rec_concatenate

(x29.5)

rec_concatenate

(x29',3)

rec_concatenate

(x29. 1)

rec_concatenate

(x29',8)

rec_concatenate

(‘wrapped_4', 9)

(‘wrapped_4', 8.0)

(‘wrapped_4', 7.0)

(‘wrapped_4', 6.0)

(‘wrapped_4', 5.0)

(‘wrapped_4', 4.0)

(‘wrapped_4', 3.0) (‘wrapped_4', 2.0)

(‘wrapped_4', 1.0)

(‘wrapped_4', 8.0)

G

ones

(x29', 6)

rec_concatenate

(x29,0)

rec_concatenate

(x29.2)

rec_concatenate

(‘wrapped_4', 7.0)

(‘wrapped_4', 6.0)

(‘wrapped_4', 0.0)

(‘wrapped_4', 1.0)

(‘wrapped_4', 2.0)

(‘wrapped_4', 5.0)

(x_29,4)

rec_concatenate

(‘wrapped_4', 4.0)

_static/presentations/images/dask.2d-transpose.png
(x_20',1,0) (x20,0, 1) (x_20',0,0) (x20,1,2) (x20,2, 1) (x20,2,2) (x20,0,2) (x_20',2,0) (x20, 1, 1)
(x_19',1,0) (x_19,0, 1) (x_19', (x_19,1,2) (x_19,2,2) (x_19,0,2) (x_19',2,0) (x_19. 1, 1)
transpose transpose transpose transpose
v

(wrapped_3), 1,0)

(wrapped_3, 0, 1)

(‘wrapped_3/, 0, 0)

(wrapped_3, 1, 2)

(wrapped_3, 2, 1)

(‘wrapped_3, 2, 2)

(‘wrapped_3, 0, 2)

(‘wrapped_3/, 2, 0)

(wrapped_3, 1, 1)

ones

_build/localmedia/_static/presentations/markdown/dask.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Dask - Task scheduling and Large Arrays

[image:]

expr = x.T.dot(y) - y.mean(axis=0)

NumPy

		NumPy powers the scientific software stack
		Pandas

		SciPy

		Matplotlib

		Scikit learn, image, ...

>>> import numpy as np
>>> x = np.load(...)
>>> y = ...

>>> x.T.dot(y) - y.mean(axis=0) # Complex, expressive, fast

		But NumPy is (mostly) restricted to memory and a single core
		Along with the rest of the stack

... this is usually fine

99% of problems fit in memory

dask.array

		Implement blocked array algorithms

		is a drop in replacement for a subset of NumPy

		Keeps a small memory footprint

		Uses all of your cores

>>> import h5py
>>> d = h5py.File('myfile.hdf5')['/my/huge/array'] # a giant on-disk array
>>> d.shape
(1000000, 1000000)

>>> import dask.array as da
>>> x = da.from_array(d, blockshape=(1000, 1000)) # cut up array into blocks

>>> y = x.T.dot(x).mean(axis=0) # do numpy math
>>> plot(y[::100]) # use result as normal

But first, dask

[image:]

		Consider the following program:

def inc(i):
 return i + 1

def add(a, b):
 return a + b

x = 1
y = inc(x)
z = add(y, 10)

		Encode as a dictionary:

d = {'x': 1,
 'y': (inc, 'x'),
 'z': (add, 'y', 10)}

We choose how and when to execute this code.

		Dask graph

d = {'x': 1,
 'y': (inc, 'x'),
 'z': (add, 'y', 10)}

		Simple scheduler / execution

>>> dask.core.get(d, 'x')
1
>>> dask.core.get(d, 'z')
12

		Use different schedulers for different hardware

Dask arrays create graphs from numpy-like code

live demo

Execute results with asynchronous scheduler

[image:]

Example: Stack of Meteorological Data

$ ls
2014-01-01.nc3 2014-03-18.nc3 2014-06-02.nc3 2014-08-17.nc3 2014-11-01.nc3
2014-01-02.nc3 2014-03-19.nc3 2014-06-03.nc3 2014-08-18.nc3 2014-11-02.nc3
2014-01-03.nc3 2014-03-20.nc3 2014-06-04.nc3 2014-08-19.nc3 2014-11-03.nc3
2014-01-04.nc3 2014-03-21.nc3 2014-06-05.nc3 2014-08-20.nc3 2014-11-04.nc3
...

>>> import netCDF4
>>> t = netCDF4.Dataset('2014-01-01.nc3').variables['t2m']
>>> t.shape
(4, 721, 1440)

Collect all temperature data

>>> from glob import glob
>>> filenames = sorted(glob('2014-*.nc3'))
>>> temps = [netCDF4.Dataset(fn).variables['t2m'] for fn in filenames]

Concatenate with dask.array

>>> import dask.array as da
>>> arrays = [da.from_array(t, blockshape=(4, 200, 200)) for t in temps]
>>> x = da.concatenate(arrays, axis=0)

>>> x.shape
(1464, 721, 1440)

Plot

>>> imshow(x.mean(axis=0), cmap='bone')
>>> imshow(x[1000] - x.mean(axis=0), cmap='RdBu_r')

[image:]
[image:]

Plot

>>> imshow(x[::4].mean(axis=0) - x[2::4].mean(axis=0), cmap='RdBu_r')

[image:]

Questions?

		Source: http://github.com/ContinuumIO/dask/

		Docs: http://dask.readthedocs.org

[image:]

expr = x.T.dot(y) - y.mean(axis=0)

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/template.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Title

Slide one

Three spaces for slide

Slide two

Two spaces for subslide

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/pydata-berlin.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Dask Arrays

or

PyData’s Relationship with Parallelism

Matthew Rocklin

Continuum Analytics

Outline

		.

		Dask.array
		Multicore parallelism with blocked algorithms

		Out-of-core execution with task scheduling

		.

		.

Outline

		PyData’s uneasy relationship with parallelism

		Dask.array
		Multicore parallelism with blocked algorithms

		Out-of-core execution with task scheduling

		Dask.core
		Extend parallelism to other contexts

		PyData and the GIL

Parallelism and Data

		Gigabyte - Fits in memory, need one core (laptop)

		Terabyte - Fits on disk, need ten cores (workstation)

		Petabyte - Fits on many disks, need 1000 cores (cluster)

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/blaze-intro.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze: Foundations of Array Computing

NumPy arrays and Pandas DataFrames are foundational data structures

But they are restricted to memory

This is ok 95% of cases

what about the other 5%?

Computational Projects

Excellent streaming, out-of-core, and distributed alternatives exist

NumPy like

		SciDB

		h5py

		DistArray

		Elemental

		PETCs, Trillinos

		Biggus

		...

Each approach is valid in a particular situation

Computational Projects

Excellent streaming, out-of-core, and distributed alternatives exist

Pandas like

		Postgres/SQLite/MySQL/Oracle

		PyTables, BColz

		HDFS
		Hadoop (Pig, Hive, ...)

		Spark

		Impala

		...

Each approach is valid in a particular situation

Data Storage

Analagous variety of data storage techniques

		CSV - Accessible

		JSON - Pervasive, human/machine readable

		HDF5 - Efficient binary access

		BColz - Efficient columnar access

		Parquet - Efficient columnar access

		HDFS - Big!

		SQL - SQL!

Each approach is valid in a particular situation

Spinning up a new technology is expensive

Keeping up with a changing landscape frustrates developers

Foundations address these challenges by being adaptable

Blaze connects familiar interfaces to a variety of backends

Three parts

		Abstract expression system around Tables, Arrays

		Dispatch system from these expressions to computational backends

		Dispatch system between data stored in different backends

Blaze looks and feels like Pandas

>>> from blaze import *
>>> iris = CSV('examples/data/iris.csv')

>>> t = Table(iris)
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> t.species.distinct()
 species
0 Iris-setosa
1 Iris-versicolor
2 Iris-virginica

Blaze operates on various systems, like SQL

>>> from blaze import *
>>> iris = SQL('sqlite:///examples/data/iris.db', 'iris')

>>> t = Table(iris)
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> t.species.distinct()
 species
0 Iris-setosa
1 Iris-versicolor
2 Iris-virginica

... and Spark

>>> import pyspark
>>> sc = pyspark.SparkContext("local", "blaze-demo")
>>> rdd = into(sc, csv) # handle data conversion
>>> t = Table(rdd)
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> t.species.distinct()
 species
0 Iris-setosa
1 Iris-versicolor
2 Iris-virginica

Currently supports the following

		Python – (through toolz)

		NumPy

		Pandas

		SQL – (through sqlalchemy)

		HDF5 – (through h5py, pytables)

		MongoDB – (through pymongo)

		Spark – (through pyspark)

		Impala – (through impyla, sqlalchemy)

Blaze organizes other open source projects to achieve a cohesive and flexible data analytics engine

Blaze doesn’t do any real work.

It orchestrates functionality already in the Python ecosystem.

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/expressions.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Expressions

		SymPy expressions...
		encode mathematical equations as Python objects

		generate numeric, high-performance, code

		enable mathematical reasoning

We combine high-level reasoning and low-level performance.

		Blaze expressions...
		encode relational and linear algebra, rather than calculus and trigonometry

		interpret to other systems

		enable data reasoning

		are extensible (in a way that keeps you sane)

We combine high-level reasoning and low-level performance.

Take-aways

		Separating expressions from computation ...
		enables users to transition easily between compute backends (right tool for
the job)

		enables developers to focus on user interface

		enables developers to focus on computational backends

		shares reasoning and query optimizations across backends

		eases growth of Blaze to new backends when they arise

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/dask-frames.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Frames

Think about common operations on DataFrames.

What do they look like?

Anatomy of a Dask.Frame

		Logically dask Arrays are a grid of NumPy Arrays

		Dask Frame is a sequence of Pandas DataFrames

		
		dask.array
		Naive dask.frame

		
		[image:]
		[image:]

For arrays blockshape information is critical for algorithms

Informs which blocks communicate with which others.

This supports the following operations

		Elementwise operations

 df.a + df.b

		Row-wise filtering

 df[df.a > 0]

		Reductions

 df.a.mean()

		Some split-apply-combine operations

 df.groupby(...).agg(...)

The Blaze chunking/streaming backend does this

People like this, but want more.

Does not support the following operations

		Joins

 join(a, b, 'a_column', 'b_column')

		Split-apply-combine with more complex transform or apply combine steps

 df.groupby(...).apply(arbitrary_function)

		Sliding window or resampling operations

 df.rolling_mean(...)

		Anything involving multiple datasets

 A.x[B.y > 0]

Partition on the Index values

Instead of partitioning based on the size of blocks we instead partition on
value ranges of the index.

		
		Partition on block size
		Partition on index value

		
		[image:]
		[image:]

Information about value ranges helps us to create dask graphs for more complex
operations (joins, sliding windows, ...)

Lets look at pictures again...

Reading files

>>> import bcolz
>>> trip = bcolz.ctable('trip.bcolz')

>>> import dask.frame as dfr
>>> f = dfr.from_array(trip, chunksize=20000000)

[image:]

Reading files

>>> import dask.frame as dfr
>>> f = dfr.read_csv('trip_data_1.csv', chunksize=1000000)

[image:]

Frame operations are different. Often messier

DataFrame

>>> import pandas as pd
>>> f = pd.read_csv('accounts.csv', sep=',')

 		
 		name
 		 balance

 		0
 		 Alice
 		 100

 		1
 		 Bob
 		 200

 		2
 		 Alice
 		 300

 		3
 		 Frank
 		 400

 		4
 		 Dan
 		 500

 		5
 		 Alice
 		 600

 		6
 		 Alice
 		 700

 		7
 		 Charlie
 		 800

 		8
 		 Alice
 		 900

 		9
 		 Edith
 		 1000

 		10
 		 Frank
 		 1100

 		11
 		 Bob
 		 1200

Dask.Frame

>>> import dask.frame as dfr
>>> f = dfr.read_csv('accounts.csv', sep=',', chunksize=4)

 		
 		name
 		 balance

 		0
 		 Alice
 		 100

 		1
 		 Bob
 		 200

 		2
 		 Alice
 		 300

 		3
 		 Frank
 		 400

 		
 		name
 		 balance

 		4
 		 Dan
 		 500

 		5
 		 Alice
 		 600

 		6
 		 Alice
 		 700

 		7
 		 Charlie
 		 800

 		
 		name
 		 balance

 		8
 		 Alice
 		 900

 		9
 		 Edith
 		 1000

 		10
 		 Frank
 		 1100

 		11
 		 Bob
 		 1200

Many Operations are the same

>>> f.balance.sum()

[image:]

Even some complex ones

>>> f.groupby('name').balance.sum().compute()
name
Alice 2600
Bob 1400
Charlie 800
Dan 500
Edith 1000
Frank 1500
Name: balance, dtype: int64

[image:]

But only in certain cases

		df.groupby(...).aggregate(...)

Works well for typical aggregations

This is because we know how to break apart operations like count into
count and sum

		df.groupby(...).apply(arbitrary_function)

Much harder. We need to assemble groups together (e.g. all of the Alice’s)

The Blaze chunking backend can do split-apply-aggregate well.

It will never be able to do the general apply.

Even though these are spelled similarly:

		df.groupby(...).aggregate(...)

		df.groupby(...).apply(arbitrary_function)

they are computationally different

Many operations require us to reshuffle our data. This breaks the task
scheduling model.

The Shuffle

Index by Name

To run arbitrary groupby(...).apply(func) operations we need to collect data
in to groups.

 name, balance name, balance
 Alice, 100 Alice, 100
 Bob, 200 Alice, 300
 Alice, 300 Alice, 600
 Frank, 400 Alice, 700
 Alice, 900
 name, balance
 Dan, 500 name, balance
 Alice, 600 -> Shuffle -> Bob, 200
 Alice, 700 Dan, 500
 Charlie, 800 Bob, 1200
 Charlie, 800
 name, balance
 Alice, 900 name, balance
 Edith, 1000 Frank, 400
 Frank, 1100 Edith, 1000
 Bob, 1200 Frank, 1100

		Find values on which to partition

(-oo, Bob), [Bob, Edith), [Edith, oo)

		Shard, communicate, concatenate

Find Good Partitions - By Approximate Quantiles

Now we find approximate quantiles. To find 100 evenly spaced groups:

		Call the following on each block

np.percentile(df['new-index-column'], range(100))

		Collect and merge these results together intelligently (thanks Erik!)

This gets us the right values on which to shard our data

Bob, Edith -> (-oo, Bob), [Bob, Edith), [Edith, oo)

Find Good Partitions - By Out-of-Core Sorting

We used to perform an external sort. This was kinda slow but could be improved.

We might want to try this again, but with more Cython.

Shard

Split old blocks, dump shards to dict

 name, balance name, balance
 Alice, 100 Alice, 100
 Bob, 200 -> Shard -> Alice, 300 -> dict
 Alice, 300
 Frank, 400 name, balance
 Bob, 200 -> dict

 name, balance
 Frank, 400 -> dict

 name, balance name, balance
 Dan, 500 Alice, 600
 Alice, 600 -> Shard -> Alice, 700 -> dict
 Alice, 700
 Charlie, 800 name, balance
 Dan, 500 -> dict
 Charlie, 800
 ...

Collect

Pull shards from dict, construct new blocks

 name, balance name, balance
 Alice, 100 Alice, 100
 dict -> Alice, 300 Alice, 300
 -> collect -> Alice, 600
 name, balance Alice, 700
 dict -> Alice, 600
 Alice, 700

 name, balance
 dict -> Bob, 200 name, balance
 -> collect -> Bob, 200
 name, balance Dan, 500
 dict -> Dan, 500 Charlie, 800
 Charlie, 800
 ...

dict < MutableMapping

The actual shuffle happens in a dict / MutableMapping

		dict - good for in-memory workflows

		chest - spills to disk

		Peer-to-peer key-value store - a fun project for the future?

This data structure determines our shuffle capabilities

Recent work

		BColz is sometimes slow

		Writing many small files to disk is a great way to crush a computer

		Serialization costs vary (msgpack oddly fast?)

		Serialization of object arrays is going to be a pain

(maybe push on categoricals?)

Split Financial data by stock

import dask.frame as dfr
df = dfr.read_csv('20140616-r-00032', sep='\t',
 names=fieldnames,
 parse_dates={'datetime': ['System Date', 'System Time']},
 usecols=['System Date', 'System Time', 'Symbol'])

Grab list of unique symbols
symbols = list(df.Symbol.drop_duplicates().compute().sort())

Shard and write to disk
def write_file(df):
 df.to_csv('stocks/' + df.index[0] + '.csv')
df2 = df.set_partition('Symbol', symbols)
df2.map_blocks(write_file).compute()

mrocklin@workstation:~/data/xdata/stocks$ ls
cAUD.CAD,(non_opt).csv fNG.H15,(non_opt).csv zBZ.V14_X14,(non_opt).csv
cAUD.CHF,(non_opt).csv fNG.J15,(non_opt).csv zBZ.V14_Z14,(non_opt).csv
cAUD.JPY,(non_opt).csv fNG.K15,(non_opt).csv zBZ.X14_F15,(non_opt).csv
cAUD.NZD,(non_opt).csv fNG.M15,(non_opt).csv zBZ.X14_Z14,(non_opt).csv
cAUD.USD,(non_opt).csv fNG.N14,(non_opt).csv zBZ.Z14_F15,(non_opt).csv
cCAD.CHF,(non_opt).csv fNG.N15,(non_opt).csv zBZ.Z14_G15,(non_opt).csv
...

Work to do

		Near term

		Still banging away on Shuffle

		A few interesting operations join, sliding window

		Easy support for categories

(probably essential for performance on text)

		There is a lot of Pandas API

		Bigger thoughts

		GIL

		HDFS aware scheduler

		Peer-to-peer distributed dict

Questions?

 name, balance name, balance
 Alice, 100 Alice, 100
 Bob, 200 Alice, 300
 Alice, 300 Alice, 600
 Frank, 400 Alice, 700
 Alice, 900
 name, balance
 Dan, 500 name, balance
 Alice, 600 -> Shuffle -> Bob, 200
 Alice, 700 Dan, 500
 Charlie, 800 Bob, 1200
 Charlie, 800
 name, balance
 Alice, 900 name, balance
 Edith, 1000 Frank, 400
 Frank, 1100 Edith, 1000
 Bob, 1200 Frank, 1100

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/start.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze - an interface

While we’re waiting you may want to try the following

Docs – http://blaze.pydata.org/

Install – conda install blaze

Source –
http://github.com/ContinuumIO/blaze/

TL;DR

Blaze is an extensible interface for data analytics.

It feels like NumPy/Pandas to users but drives other data systems.

We achieve performance through accessibility

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/dask-array.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

dask.array

Matthew Rocklin

Continuum Analytics

http://dask.pydata.org/

tl;dr

dask.array is...

		an out-of-core, multi-core, n-dimensional array library

		that copies the numpy interface

		using blocked algorithms

		and task scheduling

Related work

		Parallel BLAS implementations – ScaLAPACK, Plasma, ...

		Distributed arrays – PETSc/Trillinos, Elemental, HPF

		Parallel collections – Hadoop/Spark (Dryad, Disco, ...)

		Task scheduling frameworks – Luigi, swift-lang, ...

		Python big-numpy projects – Distarray, Spartan, Biggus

		Custom solutions with MPI, ZMQ, ...

Distinguishing features of dask.array

		Full ndarray support, instead of serious linear algebra

		Focus on shared memory parallelism (workstation, not cluster)

		Immediately usable - conda/pip installable

		Dask includes other non-array collections

tl;dr

dask.array is...

		an out-of-core, multi-core, n-dimensional array library

		that copies the numpy interface

		using blocked algorithms

		and task scheduling

NumPy interface

dask.array supports the following interface from numpy.

		Arithmetic – +, *, log, exp, ...

		Reductions – mean(), max(axis=0), ...

		Slicing – x[:100, 500:100:-2]

		Fancy indexing – x[:, [10, 1, 5]]

		Some linear algebra – tensordot, qr, svd

dask.array excludes some operations

		Sort, Eigenvalue solve, Mutation, ...

dask.array introduces some new operations

		Parallel algorithms (approximate quantiles, topk, ...)

		Slightly overlapping arrays

		Integration with HDF5

Blocked algorithms

		Problem – Given a trillion element array:

		Find the sum of all elements

		Find the mean of all elements

		Find the mean of all positive elements

		Solution – Break array into blocks that fit in-memory.

Use NumPy on each block.

Blocked algorithms - Sum

Blocked Sum

x = h5py.File('myfile.hdf5')['/x'] # Trillion element array on disk

sums = []
for i in range(1000000): # One million times
 chunk = x[1000000*i: 1000000*(i+1)] # Pull out chunk
 sums.append(np.sum(chunk)) # Sum chunk

total = sum(sums) # Sum intermediate sums

Blocked algorithms - Mean

Blocked mean of positive elements

x = h5py.File('myfile.hdf5')['/x'] # Trillion element array on disk

sums = []
counts = []
for i in range(1000000): # One million times
 chunk = x[1000000*i: 1000000*(i+1)] # Pull out chunk
 chunk = chunk[chunk > 0] # Filter
 sums.append(np.sum(b)) # Sum chunk
 counts.append(len(b)) # Count chunk

result = sum(sums) / sum(counts) # Aggregate results

Blocked algorithms

Consider matrix multiply:

[image:]

Blocked matrix algorithms look like their in-memory equivalents.

Blocked algorithms

We didn’t need the for loop.

x = h5py.File('myfile.hdf5')['/x'] # Trillion element array on disk

sums = []
for i in range(1000000): # One million times
 chunk = x[1000000*i: 1000000*(i+1)] # Pull out chunk
 sums.append(np.sum(chunk)) # Sum chunk

total = sum(sums) # Sum intermediate sums

This was parallelizable

Blocked algorithms

[image:]

Task scheduling

We execute these graphs with a multi-core scheduler

[image:]

And try to keep a small memory footprint

Task scheduling

Sometimes this fails (but that’s ok)

[image:]

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/nyc-start.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze

While we’re waiting you may want to try the following

Docs – http://blaze.pydata.org/

Install – conda install -c blaze blaze

Source –
http://github.com/ContinuumIO/blaze/

TL;DR

Blaze is an extensible interface for data analytics.

It feels like NumPy/Pandas. It drives other data systems.

Blaze expressions enable high-level reasoning.

Motivation

NumPy and Pandas serve as the foundation for the PyData stack

... but they are limited to memory

The state of biggish-data analysis is still wild

Approach

		Blaze is a user interface
		... and something like a compiler

		... for analytic processing (like Pandas, not like Redis)

		It isn’t a database or a Pandas replacement

		It complements pre-existing systems by improving user access

Play time

In which we pray to the demo gods

		Main points: Blaze ...
		has a familiar interface

		directs other mature projects to do your analysis

		extends beyond Python/Pandas

		Supports Pandas-like and NumPy-like computation

Also, in case you missed it

conda install -c blaze blaze

http://blaze.pydata.org/presentations/

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/start.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze - an interface

While we’re waiting you may want to try the following

Docs – http://blaze.pydata.org/

Install – conda install blaze

Source –
http://github.com/ContinuumIO/blaze/

TL;DR

Blaze is an extensible interface for data analytics.

It feels like NumPy/Pandas to users but drives other data systems.

We achieve performance through accessibility

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/template.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Title

Slide one

Three spaces for slide

Slide two

Two spaces for subslide

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/status.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze - Current Status

		Blaze usually works for moderately complex problems

		Ready for patient and vocal users

		Expect API breaks

Backends:
http://blaze.pydata.org/docs/latest/backends.html

Attribution

Funded by DARPA, Built by Continuum

mrocklin@workstation:~/workspace/blaze$ git shortlog -ns
 1493 Matthew Rocklin
 677 Mark Wiebe
 574 Phillip Cloud
 423 Francesc Alted
 268 Mark Florisson
 198 Stephen Diehl
 102 Andy R. Terrel
 95 Travis E. Oliphant
 90 Oscar Villellas
 71 Brittain Hard
 66 Benjamin Zaitlen
 35 talumbau
 24 Christine Doig
 13 T.J. Alumbaugh
 6 Matt Wescott
 5 brittainhard
 4 Hugo
 4 Valentin Haenel
 3 FrancescAlted
 3 Maggie Mari
 3 Peter Wang
 2 Continuum
 2 Dav Clark
 2 Ilan Schnell
 2 Stan Seibert
 2 majidaldo
 1 Damien Garaud
 1 Gaëtan de Menten
 1 Maggie-M
 1 Milos Popovic
 1 Robert Gieseke
 1 Wesley Emeneker

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/dask.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Dask - Task scheduling and Large Arrays

[image:]

expr = x.T.dot(y) - y.mean(axis=0)

NumPy

		NumPy powers the scientific software stack
		Pandas

		SciPy

		Matplotlib

		Scikit learn, image, ...

>>> import numpy as np
>>> x = np.load(...)
>>> y = ...

>>> x.T.dot(y) - y.mean(axis=0) # Complex, expressive, fast

		But NumPy is (mostly) restricted to memory and a single core
		Along with the rest of the stack

... this is usually fine

99% of problems fit in memory

dask.array

		Implement blocked array algorithms

		is a drop in replacement for a subset of NumPy

		Keeps a small memory footprint

		Uses all of your cores

>>> import h5py
>>> d = h5py.File('myfile.hdf5')['/my/huge/array'] # a giant on-disk array
>>> d.shape
(1000000, 1000000)

>>> import dask.array as da
>>> x = da.from_array(d, blockshape=(1000, 1000)) # cut up array into blocks

>>> y = x.T.dot(x).mean(axis=0) # do numpy math
>>> plot(y[::100]) # use result as normal

But first, dask

[image:]

		Consider the following program:

def inc(i):
 return i + 1

def add(a, b):
 return a + b

x = 1
y = inc(x)
z = add(y, 10)

		Encode as a dictionary:

d = {'x': 1,
 'y': (inc, 'x'),
 'z': (add, 'y', 10)}

We choose how and when to execute this code.

		Dask graph

d = {'x': 1,
 'y': (inc, 'x'),
 'z': (add, 'y', 10)}

		Simple scheduler / execution

>>> dask.core.get(d, 'x')
1
>>> dask.core.get(d, 'z')
12

		Use different schedulers for different hardware

Dask arrays create graphs from numpy-like code

live demo

Execute results with asynchronous scheduler

[image:]

Example: Stack of Meteorological Data

$ ls
2014-01-01.nc3 2014-03-18.nc3 2014-06-02.nc3 2014-08-17.nc3 2014-11-01.nc3
2014-01-02.nc3 2014-03-19.nc3 2014-06-03.nc3 2014-08-18.nc3 2014-11-02.nc3
2014-01-03.nc3 2014-03-20.nc3 2014-06-04.nc3 2014-08-19.nc3 2014-11-03.nc3
2014-01-04.nc3 2014-03-21.nc3 2014-06-05.nc3 2014-08-20.nc3 2014-11-04.nc3
...

>>> import netCDF4
>>> t = netCDF4.Dataset('2014-01-01.nc3').variables['t2m']
>>> t.shape
(4, 721, 1440)

Collect all temperature data

>>> from glob import glob
>>> filenames = sorted(glob('2014-*.nc3'))
>>> temps = [netCDF4.Dataset(fn).variables['t2m'] for fn in filenames]

Concatenate with dask.array

>>> import dask.array as da
>>> arrays = [da.from_array(t, blockshape=(4, 200, 200)) for t in temps]
>>> x = da.concatenate(arrays, axis=0)

>>> x.shape
(1464, 721, 1440)

Plot

>>> imshow(x.mean(axis=0), cmap='bone')
>>> imshow(x[1000] - x.mean(axis=0), cmap='RdBu_r')

[image:]
[image:]

Plot

>>> imshow(x[::4].mean(axis=0) - x[2::4].mean(axis=0), cmap='RdBu_r')

[image:]

Questions?

		Source: http://github.com/ContinuumIO/dask/

		Docs: http://dask.readthedocs.org

[image:]

expr = x.T.dot(y) - y.mean(axis=0)

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/expressions.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Expressions

		SymPy expressions...
		encode mathematical equations as Python objects

		generate numeric, high-performance, code

		enable mathematical reasoning

We combine high-level reasoning and low-level performance.

		Blaze expressions...
		encode relational and linear algebra, rather than calculus and trigonometry

		interpret to other systems

		enable data reasoning

		are extensible (in a way that keeps you sane)

We combine high-level reasoning and low-level performance.

Take-aways

		Separating expressions from computation ...
		enables users to transition easily between compute backends (right tool for
the job)

		enables developers to focus on user interface

		enables developers to focus on computational backends

		shares reasoning and query optimizations across backends

		eases growth of Blaze to new backends when they arise

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/dask-array.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

dask.array

Matthew Rocklin

Continuum Analytics

http://dask.pydata.org/

tl;dr

dask.array is...

		an out-of-core, multi-core, n-dimensional array library

		that copies the numpy interface

		using blocked algorithms

		and task scheduling

Related work

		Parallel BLAS implementations – ScaLAPACK, Plasma, ...

		Distributed arrays – PETSc/Trillinos, Elemental, HPF

		Parallel collections – Hadoop/Spark (Dryad, Disco, ...)

		Task scheduling frameworks – Luigi, swift-lang, ...

		Python big-numpy projects – Distarray, Spartan, Biggus

		Custom solutions with MPI, ZMQ, ...

Distinguishing features of dask.array

		Full ndarray support, instead of serious linear algebra

		Focus on shared memory parallelism (workstation, not cluster)

		Immediately usable - conda/pip installable

		Dask includes other non-array collections

tl;dr

dask.array is...

		an out-of-core, multi-core, n-dimensional array library

		that copies the numpy interface

		using blocked algorithms

		and task scheduling

NumPy interface

dask.array supports the following interface from numpy.

		Arithmetic – +, *, log, exp, ...

		Reductions – mean(), max(axis=0), ...

		Slicing – x[:100, 500:100:-2]

		Fancy indexing – x[:, [10, 1, 5]]

		Some linear algebra – tensordot, qr, svd

dask.array excludes some operations

		Sort, Eigenvalue solve, Mutation, ...

dask.array introduces some new operations

		Parallel algorithms (approximate quantiles, topk, ...)

		Slightly overlapping arrays

		Integration with HDF5

Blocked algorithms

		Problem – Given a trillion element array:

		Find the sum of all elements

		Find the mean of all elements

		Find the mean of all positive elements

		Solution – Break array into blocks that fit in-memory.

Use NumPy on each block.

Blocked algorithms - Sum

Blocked Sum

x = h5py.File('myfile.hdf5')['/x'] # Trillion element array on disk

sums = []
for i in range(1000000): # One million times
 chunk = x[1000000*i: 1000000*(i+1)] # Pull out chunk
 sums.append(np.sum(chunk)) # Sum chunk

total = sum(sums) # Sum intermediate sums

Blocked algorithms - Mean

Blocked mean of positive elements

x = h5py.File('myfile.hdf5')['/x'] # Trillion element array on disk

sums = []
counts = []
for i in range(1000000): # One million times
 chunk = x[1000000*i: 1000000*(i+1)] # Pull out chunk
 chunk = chunk[chunk > 0] # Filter
 sums.append(np.sum(b)) # Sum chunk
 counts.append(len(b)) # Count chunk

result = sum(sums) / sum(counts) # Aggregate results

Blocked algorithms

Consider matrix multiply:

[image:]

Blocked matrix algorithms look like their in-memory equivalents.

Blocked algorithms

We didn’t need the for loop.

x = h5py.File('myfile.hdf5')['/x'] # Trillion element array on disk

sums = []
for i in range(1000000): # One million times
 chunk = x[1000000*i: 1000000*(i+1)] # Pull out chunk
 sums.append(np.sum(chunk)) # Sum chunk

total = sum(sums) # Sum intermediate sums

This was parallelizable

Blocked algorithms

[image:]

Task scheduling

We execute these graphs with a multi-core scheduler

[image:]

And try to keep a small memory footprint

Task scheduling

Sometimes this fails (but that’s ok)

[image:]

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/dask-array.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

dask.array

Matthew Rocklin

Continuum Analytics

http://dask.pydata.org/

tl;dr

dask.array is...

		an out-of-core, multi-core, n-dimensional array library

		that copies the numpy interface

		using blocked algorithms

		and task scheduling

Related work

		Parallel BLAS implementations – ScaLAPACK, Plasma, ...

		Distributed arrays – PETSc/Trillinos, Elemental, HPF

		Parallel collections – Hadoop/Spark (Dryad, Disco, ...)

		Task scheduling frameworks – Luigi, swift-lang, ...

		Python big-numpy projects – Distarray, Spartan, Biggus

		Custom solutions with MPI, ZMQ, ...

Distinguishing features of dask.array

		Full ndarray support, instead of serious linear algebra

		Focus on shared memory parallelism (workstation, not cluster)

		Immediately usable - conda/pip installable

		Dask includes other non-array collections

tl;dr

dask.array is...

		an out-of-core, multi-core, n-dimensional array library

		that copies the numpy interface

		using blocked algorithms

		and task scheduling

NumPy interface

dask.array supports the following interface from numpy.

		Arithmetic – +, *, log, exp, ...

		Reductions – mean(), max(axis=0), ...

		Slicing – x[:100, 500:100:-2]

		Fancy indexing – x[:, [10, 1, 5]]

		Some linear algebra – tensordot, qr, svd

dask.array excludes some operations

		Sort, Eigenvalue solve, Mutation, ...

dask.array introduces some new operations

		Parallel algorithms (approximate quantiles, topk, ...)

		Slightly overlapping arrays

		Integration with HDF5

Blocked algorithms

		Problem – Given a trillion element array:

		Find the sum of all elements

		Find the mean of all elements

		Find the mean of all positive elements

		Solution – Break array into blocks that fit in-memory.

Use NumPy on each block.

Blocked algorithms - Sum

Blocked Sum

x = h5py.File('myfile.hdf5')['/x'] # Trillion element array on disk

sums = []
for i in range(1000000): # One million times
 chunk = x[1000000*i: 1000000*(i+1)] # Pull out chunk
 sums.append(np.sum(chunk)) # Sum chunk

total = sum(sums) # Sum intermediate sums

Blocked algorithms - Mean

Blocked mean of positive elements

x = h5py.File('myfile.hdf5')['/x'] # Trillion element array on disk

sums = []
counts = []
for i in range(1000000): # One million times
 chunk = x[1000000*i: 1000000*(i+1)] # Pull out chunk
 chunk = chunk[chunk > 0] # Filter
 sums.append(np.sum(b)) # Sum chunk
 counts.append(len(b)) # Count chunk

result = sum(sums) / sum(counts) # Aggregate results

Blocked algorithms

Consider matrix multiply:

[image:]

Blocked matrix algorithms look like their in-memory equivalents.

Blocked algorithms

We didn’t need the for loop.

x = h5py.File('myfile.hdf5')['/x'] # Trillion element array on disk

sums = []
for i in range(1000000): # One million times
 chunk = x[1000000*i: 1000000*(i+1)] # Pull out chunk
 sums.append(np.sum(chunk)) # Sum chunk

total = sum(sums) # Sum intermediate sums

This was parallelizable

Blocked algorithms

[image:]

Task scheduling

We execute these graphs with a multi-core scheduler

[image:]

And try to keep a small memory footprint

Task scheduling

Sometimes this fails (but that’s ok)

[image:]

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/start.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze - an interface

While we’re waiting you may want to try the following

Docs – http://blaze.pydata.org/

Install – conda install blaze

Source –
http://github.com/ContinuumIO/blaze/

TL;DR

Blaze is an extensible interface for data analytics.

It feels like NumPy/Pandas to users but drives other data systems.

We achieve performance through accessibility

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/nyc-start.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze

While we’re waiting you may want to try the following

Docs – http://blaze.pydata.org/

Install – conda install -c blaze blaze

Source –
http://github.com/ContinuumIO/blaze/

TL;DR

Blaze is an extensible interface for data analytics.

It feels like NumPy/Pandas. It drives other data systems.

Blaze expressions enable high-level reasoning.

Motivation

NumPy and Pandas serve as the foundation for the PyData stack

... but they are limited to memory

The state of biggish-data analysis is still wild

Approach

		Blaze is a user interface
		... and something like a compiler

		... for analytic processing (like Pandas, not like Redis)

		It isn’t a database or a Pandas replacement

		It complements pre-existing systems by improving user access

Play time

In which we pray to the demo gods

		Main points: Blaze ...
		has a familiar interface

		directs other mature projects to do your analysis

		extends beyond Python/Pandas

		Supports Pandas-like and NumPy-like computation

Also, in case you missed it

conda install -c blaze blaze

http://blaze.pydata.org/presentations/

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/dask-frames.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Frames

Think about common operations on DataFrames.

What do they look like?

Anatomy of a Dask.Frame

		Logically dask Arrays are a grid of NumPy Arrays

		Dask Frame is a sequence of Pandas DataFrames

		
		dask.array
		Naive dask.frame

		
		[image:]
		[image:]

For arrays blockshape information is critical for algorithms

Informs which blocks communicate with which others.

This supports the following operations

		Elementwise operations

 df.a + df.b

		Row-wise filtering

 df[df.a > 0]

		Reductions

 df.a.mean()

		Some split-apply-combine operations

 df.groupby(...).agg(...)

The Blaze chunking/streaming backend does this

People like this, but want more.

Does not support the following operations

		Joins

 join(a, b, 'a_column', 'b_column')

		Split-apply-combine with more complex transform or apply combine steps

 df.groupby(...).apply(arbitrary_function)

		Sliding window or resampling operations

 df.rolling_mean(...)

		Anything involving multiple datasets

 A.x[B.y > 0]

Partition on the Index values

Instead of partitioning based on the size of blocks we instead partition on
value ranges of the index.

		
		Partition on block size
		Partition on index value

		
		[image:]
		[image:]

Information about value ranges helps us to create dask graphs for more complex
operations (joins, sliding windows, ...)

Lets look at pictures again...

Reading files

>>> import bcolz
>>> trip = bcolz.ctable('trip.bcolz')

>>> import dask.frame as dfr
>>> f = dfr.from_array(trip, chunksize=20000000)

[image:]

Reading files

>>> import dask.frame as dfr
>>> f = dfr.read_csv('trip_data_1.csv', chunksize=1000000)

[image:]

Frame operations are different. Often messier

DataFrame

>>> import pandas as pd
>>> f = pd.read_csv('accounts.csv', sep=',')

 		
 		name
 		 balance

 		0
 		 Alice
 		 100

 		1
 		 Bob
 		 200

 		2
 		 Alice
 		 300

 		3
 		 Frank
 		 400

 		4
 		 Dan
 		 500

 		5
 		 Alice
 		 600

 		6
 		 Alice
 		 700

 		7
 		 Charlie
 		 800

 		8
 		 Alice
 		 900

 		9
 		 Edith
 		 1000

 		10
 		 Frank
 		 1100

 		11
 		 Bob
 		 1200

Dask.Frame

>>> import dask.frame as dfr
>>> f = dfr.read_csv('accounts.csv', sep=',', chunksize=4)

 		
 		name
 		 balance

 		0
 		 Alice
 		 100

 		1
 		 Bob
 		 200

 		2
 		 Alice
 		 300

 		3
 		 Frank
 		 400

 		
 		name
 		 balance

 		4
 		 Dan
 		 500

 		5
 		 Alice
 		 600

 		6
 		 Alice
 		 700

 		7
 		 Charlie
 		 800

 		
 		name
 		 balance

 		8
 		 Alice
 		 900

 		9
 		 Edith
 		 1000

 		10
 		 Frank
 		 1100

 		11
 		 Bob
 		 1200

Many Operations are the same

>>> f.balance.sum()

[image:]

Even some complex ones

>>> f.groupby('name').balance.sum().compute()
name
Alice 2600
Bob 1400
Charlie 800
Dan 500
Edith 1000
Frank 1500
Name: balance, dtype: int64

[image:]

But only in certain cases

		df.groupby(...).aggregate(...)

Works well for typical aggregations

This is because we know how to break apart operations like count into
count and sum

		df.groupby(...).apply(arbitrary_function)

Much harder. We need to assemble groups together (e.g. all of the Alice’s)

The Blaze chunking backend can do split-apply-aggregate well.

It will never be able to do the general apply.

Even though these are spelled similarly:

		df.groupby(...).aggregate(...)

		df.groupby(...).apply(arbitrary_function)

they are computationally different

Many operations require us to reshuffle our data. This breaks the task
scheduling model.

The Shuffle

Index by Name

To run arbitrary groupby(...).apply(func) operations we need to collect data
in to groups.

 name, balance name, balance
 Alice, 100 Alice, 100
 Bob, 200 Alice, 300
 Alice, 300 Alice, 600
 Frank, 400 Alice, 700
 Alice, 900
 name, balance
 Dan, 500 name, balance
 Alice, 600 -> Shuffle -> Bob, 200
 Alice, 700 Dan, 500
 Charlie, 800 Bob, 1200
 Charlie, 800
 name, balance
 Alice, 900 name, balance
 Edith, 1000 Frank, 400
 Frank, 1100 Edith, 1000
 Bob, 1200 Frank, 1100

		Find values on which to partition

(-oo, Bob), [Bob, Edith), [Edith, oo)

		Shard, communicate, concatenate

Find Good Partitions - By Approximate Quantiles

Now we find approximate quantiles. To find 100 evenly spaced groups:

		Call the following on each block

np.percentile(df['new-index-column'], range(100))

		Collect and merge these results together intelligently (thanks Erik!)

This gets us the right values on which to shard our data

Bob, Edith -> (-oo, Bob), [Bob, Edith), [Edith, oo)

Find Good Partitions - By Out-of-Core Sorting

We used to perform an external sort. This was kinda slow but could be improved.

We might want to try this again, but with more Cython.

Shard

Split old blocks, dump shards to dict

 name, balance name, balance
 Alice, 100 Alice, 100
 Bob, 200 -> Shard -> Alice, 300 -> dict
 Alice, 300
 Frank, 400 name, balance
 Bob, 200 -> dict

 name, balance
 Frank, 400 -> dict

 name, balance name, balance
 Dan, 500 Alice, 600
 Alice, 600 -> Shard -> Alice, 700 -> dict
 Alice, 700
 Charlie, 800 name, balance
 Dan, 500 -> dict
 Charlie, 800
 ...

Collect

Pull shards from dict, construct new blocks

 name, balance name, balance
 Alice, 100 Alice, 100
 dict -> Alice, 300 Alice, 300
 -> collect -> Alice, 600
 name, balance Alice, 700
 dict -> Alice, 600
 Alice, 700

 name, balance
 dict -> Bob, 200 name, balance
 -> collect -> Bob, 200
 name, balance Dan, 500
 dict -> Dan, 500 Charlie, 800
 Charlie, 800
 ...

dict < MutableMapping

The actual shuffle happens in a dict / MutableMapping

		dict - good for in-memory workflows

		chest - spills to disk

		Peer-to-peer key-value store - a fun project for the future?

This data structure determines our shuffle capabilities

Recent work

		BColz is sometimes slow

		Writing many small files to disk is a great way to crush a computer

		Serialization costs vary (msgpack oddly fast?)

		Serialization of object arrays is going to be a pain

(maybe push on categoricals?)

Split Financial data by stock

import dask.frame as dfr
df = dfr.read_csv('20140616-r-00032', sep='\t',
 names=fieldnames,
 parse_dates={'datetime': ['System Date', 'System Time']},
 usecols=['System Date', 'System Time', 'Symbol'])

Grab list of unique symbols
symbols = list(df.Symbol.drop_duplicates().compute().sort())

Shard and write to disk
def write_file(df):
 df.to_csv('stocks/' + df.index[0] + '.csv')
df2 = df.set_partition('Symbol', symbols)
df2.map_blocks(write_file).compute()

mrocklin@workstation:~/data/xdata/stocks$ ls
cAUD.CAD,(non_opt).csv fNG.H15,(non_opt).csv zBZ.V14_X14,(non_opt).csv
cAUD.CHF,(non_opt).csv fNG.J15,(non_opt).csv zBZ.V14_Z14,(non_opt).csv
cAUD.JPY,(non_opt).csv fNG.K15,(non_opt).csv zBZ.X14_F15,(non_opt).csv
cAUD.NZD,(non_opt).csv fNG.M15,(non_opt).csv zBZ.X14_Z14,(non_opt).csv
cAUD.USD,(non_opt).csv fNG.N14,(non_opt).csv zBZ.Z14_F15,(non_opt).csv
cCAD.CHF,(non_opt).csv fNG.N15,(non_opt).csv zBZ.Z14_G15,(non_opt).csv
...

Work to do

		Near term

		Still banging away on Shuffle

		A few interesting operations join, sliding window

		Easy support for categories

(probably essential for performance on text)

		There is a lot of Pandas API

		Bigger thoughts

		GIL

		HDFS aware scheduler

		Peer-to-peer distributed dict

Questions?

 name, balance name, balance
 Alice, 100 Alice, 100
 Bob, 200 Alice, 300
 Alice, 300 Alice, 600
 Frank, 400 Alice, 700
 Alice, 900
 name, balance
 Dan, 500 name, balance
 Alice, 600 -> Shuffle -> Bob, 200
 Alice, 700 Dan, 500
 Charlie, 800 Bob, 1200
 Charlie, 800
 name, balance
 Alice, 900 name, balance
 Edith, 1000 Frank, 400
 Frank, 1100 Edith, 1000
 Bob, 1200 Frank, 1100

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/dask-frames.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Frames

Think about common operations on DataFrames.

What do they look like?

Anatomy of a Dask.Frame

		Logically dask Arrays are a grid of NumPy Arrays

		Dask Frame is a sequence of Pandas DataFrames

		
		dask.array
		Naive dask.frame

		
		[image:]
		[image:]

For arrays blockshape information is critical for algorithms

Informs which blocks communicate with which others.

This supports the following operations

		Elementwise operations

 df.a + df.b

		Row-wise filtering

 df[df.a > 0]

		Reductions

 df.a.mean()

		Some split-apply-combine operations

 df.groupby(...).agg(...)

The Blaze chunking/streaming backend does this

People like this, but want more.

Does not support the following operations

		Joins

 join(a, b, 'a_column', 'b_column')

		Split-apply-combine with more complex transform or apply combine steps

 df.groupby(...).apply(arbitrary_function)

		Sliding window or resampling operations

 df.rolling_mean(...)

		Anything involving multiple datasets

 A.x[B.y > 0]

Partition on the Index values

Instead of partitioning based on the size of blocks we instead partition on
value ranges of the index.

		
		Partition on block size
		Partition on index value

		
		[image:]
		[image:]

Information about value ranges helps us to create dask graphs for more complex
operations (joins, sliding windows, ...)

Lets look at pictures again...

Reading files

>>> import bcolz
>>> trip = bcolz.ctable('trip.bcolz')

>>> import dask.frame as dfr
>>> f = dfr.from_array(trip, chunksize=20000000)

[image:]

Reading files

>>> import dask.frame as dfr
>>> f = dfr.read_csv('trip_data_1.csv', chunksize=1000000)

[image:]

Frame operations are different. Often messier

DataFrame

>>> import pandas as pd
>>> f = pd.read_csv('accounts.csv', sep=',')

 		
 		name
 		 balance

 		0
 		 Alice
 		 100

 		1
 		 Bob
 		 200

 		2
 		 Alice
 		 300

 		3
 		 Frank
 		 400

 		4
 		 Dan
 		 500

 		5
 		 Alice
 		 600

 		6
 		 Alice
 		 700

 		7
 		 Charlie
 		 800

 		8
 		 Alice
 		 900

 		9
 		 Edith
 		 1000

 		10
 		 Frank
 		 1100

 		11
 		 Bob
 		 1200

Dask.Frame

>>> import dask.frame as dfr
>>> f = dfr.read_csv('accounts.csv', sep=',', chunksize=4)

 		
 		name
 		 balance

 		0
 		 Alice
 		 100

 		1
 		 Bob
 		 200

 		2
 		 Alice
 		 300

 		3
 		 Frank
 		 400

 		
 		name
 		 balance

 		4
 		 Dan
 		 500

 		5
 		 Alice
 		 600

 		6
 		 Alice
 		 700

 		7
 		 Charlie
 		 800

 		
 		name
 		 balance

 		8
 		 Alice
 		 900

 		9
 		 Edith
 		 1000

 		10
 		 Frank
 		 1100

 		11
 		 Bob
 		 1200

Many Operations are the same

>>> f.balance.sum()

[image:]

Even some complex ones

>>> f.groupby('name').balance.sum().compute()
name
Alice 2600
Bob 1400
Charlie 800
Dan 500
Edith 1000
Frank 1500
Name: balance, dtype: int64

[image:]

But only in certain cases

		df.groupby(...).aggregate(...)

Works well for typical aggregations

This is because we know how to break apart operations like count into
count and sum

		df.groupby(...).apply(arbitrary_function)

Much harder. We need to assemble groups together (e.g. all of the Alice’s)

The Blaze chunking backend can do split-apply-aggregate well.

It will never be able to do the general apply.

Even though these are spelled similarly:

		df.groupby(...).aggregate(...)

		df.groupby(...).apply(arbitrary_function)

they are computationally different

Many operations require us to reshuffle our data. This breaks the task
scheduling model.

The Shuffle

Index by Name

To run arbitrary groupby(...).apply(func) operations we need to collect data
in to groups.

 name, balance name, balance
 Alice, 100 Alice, 100
 Bob, 200 Alice, 300
 Alice, 300 Alice, 600
 Frank, 400 Alice, 700
 Alice, 900
 name, balance
 Dan, 500 name, balance
 Alice, 600 -> Shuffle -> Bob, 200
 Alice, 700 Dan, 500
 Charlie, 800 Bob, 1200
 Charlie, 800
 name, balance
 Alice, 900 name, balance
 Edith, 1000 Frank, 400
 Frank, 1100 Edith, 1000
 Bob, 1200 Frank, 1100

		Find values on which to partition

(-oo, Bob), [Bob, Edith), [Edith, oo)

		Shard, communicate, concatenate

Find Good Partitions - By Approximate Quantiles

Now we find approximate quantiles. To find 100 evenly spaced groups:

		Call the following on each block

np.percentile(df['new-index-column'], range(100))

		Collect and merge these results together intelligently (thanks Erik!)

This gets us the right values on which to shard our data

Bob, Edith -> (-oo, Bob), [Bob, Edith), [Edith, oo)

Find Good Partitions - By Out-of-Core Sorting

We used to perform an external sort. This was kinda slow but could be improved.

We might want to try this again, but with more Cython.

Shard

Split old blocks, dump shards to dict

 name, balance name, balance
 Alice, 100 Alice, 100
 Bob, 200 -> Shard -> Alice, 300 -> dict
 Alice, 300
 Frank, 400 name, balance
 Bob, 200 -> dict

 name, balance
 Frank, 400 -> dict

 name, balance name, balance
 Dan, 500 Alice, 600
 Alice, 600 -> Shard -> Alice, 700 -> dict
 Alice, 700
 Charlie, 800 name, balance
 Dan, 500 -> dict
 Charlie, 800
 ...

Collect

Pull shards from dict, construct new blocks

 name, balance name, balance
 Alice, 100 Alice, 100
 dict -> Alice, 300 Alice, 300
 -> collect -> Alice, 600
 name, balance Alice, 700
 dict -> Alice, 600
 Alice, 700

 name, balance
 dict -> Bob, 200 name, balance
 -> collect -> Bob, 200
 name, balance Dan, 500
 dict -> Dan, 500 Charlie, 800
 Charlie, 800
 ...

dict < MutableMapping

The actual shuffle happens in a dict / MutableMapping

		dict - good for in-memory workflows

		chest - spills to disk

		Peer-to-peer key-value store - a fun project for the future?

This data structure determines our shuffle capabilities

Recent work

		BColz is sometimes slow

		Writing many small files to disk is a great way to crush a computer

		Serialization costs vary (msgpack oddly fast?)

		Serialization of object arrays is going to be a pain

(maybe push on categoricals?)

Split Financial data by stock

import dask.frame as dfr
df = dfr.read_csv('20140616-r-00032', sep='\t',
 names=fieldnames,
 parse_dates={'datetime': ['System Date', 'System Time']},
 usecols=['System Date', 'System Time', 'Symbol'])

Grab list of unique symbols
symbols = list(df.Symbol.drop_duplicates().compute().sort())

Shard and write to disk
def write_file(df):
 df.to_csv('stocks/' + df.index[0] + '.csv')
df2 = df.set_partition('Symbol', symbols)
df2.map_blocks(write_file).compute()

mrocklin@workstation:~/data/xdata/stocks$ ls
cAUD.CAD,(non_opt).csv fNG.H15,(non_opt).csv zBZ.V14_X14,(non_opt).csv
cAUD.CHF,(non_opt).csv fNG.J15,(non_opt).csv zBZ.V14_Z14,(non_opt).csv
cAUD.JPY,(non_opt).csv fNG.K15,(non_opt).csv zBZ.X14_F15,(non_opt).csv
cAUD.NZD,(non_opt).csv fNG.M15,(non_opt).csv zBZ.X14_Z14,(non_opt).csv
cAUD.USD,(non_opt).csv fNG.N14,(non_opt).csv zBZ.Z14_F15,(non_opt).csv
cCAD.CHF,(non_opt).csv fNG.N15,(non_opt).csv zBZ.Z14_G15,(non_opt).csv
...

Work to do

		Near term

		Still banging away on Shuffle

		A few interesting operations join, sliding window

		Easy support for categories

(probably essential for performance on text)

		There is a lot of Pandas API

		Bigger thoughts

		GIL

		HDFS aware scheduler

		Peer-to-peer distributed dict

Questions?

 name, balance name, balance
 Alice, 100 Alice, 100
 Bob, 200 Alice, 300
 Alice, 300 Alice, 600
 Frank, 400 Alice, 700
 Alice, 900
 name, balance
 Dan, 500 name, balance
 Alice, 600 -> Shuffle -> Bob, 200
 Alice, 700 Dan, 500
 Charlie, 800 Bob, 1200
 Charlie, 800
 name, balance
 Alice, 900 name, balance
 Edith, 1000 Frank, 400
 Frank, 1100 Edith, 1000
 Bob, 1200 Frank, 1100

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/expressions.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Expressions

		SymPy expressions...
		encode mathematical equations as Python objects

		generate numeric, high-performance, code

		enable mathematical reasoning

We combine high-level reasoning and low-level performance.

		Blaze expressions...
		encode relational and linear algebra, rather than calculus and trigonometry

		interpret to other systems

		enable data reasoning

		are extensible (in a way that keeps you sane)

We combine high-level reasoning and low-level performance.

Take-aways

		Separating expressions from computation ...
		enables users to transition easily between compute backends (right tool for
the job)

		enables developers to focus on user interface

		enables developers to focus on computational backends

		shares reasoning and query optimizations across backends

		eases growth of Blaze to new backends when they arise

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/frontbackends.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/questions.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Questions?

Docs – http://blaze.pydata.org/

Install – conda install blaze

Source –
http://github.com/ContinuumIO/blaze/

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/questions.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Questions?

Docs – http://blaze.pydata.org/

Install – conda install blaze

Source –
http://github.com/ContinuumIO/blaze/

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/how-does-blaze-work.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

How does Blaze work?

At its core, Blaze is the following:

		Symbolic expression system – Mathematica for data

		Interpreters to various backends

		User interface to make expression system accessible

		Dispatch system to make interpreters feasible

In practice, connecting to a new backend takes days, not months.

Blaze separates our intent:

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

from the data:

>>> L = [[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]]
...

then combines the two explicitly

>>> from blaze.compute import compute
>>> compute(deadbeats, L) # Iterator in, Iterator out
<itertools.imap at 0x7fce75a9f790>
>>> list(_)
['Bob', 'Edith']

Separating intent from data lets us switch backends

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

so we can drive Pandas instead

>>> df = DataFrame([[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]],
... columns=['id', 'name', 'balance'])

getting the same result through different means

>>> from blaze.compute import compute
>>> compute(deadbeats, df) # DataFrame in, DataFrame out
1 Bob
4 Edith
Name: name, dtype: object

Now we reach out into the ecosystem

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

and use newer technologies

>>> import pyspark
>>> sc = pyspark.SparkContext('local', 'Blaze-demo')

>>> rdd = into(sc, L) # migrate to Resilient Distributed Dataset (RDD)
>>> rdd
ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:315

evolving with the ecosystem

>>> from blaze.compute import compute
>>> compute(deadbeats, rdd) # RDD in, RDD out
PythonRDD[1] at RDD at PythonRDD.scala:43
>>> _.collect() # Pull results down to local Python
['Bob', 'Edith']

Why separate expressions from computation?

		Write once, run anywhere

		Scalable development

(start with CSV files, end with Impala/Spark)

		Rapid prototyping and system discovery

(try Postgres, MongoDB, Spark, see what suits you best)

		Robust to changes in architecture

(assuming Blaze will support Hadoop++)

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/blaze-intro.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze: Foundations of Array Computing

NumPy arrays and Pandas DataFrames are foundational data structures

But they are restricted to memory

This is ok 95% of cases

what about the other 5%?

Computational Projects

Excellent streaming, out-of-core, and distributed alternatives exist

NumPy like

		SciDB

		h5py

		DistArray

		Elemental

		PETCs, Trillinos

		Biggus

		...

Each approach is valid in a particular situation

Computational Projects

Excellent streaming, out-of-core, and distributed alternatives exist

Pandas like

		Postgres/SQLite/MySQL/Oracle

		PyTables, BColz

		HDFS
		Hadoop (Pig, Hive, ...)

		Spark

		Impala

		...

Each approach is valid in a particular situation

Data Storage

Analagous variety of data storage techniques

		CSV - Accessible

		JSON - Pervasive, human/machine readable

		HDF5 - Efficient binary access

		BColz - Efficient columnar access

		Parquet - Efficient columnar access

		HDFS - Big!

		SQL - SQL!

Each approach is valid in a particular situation

Spinning up a new technology is expensive

Keeping up with a changing landscape frustrates developers

Foundations address these challenges by being adaptable

Blaze connects familiar interfaces to a variety of backends

Three parts

		Abstract expression system around Tables, Arrays

		Dispatch system from these expressions to computational backends

		Dispatch system between data stored in different backends

Blaze looks and feels like Pandas

>>> from blaze import *
>>> iris = CSV('examples/data/iris.csv')

>>> t = Table(iris)
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> t.species.distinct()
 species
0 Iris-setosa
1 Iris-versicolor
2 Iris-virginica

Blaze operates on various systems, like SQL

>>> from blaze import *
>>> iris = SQL('sqlite:///examples/data/iris.db', 'iris')

>>> t = Table(iris)
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> t.species.distinct()
 species
0 Iris-setosa
1 Iris-versicolor
2 Iris-virginica

... and Spark

>>> import pyspark
>>> sc = pyspark.SparkContext("local", "blaze-demo")
>>> rdd = into(sc, csv) # handle data conversion
>>> t = Table(rdd)
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> t.species.distinct()
 species
0 Iris-setosa
1 Iris-versicolor
2 Iris-virginica

Currently supports the following

		Python – (through toolz)

		NumPy

		Pandas

		SQL – (through sqlalchemy)

		HDF5 – (through h5py, pytables)

		MongoDB – (through pymongo)

		Spark – (through pyspark)

		Impala – (through impyla, sqlalchemy)

Blaze organizes other open source projects to achieve a cohesive and flexible data analytics engine

Blaze doesn’t do any real work.

It orchestrates functionality already in the Python ecosystem.

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/pydata-berlin.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Dask Arrays

or

PyData’s Relationship with Parallelism

Matthew Rocklin

Continuum Analytics

Outline

		.

		Dask.array
		Multicore parallelism with blocked algorithms

		Out-of-core execution with task scheduling

		.

		.

Outline

		PyData’s uneasy relationship with parallelism

		Dask.array
		Multicore parallelism with blocked algorithms

		Out-of-core execution with task scheduling

		Dask.core
		Extend parallelism to other contexts

		PyData and the GIL

Parallelism and Data

		Gigabyte - Fits in memory, need one core (laptop)

		Terabyte - Fits on disk, need ten cores (workstation)

		Petabyte - Fits on many disks, need 1000 cores (cluster)

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/pydata-berlin.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Dask Arrays

or

PyData’s Relationship with Parallelism

Matthew Rocklin

Continuum Analytics

Outline

		.

		Dask.array
		Multicore parallelism with blocked algorithms

		Out-of-core execution with task scheduling

		.

		.

Outline

		PyData’s uneasy relationship with parallelism

		Dask.array
		Multicore parallelism with blocked algorithms

		Out-of-core execution with task scheduling

		Dask.core
		Extend parallelism to other contexts

		PyData and the GIL

Parallelism and Data

		Gigabyte - Fits in memory, need one core (laptop)

		Terabyte - Fits on disk, need ten cores (workstation)

		Petabyte - Fits on many disks, need 1000 cores (cluster)

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/frontbackends.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/template.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Title

Slide one

Three spaces for slide

Slide two

Two spaces for subslide

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/dask.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Dask - Task scheduling and Large Arrays

[image:]

expr = x.T.dot(y) - y.mean(axis=0)

NumPy

		NumPy powers the scientific software stack
		Pandas

		SciPy

		Matplotlib

		Scikit learn, image, ...

>>> import numpy as np
>>> x = np.load(...)
>>> y = ...

>>> x.T.dot(y) - y.mean(axis=0) # Complex, expressive, fast

		But NumPy is (mostly) restricted to memory and a single core
		Along with the rest of the stack

... this is usually fine

99% of problems fit in memory

dask.array

		Implement blocked array algorithms

		is a drop in replacement for a subset of NumPy

		Keeps a small memory footprint

		Uses all of your cores

>>> import h5py
>>> d = h5py.File('myfile.hdf5')['/my/huge/array'] # a giant on-disk array
>>> d.shape
(1000000, 1000000)

>>> import dask.array as da
>>> x = da.from_array(d, blockshape=(1000, 1000)) # cut up array into blocks

>>> y = x.T.dot(x).mean(axis=0) # do numpy math
>>> plot(y[::100]) # use result as normal

But first, dask

[image:]

		Consider the following program:

def inc(i):
 return i + 1

def add(a, b):
 return a + b

x = 1
y = inc(x)
z = add(y, 10)

		Encode as a dictionary:

d = {'x': 1,
 'y': (inc, 'x'),
 'z': (add, 'y', 10)}

We choose how and when to execute this code.

		Dask graph

d = {'x': 1,
 'y': (inc, 'x'),
 'z': (add, 'y', 10)}

		Simple scheduler / execution

>>> dask.core.get(d, 'x')
1
>>> dask.core.get(d, 'z')
12

		Use different schedulers for different hardware

Dask arrays create graphs from numpy-like code

live demo

Execute results with asynchronous scheduler

[image:]

Example: Stack of Meteorological Data

$ ls
2014-01-01.nc3 2014-03-18.nc3 2014-06-02.nc3 2014-08-17.nc3 2014-11-01.nc3
2014-01-02.nc3 2014-03-19.nc3 2014-06-03.nc3 2014-08-18.nc3 2014-11-02.nc3
2014-01-03.nc3 2014-03-20.nc3 2014-06-04.nc3 2014-08-19.nc3 2014-11-03.nc3
2014-01-04.nc3 2014-03-21.nc3 2014-06-05.nc3 2014-08-20.nc3 2014-11-04.nc3
...

>>> import netCDF4
>>> t = netCDF4.Dataset('2014-01-01.nc3').variables['t2m']
>>> t.shape
(4, 721, 1440)

Collect all temperature data

>>> from glob import glob
>>> filenames = sorted(glob('2014-*.nc3'))
>>> temps = [netCDF4.Dataset(fn).variables['t2m'] for fn in filenames]

Concatenate with dask.array

>>> import dask.array as da
>>> arrays = [da.from_array(t, blockshape=(4, 200, 200)) for t in temps]
>>> x = da.concatenate(arrays, axis=0)

>>> x.shape
(1464, 721, 1440)

Plot

>>> imshow(x.mean(axis=0), cmap='bone')
>>> imshow(x[1000] - x.mean(axis=0), cmap='RdBu_r')

[image:]
[image:]

Plot

>>> imshow(x[::4].mean(axis=0) - x[2::4].mean(axis=0), cmap='RdBu_r')

[image:]

Questions?

		Source: http://github.com/ContinuumIO/dask/

		Docs: http://dask.readthedocs.org

[image:]

expr = x.T.dot(y) - y.mean(axis=0)

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/blaze-intro.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze: Foundations of Array Computing

NumPy arrays and Pandas DataFrames are foundational data structures

But they are restricted to memory

This is ok 95% of cases

what about the other 5%?

Computational Projects

Excellent streaming, out-of-core, and distributed alternatives exist

NumPy like

		SciDB

		h5py

		DistArray

		Elemental

		PETCs, Trillinos

		Biggus

		...

Each approach is valid in a particular situation

Computational Projects

Excellent streaming, out-of-core, and distributed alternatives exist

Pandas like

		Postgres/SQLite/MySQL/Oracle

		PyTables, BColz

		HDFS
		Hadoop (Pig, Hive, ...)

		Spark

		Impala

		...

Each approach is valid in a particular situation

Data Storage

Analagous variety of data storage techniques

		CSV - Accessible

		JSON - Pervasive, human/machine readable

		HDF5 - Efficient binary access

		BColz - Efficient columnar access

		Parquet - Efficient columnar access

		HDFS - Big!

		SQL - SQL!

Each approach is valid in a particular situation

Spinning up a new technology is expensive

Keeping up with a changing landscape frustrates developers

Foundations address these challenges by being adaptable

Blaze connects familiar interfaces to a variety of backends

Three parts

		Abstract expression system around Tables, Arrays

		Dispatch system from these expressions to computational backends

		Dispatch system between data stored in different backends

Blaze looks and feels like Pandas

>>> from blaze import *
>>> iris = CSV('examples/data/iris.csv')

>>> t = Table(iris)
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> t.species.distinct()
 species
0 Iris-setosa
1 Iris-versicolor
2 Iris-virginica

Blaze operates on various systems, like SQL

>>> from blaze import *
>>> iris = SQL('sqlite:///examples/data/iris.db', 'iris')

>>> t = Table(iris)
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> t.species.distinct()
 species
0 Iris-setosa
1 Iris-versicolor
2 Iris-virginica

... and Spark

>>> import pyspark
>>> sc = pyspark.SparkContext("local", "blaze-demo")
>>> rdd = into(sc, csv) # handle data conversion
>>> t = Table(rdd)
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> t.species.distinct()
 species
0 Iris-setosa
1 Iris-versicolor
2 Iris-virginica

Currently supports the following

		Python – (through toolz)

		NumPy

		Pandas

		SQL – (through sqlalchemy)

		HDF5 – (through h5py, pytables)

		MongoDB – (through pymongo)

		Spark – (through pyspark)

		Impala – (through impyla, sqlalchemy)

Blaze organizes other open source projects to achieve a cohesive and flexible data analytics engine

Blaze doesn’t do any real work.

It orchestrates functionality already in the Python ecosystem.

 © Copyright 2012, Continuum Analytics.

people.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Contributors

Current Core Developers

		Phillip Cloud

		Matt Rocklin

		Andy R. Terrel

		Mark Wiebe

Contributors

		Majid alDosari

		Francesc Alted

		Tyler Alumbaugh

		Dav Clark

		Stephen Diehl

		Christine Doig

		Mark Florisson

		Damien Garaud

		Valentin Haenel

		Lila Hickey

		Maggie Mari

		Travis Oliphant

		Milos Popovic

		Stan Seibert

		Hugo Shi

		Oscar Villellas Guillén

		Peter Wang

		Matt Westcott

		Ben Zaitlen

 © Copyright 2012, Continuum Analytics.

search.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/dask-array-meteorology.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Meteorological data

We have a pile of NetCDF files

$ ls
2014-01-01.nc 2014-03-18.nc 2014-06-02.nc 2014-08-17.nc 2014-11-01.nc
2014-01-02.nc 2014-03-19.nc 2014-06-03.nc 2014-08-18.nc 2014-11-02.nc
2014-01-03.nc 2014-03-20.nc 2014-06-04.nc 2014-08-19.nc 2014-11-03.nc
2014-01-04.nc 2014-03-21.nc 2014-06-05.nc 2014-08-20.nc 2014-11-04.nc
...

Four measurements per day, quarter degree resolution, for 2014

>>> import netCDF4
>>> t = netCDF4.Dataset('2014-01-01.nc').variables['t2m']
>>> t.shape
(4, 721, 1440)

Meteorological data

Point to a bunch of NetCDF datasets

>>> filenames = sorted(glob('2014-*.nc'))
>>> temps = [netCDF4.Dataset(fn).variables['t2m'] for fn in filenames]

Wrap each with dask.array

>>> import dask.array as da
>>> arrays = [da.from_array(t, chunks=(4, 200, 200)) for t in temps]

Manipulate arrays with numpy syntax

>>> x = da.concatenate(arrays, axis=0)
>>> x.shape
(1464, 721, 1440)

Meteorological data

Interact with the ecosystem

>>> from matplotlib import imshow
>>> imshow(x.mean(axis=0), cmap='bone')

[image:]

Meteorological data

Interact with the ecosystem

>>> from matplotlib import imshow
>>> imshow(x[1000] - x.mean(axis=0), cmap='RdBu_r')

[image:]

Meteorological data

Interact with the ecosystem

>>> from matplotlib import imshow
>>> imshow(x[::4].mean(axis=0) - x[2::4].mean(axis=0), cmap='RdBu_r')

[image:]

XRay

[image:]

Dask.array integrates with XRay.
http://xray.readthedocs.org

		Implements the netCDF model
		Set of associated ndarrays / variables

		Pandas index along each axis

		Index and reason using named axes with labels
		NumPy – x[40:100].mean(axis=2)

		XRay – ds.sel(time='2014-04').mean('time')

Written by Stephan Hoyer (@shoyer) at Climate Corp

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/blaze.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

blaze - a user interface

[image:]

>>> z = log(x - 1)**y

We often link interface and implementation

this yields both good and bad consequences

Blaze is a single interface to query many systems

demo

Blaze separates our intent:

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

from the data:

>>> L = [[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]]
...

then combines the two explicitly

>>> from blaze.compute import compute
>>> compute(deadbeats, L) # Iterator in, Iterator out
<itertools.imap at 0x7fce75a9f790>
>>> list(_)
['Bob', 'Edith']

Separating intent from data lets us switch backends

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

so we can drive Pandas instead

>>> df = DataFrame([[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]],
... columns=['id', 'name', 'balance'])

getting the same result through different means

>>> from blaze.compute import compute
>>> compute(deadbeats, df) # DataFrame in, DataFrame out
1 Bob
4 Edith
Name: name, dtype: object

Now we reach out into the ecosystem

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

and use newer technologies

>>> import pyspark
>>> sc = pyspark.SparkContext('local', 'Blaze-demo')

>>> rdd = into(sc, L) # migrate to Resilient Distributed Dataset (RDD)
>>> rdd
ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:315

evolving with the ecosystem

>>> from blaze.compute import compute
>>> compute(deadbeats, rdd) # RDD in, RDD out
PythonRDD[1] at RDD at PythonRDD.scala:43
>>> _.collect() # Pull results down to local Python
['Bob', 'Edith']

Why separate expressions from computation?

		Write once, run anywhere

		Scalable development

(start with CSV files, end with Impala/Spark)

		Rapid prototyping

(try Postgres, MongoDB, Spark, see what suits you best)

		Robust to changes in architecture

(assuming Blaze supports Hadoop++)

		Cross-backend query optimization

NYCTaxi CSV example [http://nbviewer.ipython.org/url/blaze.pydata.org/notebooks/timings-csv.ipynb]

Things Blaze Can’t Do

Blaze is generic (that’s the point) but we give up a lot:

		Blaze is not itself a database

		Blaze is not a Pandas/Spark replacement

		Blaze can’t do things that are hard to do in parallel (e.g. median,
full sorting, explicit groupings, quantiles)

		Blaze can’t do things that the underlying database can’t do (e.g. no joins
in Mongo)

Questions?

		Source: https://github.com/ContinuumIO/blaze

		Docs: http://blaze.pydata.org/

>>> import blaze as bz
>>> iris = bz.Data('iris.csv') # From the small
>>> db = bz.Data('impala://54.24.132.22/default') # To the large
...

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/index.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

title: Presentations
layout: default

		SF Python Meetup – August, 2014

		Webinar – October 8th, 2014
		Comparing Pandas and Blaze
nbviewer

		MongoDB and Github
nbviewer

		PySpark and HMDA
nbviewer

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/css/theme/README.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Dependencies

Themes are written using Sass to keep things modular and reduce the need for repeated selectors across files. Make sure that you have the reveal.js development environment including the Grunt dependencies installed before proceding: https://github.com/hakimel/reveal.js#full-setup

You also need to install Ruby and then Sass (with gem install sass).

Creating a Theme

To create your own theme, start by duplicating any .scss file in /css/theme/source [https://github.com/hakimel/reveal.js/blob/master/css/theme/source] and adding it to the compilation list in the Gruntfile [https://github.com/hakimel/reveal.js/blob/master/Gruntfile.js].

Each theme file does four things in the following order:

		Include /css/theme/template/mixins.scss [https://github.com/hakimel/reveal.js/blob/master/css/theme/template/mixins.scss]
Shared utility functions.

		Include /css/theme/template/settings.scss [https://github.com/hakimel/reveal.js/blob/master/css/theme/template/settings.scss]
Declares a set of custom variables that the template file (step 4) expects. Can be overridden in step 3.

		Override
This is where you override the default theme. Either by specifying variables (see settings.scss [https://github.com/hakimel/reveal.js/blob/master/css/theme/template/settings.scss] for reference) or by adding full selectors with hardcoded styles.

		Include /css/theme/template/theme.scss [https://github.com/hakimel/reveal.js/blob/master/css/theme/template/theme.scss]
The template theme file which will generate final CSS output based on the currently defined variables.

When you are done, run grunt themes to compile the Sass file to CSS and you are ready to use your new theme.

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/REVEAL_README.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

reveal.js [image: Build Status] [https://travis-ci.org/hakimel/reveal.js]

A framework for easily creating beautiful presentations using HTML. Check out the live demo [http://lab.hakim.se/reveal-js/].

reveal.js comes with a broad range of features including nested slides [https://github.com/hakimel/reveal.js#markup], markdown contents [https://github.com/hakimel/reveal.js#markdown], PDF export [https://github.com/hakimel/reveal.js#pdf-export], speaker notes [https://github.com/hakimel/reveal.js#speaker-notes] and a JavaScript API [https://github.com/hakimel/reveal.js#api]. It’s best viewed in a browser with support for CSS 3D transforms but fallbacks [https://github.com/hakimel/reveal.js/wiki/Browser-Support] are available to make sure your presentation can still be viewed elsewhere.

More reading:

		Installation: Step-by-step instructions for getting reveal.js running on your computer.

		Changelog [https://github.com/hakimel/reveal.js/releases]: Up-to-date version history.

		Examples [https://github.com/hakimel/reveal.js/wiki/Example-Presentations]: Presentations created with reveal.js, add your own!

		Browser Support [https://github.com/hakimel/reveal.js/wiki/Browser-Support]: Explanation of browser support and fallbacks.

Online Editor

Presentations are written using HTML or markdown but there’s also an online editor for those of you who prefer a graphical interface. Give it a try at http://slid.es.

Instructions

Markup

Markup hierarchy needs to be <div class="reveal"> <div class="slides"> <section> where the <section> represents one slide and can be repeated indefinitely. If you place multiple <section>‘s inside of another <section> they will be shown as vertical slides. The first of the vertical slides is the “root” of the others (at the top), and it will be included in the horizontal sequence. For example:

<div class="reveal">
 <div class="slides">
 <section>Single Horizontal Slide</section>
 <section>
 <section>Vertical Slide 1</section>
 <section>Vertical Slide 2</section>
 </section>
 </div>
</div>

Markdown

It’s possible to write your slides using Markdown. To enable Markdown, add the data-markdown attribute to your <section> elements and wrap the contents in a <script type="text/template"> like the example below.

This is based on data-markdown [https://gist.github.com/1343518] from Paul Irish [https://github.com/paulirish] modified to use marked [https://github.com/chjj/marked] to support Github Flavoured Markdown [https://help.github.com/articles/github-flavored-markdown]. Sensitive to indentation (avoid mixing tabs and spaces) and line breaks (avoid consecutive breaks).

<section data-markdown>
 <script type="text/template">
 ## Page title

 A paragraph with some text and a [link](http://hakim.se).
 </script>
</section>

External Markdown

You can write your content as a separate file and have reveal.js load it at runtime. Note the separator arguments which determine how slides are delimited in the external file. The data-charset attribute is optional and specifies which charset to use when loading the external file.

When used locally, this feature requires that reveal.js runs from a local web server.

<section data-markdown="example.md"
 data-separator="^\n\n\n"
 data-vertical="^\n\n"
 data-notes="^Note:"
 data-charset="iso-8859-15">
</section>

Element Attributes

Special syntax (in html comment) is available for adding attributes to Markdown elements. This is useful for fragments, amongst other things.

<section data-markdown>
 <script type="text/template">
 - Item 1 <!-- .element: class="fragment" data-fragment-index="2" -->
 - Item 2 <!-- .element: class="fragment" data-fragment-index="1" -->
 </script>
</section>

Slide Attributes

Special syntax (in html comment) is available for adding attributes to the slide <section> elements generated by your Markdown.

<section data-markdown>
 <script type="text/template">
 <!-- .slide: data-background="#ff0000" -->
 Markdown content
 </script>
</section>

Configuration

At the end of your page you need to initialize reveal by running the following code. Note that all config values are optional and will default as specified below.

Reveal.initialize({

 // Display controls in the bottom right corner
 controls: true,

 // Display a presentation progress bar
 progress: true,

 // Display the page number of the current slide
 slideNumber: false,

 // Push each slide change to the browser history
 history: false,

 // Enable keyboard shortcuts for navigation
 keyboard: true,

 // Enable the slide overview mode
 overview: true,

 // Vertical centering of slides
 center: true,

 // Enables touch navigation on devices with touch input
 touch: true,

 // Loop the presentation
 loop: false,

 // Change the presentation direction to be RTL
 rtl: false,

 // Turns fragments on and off globally
 fragments: true,

 // Flags if the presentation is running in an embedded mode,
 // i.e. contained within a limited portion of the screen
 embedded: false,

 // Number of milliseconds between automatically proceeding to the
 // next slide, disabled when set to 0, this value can be overwritten
 // by using a data-autoslide attribute on your slides
 autoSlide: 0,

 // Stop auto-sliding after user input
 autoSlideStoppable: true,

 // Enable slide navigation via mouse wheel
 mouseWheel: false,

 // Hides the address bar on mobile devices
 hideAddressBar: true,

 // Opens links in an iframe preview overlay
 previewLinks: false,

 // Transition style
 transition: 'default', // default/cube/page/concave/zoom/linear/fade/none

 // Transition speed
 transitionSpeed: 'default', // default/fast/slow

 // Transition style for full page slide backgrounds
 backgroundTransition: 'default', // default/none/slide/concave/convex/zoom

 // Number of slides away from the current that are visible
 viewDistance: 3,

 // Parallax background image
 parallaxBackgroundImage: '', // e.g. "'https://s3.amazonaws.com/hakim-static/reveal-js/reveal-parallax-1.jpg'"

 // Parallax background size
 parallaxBackgroundSize: '' // CSS syntax, e.g. "2100px 900px"

});

Note that the new default vertical centering option will break compatibility with slides that were using transitions with backgrounds (cube and page). To restore the previous behavior, set center to false.

The configuration can be updated after initialization using the configure method:

// Turn autoSlide off
Reveal.configure({ autoSlide: 0 });

// Start auto-sliding every 5s
Reveal.configure({ autoSlide: 5000 });

Dependencies

Reveal.js doesn’t rely on any third party scripts to work but a few optional libraries are included by default. These libraries are loaded as dependencies in the order they appear, for example:

Reveal.initialize({
 dependencies: [
 // Cross-browser shim that fully implements classList - https://github.com/eligrey/classList.js/
 { src: 'lib/js/classList.js', condition: function() { return !document.body.classList; } },

 // Interpret Markdown in <section> elements
 { src: 'plugin/markdown/marked.js', condition: function() { return !!document.querySelector('[data-markdown]'); } },
 { src: 'plugin/markdown/markdown.js', condition: function() { return !!document.querySelector('[data-markdown]'); } },

 // Syntax highlight for <code> elements
 { src: 'plugin/highlight/highlight.js', async: true, callback: function() { hljs.initHighlightingOnLoad(); } },

 // Zoom in and out with Alt+click
 { src: 'plugin/zoom-js/zoom.js', async: true, condition: function() { return !!document.body.classList; } },

 // Speaker notes
 { src: 'plugin/notes/notes.js', async: true, condition: function() { return !!document.body.classList; } },

 // Remote control your reveal.js presentation using a touch device
 { src: 'plugin/remotes/remotes.js', async: true, condition: function() { return !!document.body.classList; } },

 // MathJax
 { src: 'plugin/math/math.js', async: true }
]
});

You can add your own extensions using the same syntax. The following properties are available for each dependency object:

		src: Path to the script to load

		async: [optional] Flags if the script should load after reveal.js has started, defaults to false

		callback: [optional] Function to execute when the script has loaded

		condition: [optional] Function which must return true for the script to be loaded

Presentation Size

All presentations have a normal size, that is the resolution at which they are authored. The framework will automatically scale presentations uniformly based on this size to ensure that everything fits on any given display or viewport.

See below for a list of configuration options related to sizing, including default values:

Reveal.initialize({

 ...

 // The "normal" size of the presentation, aspect ratio will be preserved
 // when the presentation is scaled to fit different resolutions. Can be
 // specified using percentage units.
 width: 960,
 height: 700,

 // Factor of the display size that should remain empty around the content
 margin: 0.1,

 // Bounds for smallest/largest possible scale to apply to content
 minScale: 0.2,
 maxScale: 1.0

});

Auto-sliding

Presentations can be configure to progress through slides automatically, without any user input. To enable this you will need to tell the framework how many milliseconds it should wait between slides:

// Slide every five seconds
Reveal.configure({
 autoSlide: 5000
});

When this is turned on a control element will appear that enables users to pause and resume auto-sliding. Sliding is also paused automatically as soon as the user starts navigating. You can disable these controls by specifying autoSlideStoppable: false in your reveal.js config.

You can also override the slide duration for individual slides by using the data-autoslide attribute on individual sections:

<section data-autoslide="10000">This will remain on screen for 10 seconds</section>

Keyboard Bindings

If you’re unhappy with any of the default keyboard bindings you can override them using the keyboard config option:

Reveal.configure({
 keyboard: {
 13: 'next', // go to the next slide when the ENTER key is pressed
 27: function() {}, // do something custom when ESC is pressed
 32: null // don't do anything when SPACE is pressed (i.e. disable a reveal.js default binding)
 }
});

API

The Reveal class provides a JavaScript API for controlling navigation and reading state:

// Navigation
Reveal.slide(indexh, indexv, indexf);
Reveal.left();
Reveal.right();
Reveal.up();
Reveal.down();
Reveal.prev();
Reveal.next();
Reveal.prevFragment();
Reveal.nextFragment();
Reveal.toggleOverview();
Reveal.togglePause();

// Retrieves the previous and current slide elements
Reveal.getPreviousSlide();
Reveal.getCurrentSlide();

Reveal.getIndices(); // { h: 0, v: 0 } }

// State checks
Reveal.isFirstSlide();
Reveal.isLastSlide();
Reveal.isOverview();
Reveal.isPaused();

Ready Event

The ‘ready’ event is fired when reveal.js has loaded all (synchronous) dependencies and is ready to start navigating.

Reveal.addEventListener('ready', function(event) {
 // event.currentSlide, event.indexh, event.indexv
});

Slide Changed Event

An ‘slidechanged’ event is fired each time the slide is changed (regardless of state). The event object holds the index values of the current slide as well as a reference to the previous and current slide HTML nodes.

Some libraries, like MathJax (see #226 [https://github.com/hakimel/reveal.js/issues/226#issuecomment-10261609]), get confused by the transforms and display states of slides. Often times, this can be fixed by calling their update or render function from this callback.

Reveal.addEventListener('slidechanged', function(event) {
 // event.previousSlide, event.currentSlide, event.indexh, event.indexv
});

States

If you set data-state="somestate" on a slide <section>, “somestate” will be applied as a class on the document element when that slide is opened. This allows you to apply broad style changes to the page based on the active slide.

Furthermore you can also listen to these changes in state via JavaScript:

Reveal.addEventListener('somestate', function() {
 // TODO: Sprinkle magic
}, false);

Slide Backgrounds

Slides are contained within a limited portion of the screen by default to allow them to fit any display and scale uniformly. You can apply full page background colors or images by applying a data-background attribute to your <section> elements. Below are a few examples.

<section data-background="#ff0000">
 <h2>All CSS color formats are supported, like rgba() or hsl().</h2>
</section>
<section data-background="http://example.com/image.png">
 <h2>This slide will have a full-size background image.</h2>
</section>
<section data-background="http://example.com/image.png" data-background-size="100px" data-background-repeat="repeat">
 <h2>This background image will be sized to 100px and repeated.</h2>
</section>

Backgrounds transition using a fade animation by default. This can be changed to a linear sliding transition by passing backgroundTransition: 'slide' to the Reveal.initialize() call. Alternatively you can set data-background-transition on any section with a background to override that specific transition.

Parallax Background

If you want to use a parallax scrolling background, set the two following config properties when initializing reveal.js (the third one is optional).

Reveal.initialize({

 // Parallax background image
 parallaxBackgroundImage: '', // e.g. "https://s3.amazonaws.com/hakim-static/reveal-js/reveal-parallax-1.jpg"

 // Parallax background size
 parallaxBackgroundSize: '', // CSS syntax, e.g. "2100px 900px" - currently only pixels are supported (don't use % or auto)

 // This slide transition gives best results:
 transition: linear

});

Make sure that the background size is much bigger than screen size to allow for some scrolling. View example [http://lab.hakim.se/reveal-js/?parallaxBackgroundImage=https%3A%2F%2Fs3.amazonaws.com%2Fhakim-static%2Freveal-js%2Freveal-parallax-1.jpg¶llaxBackgroundSize=2100px%20900px].

Slide Transitions

The global presentation transition is set using the transition config value. You can override the global transition for a specific slide by using the data-transition attribute:

<section data-transition="zoom">
 <h2>This slide will override the presentation transition and zoom!</h2>
</section>

<section data-transition-speed="fast">
 <h2>Choose from three transition speeds: default, fast or slow!</h2>
</section>

Note that this does not work with the page and cube transitions.

Internal links

It’s easy to link between slides. The first example below targets the index of another slide whereas the second targets a slide with an ID attribute (<section id="some-slide">):

Link
Link

You can also add relative navigation links, similar to the built in reveal.js controls, by appending one of the following classes on any element. Note that each element is automatically given an enabled class when it’s a valid navigation route based on the current slide.

 <!-- Previous vertical or horizontal slide -->
 <!-- Next vertical or horizontal slide -->

Fragments

Fragments are used to highlight individual elements on a slide. Every element with the class fragment will be stepped through before moving on to the next slide. Here’s an example: http://lab.hakim.se/reveal-js/#/fragments

The default fragment style is to start out invisible and fade in. This style can be changed by appending a different class to the fragment:

<section>
 <p class="fragment grow">grow</p>
 <p class="fragment shrink">shrink</p>
 <p class="fragment roll-in">roll-in</p>
 <p class="fragment fade-out">fade-out</p>
 <p class="fragment current-visible">visible only once</p>
 <p class="fragment highlight-current-blue">blue only once</p>
 <p class="fragment highlight-red">highlight-red</p>
 <p class="fragment highlight-green">highlight-green</p>
 <p class="fragment highlight-blue">highlight-blue</p>
</section>

Multiple fragments can be applied to the same element sequentially by wrapping it, this will fade in the text on the first step and fade it back out on the second.

<section>

 I'll fade in, then out

</section>

The display order of fragments can be controlled using the data-fragment-index attribute.

<section>
 <p class="fragment" data-fragment-index="3">Appears last</p>
 <p class="fragment" data-fragment-index="1">Appears first</p>
 <p class="fragment" data-fragment-index="2">Appears second</p>
</section>

Fragment events

When a slide fragment is either shown or hidden reveal.js will dispatch an event.

Some libraries, like MathJax (see #505), get confused by the initially hidden fragment elements. Often times this can be fixed by calling their update or render function from this callback.

Reveal.addEventListener('fragmentshown', function(event) {
 // event.fragment = the fragment DOM element
});
Reveal.addEventListener('fragmenthidden', function(event) {
 // event.fragment = the fragment DOM element
});

Code syntax highlighting

By default, Reveal is configured with highlight.js [http://softwaremaniacs.org/soft/highlight/en/] for code syntax highlighting. Below is an example with clojure code that will be syntax highlighted. When the data-trim attribute is present surrounding whitespace is automatically removed.

<section>
 <pre><code data-trim>
(def lazy-fib
 (concat
 [0 1]
 ((fn rfib [a b]
 (lazy-cons (+ a b) (rfib b (+ a b)))) 0 1)))
 </code></pre>
</section>

Slide number

If you would like to display the page number of the current slide you can do so using the slideNumber configuration value.

Reveal.configure({ slideNumber: true });

Overview mode

Press “Esc” or “o” keys to toggle the overview mode on and off. While you’re in this mode, you can still navigate between slides,
as if you were at 1,000 feet above your presentation. The overview mode comes with a few API hooks:

Reveal.addEventListener('overviewshown', function(event) { /* ... */ });
Reveal.addEventListener('overviewhidden', function(event) { /* ... */ });

// Toggle the overview mode programmatically
Reveal.toggleOverview();

Fullscreen mode

Just press »F« on your keyboard to show your presentation in fullscreen mode. Press the »ESC« key to exit fullscreen mode.

Embedded media

Embedded HTML5 <video>/<audio> and YouTube iframes are automatically paused when you navigate away from a slide. This can be disabled by decorating your element with a data-ignore attribute.

Add data-autoplay to your media element if you want it to automatically start playing when the slide is shown:

<video data-autoplay src="http://clips.vorwaerts-gmbh.de/big_buck_bunny.mp4"></video>

Additionally the framework automatically pushes two post messages [https://developer.mozilla.org/en-US/docs/Web/API/Window.postMessage] to all iframes, slide:start when the slide containing the iframe is made visible and slide:stop when it is hidden.

Stretching elements

Sometimes it’s desirable to have an element, like an image or video, stretch to consume as much space as possible within a given slide. This can be done by adding the .stretch class to an element as seen below:

<section>
 <h2>This video will use up the remaining space on the slide</h2>
 <video class="stretch" src="http://clips.vorwaerts-gmbh.de/big_buck_bunny.mp4"></video>
</section>

Limitations:

		Only direct descendants of a slide section can be stretched

		Only one descendant per slide section can be stretched

PDF Export

Presentations can be exported to PDF via a special print stylesheet. This feature requires that you use Google Chrome [http://google.com/chrome].
Here’s an example of an exported presentation that’s been uploaded to SlideShare: http://www.slideshare.net/hakimel/revealjs-13872948.

		Open your presentation with css/print/pdf.css [https://github.com/hakimel/reveal.js/blob/master/css/print/pdf.css] included on the page. The default index HTML lets you add print-pdf anywhere in the query to include the stylesheet, for example: lab.hakim.se/reveal-js?print-pdf [http://lab.hakim.se/reveal-js?print-pdf].

		Open the in-browser print dialog (CMD+P).

		Change the Destination setting to Save as PDF.

		Change the Layout to Landscape.

		Change the Margins to None.

		Click Save.

[image: Chrome Print Settings]

Theming

The framework comes with a few different themes included:

		default: Gray background, white text, blue links

		beige: Beige background, dark text, brown links

		sky: Blue background, thin white text, blue links

		night: Black background, thick white text, orange links

		serif: Cappuccino background, gray text, brown links

		simple: White background, black text, blue links

		solarized: Cream-colored background, dark green text, blue links

Each theme is available as a separate stylesheet. To change theme you will need to replace default below with your desired theme name in index.html:

<link rel="stylesheet" href="css/theme/default.css" id="theme">

If you want to add a theme of your own see the instructions here: /css/theme/README.md [https://github.com/hakimel/reveal.js/blob/master/css/theme/README.md].

Speaker Notes

reveal.js comes with a speaker notes plugin which can be used to present per-slide notes in a separate browser window. The notes window also gives you a preview of the next upcoming slide so it may be helpful even if you haven’t written any notes. Press the ‘s’ key on your keyboard to open the notes window.

Notes are defined by appending an <aside> element to a slide as seen below. You can add the data-markdown attribute to the aside element if you prefer writing notes using Markdown.

When used locally, this feature requires that reveal.js runs from a local web server.

<section>
 <h2>Some Slide</h2>

 <aside class="notes">
 Oh hey, these are some notes. They'll be hidden in your presentation, but you can see them if you open the speaker notes window (hit 's' on your keyboard).
 </aside>
</section>

If you’re using the external Markdown plugin, you can add notes with the help of a special delimiter:

<section data-markdown="example.md" data-separator="^\n\n\n" data-vertical="^\n\n" data-notes="^Note:"></section>

Title
Sub-title

Here is some content...

Note:
This will only display in the notes window.

Server Side Speaker Notes

In some cases it can be desirable to run notes on a separate device from the one you’re presenting on. The Node.js-based notes plugin lets you do this using the same note definitions as its client side counterpart. Include the required scripts by adding the following dependencies:

Reveal.initialize({
 ...

 dependencies: [
 { src: 'socket.io/socket.io.js', async: true },
 { src: 'plugin/notes-server/client.js', async: true }
]
});

Then:

		Install Node.js [http://nodejs.org/]

		Run npm install

		Run node plugin/notes-server

Multiplexing

The multiplex plugin allows your audience to view the slides of the presentation you are controlling on their own phone, tablet or laptop. As the master presentation navigates the slides, all client presentations will update in real time. See a demo at http://revealjs.jit.su/.

The multiplex plugin needs the following 3 things to operate:

		Master presentation that has control

		Client presentations that follow the master

		Socket.io server to broadcast events from the master to the clients

More details:

Master presentation

Served from a static file server accessible (preferably) only to the presenter. This need only be on your (the presenter’s) computer. (It’s safer to run the master presentation from your own computer, so if the venue’s Internet goes down it doesn’t stop the show.) An example would be to execute the following commands in the directory of your master presentation:

		npm install node-static

		static

If you want to use the speaker notes plugin with your master presentation then make sure you have the speaker notes plugin configured correctly along with the configuration shown below, then execute node plugin/notes-server in the directory of your master presentation. The configuration below will cause it to connect to the socket.io server as a master, as well as launch your speaker-notes/static-file server.

You can then access your master presentation at http://localhost:1947

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: '13652805320794272084', // Obtained from the socket.io server. Gives this (the master) control of the presentation
 id: '1ea875674b17ca76', // Obtained from socket.io server
 url: 'revealjs.jit.su:80' // Location of socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/master.js', async: true },

 // and if you want speaker notes
 { src: 'plugin/notes-server/client.js', async: true }

 // other dependencies...
]
});

Client presentation

Served from a publicly accessible static file server. Examples include: GitHub Pages, Amazon S3, Dreamhost, Akamai, etc. The more reliable, the better. Your audience can then access the client presentation via http://example.com/path/to/presentation/client/index.html, with the configuration below causing them to connect to the socket.io server as clients.

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: null, // null so the clients do not have control of the master presentation
 id: '1ea875674b17ca76', // id, obtained from socket.io server
 url: 'revealjs.jit.su:80' // Location of socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]
});

Socket.io server

Server that receives the slideChanged events from the master presentation and broadcasts them out to the connected client presentations. This needs to be publicly accessible. You can run your own socket.io server with the commands:

		npm install

		node plugin/multiplex

Or you use the socket.io server at http://revealjs.jit.su.

You’ll need to generate a unique secret and token pair for your master and client presentations. To do so, visit http://example.com/token, where http://example.com is the location of your socket.io server. Or if you’re going to use the socket.io server at http://revealjs.jit.su, visit http://revealjs.jit.su/token.

You are very welcome to point your presentations at the Socket.io server running at http://revealjs.jit.su, but availability and stability are not guaranteed. For anything mission critical I recommend you run your own server. It is simple to deploy to nodejitsu, heroku, your own environment, etc.

socket.io server as file static server

The socket.io server can play the role of static file server for your client presentation, as in the example at http://revealjs.jit.su. (Open http://revealjs.jit.su in two browsers. Navigate through the slides on one, and the other will update to match.)

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: null, // null so the clients do not have control of the master presentation
 id: '1ea875674b17ca76', // id, obtained from socket.io server
 url: 'example.com:80' // Location of your socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]

It can also play the role of static file server for your master presentation and client presentations at the same time (as long as you don’t want to use speaker notes). (Open http://revealjs.jit.su in two browsers. Navigate through the slides on one, and the other will update to match. Navigate through the slides on the second, and the first will update to match.) This is probably not desirable, because you don’t want your audience to mess with your slides while you’re presenting. ;)

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: '13652805320794272084', // Obtained from the socket.io server. Gives this (the master) control of the presentation
 id: '1ea875674b17ca76', // Obtained from socket.io server
 url: 'example.com:80' // Location of your socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/master.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]
});

Leap Motion

The Leap Motion plugin lets you utilize your Leap Motion [https://www.leapmotion.com/] device to control basic navigation of your presentation. The gestures currently supported are:

1 to 2 fingers

Pointer

—

 Point to anything on screen. Move your finger past the device to expand the pointer.

1 hand + 3 or more fingers (left/right/up/down)

Navigate through your slides. See config options to invert movements.

2 hands upwards

Toggle the overview mode. Do it a second time to exit the overview.

Config Options

You can edit the following options:

| Property | Default | Description
| —————– |:—————–:| :————-
| autoCenter | true | Center the pointer based on where you put your finger into the leap motions detection field.
| gestureDelay | 500 | How long to delay between gestures in milliseconds.
| naturalSwipe | true | Swipe as though you were touching a touch screen. Set to false to invert.
| pointerColor | #00aaff | The color of the pointer.
| pointerOpacity | 0.7 | The opacity of the pointer.
| pointerSize | 15 | The minimum height and width of the pointer.
| pointerTolerance | 120 | Bigger = slower pointer.

Example configuration:

Reveal.initialize({

 // other options...

 leap: {
 naturalSwipe : false, // Invert swipe gestures
 pointerOpacity : 0.5, // Set pointer opacity to 0.5
 pointerColor : '#d80000' // Red pointer
 },

 dependencies: [
 { src: 'plugin/leap/leap.js', async: true }
]

});

MathJax

If you want to display math equations in your presentation you can easily do so by including this plugin. The plugin is a very thin wrapper around the MathJax [http://www.mathjax.org/] library. To use it you’ll need to include it as a reveal.js dependency, find our more about dependencies here.

The plugin defaults to using LaTeX [http://en.wikipedia.org/wiki/LaTeX] but that can be adjusted through the math configuration object. Note that MathJax is loaded from a remote server. If you want to use it offline you’ll need to download a copy of the library and adjust the mathjax configuration value.

Below is an example of how the plugin can be configured. If you don’t intend to change these values you do not need to include the math config object at all.

Reveal.initialize({

 // other options ...

 math: {
 mathjax: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js',
 config: 'TeX-AMS_HTML-full' // See http://docs.mathjax.org/en/latest/config-files.html
 },

 dependencies: [
 { src: 'plugin/math/math.js', async: true }
]

});

Read MathJax’s documentation if you need HTTPS delivery [http://docs.mathjax.org/en/latest/start.html#secure-access-to-the-cdn] or serving of specific versions [http://docs.mathjax.org/en/latest/configuration.html#loading-mathjax-from-the-cdn] for stability.

Installation

The basic setup is for authoring presentations only. The full setup gives you access to all reveal.js features and plugins such as speaker notes as well as the development tasks needed to make changes to the source.

Basic setup

The core of reveal.js is very easy to install. You’ll simply need to download a copy of this repository and open the index.html file directly in your browser.

		Download the latest version of reveal.js from https://github.com/hakimel/reveal.js/releases

		Unzip and replace the example contents in index.html with your own

		Open index.html in a browser to view it

Full setup

Some reveal.js features, like external markdown and speaker notes, require that presentations run from a local web server. The following instructions will set up such a server as well as all of the development tasks needed to make edits to the reveal.js source code.

		Install Node.js [http://nodejs.org/]

		Install Grunt [http://gruntjs.com/getting-started#installing-the-cli]

		Clone the reveal.js repository

$ git clone https://github.com/hakimel/reveal.js.git

		Navigate to the reveal.js folder

$ cd reveal.js

		Install dependencies

$ npm install

		Serve the presentation and monitor source files for changes

$ grunt serve

		Open http://localhost:8000 to view your presentation

You can change the port by using grunt serve --port 8001.

Folder Structure

		css/ Core styles without which the project does not function

		js/ Like above but for JavaScript

		plugin/ Components that have been developed as extensions to reveal.js

		lib/ All other third party assets (JavaScript, CSS, fonts)

Contributing

Please keep the issue tracker [http://github.com/hakimel/reveal.js/issues] limited to bug reports, feature requests and pull requests. If you are reporting a bug make sure to include information about which browser and operating system you are using as well as the necessary steps to reproduce the issue.

If you have personal support questions use StackOverflow [http://stackoverflow.com/questions/tagged/reveal.js].

Pull requests

		Should follow the coding style of the file you work in, most importantly:
		Tabs to indent

		Single-quoted strings

		Should be made towards the dev branch

		Should be submitted from a feature/topic branch (not your master)

		Should not include the minified reveal.min.js file

License

MIT licensed

Copyright (C) 2014 Hakim El Hattab, http://hakim.se

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/into.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

into(target, source)

[image:]

Q: How do you migrate a CSV file into a Mongo Database?

Q: How do you migrate a CSV file into a Mongo Database?

CSV -> DataFrames: pd.read_csv()
DataFrames -> NumPy Arrays: DataFrame.to_records()
NumPy Arrays -> Iterator: ndarray.tolist()
Iterator -> pymongo.Collection: Collection.insert

Q: How do you migrate a CSV file into a Mongo Database?

>>> # target source
>>> into('mongodb://localhost/db::mycollection', 'myfile.csv')

Q: How do you Load a JSON file on S3 into Postgres?

Q: How do you Load a JSON file on S3 into Postgres?

JSON on S3 -> Local JSON: boto
JSON to Python iterator: json library
Python iterator to DataFrames: partition_all() and DataFrame()
DataFrames -> CSV files: DataFrame.to_csv()
CSV -> Postgres: LOAD command in Postgres

Q: How do you Load a JSON file on S3 into Postgres?

>>> # target source
>>> into('postgresql://postgres:postgres@localhost::mytable',
... 's3://mybucket/myfile.json')

Data Science is hard

		Each step is straightforward

		The entire process is hell

Into embraces the complexity

[image:]

		Nodes are data types (DataFrame, list, sqlalchemy.Table, ...)

		Edges are functions (DataFrame -> CSV via read_csv, ...)

		Edges are weighted by speed, we search for the minimum path.

		Red nodes can be larger than memory. Transfers between two red nodes only
use the red subgraph

Today’s graph

[image:]

How to get and use into

conda install into
or
pip install into

>>> from into import into
>>> into(target, source)

or
$ into source target

		Inputs can be
		types – list – Create new target

		objects – [1, 2, 3] – Append to target

		strings – 'myfile.csv' – Use regex magic

How to extend into

from into import convert, resource

@convert.register(np.ndarray, pd.DataFrame, cost=1.0)
def dataframe_to_numpy(df, **kwargs):
 return df.to_records(index=False)

@convert.register(list, np.ndarray, cost=10.0)
def numpy_to_list(x, **kwargs):
 return x.tolist()

Questions?

		Source: https://github.com/ContinuumIO/into

		Docs: http://into.readthedocs.org/en/latest/

		Blog: http://matthewrocklin.com/blog

>>> from into import into
>>> happiness = into(target, source)

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/blaze-conclusion.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze facilitates data science

		By connecting technologies to users

		By connecting technologies to each other

Learn: http://blaze.pydata.org/

Try: conda install blaze

Contribute:
http://github.com/ContinuumIO/blaze/

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/functions.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze functions

Blaze uses a handful of functions:

		discover(data) – Get metadata

		compute(expr, data) – Execute expr on data

		into(type, data) – Migrate data to new container

		resource(uri) – Get the data behind uri string

		... drop, create_index, chunks, ...

We implement these functions for many different types/backends

discover

Discover metadata.

Returns datashape, Blaze’s internal data type system.

>>> from datashape import discover

>>> discover(3.14)
dshape("float64")

>>> discover([1, 2, 3])
dshape("3 * int64")

>>> df = pd.read_csv('iris.csv')
>>> discover(df)
dshape("150 * { sepal_length : float64, sepal_width : float64,
 petal_length : float64, petal_width : float64,
 species : string }")

>>> discover(...)

compute

Execute expression against data

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

>>> L = [[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]]

>>> from blaze.compute import compute
>>> compute(deadbeats, L) # Iterator in, Iterator out
<itertools.imap at 0x7fab104693d0>

>>> list(_)
['Bob', 'Edith']

into

migrate data between containers

>>> into(set, [1, 2, 3])
{1, 2, 3}

>>> into(np.ndarray, df)
rec.array([(5.1, 3.5, 1.4, 0.2, 'Iris-setosa'),
 (4.9, 3.0, 1.4, 0.2, 'Iris-setosa'),
 (4.7, 3.2, 1.3, 0.2, 'Iris-setosa'),
 (4.6, 3.1, 1.5, 0.2, 'Iris-setosa'),
 ...
 (5.9, 3.0, 5.1, 1.8, 'Iris-virginica')],
 dtype=[('sepal_length', '<f8'), ('sepal_width', '<f8'),
 ('petal_length', '<f8'), ('petal_width', '<f8'),
 ('species', 'O')])

>>> db = pymongo.MongoClient().db
>>> into(db.mycollection, df)
Collection(Database(MongoClient('localhost', 27017), u'db'), u'mycoll')

resource

find data from uri

>>> resource('iris.csv')
<blaze.data.csv.CSV at 0x7fdca8f93d10>

>>> resource('sqlite:///iris.db::iris')
<blaze.data.sql.SQL at 0x7fdca8f22910>

>>> resource('mongodb://localhost:27017/db::mycoll')
Collection(Database(MongoClient('localhost', 27017), u'db'), u'mycoll')

>>> resource('accounts.h5::/accounts')
/accounts (Table(5,)) ''
 description := {
 "id": Int64Col(shape=(), dflt=0, pos=0),
 "name": StringCol(itemsize=7, shape=(), dflt='', pos=1),
 "balance": Int64Col(shape=(), dflt=0, pos=2)}
 byteorder := 'little'
 chunkshape := (2849,)

Extending Blaze

You can extend these functions from outside of the Blaze codebase
(you don’t need our permission)

from blaze import dispatch, resource

@dispatch(MyType)
def discover(obj):
 return datashape of obj

@dispatch(blaze.expr.Head, MyType)
def compute_up(expr, myobj):
 return myobj[expr.n]

@dispatch(list, MyType)
def into(_, myobj):
 return myobj.to_list()

@resource.register(regex)
def resource(uri):
 return MyType(information-gathered-from-uri)

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/foundations.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

PyData builds off of NumPy and Pandas

NumPy and Pandas provide foundational data structures

[image:]

Data structures enable composition

... cross-project interactions without coordination

But NumPy is old

mrocklin@notebook:~/scipy$ git log | tail

Author: Travis Oliphant <oliphant@enthought.com>
Date: Fri Feb 2 05:08:11 2001 +0000

 shouldn't work

commit 02de46a5464f182d3d64be5a7ee1087ae8be8646
Author: Eric Jones <eric@enthought.com>
Date: Thu Feb 1 08:32:30 2001 +0000

 Initial revision

NumPy and Pandas have limitations

		Single Threaded (mostly)

		In-memory data (mostly)

		Poor support for variable length strings

		Poor support for missing data

		...

These limitations affect the PyData ecosystem

Hardware has changed since 2001

[image:]

		Multiple cores
		4 cores – cheap laptop

		32 cores – workstation

		Distributed memory clusters in big data warehousing

		Fast Solid State Drives (disk is now extended memory)

Hardware has changed since 2001

[image:]

		Multiple cores
		4 cores – cheap laptop

		32 cores – workstation

		Distributed memory clusters in big data warehousing

		Fast Solid State Drives (disk is now extended memory)

Problems have changed since 2001

		Larger datasets

		Messier data

		More text data

Python has limitations

		Started in 1991

		Heritage outside of numerics

		Poor support for in-process parallelism

Global Interpreter Lock

		The Global Interpreter Lock (GIL) stops two Python threads from
manipulating Python objects simultaneously

		Solutions:
		Compute in separate processes (hard to share data)

		Release the GIL and use C/Fortran code

PyData rests on single-threaded foundations

[image:]

		Incredible domain expertise

		Optimal single-core execution (Scientific heritage)

		But painful to parallelize

Can we parallelize the ecosystem without touching downstream projects?

probably not

But this work might be straightforward

And we have an effective community

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/dask-core.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

dask.core

Dead simple task scheduling

dask.pydata.org [http://dask.pydata.org/en/latest/]

We’ve seen dask.array

		Turns Numpy-ish code

 (2*x + 1) ** 3

		Into Graphs

[image:]

We’ve seen dask.array

		.

.

		Then executes those graphs

[image:]

Dask works for more than just arrays

		dask.array = numpy + threading

		dask.bag = toolz + multiprocessing

		dask.dataframe = pandas + multiprocessing/threading?

dask.bag

		Unordered collection of Python objects

		Good for log files, JSON blobs, etc..

		Uses multiprocessing by default

import dask.bag as db
b = db.from_filenames("data/2014-*.json.gz").map(json.loads)
b.groupby("username")

[image:]

dask.dataframe

		Partition Pandas DataDrames

		Uses single-threaded or multiprocessing

		Not yet robust for public use

import dask.dataframe as dd
df = dd.read_csv('data/data.*.csv', parse_dates=...)
df.groupby(df.account).balance.mean()

		Collections build graphs

		Schedulers execute graphs

[image:]

		Neither side needs the other

Q: What constitutes a dask graph?

[image: A simple dask dictionary]

Normal Python

def inc(i):
 return i + 1

def add(a, b):
 return a + b

x = 1
y = inc(x)
z = add(y, 10)

		CPython manages execution

Dask graph

d = {"x": 1,
 "y": (inc, "x"),
 "z": (add, "y", 10)}

		Schedulers manage execution

Example - dask.array

>>> import dask.array as da

>>> x = da.arange(15, chunks=(5,))
dask.array<x, shape=(15,), chunks=((5, 5, 5)), dtype=None>

>>> x.dask
{("x", 0): (np.arange, 0, 5),
 ("x", 1): (np.arange, 5, 10),
 ("x", 2): (np.arange, 10, 15)}

>>> (x + 100).dask
{("x", 0): (np.arange, 0, 5),
 ("x", 1): (np.arange, 5, 10),
 ("x", 2): (np.arange, 10, 15),
 ("y", 0): (add, ("x", 0), 100),
 ("y", 1): (add, ("x", 1), 100),
 ("y", 2): (add, ("x", 2), 100)}

Example - dask.array

>>> import dask.array as da

>>> x = da.arange(15, chunks=(5,))
dask.array<x, shape=(15,), chunks=((5, 5, 5)), dtype=None>

>>> x.dask
{("x", 0): (np.arange, 0, 5),
 ("x", 1): (np.arange, 5, 10),
 ("x", 2): (np.arange, 10, 15)}

>>> x.sum()
{("x", 0): (np.arange, 0, 5),
 ("x", 1): (np.arange, 5, 10),
 ("x", 2): (np.arange, 10, 15),
 ("y", 0): (np.sum, ("x", 0)),
 ("y", 1): (np.sum, ("x", 1)),
 ("y", 2): (np.sum, ("x", 2)),
 ("z",): (np.sum, [("y", 0), ("y", 1), ("y", 2)])}

Example - custom graph

def load(filename):
 ...
def clean(data):
 ...
def analyze(sequence_of_data):
 ...
def store(result):
 ...

dsk = {"load-1": (load, "myfile.a.data"),
 "load-2": (load, "myfile.b.data"),
 "load-3": (load, "myfile.c.data"),
 "preprocess-1": (clean, "load-1"),
 "preprocess-2": (clean, "load-2"),
 "preprocess-3": (clean, "load-3"),
 "analyze": (analyze, ["preprocess-%d" % i for i in [1, 2, 3]]),
 "store": (store, "analyze")}

.

from dask.multiprocessing import get
result = get(dsk, ["store"])

Dask’s schedulers enable sane parallelism

... even if your workflow isn’t arrays

		Simple description of computation with data dependencies

		Uses battle-tested schedulers

		Raw dicts probably not for end users

		But maybe for library developers

		Regardless, the community should search for a parallelism abstraction
(many good options)

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/chunking.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Expression Chunking

... designing parallel algorithms

... out-of-core, parallel, numpy/pandas

Suppose we have a large array of integers

A trillion numbers

x = np.array([5, 3, 1, ... <one trillion numbers>, ... 12, 5, 10])

How do we compute the largest?

x.max()

Define the problem in Blaze

>>> from blaze import symbol
>>> x = symbol('x', '1000000000 * int')
>>> x.max()

Max by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Max of each chunk

aggregate[i] = chunk.max()

Max of aggregated results

aggregate.max()

>>> from blaze.expr.split import split
>>> split(x, x.max())
((chunk, max(chunk)),
 (aggregate, max(aggregate)))

Sum by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Sum of each chunk

aggregate[i] = chunk.sum()

Sum of aggregated results

aggregate.sum()

>>> from blaze.expr.split import split
>>> split(x, x.sum())
((chunk, sum(chunk)),
 (aggregate, sum(aggregate)))

Count by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Count each chunk

aggregate[i] = chunk.count()

Sum aggregated results

aggregate.sum()

>>> from blaze.expr.split import split
>>> split(x, x.count())
((chunk, count(chunk)),
 (aggregate, sum(aggregate)))

Mean by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Sum and count of each chunk

aggregate.total[i] = chunk.sum()
aggregate.n[i] = chunk.count()

Sum the total and count then divide

aggregate.total.sum() / aggregate.n.sum()

>>> from blaze.expr.split import split
>>> split(x, x.mean())
((chunk, summary(count=count(chunk), total=sum(chunk))),
 (aggregate, sum(aggregate.total)) / sum(aggregate.count))

Number of occurrences by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Split-apply-combine on each chunk

by(x, freq=x.count())

Split-apply-combine on concatenation of results

by(aggregate, freq=aggregate.freq.sum())

>>> from blaze.expr.split import split
>>> split(x, by(x, freq=x.count())
((chunk, by(chunk, freq=count(chunk))),
 (aggregate, by(aggregate.chunk, freq=sum(aggregate.freq))))

N-Dimensional reductions

Data: a 10000 by 10000 by 10000 array of (x,y) coordinates

>>> points = symbol('points', '10000 * 10000 * 10000 * {x: int, y: int}')

Chunk: a cube of a billion elements

>>> chunk = symbol('chunk', '1000 * 1000 * 1000 * {x: int, y: int}')

Expr: The variance of their addition

>>> expr = (points.x + points.y).var(axis=0)
>>> split(points, expr, chunk=chunk)
((chunk,
 summary(n = count(chunk.x + chunk.y),
 x = sum(chunk.x + chunk.y),
 x2 = sum((chunk.x + chunk.y) ** 2))),
 (aggregate,
 (sum(aggregate.x2) / (sum(aggregate.n)))
 - ((sum(aggregate.x) / (sum(aggregate.n))) ** 2)))

Known shapes:

>>> aggregate.dshape
dshape("10 * 10 * 10 * {n: int32, x: float64, x2: float64}")

Recap

Blaze expressions let us design powerful algorihtms abstractly. Development is
fast and generally applicable.

Limitations

		No sorting, joining, etc..

		Only single-dataset operations (notably missing dot products)

		Only a third of a solution.
		Expression splitting - what do we want to compute?

		Task scheduling - where do we compute each piece?

		In-memory execution - how do we actually execute this?

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/pydata-berlin-fin.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Scikit Image Case Study

		Setup
		Scikit image has sophisticated single-threaded algorithms

		Dask.array parallelizes map on slighty overlapping blocks

[image:]

		Timeline
		Blake Griffith [http://github.com/cowlicks/]
creates
parallel apply function [https://github.com/scikit-image/scikit-image/pull/1493]
in scikit-image (1 week part time)

		People try it out; it’s not much faster

		Johannes Schönberger [http://www.cs.unc.edu/~jsch/] releases the GIL [https://github.com/scikit-image/scikit-image/pull/1519/files] (few days)

		Scikit image + dask.array sees
2x-3x speedups [https://github.com/ContinuumIO/dask/blob/master/notebooks/parallelize_image_filtering_workload.ipynb]
over Scikit image alone (experiments by @arve0 [http://arve0.github.io/])

Momentum

		Jeff Reback has a nogil Pandas branch [https://github.com/pydata/pandas/pull/10199]

This morning: I updated this. works for all groupbys now.

		Bottleneck issue [https://github.com/kwgoodman/bottleneck]

Final thoughts

http://dask.pydata.org

		Most data is small (you should ignore this talk)

		PyData has room to grow in parallelism (GIL is not an issue)

		Dask.array – a multi-core on-disk numpy clone

		Dask.core – an option for parallelism

[image:]

Finally: Parallelism is rarely important

		Most data is small

		For moderate data, think about storage and representation

		Pandas categoricals are possibly the biggest improvement to PyData performance in
the last year

Ignore everything I just said

		Most data is small

		For moderate data, think about storage and representation

		Pandas categoricals are possibly the biggest improvement to PyData performance in
the last year

Questions?

http://dask.pydata.org

[image:]

[image:]

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/pydata-berlin-fin.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Scikit Image Case Study

		Setup
		Scikit image has sophisticated single-threaded algorithms

		Dask.array parallelizes map on slighty overlapping blocks

[image:]

		Timeline
		Blake Griffith [http://github.com/cowlicks/]
creates
parallel apply function [https://github.com/scikit-image/scikit-image/pull/1493]
in scikit-image (1 week part time)

		People try it out; it’s not much faster

		Johannes Schönberger [http://www.cs.unc.edu/~jsch/] releases the GIL [https://github.com/scikit-image/scikit-image/pull/1519/files] (few days)

		Scikit image + dask.array sees
2x-3x speedups [https://github.com/ContinuumIO/dask/blob/master/notebooks/parallelize_image_filtering_workload.ipynb]
over Scikit image alone (experiments by @arve0 [http://arve0.github.io/])

Momentum

		Jeff Reback has a nogil Pandas branch [https://github.com/pydata/pandas/pull/10199]

This morning: I updated this. works for all groupbys now.

		Bottleneck issue [https://github.com/kwgoodman/bottleneck]

Final thoughts

http://dask.pydata.org

		Most data is small (you should ignore this talk)

		PyData has room to grow in parallelism (GIL is not an issue)

		Dask.array – a multi-core on-disk numpy clone

		Dask.core – an option for parallelism

[image:]

Finally: Parallelism is rarely important

		Most data is small

		For moderate data, think about storage and representation

		Pandas categoricals are possibly the biggest improvement to PyData performance in
the last year

Ignore everything I just said

		Most data is small

		For moderate data, think about storage and representation

		Pandas categoricals are possibly the biggest improvement to PyData performance in
the last year

Questions?

http://dask.pydata.org

[image:]

[image:]

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/blaze-server.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze Server

Blaze server exposes Python data through a JSON web API

		Easily spin up a data server

		Interact with that server through JSON

		Support many data resources (Lists, DataFrames, SQL databases, Hadoop clusters)

		Interact with server with Blaze on client side

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Query data through JSON API

$ curl \
 -H "Content-Type: application/json" \
 -d '{"expr": "iris"}' \
 localhost:5000/compute/iris.json
{
 "data": [
 [
 5.1,
 3.5,
 1.4,
 0.2,
 "Iris-setosa"
],
 [
 4.9,
 3.0,
 1.4,
 0.2,
 "Iris-setosa"
],

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Interact through Python (or any language)

>>> import json
>>> import requests

>>> query = {'expr': 'iris'}

>>> response = requests.get('http://localhost:5000/compute/iris.json',
... data=json.dumps(query),
... headers={'Content-Type': 'application/json'})

>>> json.loads(response.content)
{u'data': [[5.1, 3.5, 1.4, 0.2, u'Iris-setosa'],
 [4.9, 3.0, 1.4, 0.2, u'Iris-setosa'],
 [4.7, 3.2, 1.3, 0.2, u'Iris-setosa'],
 [4.6, 3.1, 1.5, 0.2, u'Iris-setosa'],
 [5.0, 3.6, 1.4, 0.2, u'Iris-setosa'],
...

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Interact from web applications like Bokeh-JS plots

[image: Iris with Bokeh]

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Send computations to the server

>>> import json
>>> import requests

>>> # Ask for petal_length column: t.petal_length
>>> query = {'expr': {'op': 'Column', 'args': ['iris', 'petal_length']}}

>>> response = requests.get('http://localhost:5000/compute/iris.json',
... data=json.dumps(query),
... headers={'Content-Type': 'application/json'})

>>> json.loads(response.content)
{u'data': [1.4,
 1.4,
 1.3,
 1.5,
 1.4,
 1.7,
...

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Generate computations with symbolic Blaze

>>> from blaze import *
>>> t = Symbol('t', 'var * { sepal_length : ?float64, sepal_width : ?float64, petal_length : ?float64, petal_width : ?float64, species : string }')

>>> expr = by(t.species, # more complex query to send to server
... min=t.petal_length.min(),
... max=t.petal_length.max())

>>> query = to_tree(expr, names={t: 'iris'})
>>> query
{'args': [{'args': ['iris', 'species'], 'op': 'Column'},
 {'args': [{'args': ['iris', 'petal_length'], 'op': 'Column'},
 ['max', 'min'],
 [{'args': [{'args': ['iris', 'petal_length'], 'op': 'Column'}],
 'op': 'max'},
 {'args': [{'args': ['iris', 'petal_length'], 'op': 'Column'}],
 'op': 'min'}]],
 'op': 'Summary'}],
 'op': 'By'}

...

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Or drive a remote server from a Python Client

>>> from blaze import *
>>> from blaze.server import *

>>> t = Table('blaze://localhost:5000::iris') # Drive remote dataset
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> by(t.species, min=t.petal_length.min(), max=t.petal_length.max())
 species max min
0 Iris-virginica 6.9 4.5
1 Iris-setosa 1.9 1.0
2 Iris-versicolor 5.1 3.0

Server

Operate on any Blaze supported type

>>> from blaze import *
>>> df = into(DataFrame, CSV('examples/data/iris.csv'))

>>> from blaze.server import Server
>>> server = Server({'iris': df})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Or just drive a remote server

>>> from blaze import *
>>> from blaze.server import *

>>> t = Table('blaze://localhost:5000::iris') # Drive remote dataset
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> by(t.species, min=t.petal_length.min(), max=t.petal_length.max())
 species max min
0 Iris-virginica 6.9 4.5
1 Iris-setosa 1.9 1.0
2 Iris-versicolor 5.1 3.0

Server

Operate on any Blaze supported type

>>> from blaze import *
>>> import pymongo
>>> db = pymongo.MongoClient().db

>>> from blaze.server import Server
>>> server = Server({'iris': db.iris_collection})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Or just drive a remote server

>>> from blaze import *
>>> from blaze.server import *

>>> t = Table('blaze://localhost:5000::iris') # Drive remote dataset
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> by(t.species, min=t.petal_length.min(), max=t.petal_length.max())
 species max min
0 Iris-virginica 6.9 4.5
1 Iris-setosa 1.9 1.0
2 Iris-versicolor 5.1 3.0

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/how-does-blaze-work.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

How does Blaze work?

At its core, Blaze is the following:

		Symbolic expression system – Mathematica for data

		Interpreters to various backends

		User interface to make expression system accessible

		Dispatch system to make interpreters feasible

In practice, connecting to a new backend takes days, not months.

Blaze separates our intent:

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

from the data:

>>> L = [[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]]
...

then combines the two explicitly

>>> from blaze.compute import compute
>>> compute(deadbeats, L) # Iterator in, Iterator out
<itertools.imap at 0x7fce75a9f790>
>>> list(_)
['Bob', 'Edith']

Separating intent from data lets us switch backends

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

so we can drive Pandas instead

>>> df = DataFrame([[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]],
... columns=['id', 'name', 'balance'])

getting the same result through different means

>>> from blaze.compute import compute
>>> compute(deadbeats, df) # DataFrame in, DataFrame out
1 Bob
4 Edith
Name: name, dtype: object

Now we reach out into the ecosystem

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

and use newer technologies

>>> import pyspark
>>> sc = pyspark.SparkContext('local', 'Blaze-demo')

>>> rdd = into(sc, L) # migrate to Resilient Distributed Dataset (RDD)
>>> rdd
ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:315

evolving with the ecosystem

>>> from blaze.compute import compute
>>> compute(deadbeats, rdd) # RDD in, RDD out
PythonRDD[1] at RDD at PythonRDD.scala:43
>>> _.collect() # Pull results down to local Python
['Bob', 'Edith']

Why separate expressions from computation?

		Write once, run anywhere

		Scalable development

(start with CSV files, end with Impala/Spark)

		Rapid prototyping and system discovery

(try Postgres, MongoDB, Spark, see what suits you best)

		Robust to changes in architecture

(assuming Blaze will support Hadoop++)

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/dask-graphs.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Common Communication Patterns with Dask Arrays

Dask arrays/frames provide translation from NumPy/Pandas syntax to visual
blocked algorithms.

Make a dask array of ones

>>> import dask.array as da
>>> x = da.ones(15, blockshape=(5,))

And visualize the resulting dask graph

>>> from dask.dot import dot_graph
>>> dot_graph(x.dask)

[image:]

We’re going to do this for increasingly complex expressions which create
increasingly complex blocked algorithm task graphs.

Elementwise operations

>>> x + 1

[image:]

Elementwise operations

>>> (x + 1) * 2

[image:]

Elementwise operations

>>> ((x + 1) * 2) ** 3

[image:]

Reductions

>>> (x + 1).sum()

[image:]

Slicing

>>> (x + 1)[3:9].sum()

[image:]

Ghosting (shared boundaries)

>>> x = da.ones(100, blockshape=(10,))
>>> g = da.ghost.ghost(x, depth={0: 2}, boundary={0: np.nan})

[image:]

Two Dimensional Algorithms

>>> x = da.ones((15, 15), blockshape=(5, 5))

Partial Reductions

>>> x.mean(axis=0)

[image:]

Transpose

>>> x + x.T

[image:]

Matrix Multiply (index contraction)

>>> x.dot(x.T)

[image:]

Compound ad naseum

>>> x.dot(x.T + 1) - x.mean(axis=1)

[image:]

We can compound these operations forever. Constructing larger and larger
graphs before we hand off the work to a scheduler to execute.

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/dask-graphs.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Common Communication Patterns with Dask Arrays

Dask arrays/frames provide translation from NumPy/Pandas syntax to visual
blocked algorithms.

Make a dask array of ones

>>> import dask.array as da
>>> x = da.ones(15, blockshape=(5,))

And visualize the resulting dask graph

>>> from dask.dot import dot_graph
>>> dot_graph(x.dask)

[image:]

We’re going to do this for increasingly complex expressions which create
increasingly complex blocked algorithm task graphs.

Elementwise operations

>>> x + 1

[image:]

Elementwise operations

>>> (x + 1) * 2

[image:]

Elementwise operations

>>> ((x + 1) * 2) ** 3

[image:]

Reductions

>>> (x + 1).sum()

[image:]

Slicing

>>> (x + 1)[3:9].sum()

[image:]

Ghosting (shared boundaries)

>>> x = da.ones(100, blockshape=(10,))
>>> g = da.ghost.ghost(x, depth={0: 2}, boundary={0: np.nan})

[image:]

Two Dimensional Algorithms

>>> x = da.ones((15, 15), blockshape=(5, 5))

Partial Reductions

>>> x.mean(axis=0)

[image:]

Transpose

>>> x + x.T

[image:]

Matrix Multiply (index contraction)

>>> x.dot(x.T)

[image:]

Compound ad naseum

>>> x.dot(x.T + 1) - x.mean(axis=1)

[image:]

We can compound these operations forever. Constructing larger and larger
graphs before we hand off the work to a scheduler to execute.

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/chunking.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Expression Chunking

... designing parallel algorithms

... out-of-core, parallel, numpy/pandas

Suppose we have a large array of integers

A trillion numbers

x = np.array([5, 3, 1, ... <one trillion numbers>, ... 12, 5, 10])

How do we compute the largest?

x.max()

Define the problem in Blaze

>>> from blaze import symbol
>>> x = symbol('x', '1000000000 * int')
>>> x.max()

Max by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Max of each chunk

aggregate[i] = chunk.max()

Max of aggregated results

aggregate.max()

>>> from blaze.expr.split import split
>>> split(x, x.max())
((chunk, max(chunk)),
 (aggregate, max(aggregate)))

Sum by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Sum of each chunk

aggregate[i] = chunk.sum()

Sum of aggregated results

aggregate.sum()

>>> from blaze.expr.split import split
>>> split(x, x.sum())
((chunk, sum(chunk)),
 (aggregate, sum(aggregate)))

Count by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Count each chunk

aggregate[i] = chunk.count()

Sum aggregated results

aggregate.sum()

>>> from blaze.expr.split import split
>>> split(x, x.count())
((chunk, count(chunk)),
 (aggregate, sum(aggregate)))

Mean by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Sum and count of each chunk

aggregate.total[i] = chunk.sum()
aggregate.n[i] = chunk.count()

Sum the total and count then divide

aggregate.total.sum() / aggregate.n.sum()

>>> from blaze.expr.split import split
>>> split(x, x.mean())
((chunk, summary(count=count(chunk), total=sum(chunk))),
 (aggregate, sum(aggregate.total)) / sum(aggregate.count))

Number of occurrences by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Split-apply-combine on each chunk

by(x, freq=x.count())

Split-apply-combine on concatenation of results

by(aggregate, freq=aggregate.freq.sum())

>>> from blaze.expr.split import split
>>> split(x, by(x, freq=x.count())
((chunk, by(chunk, freq=count(chunk))),
 (aggregate, by(aggregate.chunk, freq=sum(aggregate.freq))))

N-Dimensional reductions

Data: a 10000 by 10000 by 10000 array of (x,y) coordinates

>>> points = symbol('points', '10000 * 10000 * 10000 * {x: int, y: int}')

Chunk: a cube of a billion elements

>>> chunk = symbol('chunk', '1000 * 1000 * 1000 * {x: int, y: int}')

Expr: The variance of their addition

>>> expr = (points.x + points.y).var(axis=0)
>>> split(points, expr, chunk=chunk)
((chunk,
 summary(n = count(chunk.x + chunk.y),
 x = sum(chunk.x + chunk.y),
 x2 = sum((chunk.x + chunk.y) ** 2))),
 (aggregate,
 (sum(aggregate.x2) / (sum(aggregate.n)))
 - ((sum(aggregate.x) / (sum(aggregate.n))) ** 2)))

Known shapes:

>>> aggregate.dshape
dshape("10 * 10 * 10 * {n: int32, x: float64, x2: float64}")

Recap

Blaze expressions let us design powerful algorihtms abstractly. Development is
fast and generally applicable.

Limitations

		No sorting, joining, etc..

		Only single-dataset operations (notably missing dot products)

		Only a third of a solution.
		Expression splitting - what do we want to compute?

		Task scheduling - where do we compute each piece?

		In-memory execution - how do we actually execute this?

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/blaze-conclusion.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze facilitates data science

		By connecting technologies to users

		By connecting technologies to each other

Learn: http://blaze.pydata.org/

Try: conda install blaze

Contribute:
http://github.com/ContinuumIO/blaze/

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/blaze.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

blaze - a user interface

[image:]

>>> z = log(x - 1)**y

We often link interface and implementation

this yields both good and bad consequences

Blaze is a single interface to query many systems

demo

Blaze separates our intent:

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

from the data:

>>> L = [[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]]
...

then combines the two explicitly

>>> from blaze.compute import compute
>>> compute(deadbeats, L) # Iterator in, Iterator out
<itertools.imap at 0x7fce75a9f790>
>>> list(_)
['Bob', 'Edith']

Separating intent from data lets us switch backends

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

so we can drive Pandas instead

>>> df = DataFrame([[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]],
... columns=['id', 'name', 'balance'])

getting the same result through different means

>>> from blaze.compute import compute
>>> compute(deadbeats, df) # DataFrame in, DataFrame out
1 Bob
4 Edith
Name: name, dtype: object

Now we reach out into the ecosystem

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

and use newer technologies

>>> import pyspark
>>> sc = pyspark.SparkContext('local', 'Blaze-demo')

>>> rdd = into(sc, L) # migrate to Resilient Distributed Dataset (RDD)
>>> rdd
ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:315

evolving with the ecosystem

>>> from blaze.compute import compute
>>> compute(deadbeats, rdd) # RDD in, RDD out
PythonRDD[1] at RDD at PythonRDD.scala:43
>>> _.collect() # Pull results down to local Python
['Bob', 'Edith']

Why separate expressions from computation?

		Write once, run anywhere

		Scalable development

(start with CSV files, end with Impala/Spark)

		Rapid prototyping

(try Postgres, MongoDB, Spark, see what suits you best)

		Robust to changes in architecture

(assuming Blaze supports Hadoop++)

		Cross-backend query optimization

NYCTaxi CSV example [http://nbviewer.ipython.org/url/blaze.pydata.org/notebooks/timings-csv.ipynb]

Things Blaze Can’t Do

Blaze is generic (that’s the point) but we give up a lot:

		Blaze is not itself a database

		Blaze is not a Pandas/Spark replacement

		Blaze can’t do things that are hard to do in parallel (e.g. median,
full sorting, explicit groupings, quantiles)

		Blaze can’t do things that the underlying database can’t do (e.g. no joins
in Mongo)

Questions?

		Source: https://github.com/ContinuumIO/blaze

		Docs: http://blaze.pydata.org/

>>> import blaze as bz
>>> iris = bz.Data('iris.csv') # From the small
>>> db = bz.Data('impala://54.24.132.22/default') # To the large
...

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/REVEAL_README.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

reveal.js [image: Build Status] [https://travis-ci.org/hakimel/reveal.js]

A framework for easily creating beautiful presentations using HTML. Check out the live demo [http://lab.hakim.se/reveal-js/].

reveal.js comes with a broad range of features including nested slides [https://github.com/hakimel/reveal.js#markup], markdown contents [https://github.com/hakimel/reveal.js#markdown], PDF export [https://github.com/hakimel/reveal.js#pdf-export], speaker notes [https://github.com/hakimel/reveal.js#speaker-notes] and a JavaScript API [https://github.com/hakimel/reveal.js#api]. It’s best viewed in a browser with support for CSS 3D transforms but fallbacks [https://github.com/hakimel/reveal.js/wiki/Browser-Support] are available to make sure your presentation can still be viewed elsewhere.

More reading:

		Installation: Step-by-step instructions for getting reveal.js running on your computer.

		Changelog [https://github.com/hakimel/reveal.js/releases]: Up-to-date version history.

		Examples [https://github.com/hakimel/reveal.js/wiki/Example-Presentations]: Presentations created with reveal.js, add your own!

		Browser Support [https://github.com/hakimel/reveal.js/wiki/Browser-Support]: Explanation of browser support and fallbacks.

Online Editor

Presentations are written using HTML or markdown but there’s also an online editor for those of you who prefer a graphical interface. Give it a try at http://slid.es.

Instructions

Markup

Markup hierarchy needs to be <div class="reveal"> <div class="slides"> <section> where the <section> represents one slide and can be repeated indefinitely. If you place multiple <section>‘s inside of another <section> they will be shown as vertical slides. The first of the vertical slides is the “root” of the others (at the top), and it will be included in the horizontal sequence. For example:

<div class="reveal">
 <div class="slides">
 <section>Single Horizontal Slide</section>
 <section>
 <section>Vertical Slide 1</section>
 <section>Vertical Slide 2</section>
 </section>
 </div>
</div>

Markdown

It’s possible to write your slides using Markdown. To enable Markdown, add the data-markdown attribute to your <section> elements and wrap the contents in a <script type="text/template"> like the example below.

This is based on data-markdown [https://gist.github.com/1343518] from Paul Irish [https://github.com/paulirish] modified to use marked [https://github.com/chjj/marked] to support Github Flavoured Markdown [https://help.github.com/articles/github-flavored-markdown]. Sensitive to indentation (avoid mixing tabs and spaces) and line breaks (avoid consecutive breaks).

<section data-markdown>
 <script type="text/template">
 ## Page title

 A paragraph with some text and a [link](http://hakim.se).
 </script>
</section>

External Markdown

You can write your content as a separate file and have reveal.js load it at runtime. Note the separator arguments which determine how slides are delimited in the external file. The data-charset attribute is optional and specifies which charset to use when loading the external file.

When used locally, this feature requires that reveal.js runs from a local web server.

<section data-markdown="example.md"
 data-separator="^\n\n\n"
 data-vertical="^\n\n"
 data-notes="^Note:"
 data-charset="iso-8859-15">
</section>

Element Attributes

Special syntax (in html comment) is available for adding attributes to Markdown elements. This is useful for fragments, amongst other things.

<section data-markdown>
 <script type="text/template">
 - Item 1 <!-- .element: class="fragment" data-fragment-index="2" -->
 - Item 2 <!-- .element: class="fragment" data-fragment-index="1" -->
 </script>
</section>

Slide Attributes

Special syntax (in html comment) is available for adding attributes to the slide <section> elements generated by your Markdown.

<section data-markdown>
 <script type="text/template">
 <!-- .slide: data-background="#ff0000" -->
 Markdown content
 </script>
</section>

Configuration

At the end of your page you need to initialize reveal by running the following code. Note that all config values are optional and will default as specified below.

Reveal.initialize({

 // Display controls in the bottom right corner
 controls: true,

 // Display a presentation progress bar
 progress: true,

 // Display the page number of the current slide
 slideNumber: false,

 // Push each slide change to the browser history
 history: false,

 // Enable keyboard shortcuts for navigation
 keyboard: true,

 // Enable the slide overview mode
 overview: true,

 // Vertical centering of slides
 center: true,

 // Enables touch navigation on devices with touch input
 touch: true,

 // Loop the presentation
 loop: false,

 // Change the presentation direction to be RTL
 rtl: false,

 // Turns fragments on and off globally
 fragments: true,

 // Flags if the presentation is running in an embedded mode,
 // i.e. contained within a limited portion of the screen
 embedded: false,

 // Number of milliseconds between automatically proceeding to the
 // next slide, disabled when set to 0, this value can be overwritten
 // by using a data-autoslide attribute on your slides
 autoSlide: 0,

 // Stop auto-sliding after user input
 autoSlideStoppable: true,

 // Enable slide navigation via mouse wheel
 mouseWheel: false,

 // Hides the address bar on mobile devices
 hideAddressBar: true,

 // Opens links in an iframe preview overlay
 previewLinks: false,

 // Transition style
 transition: 'default', // default/cube/page/concave/zoom/linear/fade/none

 // Transition speed
 transitionSpeed: 'default', // default/fast/slow

 // Transition style for full page slide backgrounds
 backgroundTransition: 'default', // default/none/slide/concave/convex/zoom

 // Number of slides away from the current that are visible
 viewDistance: 3,

 // Parallax background image
 parallaxBackgroundImage: '', // e.g. "'https://s3.amazonaws.com/hakim-static/reveal-js/reveal-parallax-1.jpg'"

 // Parallax background size
 parallaxBackgroundSize: '' // CSS syntax, e.g. "2100px 900px"

});

Note that the new default vertical centering option will break compatibility with slides that were using transitions with backgrounds (cube and page). To restore the previous behavior, set center to false.

The configuration can be updated after initialization using the configure method:

// Turn autoSlide off
Reveal.configure({ autoSlide: 0 });

// Start auto-sliding every 5s
Reveal.configure({ autoSlide: 5000 });

Dependencies

Reveal.js doesn’t rely on any third party scripts to work but a few optional libraries are included by default. These libraries are loaded as dependencies in the order they appear, for example:

Reveal.initialize({
 dependencies: [
 // Cross-browser shim that fully implements classList - https://github.com/eligrey/classList.js/
 { src: 'lib/js/classList.js', condition: function() { return !document.body.classList; } },

 // Interpret Markdown in <section> elements
 { src: 'plugin/markdown/marked.js', condition: function() { return !!document.querySelector('[data-markdown]'); } },
 { src: 'plugin/markdown/markdown.js', condition: function() { return !!document.querySelector('[data-markdown]'); } },

 // Syntax highlight for <code> elements
 { src: 'plugin/highlight/highlight.js', async: true, callback: function() { hljs.initHighlightingOnLoad(); } },

 // Zoom in and out with Alt+click
 { src: 'plugin/zoom-js/zoom.js', async: true, condition: function() { return !!document.body.classList; } },

 // Speaker notes
 { src: 'plugin/notes/notes.js', async: true, condition: function() { return !!document.body.classList; } },

 // Remote control your reveal.js presentation using a touch device
 { src: 'plugin/remotes/remotes.js', async: true, condition: function() { return !!document.body.classList; } },

 // MathJax
 { src: 'plugin/math/math.js', async: true }
]
});

You can add your own extensions using the same syntax. The following properties are available for each dependency object:

		src: Path to the script to load

		async: [optional] Flags if the script should load after reveal.js has started, defaults to false

		callback: [optional] Function to execute when the script has loaded

		condition: [optional] Function which must return true for the script to be loaded

Presentation Size

All presentations have a normal size, that is the resolution at which they are authored. The framework will automatically scale presentations uniformly based on this size to ensure that everything fits on any given display or viewport.

See below for a list of configuration options related to sizing, including default values:

Reveal.initialize({

 ...

 // The "normal" size of the presentation, aspect ratio will be preserved
 // when the presentation is scaled to fit different resolutions. Can be
 // specified using percentage units.
 width: 960,
 height: 700,

 // Factor of the display size that should remain empty around the content
 margin: 0.1,

 // Bounds for smallest/largest possible scale to apply to content
 minScale: 0.2,
 maxScale: 1.0

});

Auto-sliding

Presentations can be configure to progress through slides automatically, without any user input. To enable this you will need to tell the framework how many milliseconds it should wait between slides:

// Slide every five seconds
Reveal.configure({
 autoSlide: 5000
});

When this is turned on a control element will appear that enables users to pause and resume auto-sliding. Sliding is also paused automatically as soon as the user starts navigating. You can disable these controls by specifying autoSlideStoppable: false in your reveal.js config.

You can also override the slide duration for individual slides by using the data-autoslide attribute on individual sections:

<section data-autoslide="10000">This will remain on screen for 10 seconds</section>

Keyboard Bindings

If you’re unhappy with any of the default keyboard bindings you can override them using the keyboard config option:

Reveal.configure({
 keyboard: {
 13: 'next', // go to the next slide when the ENTER key is pressed
 27: function() {}, // do something custom when ESC is pressed
 32: null // don't do anything when SPACE is pressed (i.e. disable a reveal.js default binding)
 }
});

API

The Reveal class provides a JavaScript API for controlling navigation and reading state:

// Navigation
Reveal.slide(indexh, indexv, indexf);
Reveal.left();
Reveal.right();
Reveal.up();
Reveal.down();
Reveal.prev();
Reveal.next();
Reveal.prevFragment();
Reveal.nextFragment();
Reveal.toggleOverview();
Reveal.togglePause();

// Retrieves the previous and current slide elements
Reveal.getPreviousSlide();
Reveal.getCurrentSlide();

Reveal.getIndices(); // { h: 0, v: 0 } }

// State checks
Reveal.isFirstSlide();
Reveal.isLastSlide();
Reveal.isOverview();
Reveal.isPaused();

Ready Event

The ‘ready’ event is fired when reveal.js has loaded all (synchronous) dependencies and is ready to start navigating.

Reveal.addEventListener('ready', function(event) {
 // event.currentSlide, event.indexh, event.indexv
});

Slide Changed Event

An ‘slidechanged’ event is fired each time the slide is changed (regardless of state). The event object holds the index values of the current slide as well as a reference to the previous and current slide HTML nodes.

Some libraries, like MathJax (see #226 [https://github.com/hakimel/reveal.js/issues/226#issuecomment-10261609]), get confused by the transforms and display states of slides. Often times, this can be fixed by calling their update or render function from this callback.

Reveal.addEventListener('slidechanged', function(event) {
 // event.previousSlide, event.currentSlide, event.indexh, event.indexv
});

States

If you set data-state="somestate" on a slide <section>, “somestate” will be applied as a class on the document element when that slide is opened. This allows you to apply broad style changes to the page based on the active slide.

Furthermore you can also listen to these changes in state via JavaScript:

Reveal.addEventListener('somestate', function() {
 // TODO: Sprinkle magic
}, false);

Slide Backgrounds

Slides are contained within a limited portion of the screen by default to allow them to fit any display and scale uniformly. You can apply full page background colors or images by applying a data-background attribute to your <section> elements. Below are a few examples.

<section data-background="#ff0000">
 <h2>All CSS color formats are supported, like rgba() or hsl().</h2>
</section>
<section data-background="http://example.com/image.png">
 <h2>This slide will have a full-size background image.</h2>
</section>
<section data-background="http://example.com/image.png" data-background-size="100px" data-background-repeat="repeat">
 <h2>This background image will be sized to 100px and repeated.</h2>
</section>

Backgrounds transition using a fade animation by default. This can be changed to a linear sliding transition by passing backgroundTransition: 'slide' to the Reveal.initialize() call. Alternatively you can set data-background-transition on any section with a background to override that specific transition.

Parallax Background

If you want to use a parallax scrolling background, set the two following config properties when initializing reveal.js (the third one is optional).

Reveal.initialize({

 // Parallax background image
 parallaxBackgroundImage: '', // e.g. "https://s3.amazonaws.com/hakim-static/reveal-js/reveal-parallax-1.jpg"

 // Parallax background size
 parallaxBackgroundSize: '', // CSS syntax, e.g. "2100px 900px" - currently only pixels are supported (don't use % or auto)

 // This slide transition gives best results:
 transition: linear

});

Make sure that the background size is much bigger than screen size to allow for some scrolling. View example [http://lab.hakim.se/reveal-js/?parallaxBackgroundImage=https%3A%2F%2Fs3.amazonaws.com%2Fhakim-static%2Freveal-js%2Freveal-parallax-1.jpg¶llaxBackgroundSize=2100px%20900px].

Slide Transitions

The global presentation transition is set using the transition config value. You can override the global transition for a specific slide by using the data-transition attribute:

<section data-transition="zoom">
 <h2>This slide will override the presentation transition and zoom!</h2>
</section>

<section data-transition-speed="fast">
 <h2>Choose from three transition speeds: default, fast or slow!</h2>
</section>

Note that this does not work with the page and cube transitions.

Internal links

It’s easy to link between slides. The first example below targets the index of another slide whereas the second targets a slide with an ID attribute (<section id="some-slide">):

Link
Link

You can also add relative navigation links, similar to the built in reveal.js controls, by appending one of the following classes on any element. Note that each element is automatically given an enabled class when it’s a valid navigation route based on the current slide.

 <!-- Previous vertical or horizontal slide -->
 <!-- Next vertical or horizontal slide -->

Fragments

Fragments are used to highlight individual elements on a slide. Every element with the class fragment will be stepped through before moving on to the next slide. Here’s an example: http://lab.hakim.se/reveal-js/#/fragments

The default fragment style is to start out invisible and fade in. This style can be changed by appending a different class to the fragment:

<section>
 <p class="fragment grow">grow</p>
 <p class="fragment shrink">shrink</p>
 <p class="fragment roll-in">roll-in</p>
 <p class="fragment fade-out">fade-out</p>
 <p class="fragment current-visible">visible only once</p>
 <p class="fragment highlight-current-blue">blue only once</p>
 <p class="fragment highlight-red">highlight-red</p>
 <p class="fragment highlight-green">highlight-green</p>
 <p class="fragment highlight-blue">highlight-blue</p>
</section>

Multiple fragments can be applied to the same element sequentially by wrapping it, this will fade in the text on the first step and fade it back out on the second.

<section>

 I'll fade in, then out

</section>

The display order of fragments can be controlled using the data-fragment-index attribute.

<section>
 <p class="fragment" data-fragment-index="3">Appears last</p>
 <p class="fragment" data-fragment-index="1">Appears first</p>
 <p class="fragment" data-fragment-index="2">Appears second</p>
</section>

Fragment events

When a slide fragment is either shown or hidden reveal.js will dispatch an event.

Some libraries, like MathJax (see #505), get confused by the initially hidden fragment elements. Often times this can be fixed by calling their update or render function from this callback.

Reveal.addEventListener('fragmentshown', function(event) {
 // event.fragment = the fragment DOM element
});
Reveal.addEventListener('fragmenthidden', function(event) {
 // event.fragment = the fragment DOM element
});

Code syntax highlighting

By default, Reveal is configured with highlight.js [http://softwaremaniacs.org/soft/highlight/en/] for code syntax highlighting. Below is an example with clojure code that will be syntax highlighted. When the data-trim attribute is present surrounding whitespace is automatically removed.

<section>
 <pre><code data-trim>
(def lazy-fib
 (concat
 [0 1]
 ((fn rfib [a b]
 (lazy-cons (+ a b) (rfib b (+ a b)))) 0 1)))
 </code></pre>
</section>

Slide number

If you would like to display the page number of the current slide you can do so using the slideNumber configuration value.

Reveal.configure({ slideNumber: true });

Overview mode

Press “Esc” or “o” keys to toggle the overview mode on and off. While you’re in this mode, you can still navigate between slides,
as if you were at 1,000 feet above your presentation. The overview mode comes with a few API hooks:

Reveal.addEventListener('overviewshown', function(event) { /* ... */ });
Reveal.addEventListener('overviewhidden', function(event) { /* ... */ });

// Toggle the overview mode programmatically
Reveal.toggleOverview();

Fullscreen mode

Just press »F« on your keyboard to show your presentation in fullscreen mode. Press the »ESC« key to exit fullscreen mode.

Embedded media

Embedded HTML5 <video>/<audio> and YouTube iframes are automatically paused when you navigate away from a slide. This can be disabled by decorating your element with a data-ignore attribute.

Add data-autoplay to your media element if you want it to automatically start playing when the slide is shown:

<video data-autoplay src="http://clips.vorwaerts-gmbh.de/big_buck_bunny.mp4"></video>

Additionally the framework automatically pushes two post messages [https://developer.mozilla.org/en-US/docs/Web/API/Window.postMessage] to all iframes, slide:start when the slide containing the iframe is made visible and slide:stop when it is hidden.

Stretching elements

Sometimes it’s desirable to have an element, like an image or video, stretch to consume as much space as possible within a given slide. This can be done by adding the .stretch class to an element as seen below:

<section>
 <h2>This video will use up the remaining space on the slide</h2>
 <video class="stretch" src="http://clips.vorwaerts-gmbh.de/big_buck_bunny.mp4"></video>
</section>

Limitations:

		Only direct descendants of a slide section can be stretched

		Only one descendant per slide section can be stretched

PDF Export

Presentations can be exported to PDF via a special print stylesheet. This feature requires that you use Google Chrome [http://google.com/chrome].
Here’s an example of an exported presentation that’s been uploaded to SlideShare: http://www.slideshare.net/hakimel/revealjs-13872948.

		Open your presentation with css/print/pdf.css [https://github.com/hakimel/reveal.js/blob/master/css/print/pdf.css] included on the page. The default index HTML lets you add print-pdf anywhere in the query to include the stylesheet, for example: lab.hakim.se/reveal-js?print-pdf [http://lab.hakim.se/reveal-js?print-pdf].

		Open the in-browser print dialog (CMD+P).

		Change the Destination setting to Save as PDF.

		Change the Layout to Landscape.

		Change the Margins to None.

		Click Save.

[image: Chrome Print Settings]

Theming

The framework comes with a few different themes included:

		default: Gray background, white text, blue links

		beige: Beige background, dark text, brown links

		sky: Blue background, thin white text, blue links

		night: Black background, thick white text, orange links

		serif: Cappuccino background, gray text, brown links

		simple: White background, black text, blue links

		solarized: Cream-colored background, dark green text, blue links

Each theme is available as a separate stylesheet. To change theme you will need to replace default below with your desired theme name in index.html:

<link rel="stylesheet" href="css/theme/default.css" id="theme">

If you want to add a theme of your own see the instructions here: /css/theme/README.md [https://github.com/hakimel/reveal.js/blob/master/css/theme/README.md].

Speaker Notes

reveal.js comes with a speaker notes plugin which can be used to present per-slide notes in a separate browser window. The notes window also gives you a preview of the next upcoming slide so it may be helpful even if you haven’t written any notes. Press the ‘s’ key on your keyboard to open the notes window.

Notes are defined by appending an <aside> element to a slide as seen below. You can add the data-markdown attribute to the aside element if you prefer writing notes using Markdown.

When used locally, this feature requires that reveal.js runs from a local web server.

<section>
 <h2>Some Slide</h2>

 <aside class="notes">
 Oh hey, these are some notes. They'll be hidden in your presentation, but you can see them if you open the speaker notes window (hit 's' on your keyboard).
 </aside>
</section>

If you’re using the external Markdown plugin, you can add notes with the help of a special delimiter:

<section data-markdown="example.md" data-separator="^\n\n\n" data-vertical="^\n\n" data-notes="^Note:"></section>

Title
Sub-title

Here is some content...

Note:
This will only display in the notes window.

Server Side Speaker Notes

In some cases it can be desirable to run notes on a separate device from the one you’re presenting on. The Node.js-based notes plugin lets you do this using the same note definitions as its client side counterpart. Include the required scripts by adding the following dependencies:

Reveal.initialize({
 ...

 dependencies: [
 { src: 'socket.io/socket.io.js', async: true },
 { src: 'plugin/notes-server/client.js', async: true }
]
});

Then:

		Install Node.js [http://nodejs.org/]

		Run npm install

		Run node plugin/notes-server

Multiplexing

The multiplex plugin allows your audience to view the slides of the presentation you are controlling on their own phone, tablet or laptop. As the master presentation navigates the slides, all client presentations will update in real time. See a demo at http://revealjs.jit.su/.

The multiplex plugin needs the following 3 things to operate:

		Master presentation that has control

		Client presentations that follow the master

		Socket.io server to broadcast events from the master to the clients

More details:

Master presentation

Served from a static file server accessible (preferably) only to the presenter. This need only be on your (the presenter’s) computer. (It’s safer to run the master presentation from your own computer, so if the venue’s Internet goes down it doesn’t stop the show.) An example would be to execute the following commands in the directory of your master presentation:

		npm install node-static

		static

If you want to use the speaker notes plugin with your master presentation then make sure you have the speaker notes plugin configured correctly along with the configuration shown below, then execute node plugin/notes-server in the directory of your master presentation. The configuration below will cause it to connect to the socket.io server as a master, as well as launch your speaker-notes/static-file server.

You can then access your master presentation at http://localhost:1947

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: '13652805320794272084', // Obtained from the socket.io server. Gives this (the master) control of the presentation
 id: '1ea875674b17ca76', // Obtained from socket.io server
 url: 'revealjs.jit.su:80' // Location of socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/master.js', async: true },

 // and if you want speaker notes
 { src: 'plugin/notes-server/client.js', async: true }

 // other dependencies...
]
});

Client presentation

Served from a publicly accessible static file server. Examples include: GitHub Pages, Amazon S3, Dreamhost, Akamai, etc. The more reliable, the better. Your audience can then access the client presentation via http://example.com/path/to/presentation/client/index.html, with the configuration below causing them to connect to the socket.io server as clients.

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: null, // null so the clients do not have control of the master presentation
 id: '1ea875674b17ca76', // id, obtained from socket.io server
 url: 'revealjs.jit.su:80' // Location of socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]
});

Socket.io server

Server that receives the slideChanged events from the master presentation and broadcasts them out to the connected client presentations. This needs to be publicly accessible. You can run your own socket.io server with the commands:

		npm install

		node plugin/multiplex

Or you use the socket.io server at http://revealjs.jit.su.

You’ll need to generate a unique secret and token pair for your master and client presentations. To do so, visit http://example.com/token, where http://example.com is the location of your socket.io server. Or if you’re going to use the socket.io server at http://revealjs.jit.su, visit http://revealjs.jit.su/token.

You are very welcome to point your presentations at the Socket.io server running at http://revealjs.jit.su, but availability and stability are not guaranteed. For anything mission critical I recommend you run your own server. It is simple to deploy to nodejitsu, heroku, your own environment, etc.

socket.io server as file static server

The socket.io server can play the role of static file server for your client presentation, as in the example at http://revealjs.jit.su. (Open http://revealjs.jit.su in two browsers. Navigate through the slides on one, and the other will update to match.)

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: null, // null so the clients do not have control of the master presentation
 id: '1ea875674b17ca76', // id, obtained from socket.io server
 url: 'example.com:80' // Location of your socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]

It can also play the role of static file server for your master presentation and client presentations at the same time (as long as you don’t want to use speaker notes). (Open http://revealjs.jit.su in two browsers. Navigate through the slides on one, and the other will update to match. Navigate through the slides on the second, and the first will update to match.) This is probably not desirable, because you don’t want your audience to mess with your slides while you’re presenting. ;)

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: '13652805320794272084', // Obtained from the socket.io server. Gives this (the master) control of the presentation
 id: '1ea875674b17ca76', // Obtained from socket.io server
 url: 'example.com:80' // Location of your socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/master.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]
});

Leap Motion

The Leap Motion plugin lets you utilize your Leap Motion [https://www.leapmotion.com/] device to control basic navigation of your presentation. The gestures currently supported are:

1 to 2 fingers

Pointer

—

 Point to anything on screen. Move your finger past the device to expand the pointer.

1 hand + 3 or more fingers (left/right/up/down)

Navigate through your slides. See config options to invert movements.

2 hands upwards

Toggle the overview mode. Do it a second time to exit the overview.

Config Options

You can edit the following options:

| Property | Default | Description
| —————– |:—————–:| :————-
| autoCenter | true | Center the pointer based on where you put your finger into the leap motions detection field.
| gestureDelay | 500 | How long to delay between gestures in milliseconds.
| naturalSwipe | true | Swipe as though you were touching a touch screen. Set to false to invert.
| pointerColor | #00aaff | The color of the pointer.
| pointerOpacity | 0.7 | The opacity of the pointer.
| pointerSize | 15 | The minimum height and width of the pointer.
| pointerTolerance | 120 | Bigger = slower pointer.

Example configuration:

Reveal.initialize({

 // other options...

 leap: {
 naturalSwipe : false, // Invert swipe gestures
 pointerOpacity : 0.5, // Set pointer opacity to 0.5
 pointerColor : '#d80000' // Red pointer
 },

 dependencies: [
 { src: 'plugin/leap/leap.js', async: true }
]

});

MathJax

If you want to display math equations in your presentation you can easily do so by including this plugin. The plugin is a very thin wrapper around the MathJax [http://www.mathjax.org/] library. To use it you’ll need to include it as a reveal.js dependency, find our more about dependencies here.

The plugin defaults to using LaTeX [http://en.wikipedia.org/wiki/LaTeX] but that can be adjusted through the math configuration object. Note that MathJax is loaded from a remote server. If you want to use it offline you’ll need to download a copy of the library and adjust the mathjax configuration value.

Below is an example of how the plugin can be configured. If you don’t intend to change these values you do not need to include the math config object at all.

Reveal.initialize({

 // other options ...

 math: {
 mathjax: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js',
 config: 'TeX-AMS_HTML-full' // See http://docs.mathjax.org/en/latest/config-files.html
 },

 dependencies: [
 { src: 'plugin/math/math.js', async: true }
]

});

Read MathJax’s documentation if you need HTTPS delivery [http://docs.mathjax.org/en/latest/start.html#secure-access-to-the-cdn] or serving of specific versions [http://docs.mathjax.org/en/latest/configuration.html#loading-mathjax-from-the-cdn] for stability.

Installation

The basic setup is for authoring presentations only. The full setup gives you access to all reveal.js features and plugins such as speaker notes as well as the development tasks needed to make changes to the source.

Basic setup

The core of reveal.js is very easy to install. You’ll simply need to download a copy of this repository and open the index.html file directly in your browser.

		Download the latest version of reveal.js from https://github.com/hakimel/reveal.js/releases

		Unzip and replace the example contents in index.html with your own

		Open index.html in a browser to view it

Full setup

Some reveal.js features, like external markdown and speaker notes, require that presentations run from a local web server. The following instructions will set up such a server as well as all of the development tasks needed to make edits to the reveal.js source code.

		Install Node.js [http://nodejs.org/]

		Install Grunt [http://gruntjs.com/getting-started#installing-the-cli]

		Clone the reveal.js repository

$ git clone https://github.com/hakimel/reveal.js.git

		Navigate to the reveal.js folder

$ cd reveal.js

		Install dependencies

$ npm install

		Serve the presentation and monitor source files for changes

$ grunt serve

		Open http://localhost:8000 to view your presentation

You can change the port by using grunt serve --port 8001.

Folder Structure

		css/ Core styles without which the project does not function

		js/ Like above but for JavaScript

		plugin/ Components that have been developed as extensions to reveal.js

		lib/ All other third party assets (JavaScript, CSS, fonts)

Contributing

Please keep the issue tracker [http://github.com/hakimel/reveal.js/issues] limited to bug reports, feature requests and pull requests. If you are reporting a bug make sure to include information about which browser and operating system you are using as well as the necessary steps to reproduce the issue.

If you have personal support questions use StackOverflow [http://stackoverflow.com/questions/tagged/reveal.js].

Pull requests

		Should follow the coding style of the file you work in, most importantly:
		Tabs to indent

		Single-quoted strings

		Should be made towards the dev branch

		Should be submitted from a feature/topic branch (not your master)

		Should not include the minified reveal.min.js file

License

MIT licensed

Copyright (C) 2014 Hakim El Hattab, http://hakim.se

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/functions.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze functions

Blaze uses a handful of functions:

		discover(data) – Get metadata

		compute(expr, data) – Execute expr on data

		into(type, data) – Migrate data to new container

		resource(uri) – Get the data behind uri string

		... drop, create_index, chunks, ...

We implement these functions for many different types/backends

discover

Discover metadata.

Returns datashape, Blaze’s internal data type system.

>>> from datashape import discover

>>> discover(3.14)
dshape("float64")

>>> discover([1, 2, 3])
dshape("3 * int64")

>>> df = pd.read_csv('iris.csv')
>>> discover(df)
dshape("150 * { sepal_length : float64, sepal_width : float64,
 petal_length : float64, petal_width : float64,
 species : string }")

>>> discover(...)

compute

Execute expression against data

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

>>> L = [[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]]

>>> from blaze.compute import compute
>>> compute(deadbeats, L) # Iterator in, Iterator out
<itertools.imap at 0x7fab104693d0>

>>> list(_)
['Bob', 'Edith']

into

migrate data between containers

>>> into(set, [1, 2, 3])
{1, 2, 3}

>>> into(np.ndarray, df)
rec.array([(5.1, 3.5, 1.4, 0.2, 'Iris-setosa'),
 (4.9, 3.0, 1.4, 0.2, 'Iris-setosa'),
 (4.7, 3.2, 1.3, 0.2, 'Iris-setosa'),
 (4.6, 3.1, 1.5, 0.2, 'Iris-setosa'),
 ...
 (5.9, 3.0, 5.1, 1.8, 'Iris-virginica')],
 dtype=[('sepal_length', '<f8'), ('sepal_width', '<f8'),
 ('petal_length', '<f8'), ('petal_width', '<f8'),
 ('species', 'O')])

>>> db = pymongo.MongoClient().db
>>> into(db.mycollection, df)
Collection(Database(MongoClient('localhost', 27017), u'db'), u'mycoll')

resource

find data from uri

>>> resource('iris.csv')
<blaze.data.csv.CSV at 0x7fdca8f93d10>

>>> resource('sqlite:///iris.db::iris')
<blaze.data.sql.SQL at 0x7fdca8f22910>

>>> resource('mongodb://localhost:27017/db::mycoll')
Collection(Database(MongoClient('localhost', 27017), u'db'), u'mycoll')

>>> resource('accounts.h5::/accounts')
/accounts (Table(5,)) ''
 description := {
 "id": Int64Col(shape=(), dflt=0, pos=0),
 "name": StringCol(itemsize=7, shape=(), dflt='', pos=1),
 "balance": Int64Col(shape=(), dflt=0, pos=2)}
 byteorder := 'little'
 chunkshape := (2849,)

Extending Blaze

You can extend these functions from outside of the Blaze codebase
(you don’t need our permission)

from blaze import dispatch, resource

@dispatch(MyType)
def discover(obj):
 return datashape of obj

@dispatch(blaze.expr.Head, MyType)
def compute_up(expr, myobj):
 return myobj[expr.n]

@dispatch(list, MyType)
def into(_, myobj):
 return myobj.to_list()

@resource.register(regex)
def resource(uri):
 return MyType(information-gathered-from-uri)

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/foundations.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

PyData builds off of NumPy and Pandas

NumPy and Pandas provide foundational data structures

[image:]

Data structures enable composition

... cross-project interactions without coordination

But NumPy is old

mrocklin@notebook:~/scipy$ git log | tail

Author: Travis Oliphant <oliphant@enthought.com>
Date: Fri Feb 2 05:08:11 2001 +0000

 shouldn't work

commit 02de46a5464f182d3d64be5a7ee1087ae8be8646
Author: Eric Jones <eric@enthought.com>
Date: Thu Feb 1 08:32:30 2001 +0000

 Initial revision

NumPy and Pandas have limitations

		Single Threaded (mostly)

		In-memory data (mostly)

		Poor support for variable length strings

		Poor support for missing data

		...

These limitations affect the PyData ecosystem

Hardware has changed since 2001

[image:]

		Multiple cores
		4 cores – cheap laptop

		32 cores – workstation

		Distributed memory clusters in big data warehousing

		Fast Solid State Drives (disk is now extended memory)

Hardware has changed since 2001

[image:]

		Multiple cores
		4 cores – cheap laptop

		32 cores – workstation

		Distributed memory clusters in big data warehousing

		Fast Solid State Drives (disk is now extended memory)

Problems have changed since 2001

		Larger datasets

		Messier data

		More text data

Python has limitations

		Started in 1991

		Heritage outside of numerics

		Poor support for in-process parallelism

Global Interpreter Lock

		The Global Interpreter Lock (GIL) stops two Python threads from
manipulating Python objects simultaneously

		Solutions:
		Compute in separate processes (hard to share data)

		Release the GIL and use C/Fortran code

PyData rests on single-threaded foundations

[image:]

		Incredible domain expertise

		Optimal single-core execution (Scientific heritage)

		But painful to parallelize

Can we parallelize the ecosystem without touching downstream projects?

probably not

But this work might be straightforward

And we have an effective community

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/into.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

into(target, source)

[image:]

Q: How do you migrate a CSV file into a Mongo Database?

Q: How do you migrate a CSV file into a Mongo Database?

CSV -> DataFrames: pd.read_csv()
DataFrames -> NumPy Arrays: DataFrame.to_records()
NumPy Arrays -> Iterator: ndarray.tolist()
Iterator -> pymongo.Collection: Collection.insert

Q: How do you migrate a CSV file into a Mongo Database?

>>> # target source
>>> into('mongodb://localhost/db::mycollection', 'myfile.csv')

Q: How do you Load a JSON file on S3 into Postgres?

Q: How do you Load a JSON file on S3 into Postgres?

JSON on S3 -> Local JSON: boto
JSON to Python iterator: json library
Python iterator to DataFrames: partition_all() and DataFrame()
DataFrames -> CSV files: DataFrame.to_csv()
CSV -> Postgres: LOAD command in Postgres

Q: How do you Load a JSON file on S3 into Postgres?

>>> # target source
>>> into('postgresql://postgres:postgres@localhost::mytable',
... 's3://mybucket/myfile.json')

Data Science is hard

		Each step is straightforward

		The entire process is hell

Into embraces the complexity

[image:]

		Nodes are data types (DataFrame, list, sqlalchemy.Table, ...)

		Edges are functions (DataFrame -> CSV via read_csv, ...)

		Edges are weighted by speed, we search for the minimum path.

		Red nodes can be larger than memory. Transfers between two red nodes only
use the red subgraph

Today’s graph

[image:]

How to get and use into

conda install into
or
pip install into

>>> from into import into
>>> into(target, source)

or
$ into source target

		Inputs can be
		types – list – Create new target

		objects – [1, 2, 3] – Append to target

		strings – 'myfile.csv' – Use regex magic

How to extend into

from into import convert, resource

@convert.register(np.ndarray, pd.DataFrame, cost=1.0)
def dataframe_to_numpy(df, **kwargs):
 return df.to_records(index=False)

@convert.register(list, np.ndarray, cost=10.0)
def numpy_to_list(x, **kwargs):
 return x.tolist()

Questions?

		Source: https://github.com/ContinuumIO/into

		Docs: http://into.readthedocs.org/en/latest/

		Blog: http://matthewrocklin.com/blog

>>> from into import into
>>> happiness = into(target, source)

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/REVEAL_README.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

reveal.js [image: Build Status] [https://travis-ci.org/hakimel/reveal.js]

A framework for easily creating beautiful presentations using HTML. Check out the live demo [http://lab.hakim.se/reveal-js/].

reveal.js comes with a broad range of features including nested slides [https://github.com/hakimel/reveal.js#markup], markdown contents [https://github.com/hakimel/reveal.js#markdown], PDF export [https://github.com/hakimel/reveal.js#pdf-export], speaker notes [https://github.com/hakimel/reveal.js#speaker-notes] and a JavaScript API [https://github.com/hakimel/reveal.js#api]. It’s best viewed in a browser with support for CSS 3D transforms but fallbacks [https://github.com/hakimel/reveal.js/wiki/Browser-Support] are available to make sure your presentation can still be viewed elsewhere.

More reading:

		Installation: Step-by-step instructions for getting reveal.js running on your computer.

		Changelog [https://github.com/hakimel/reveal.js/releases]: Up-to-date version history.

		Examples [https://github.com/hakimel/reveal.js/wiki/Example-Presentations]: Presentations created with reveal.js, add your own!

		Browser Support [https://github.com/hakimel/reveal.js/wiki/Browser-Support]: Explanation of browser support and fallbacks.

Online Editor

Presentations are written using HTML or markdown but there’s also an online editor for those of you who prefer a graphical interface. Give it a try at http://slid.es.

Instructions

Markup

Markup hierarchy needs to be <div class="reveal"> <div class="slides"> <section> where the <section> represents one slide and can be repeated indefinitely. If you place multiple <section>‘s inside of another <section> they will be shown as vertical slides. The first of the vertical slides is the “root” of the others (at the top), and it will be included in the horizontal sequence. For example:

<div class="reveal">
 <div class="slides">
 <section>Single Horizontal Slide</section>
 <section>
 <section>Vertical Slide 1</section>
 <section>Vertical Slide 2</section>
 </section>
 </div>
</div>

Markdown

It’s possible to write your slides using Markdown. To enable Markdown, add the data-markdown attribute to your <section> elements and wrap the contents in a <script type="text/template"> like the example below.

This is based on data-markdown [https://gist.github.com/1343518] from Paul Irish [https://github.com/paulirish] modified to use marked [https://github.com/chjj/marked] to support Github Flavoured Markdown [https://help.github.com/articles/github-flavored-markdown]. Sensitive to indentation (avoid mixing tabs and spaces) and line breaks (avoid consecutive breaks).

<section data-markdown>
 <script type="text/template">
 ## Page title

 A paragraph with some text and a [link](http://hakim.se).
 </script>
</section>

External Markdown

You can write your content as a separate file and have reveal.js load it at runtime. Note the separator arguments which determine how slides are delimited in the external file. The data-charset attribute is optional and specifies which charset to use when loading the external file.

When used locally, this feature requires that reveal.js runs from a local web server.

<section data-markdown="example.md"
 data-separator="^\n\n\n"
 data-vertical="^\n\n"
 data-notes="^Note:"
 data-charset="iso-8859-15">
</section>

Element Attributes

Special syntax (in html comment) is available for adding attributes to Markdown elements. This is useful for fragments, amongst other things.

<section data-markdown>
 <script type="text/template">
 - Item 1 <!-- .element: class="fragment" data-fragment-index="2" -->
 - Item 2 <!-- .element: class="fragment" data-fragment-index="1" -->
 </script>
</section>

Slide Attributes

Special syntax (in html comment) is available for adding attributes to the slide <section> elements generated by your Markdown.

<section data-markdown>
 <script type="text/template">
 <!-- .slide: data-background="#ff0000" -->
 Markdown content
 </script>
</section>

Configuration

At the end of your page you need to initialize reveal by running the following code. Note that all config values are optional and will default as specified below.

Reveal.initialize({

 // Display controls in the bottom right corner
 controls: true,

 // Display a presentation progress bar
 progress: true,

 // Display the page number of the current slide
 slideNumber: false,

 // Push each slide change to the browser history
 history: false,

 // Enable keyboard shortcuts for navigation
 keyboard: true,

 // Enable the slide overview mode
 overview: true,

 // Vertical centering of slides
 center: true,

 // Enables touch navigation on devices with touch input
 touch: true,

 // Loop the presentation
 loop: false,

 // Change the presentation direction to be RTL
 rtl: false,

 // Turns fragments on and off globally
 fragments: true,

 // Flags if the presentation is running in an embedded mode,
 // i.e. contained within a limited portion of the screen
 embedded: false,

 // Number of milliseconds between automatically proceeding to the
 // next slide, disabled when set to 0, this value can be overwritten
 // by using a data-autoslide attribute on your slides
 autoSlide: 0,

 // Stop auto-sliding after user input
 autoSlideStoppable: true,

 // Enable slide navigation via mouse wheel
 mouseWheel: false,

 // Hides the address bar on mobile devices
 hideAddressBar: true,

 // Opens links in an iframe preview overlay
 previewLinks: false,

 // Transition style
 transition: 'default', // default/cube/page/concave/zoom/linear/fade/none

 // Transition speed
 transitionSpeed: 'default', // default/fast/slow

 // Transition style for full page slide backgrounds
 backgroundTransition: 'default', // default/none/slide/concave/convex/zoom

 // Number of slides away from the current that are visible
 viewDistance: 3,

 // Parallax background image
 parallaxBackgroundImage: '', // e.g. "'https://s3.amazonaws.com/hakim-static/reveal-js/reveal-parallax-1.jpg'"

 // Parallax background size
 parallaxBackgroundSize: '' // CSS syntax, e.g. "2100px 900px"

});

Note that the new default vertical centering option will break compatibility with slides that were using transitions with backgrounds (cube and page). To restore the previous behavior, set center to false.

The configuration can be updated after initialization using the configure method:

// Turn autoSlide off
Reveal.configure({ autoSlide: 0 });

// Start auto-sliding every 5s
Reveal.configure({ autoSlide: 5000 });

Dependencies

Reveal.js doesn’t rely on any third party scripts to work but a few optional libraries are included by default. These libraries are loaded as dependencies in the order they appear, for example:

Reveal.initialize({
 dependencies: [
 // Cross-browser shim that fully implements classList - https://github.com/eligrey/classList.js/
 { src: 'lib/js/classList.js', condition: function() { return !document.body.classList; } },

 // Interpret Markdown in <section> elements
 { src: 'plugin/markdown/marked.js', condition: function() { return !!document.querySelector('[data-markdown]'); } },
 { src: 'plugin/markdown/markdown.js', condition: function() { return !!document.querySelector('[data-markdown]'); } },

 // Syntax highlight for <code> elements
 { src: 'plugin/highlight/highlight.js', async: true, callback: function() { hljs.initHighlightingOnLoad(); } },

 // Zoom in and out with Alt+click
 { src: 'plugin/zoom-js/zoom.js', async: true, condition: function() { return !!document.body.classList; } },

 // Speaker notes
 { src: 'plugin/notes/notes.js', async: true, condition: function() { return !!document.body.classList; } },

 // Remote control your reveal.js presentation using a touch device
 { src: 'plugin/remotes/remotes.js', async: true, condition: function() { return !!document.body.classList; } },

 // MathJax
 { src: 'plugin/math/math.js', async: true }
]
});

You can add your own extensions using the same syntax. The following properties are available for each dependency object:

		src: Path to the script to load

		async: [optional] Flags if the script should load after reveal.js has started, defaults to false

		callback: [optional] Function to execute when the script has loaded

		condition: [optional] Function which must return true for the script to be loaded

Presentation Size

All presentations have a normal size, that is the resolution at which they are authored. The framework will automatically scale presentations uniformly based on this size to ensure that everything fits on any given display or viewport.

See below for a list of configuration options related to sizing, including default values:

Reveal.initialize({

 ...

 // The "normal" size of the presentation, aspect ratio will be preserved
 // when the presentation is scaled to fit different resolutions. Can be
 // specified using percentage units.
 width: 960,
 height: 700,

 // Factor of the display size that should remain empty around the content
 margin: 0.1,

 // Bounds for smallest/largest possible scale to apply to content
 minScale: 0.2,
 maxScale: 1.0

});

Auto-sliding

Presentations can be configure to progress through slides automatically, without any user input. To enable this you will need to tell the framework how many milliseconds it should wait between slides:

// Slide every five seconds
Reveal.configure({
 autoSlide: 5000
});

When this is turned on a control element will appear that enables users to pause and resume auto-sliding. Sliding is also paused automatically as soon as the user starts navigating. You can disable these controls by specifying autoSlideStoppable: false in your reveal.js config.

You can also override the slide duration for individual slides by using the data-autoslide attribute on individual sections:

<section data-autoslide="10000">This will remain on screen for 10 seconds</section>

Keyboard Bindings

If you’re unhappy with any of the default keyboard bindings you can override them using the keyboard config option:

Reveal.configure({
 keyboard: {
 13: 'next', // go to the next slide when the ENTER key is pressed
 27: function() {}, // do something custom when ESC is pressed
 32: null // don't do anything when SPACE is pressed (i.e. disable a reveal.js default binding)
 }
});

API

The Reveal class provides a JavaScript API for controlling navigation and reading state:

// Navigation
Reveal.slide(indexh, indexv, indexf);
Reveal.left();
Reveal.right();
Reveal.up();
Reveal.down();
Reveal.prev();
Reveal.next();
Reveal.prevFragment();
Reveal.nextFragment();
Reveal.toggleOverview();
Reveal.togglePause();

// Retrieves the previous and current slide elements
Reveal.getPreviousSlide();
Reveal.getCurrentSlide();

Reveal.getIndices(); // { h: 0, v: 0 } }

// State checks
Reveal.isFirstSlide();
Reveal.isLastSlide();
Reveal.isOverview();
Reveal.isPaused();

Ready Event

The ‘ready’ event is fired when reveal.js has loaded all (synchronous) dependencies and is ready to start navigating.

Reveal.addEventListener('ready', function(event) {
 // event.currentSlide, event.indexh, event.indexv
});

Slide Changed Event

An ‘slidechanged’ event is fired each time the slide is changed (regardless of state). The event object holds the index values of the current slide as well as a reference to the previous and current slide HTML nodes.

Some libraries, like MathJax (see #226 [https://github.com/hakimel/reveal.js/issues/226#issuecomment-10261609]), get confused by the transforms and display states of slides. Often times, this can be fixed by calling their update or render function from this callback.

Reveal.addEventListener('slidechanged', function(event) {
 // event.previousSlide, event.currentSlide, event.indexh, event.indexv
});

States

If you set data-state="somestate" on a slide <section>, “somestate” will be applied as a class on the document element when that slide is opened. This allows you to apply broad style changes to the page based on the active slide.

Furthermore you can also listen to these changes in state via JavaScript:

Reveal.addEventListener('somestate', function() {
 // TODO: Sprinkle magic
}, false);

Slide Backgrounds

Slides are contained within a limited portion of the screen by default to allow them to fit any display and scale uniformly. You can apply full page background colors or images by applying a data-background attribute to your <section> elements. Below are a few examples.

<section data-background="#ff0000">
 <h2>All CSS color formats are supported, like rgba() or hsl().</h2>
</section>
<section data-background="http://example.com/image.png">
 <h2>This slide will have a full-size background image.</h2>
</section>
<section data-background="http://example.com/image.png" data-background-size="100px" data-background-repeat="repeat">
 <h2>This background image will be sized to 100px and repeated.</h2>
</section>

Backgrounds transition using a fade animation by default. This can be changed to a linear sliding transition by passing backgroundTransition: 'slide' to the Reveal.initialize() call. Alternatively you can set data-background-transition on any section with a background to override that specific transition.

Parallax Background

If you want to use a parallax scrolling background, set the two following config properties when initializing reveal.js (the third one is optional).

Reveal.initialize({

 // Parallax background image
 parallaxBackgroundImage: '', // e.g. "https://s3.amazonaws.com/hakim-static/reveal-js/reveal-parallax-1.jpg"

 // Parallax background size
 parallaxBackgroundSize: '', // CSS syntax, e.g. "2100px 900px" - currently only pixels are supported (don't use % or auto)

 // This slide transition gives best results:
 transition: linear

});

Make sure that the background size is much bigger than screen size to allow for some scrolling. View example [http://lab.hakim.se/reveal-js/?parallaxBackgroundImage=https%3A%2F%2Fs3.amazonaws.com%2Fhakim-static%2Freveal-js%2Freveal-parallax-1.jpg¶llaxBackgroundSize=2100px%20900px].

Slide Transitions

The global presentation transition is set using the transition config value. You can override the global transition for a specific slide by using the data-transition attribute:

<section data-transition="zoom">
 <h2>This slide will override the presentation transition and zoom!</h2>
</section>

<section data-transition-speed="fast">
 <h2>Choose from three transition speeds: default, fast or slow!</h2>
</section>

Note that this does not work with the page and cube transitions.

Internal links

It’s easy to link between slides. The first example below targets the index of another slide whereas the second targets a slide with an ID attribute (<section id="some-slide">):

Link
Link

You can also add relative navigation links, similar to the built in reveal.js controls, by appending one of the following classes on any element. Note that each element is automatically given an enabled class when it’s a valid navigation route based on the current slide.

 <!-- Previous vertical or horizontal slide -->
 <!-- Next vertical or horizontal slide -->

Fragments

Fragments are used to highlight individual elements on a slide. Every element with the class fragment will be stepped through before moving on to the next slide. Here’s an example: http://lab.hakim.se/reveal-js/#/fragments

The default fragment style is to start out invisible and fade in. This style can be changed by appending a different class to the fragment:

<section>
 <p class="fragment grow">grow</p>
 <p class="fragment shrink">shrink</p>
 <p class="fragment roll-in">roll-in</p>
 <p class="fragment fade-out">fade-out</p>
 <p class="fragment current-visible">visible only once</p>
 <p class="fragment highlight-current-blue">blue only once</p>
 <p class="fragment highlight-red">highlight-red</p>
 <p class="fragment highlight-green">highlight-green</p>
 <p class="fragment highlight-blue">highlight-blue</p>
</section>

Multiple fragments can be applied to the same element sequentially by wrapping it, this will fade in the text on the first step and fade it back out on the second.

<section>

 I'll fade in, then out

</section>

The display order of fragments can be controlled using the data-fragment-index attribute.

<section>
 <p class="fragment" data-fragment-index="3">Appears last</p>
 <p class="fragment" data-fragment-index="1">Appears first</p>
 <p class="fragment" data-fragment-index="2">Appears second</p>
</section>

Fragment events

When a slide fragment is either shown or hidden reveal.js will dispatch an event.

Some libraries, like MathJax (see #505), get confused by the initially hidden fragment elements. Often times this can be fixed by calling their update or render function from this callback.

Reveal.addEventListener('fragmentshown', function(event) {
 // event.fragment = the fragment DOM element
});
Reveal.addEventListener('fragmenthidden', function(event) {
 // event.fragment = the fragment DOM element
});

Code syntax highlighting

By default, Reveal is configured with highlight.js [http://softwaremaniacs.org/soft/highlight/en/] for code syntax highlighting. Below is an example with clojure code that will be syntax highlighted. When the data-trim attribute is present surrounding whitespace is automatically removed.

<section>
 <pre><code data-trim>
(def lazy-fib
 (concat
 [0 1]
 ((fn rfib [a b]
 (lazy-cons (+ a b) (rfib b (+ a b)))) 0 1)))
 </code></pre>
</section>

Slide number

If you would like to display the page number of the current slide you can do so using the slideNumber configuration value.

Reveal.configure({ slideNumber: true });

Overview mode

Press “Esc” or “o” keys to toggle the overview mode on and off. While you’re in this mode, you can still navigate between slides,
as if you were at 1,000 feet above your presentation. The overview mode comes with a few API hooks:

Reveal.addEventListener('overviewshown', function(event) { /* ... */ });
Reveal.addEventListener('overviewhidden', function(event) { /* ... */ });

// Toggle the overview mode programmatically
Reveal.toggleOverview();

Fullscreen mode

Just press »F« on your keyboard to show your presentation in fullscreen mode. Press the »ESC« key to exit fullscreen mode.

Embedded media

Embedded HTML5 <video>/<audio> and YouTube iframes are automatically paused when you navigate away from a slide. This can be disabled by decorating your element with a data-ignore attribute.

Add data-autoplay to your media element if you want it to automatically start playing when the slide is shown:

<video data-autoplay src="http://clips.vorwaerts-gmbh.de/big_buck_bunny.mp4"></video>

Additionally the framework automatically pushes two post messages [https://developer.mozilla.org/en-US/docs/Web/API/Window.postMessage] to all iframes, slide:start when the slide containing the iframe is made visible and slide:stop when it is hidden.

Stretching elements

Sometimes it’s desirable to have an element, like an image or video, stretch to consume as much space as possible within a given slide. This can be done by adding the .stretch class to an element as seen below:

<section>
 <h2>This video will use up the remaining space on the slide</h2>
 <video class="stretch" src="http://clips.vorwaerts-gmbh.de/big_buck_bunny.mp4"></video>
</section>

Limitations:

		Only direct descendants of a slide section can be stretched

		Only one descendant per slide section can be stretched

PDF Export

Presentations can be exported to PDF via a special print stylesheet. This feature requires that you use Google Chrome [http://google.com/chrome].
Here’s an example of an exported presentation that’s been uploaded to SlideShare: http://www.slideshare.net/hakimel/revealjs-13872948.

		Open your presentation with css/print/pdf.css [https://github.com/hakimel/reveal.js/blob/master/css/print/pdf.css] included on the page. The default index HTML lets you add print-pdf anywhere in the query to include the stylesheet, for example: lab.hakim.se/reveal-js?print-pdf [http://lab.hakim.se/reveal-js?print-pdf].

		Open the in-browser print dialog (CMD+P).

		Change the Destination setting to Save as PDF.

		Change the Layout to Landscape.

		Change the Margins to None.

		Click Save.

[image: Chrome Print Settings]

Theming

The framework comes with a few different themes included:

		default: Gray background, white text, blue links

		beige: Beige background, dark text, brown links

		sky: Blue background, thin white text, blue links

		night: Black background, thick white text, orange links

		serif: Cappuccino background, gray text, brown links

		simple: White background, black text, blue links

		solarized: Cream-colored background, dark green text, blue links

Each theme is available as a separate stylesheet. To change theme you will need to replace default below with your desired theme name in index.html:

<link rel="stylesheet" href="css/theme/default.css" id="theme">

If you want to add a theme of your own see the instructions here: /css/theme/README.md [https://github.com/hakimel/reveal.js/blob/master/css/theme/README.md].

Speaker Notes

reveal.js comes with a speaker notes plugin which can be used to present per-slide notes in a separate browser window. The notes window also gives you a preview of the next upcoming slide so it may be helpful even if you haven’t written any notes. Press the ‘s’ key on your keyboard to open the notes window.

Notes are defined by appending an <aside> element to a slide as seen below. You can add the data-markdown attribute to the aside element if you prefer writing notes using Markdown.

When used locally, this feature requires that reveal.js runs from a local web server.

<section>
 <h2>Some Slide</h2>

 <aside class="notes">
 Oh hey, these are some notes. They'll be hidden in your presentation, but you can see them if you open the speaker notes window (hit 's' on your keyboard).
 </aside>
</section>

If you’re using the external Markdown plugin, you can add notes with the help of a special delimiter:

<section data-markdown="example.md" data-separator="^\n\n\n" data-vertical="^\n\n" data-notes="^Note:"></section>

Title
Sub-title

Here is some content...

Note:
This will only display in the notes window.

Server Side Speaker Notes

In some cases it can be desirable to run notes on a separate device from the one you’re presenting on. The Node.js-based notes plugin lets you do this using the same note definitions as its client side counterpart. Include the required scripts by adding the following dependencies:

Reveal.initialize({
 ...

 dependencies: [
 { src: 'socket.io/socket.io.js', async: true },
 { src: 'plugin/notes-server/client.js', async: true }
]
});

Then:

		Install Node.js [http://nodejs.org/]

		Run npm install

		Run node plugin/notes-server

Multiplexing

The multiplex plugin allows your audience to view the slides of the presentation you are controlling on their own phone, tablet or laptop. As the master presentation navigates the slides, all client presentations will update in real time. See a demo at http://revealjs.jit.su/.

The multiplex plugin needs the following 3 things to operate:

		Master presentation that has control

		Client presentations that follow the master

		Socket.io server to broadcast events from the master to the clients

More details:

Master presentation

Served from a static file server accessible (preferably) only to the presenter. This need only be on your (the presenter’s) computer. (It’s safer to run the master presentation from your own computer, so if the venue’s Internet goes down it doesn’t stop the show.) An example would be to execute the following commands in the directory of your master presentation:

		npm install node-static

		static

If you want to use the speaker notes plugin with your master presentation then make sure you have the speaker notes plugin configured correctly along with the configuration shown below, then execute node plugin/notes-server in the directory of your master presentation. The configuration below will cause it to connect to the socket.io server as a master, as well as launch your speaker-notes/static-file server.

You can then access your master presentation at http://localhost:1947

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: '13652805320794272084', // Obtained from the socket.io server. Gives this (the master) control of the presentation
 id: '1ea875674b17ca76', // Obtained from socket.io server
 url: 'revealjs.jit.su:80' // Location of socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/master.js', async: true },

 // and if you want speaker notes
 { src: 'plugin/notes-server/client.js', async: true }

 // other dependencies...
]
});

Client presentation

Served from a publicly accessible static file server. Examples include: GitHub Pages, Amazon S3, Dreamhost, Akamai, etc. The more reliable, the better. Your audience can then access the client presentation via http://example.com/path/to/presentation/client/index.html, with the configuration below causing them to connect to the socket.io server as clients.

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: null, // null so the clients do not have control of the master presentation
 id: '1ea875674b17ca76', // id, obtained from socket.io server
 url: 'revealjs.jit.su:80' // Location of socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]
});

Socket.io server

Server that receives the slideChanged events from the master presentation and broadcasts them out to the connected client presentations. This needs to be publicly accessible. You can run your own socket.io server with the commands:

		npm install

		node plugin/multiplex

Or you use the socket.io server at http://revealjs.jit.su.

You’ll need to generate a unique secret and token pair for your master and client presentations. To do so, visit http://example.com/token, where http://example.com is the location of your socket.io server. Or if you’re going to use the socket.io server at http://revealjs.jit.su, visit http://revealjs.jit.su/token.

You are very welcome to point your presentations at the Socket.io server running at http://revealjs.jit.su, but availability and stability are not guaranteed. For anything mission critical I recommend you run your own server. It is simple to deploy to nodejitsu, heroku, your own environment, etc.

socket.io server as file static server

The socket.io server can play the role of static file server for your client presentation, as in the example at http://revealjs.jit.su. (Open http://revealjs.jit.su in two browsers. Navigate through the slides on one, and the other will update to match.)

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: null, // null so the clients do not have control of the master presentation
 id: '1ea875674b17ca76', // id, obtained from socket.io server
 url: 'example.com:80' // Location of your socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]

It can also play the role of static file server for your master presentation and client presentations at the same time (as long as you don’t want to use speaker notes). (Open http://revealjs.jit.su in two browsers. Navigate through the slides on one, and the other will update to match. Navigate through the slides on the second, and the first will update to match.) This is probably not desirable, because you don’t want your audience to mess with your slides while you’re presenting. ;)

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: '13652805320794272084', // Obtained from the socket.io server. Gives this (the master) control of the presentation
 id: '1ea875674b17ca76', // Obtained from socket.io server
 url: 'example.com:80' // Location of your socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/master.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]
});

Leap Motion

The Leap Motion plugin lets you utilize your Leap Motion [https://www.leapmotion.com/] device to control basic navigation of your presentation. The gestures currently supported are:

1 to 2 fingers

Pointer

—

 Point to anything on screen. Move your finger past the device to expand the pointer.

1 hand + 3 or more fingers (left/right/up/down)

Navigate through your slides. See config options to invert movements.

2 hands upwards

Toggle the overview mode. Do it a second time to exit the overview.

Config Options

You can edit the following options:

| Property | Default | Description
| —————– |:—————–:| :————-
| autoCenter | true | Center the pointer based on where you put your finger into the leap motions detection field.
| gestureDelay | 500 | How long to delay between gestures in milliseconds.
| naturalSwipe | true | Swipe as though you were touching a touch screen. Set to false to invert.
| pointerColor | #00aaff | The color of the pointer.
| pointerOpacity | 0.7 | The opacity of the pointer.
| pointerSize | 15 | The minimum height and width of the pointer.
| pointerTolerance | 120 | Bigger = slower pointer.

Example configuration:

Reveal.initialize({

 // other options...

 leap: {
 naturalSwipe : false, // Invert swipe gestures
 pointerOpacity : 0.5, // Set pointer opacity to 0.5
 pointerColor : '#d80000' // Red pointer
 },

 dependencies: [
 { src: 'plugin/leap/leap.js', async: true }
]

});

MathJax

If you want to display math equations in your presentation you can easily do so by including this plugin. The plugin is a very thin wrapper around the MathJax [http://www.mathjax.org/] library. To use it you’ll need to include it as a reveal.js dependency, find our more about dependencies here.

The plugin defaults to using LaTeX [http://en.wikipedia.org/wiki/LaTeX] but that can be adjusted through the math configuration object. Note that MathJax is loaded from a remote server. If you want to use it offline you’ll need to download a copy of the library and adjust the mathjax configuration value.

Below is an example of how the plugin can be configured. If you don’t intend to change these values you do not need to include the math config object at all.

Reveal.initialize({

 // other options ...

 math: {
 mathjax: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js',
 config: 'TeX-AMS_HTML-full' // See http://docs.mathjax.org/en/latest/config-files.html
 },

 dependencies: [
 { src: 'plugin/math/math.js', async: true }
]

});

Read MathJax’s documentation if you need HTTPS delivery [http://docs.mathjax.org/en/latest/start.html#secure-access-to-the-cdn] or serving of specific versions [http://docs.mathjax.org/en/latest/configuration.html#loading-mathjax-from-the-cdn] for stability.

Installation

The basic setup is for authoring presentations only. The full setup gives you access to all reveal.js features and plugins such as speaker notes as well as the development tasks needed to make changes to the source.

Basic setup

The core of reveal.js is very easy to install. You’ll simply need to download a copy of this repository and open the index.html file directly in your browser.

		Download the latest version of reveal.js from https://github.com/hakimel/reveal.js/releases

		Unzip and replace the example contents in index.html with your own

		Open index.html in a browser to view it

Full setup

Some reveal.js features, like external markdown and speaker notes, require that presentations run from a local web server. The following instructions will set up such a server as well as all of the development tasks needed to make edits to the reveal.js source code.

		Install Node.js [http://nodejs.org/]

		Install Grunt [http://gruntjs.com/getting-started#installing-the-cli]

		Clone the reveal.js repository

$ git clone https://github.com/hakimel/reveal.js.git

		Navigate to the reveal.js folder

$ cd reveal.js

		Install dependencies

$ npm install

		Serve the presentation and monitor source files for changes

$ grunt serve

		Open http://localhost:8000 to view your presentation

You can change the port by using grunt serve --port 8001.

Folder Structure

		css/ Core styles without which the project does not function

		js/ Like above but for JavaScript

		plugin/ Components that have been developed as extensions to reveal.js

		lib/ All other third party assets (JavaScript, CSS, fonts)

Contributing

Please keep the issue tracker [http://github.com/hakimel/reveal.js/issues] limited to bug reports, feature requests and pull requests. If you are reporting a bug make sure to include information about which browser and operating system you are using as well as the necessary steps to reproduce the issue.

If you have personal support questions use StackOverflow [http://stackoverflow.com/questions/tagged/reveal.js].

Pull requests

		Should follow the coding style of the file you work in, most importantly:
		Tabs to indent

		Single-quoted strings

		Should be made towards the dev branch

		Should be submitted from a feature/topic branch (not your master)

		Should not include the minified reveal.min.js file

License

MIT licensed

Copyright (C) 2014 Hakim El Hattab, http://hakim.se

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/dask-graphs.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Common Communication Patterns with Dask Arrays

Dask arrays/frames provide translation from NumPy/Pandas syntax to visual
blocked algorithms.

Make a dask array of ones

>>> import dask.array as da
>>> x = da.ones(15, blockshape=(5,))

And visualize the resulting dask graph

>>> from dask.dot import dot_graph
>>> dot_graph(x.dask)

[image:]

We’re going to do this for increasingly complex expressions which create
increasingly complex blocked algorithm task graphs.

Elementwise operations

>>> x + 1

[image:]

Elementwise operations

>>> (x + 1) * 2

[image:]

Elementwise operations

>>> ((x + 1) * 2) ** 3

[image:]

Reductions

>>> (x + 1).sum()

[image:]

Slicing

>>> (x + 1)[3:9].sum()

[image:]

Ghosting (shared boundaries)

>>> x = da.ones(100, blockshape=(10,))
>>> g = da.ghost.ghost(x, depth={0: 2}, boundary={0: np.nan})

[image:]

Two Dimensional Algorithms

>>> x = da.ones((15, 15), blockshape=(5, 5))

Partial Reductions

>>> x.mean(axis=0)

[image:]

Transpose

>>> x + x.T

[image:]

Matrix Multiply (index contraction)

>>> x.dot(x.T)

[image:]

Compound ad naseum

>>> x.dot(x.T + 1) - x.mean(axis=1)

[image:]

We can compound these operations forever. Constructing larger and larger
graphs before we hand off the work to a scheduler to execute.

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/how-does-blaze-work.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

How does Blaze work?

At its core, Blaze is the following:

		Symbolic expression system – Mathematica for data

		Interpreters to various backends

		User interface to make expression system accessible

		Dispatch system to make interpreters feasible

In practice, connecting to a new backend takes days, not months.

Blaze separates our intent:

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

from the data:

>>> L = [[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]]
...

then combines the two explicitly

>>> from blaze.compute import compute
>>> compute(deadbeats, L) # Iterator in, Iterator out
<itertools.imap at 0x7fce75a9f790>
>>> list(_)
['Bob', 'Edith']

Separating intent from data lets us switch backends

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

so we can drive Pandas instead

>>> df = DataFrame([[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]],
... columns=['id', 'name', 'balance'])

getting the same result through different means

>>> from blaze.compute import compute
>>> compute(deadbeats, df) # DataFrame in, DataFrame out
1 Bob
4 Edith
Name: name, dtype: object

Now we reach out into the ecosystem

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

and use newer technologies

>>> import pyspark
>>> sc = pyspark.SparkContext('local', 'Blaze-demo')

>>> rdd = into(sc, L) # migrate to Resilient Distributed Dataset (RDD)
>>> rdd
ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:315

evolving with the ecosystem

>>> from blaze.compute import compute
>>> compute(deadbeats, rdd) # RDD in, RDD out
PythonRDD[1] at RDD at PythonRDD.scala:43
>>> _.collect() # Pull results down to local Python
['Bob', 'Edith']

Why separate expressions from computation?

		Write once, run anywhere

		Scalable development

(start with CSV files, end with Impala/Spark)

		Rapid prototyping and system discovery

(try Postgres, MongoDB, Spark, see what suits you best)

		Robust to changes in architecture

(assuming Blaze will support Hadoop++)

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/pydata-berlin-fin.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Scikit Image Case Study

		Setup
		Scikit image has sophisticated single-threaded algorithms

		Dask.array parallelizes map on slighty overlapping blocks

[image:]

		Timeline
		Blake Griffith [http://github.com/cowlicks/]
creates
parallel apply function [https://github.com/scikit-image/scikit-image/pull/1493]
in scikit-image (1 week part time)

		People try it out; it’s not much faster

		Johannes Schönberger [http://www.cs.unc.edu/~jsch/] releases the GIL [https://github.com/scikit-image/scikit-image/pull/1519/files] (few days)

		Scikit image + dask.array sees
2x-3x speedups [https://github.com/ContinuumIO/dask/blob/master/notebooks/parallelize_image_filtering_workload.ipynb]
over Scikit image alone (experiments by @arve0 [http://arve0.github.io/])

Momentum

		Jeff Reback has a nogil Pandas branch [https://github.com/pydata/pandas/pull/10199]

This morning: I updated this. works for all groupbys now.

		Bottleneck issue [https://github.com/kwgoodman/bottleneck]

Final thoughts

http://dask.pydata.org

		Most data is small (you should ignore this talk)

		PyData has room to grow in parallelism (GIL is not an issue)

		Dask.array – a multi-core on-disk numpy clone

		Dask.core – an option for parallelism

[image:]

Finally: Parallelism is rarely important

		Most data is small

		For moderate data, think about storage and representation

		Pandas categoricals are possibly the biggest improvement to PyData performance in
the last year

Ignore everything I just said

		Most data is small

		For moderate data, think about storage and representation

		Pandas categoricals are possibly the biggest improvement to PyData performance in
the last year

Questions?

http://dask.pydata.org

[image:]

[image:]

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/chunking.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Expression Chunking

... designing parallel algorithms

... out-of-core, parallel, numpy/pandas

Suppose we have a large array of integers

A trillion numbers

x = np.array([5, 3, 1, ... <one trillion numbers>, ... 12, 5, 10])

How do we compute the largest?

x.max()

Define the problem in Blaze

>>> from blaze import symbol
>>> x = symbol('x', '1000000000 * int')
>>> x.max()

Max by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Max of each chunk

aggregate[i] = chunk.max()

Max of aggregated results

aggregate.max()

>>> from blaze.expr.split import split
>>> split(x, x.max())
((chunk, max(chunk)),
 (aggregate, max(aggregate)))

Sum by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Sum of each chunk

aggregate[i] = chunk.sum()

Sum of aggregated results

aggregate.sum()

>>> from blaze.expr.split import split
>>> split(x, x.sum())
((chunk, sum(chunk)),
 (aggregate, sum(aggregate)))

Count by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Count each chunk

aggregate[i] = chunk.count()

Sum aggregated results

aggregate.sum()

>>> from blaze.expr.split import split
>>> split(x, x.count())
((chunk, count(chunk)),
 (aggregate, sum(aggregate)))

Mean by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Sum and count of each chunk

aggregate.total[i] = chunk.sum()
aggregate.n[i] = chunk.count()

Sum the total and count then divide

aggregate.total.sum() / aggregate.n.sum()

>>> from blaze.expr.split import split
>>> split(x, x.mean())
((chunk, summary(count=count(chunk), total=sum(chunk))),
 (aggregate, sum(aggregate.total)) / sum(aggregate.count))

Number of occurrences by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Split-apply-combine on each chunk

by(x, freq=x.count())

Split-apply-combine on concatenation of results

by(aggregate, freq=aggregate.freq.sum())

>>> from blaze.expr.split import split
>>> split(x, by(x, freq=x.count())
((chunk, by(chunk, freq=count(chunk))),
 (aggregate, by(aggregate.chunk, freq=sum(aggregate.freq))))

N-Dimensional reductions

Data: a 10000 by 10000 by 10000 array of (x,y) coordinates

>>> points = symbol('points', '10000 * 10000 * 10000 * {x: int, y: int}')

Chunk: a cube of a billion elements

>>> chunk = symbol('chunk', '1000 * 1000 * 1000 * {x: int, y: int}')

Expr: The variance of their addition

>>> expr = (points.x + points.y).var(axis=0)
>>> split(points, expr, chunk=chunk)
((chunk,
 summary(n = count(chunk.x + chunk.y),
 x = sum(chunk.x + chunk.y),
 x2 = sum((chunk.x + chunk.y) ** 2))),
 (aggregate,
 (sum(aggregate.x2) / (sum(aggregate.n)))
 - ((sum(aggregate.x) / (sum(aggregate.n))) ** 2)))

Known shapes:

>>> aggregate.dshape
dshape("10 * 10 * 10 * {n: int32, x: float64, x2: float64}")

Recap

Blaze expressions let us design powerful algorihtms abstractly. Development is
fast and generally applicable.

Limitations

		No sorting, joining, etc..

		Only single-dataset operations (notably missing dot products)

		Only a third of a solution.
		Expression splitting - what do we want to compute?

		Task scheduling - where do we compute each piece?

		In-memory execution - how do we actually execute this?

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/pydata-berlin.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Dask Arrays

or

PyData’s Relationship with Parallelism

Matthew Rocklin

Continuum Analytics

Outline

		.

		Dask.array
		Multicore parallelism with blocked algorithms

		Out-of-core execution with task scheduling

		.

		.

Outline

		PyData’s uneasy relationship with parallelism

		Dask.array
		Multicore parallelism with blocked algorithms

		Out-of-core execution with task scheduling

		Dask.core
		Extend parallelism to other contexts

		PyData and the GIL

Parallelism and Data

		Gigabyte - Fits in memory, need one core (laptop)

		Terabyte - Fits on disk, need ten cores (workstation)

		Petabyte - Fits on many disks, need 1000 cores (cluster)

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/blaze-intro.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze: Foundations of Array Computing

NumPy arrays and Pandas DataFrames are foundational data structures

But they are restricted to memory

This is ok 95% of cases

what about the other 5%?

Computational Projects

Excellent streaming, out-of-core, and distributed alternatives exist

NumPy like

		SciDB

		h5py

		DistArray

		Elemental

		PETCs, Trillinos

		Biggus

		...

Each approach is valid in a particular situation

Computational Projects

Excellent streaming, out-of-core, and distributed alternatives exist

Pandas like

		Postgres/SQLite/MySQL/Oracle

		PyTables, BColz

		HDFS
		Hadoop (Pig, Hive, ...)

		Spark

		Impala

		...

Each approach is valid in a particular situation

Data Storage

Analagous variety of data storage techniques

		CSV - Accessible

		JSON - Pervasive, human/machine readable

		HDF5 - Efficient binary access

		BColz - Efficient columnar access

		Parquet - Efficient columnar access

		HDFS - Big!

		SQL - SQL!

Each approach is valid in a particular situation

Spinning up a new technology is expensive

Keeping up with a changing landscape frustrates developers

Foundations address these challenges by being adaptable

Blaze connects familiar interfaces to a variety of backends

Three parts

		Abstract expression system around Tables, Arrays

		Dispatch system from these expressions to computational backends

		Dispatch system between data stored in different backends

Blaze looks and feels like Pandas

>>> from blaze import *
>>> iris = CSV('examples/data/iris.csv')

>>> t = Table(iris)
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> t.species.distinct()
 species
0 Iris-setosa
1 Iris-versicolor
2 Iris-virginica

Blaze operates on various systems, like SQL

>>> from blaze import *
>>> iris = SQL('sqlite:///examples/data/iris.db', 'iris')

>>> t = Table(iris)
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> t.species.distinct()
 species
0 Iris-setosa
1 Iris-versicolor
2 Iris-virginica

... and Spark

>>> import pyspark
>>> sc = pyspark.SparkContext("local", "blaze-demo")
>>> rdd = into(sc, csv) # handle data conversion
>>> t = Table(rdd)
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> t.species.distinct()
 species
0 Iris-setosa
1 Iris-versicolor
2 Iris-virginica

Currently supports the following

		Python – (through toolz)

		NumPy

		Pandas

		SQL – (through sqlalchemy)

		HDF5 – (through h5py, pytables)

		MongoDB – (through pymongo)

		Spark – (through pyspark)

		Impala – (through impyla, sqlalchemy)

Blaze organizes other open source projects to achieve a cohesive and flexible data analytics engine

Blaze doesn’t do any real work.

It orchestrates functionality already in the Python ecosystem.

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/questions.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Questions?

Docs – http://blaze.pydata.org/

Install – conda install blaze

Source –
http://github.com/ContinuumIO/blaze/

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/frontbackends.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

 © Copyright 2012, Continuum Analytics.

_static/up-pressed.png

_static/presentations/webinar-oct-2014.html

		

			

		

		
		

		

_static/presentations/blaze.html

		

			

		

		
		

		

_static/presentations/into.html

		

			

		

		
		

		

_static/presentations/REVEAL_README.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

reveal.js [image: Build Status] [https://travis-ci.org/hakimel/reveal.js]

A framework for easily creating beautiful presentations using HTML. Check out the live demo [http://lab.hakim.se/reveal-js/].

reveal.js comes with a broad range of features including nested slides [https://github.com/hakimel/reveal.js#markup], markdown contents [https://github.com/hakimel/reveal.js#markdown], PDF export [https://github.com/hakimel/reveal.js#pdf-export], speaker notes [https://github.com/hakimel/reveal.js#speaker-notes] and a JavaScript API [https://github.com/hakimel/reveal.js#api]. It’s best viewed in a browser with support for CSS 3D transforms but fallbacks [https://github.com/hakimel/reveal.js/wiki/Browser-Support] are available to make sure your presentation can still be viewed elsewhere.

More reading:

		Installation: Step-by-step instructions for getting reveal.js running on your computer.

		Changelog [https://github.com/hakimel/reveal.js/releases]: Up-to-date version history.

		Examples [https://github.com/hakimel/reveal.js/wiki/Example-Presentations]: Presentations created with reveal.js, add your own!

		Browser Support [https://github.com/hakimel/reveal.js/wiki/Browser-Support]: Explanation of browser support and fallbacks.

Online Editor

Presentations are written using HTML or markdown but there’s also an online editor for those of you who prefer a graphical interface. Give it a try at http://slid.es.

Instructions

Markup

Markup hierarchy needs to be <div class="reveal"> <div class="slides"> <section> where the <section> represents one slide and can be repeated indefinitely. If you place multiple <section>‘s inside of another <section> they will be shown as vertical slides. The first of the vertical slides is the “root” of the others (at the top), and it will be included in the horizontal sequence. For example:

<div class="reveal">
 <div class="slides">
 <section>Single Horizontal Slide</section>
 <section>
 <section>Vertical Slide 1</section>
 <section>Vertical Slide 2</section>
 </section>
 </div>
</div>

Markdown

It’s possible to write your slides using Markdown. To enable Markdown, add the data-markdown attribute to your <section> elements and wrap the contents in a <script type="text/template"> like the example below.

This is based on data-markdown [https://gist.github.com/1343518] from Paul Irish [https://github.com/paulirish] modified to use marked [https://github.com/chjj/marked] to support Github Flavoured Markdown [https://help.github.com/articles/github-flavored-markdown]. Sensitive to indentation (avoid mixing tabs and spaces) and line breaks (avoid consecutive breaks).

<section data-markdown>
 <script type="text/template">
 ## Page title

 A paragraph with some text and a [link](http://hakim.se).
 </script>
</section>

External Markdown

You can write your content as a separate file and have reveal.js load it at runtime. Note the separator arguments which determine how slides are delimited in the external file. The data-charset attribute is optional and specifies which charset to use when loading the external file.

When used locally, this feature requires that reveal.js runs from a local web server.

<section data-markdown="example.md"
 data-separator="^\n\n\n"
 data-vertical="^\n\n"
 data-notes="^Note:"
 data-charset="iso-8859-15">
</section>

Element Attributes

Special syntax (in html comment) is available for adding attributes to Markdown elements. This is useful for fragments, amongst other things.

<section data-markdown>
 <script type="text/template">
 - Item 1 <!-- .element: class="fragment" data-fragment-index="2" -->
 - Item 2 <!-- .element: class="fragment" data-fragment-index="1" -->
 </script>
</section>

Slide Attributes

Special syntax (in html comment) is available for adding attributes to the slide <section> elements generated by your Markdown.

<section data-markdown>
 <script type="text/template">
 <!-- .slide: data-background="#ff0000" -->
 Markdown content
 </script>
</section>

Configuration

At the end of your page you need to initialize reveal by running the following code. Note that all config values are optional and will default as specified below.

Reveal.initialize({

 // Display controls in the bottom right corner
 controls: true,

 // Display a presentation progress bar
 progress: true,

 // Display the page number of the current slide
 slideNumber: false,

 // Push each slide change to the browser history
 history: false,

 // Enable keyboard shortcuts for navigation
 keyboard: true,

 // Enable the slide overview mode
 overview: true,

 // Vertical centering of slides
 center: true,

 // Enables touch navigation on devices with touch input
 touch: true,

 // Loop the presentation
 loop: false,

 // Change the presentation direction to be RTL
 rtl: false,

 // Turns fragments on and off globally
 fragments: true,

 // Flags if the presentation is running in an embedded mode,
 // i.e. contained within a limited portion of the screen
 embedded: false,

 // Number of milliseconds between automatically proceeding to the
 // next slide, disabled when set to 0, this value can be overwritten
 // by using a data-autoslide attribute on your slides
 autoSlide: 0,

 // Stop auto-sliding after user input
 autoSlideStoppable: true,

 // Enable slide navigation via mouse wheel
 mouseWheel: false,

 // Hides the address bar on mobile devices
 hideAddressBar: true,

 // Opens links in an iframe preview overlay
 previewLinks: false,

 // Transition style
 transition: 'default', // default/cube/page/concave/zoom/linear/fade/none

 // Transition speed
 transitionSpeed: 'default', // default/fast/slow

 // Transition style for full page slide backgrounds
 backgroundTransition: 'default', // default/none/slide/concave/convex/zoom

 // Number of slides away from the current that are visible
 viewDistance: 3,

 // Parallax background image
 parallaxBackgroundImage: '', // e.g. "'https://s3.amazonaws.com/hakim-static/reveal-js/reveal-parallax-1.jpg'"

 // Parallax background size
 parallaxBackgroundSize: '' // CSS syntax, e.g. "2100px 900px"

});

Note that the new default vertical centering option will break compatibility with slides that were using transitions with backgrounds (cube and page). To restore the previous behavior, set center to false.

The configuration can be updated after initialization using the configure method:

// Turn autoSlide off
Reveal.configure({ autoSlide: 0 });

// Start auto-sliding every 5s
Reveal.configure({ autoSlide: 5000 });

Dependencies

Reveal.js doesn’t rely on any third party scripts to work but a few optional libraries are included by default. These libraries are loaded as dependencies in the order they appear, for example:

Reveal.initialize({
 dependencies: [
 // Cross-browser shim that fully implements classList - https://github.com/eligrey/classList.js/
 { src: 'lib/js/classList.js', condition: function() { return !document.body.classList; } },

 // Interpret Markdown in <section> elements
 { src: 'plugin/markdown/marked.js', condition: function() { return !!document.querySelector('[data-markdown]'); } },
 { src: 'plugin/markdown/markdown.js', condition: function() { return !!document.querySelector('[data-markdown]'); } },

 // Syntax highlight for <code> elements
 { src: 'plugin/highlight/highlight.js', async: true, callback: function() { hljs.initHighlightingOnLoad(); } },

 // Zoom in and out with Alt+click
 { src: 'plugin/zoom-js/zoom.js', async: true, condition: function() { return !!document.body.classList; } },

 // Speaker notes
 { src: 'plugin/notes/notes.js', async: true, condition: function() { return !!document.body.classList; } },

 // Remote control your reveal.js presentation using a touch device
 { src: 'plugin/remotes/remotes.js', async: true, condition: function() { return !!document.body.classList; } },

 // MathJax
 { src: 'plugin/math/math.js', async: true }
]
});

You can add your own extensions using the same syntax. The following properties are available for each dependency object:

		src: Path to the script to load

		async: [optional] Flags if the script should load after reveal.js has started, defaults to false

		callback: [optional] Function to execute when the script has loaded

		condition: [optional] Function which must return true for the script to be loaded

Presentation Size

All presentations have a normal size, that is the resolution at which they are authored. The framework will automatically scale presentations uniformly based on this size to ensure that everything fits on any given display or viewport.

See below for a list of configuration options related to sizing, including default values:

Reveal.initialize({

 ...

 // The "normal" size of the presentation, aspect ratio will be preserved
 // when the presentation is scaled to fit different resolutions. Can be
 // specified using percentage units.
 width: 960,
 height: 700,

 // Factor of the display size that should remain empty around the content
 margin: 0.1,

 // Bounds for smallest/largest possible scale to apply to content
 minScale: 0.2,
 maxScale: 1.0

});

Auto-sliding

Presentations can be configure to progress through slides automatically, without any user input. To enable this you will need to tell the framework how many milliseconds it should wait between slides:

// Slide every five seconds
Reveal.configure({
 autoSlide: 5000
});

When this is turned on a control element will appear that enables users to pause and resume auto-sliding. Sliding is also paused automatically as soon as the user starts navigating. You can disable these controls by specifying autoSlideStoppable: false in your reveal.js config.

You can also override the slide duration for individual slides by using the data-autoslide attribute on individual sections:

<section data-autoslide="10000">This will remain on screen for 10 seconds</section>

Keyboard Bindings

If you’re unhappy with any of the default keyboard bindings you can override them using the keyboard config option:

Reveal.configure({
 keyboard: {
 13: 'next', // go to the next slide when the ENTER key is pressed
 27: function() {}, // do something custom when ESC is pressed
 32: null // don't do anything when SPACE is pressed (i.e. disable a reveal.js default binding)
 }
});

API

The Reveal class provides a JavaScript API for controlling navigation and reading state:

// Navigation
Reveal.slide(indexh, indexv, indexf);
Reveal.left();
Reveal.right();
Reveal.up();
Reveal.down();
Reveal.prev();
Reveal.next();
Reveal.prevFragment();
Reveal.nextFragment();
Reveal.toggleOverview();
Reveal.togglePause();

// Retrieves the previous and current slide elements
Reveal.getPreviousSlide();
Reveal.getCurrentSlide();

Reveal.getIndices(); // { h: 0, v: 0 } }

// State checks
Reveal.isFirstSlide();
Reveal.isLastSlide();
Reveal.isOverview();
Reveal.isPaused();

Ready Event

The ‘ready’ event is fired when reveal.js has loaded all (synchronous) dependencies and is ready to start navigating.

Reveal.addEventListener('ready', function(event) {
 // event.currentSlide, event.indexh, event.indexv
});

Slide Changed Event

An ‘slidechanged’ event is fired each time the slide is changed (regardless of state). The event object holds the index values of the current slide as well as a reference to the previous and current slide HTML nodes.

Some libraries, like MathJax (see #226 [https://github.com/hakimel/reveal.js/issues/226#issuecomment-10261609]), get confused by the transforms and display states of slides. Often times, this can be fixed by calling their update or render function from this callback.

Reveal.addEventListener('slidechanged', function(event) {
 // event.previousSlide, event.currentSlide, event.indexh, event.indexv
});

States

If you set data-state="somestate" on a slide <section>, “somestate” will be applied as a class on the document element when that slide is opened. This allows you to apply broad style changes to the page based on the active slide.

Furthermore you can also listen to these changes in state via JavaScript:

Reveal.addEventListener('somestate', function() {
 // TODO: Sprinkle magic
}, false);

Slide Backgrounds

Slides are contained within a limited portion of the screen by default to allow them to fit any display and scale uniformly. You can apply full page background colors or images by applying a data-background attribute to your <section> elements. Below are a few examples.

<section data-background="#ff0000">
 <h2>All CSS color formats are supported, like rgba() or hsl().</h2>
</section>
<section data-background="http://example.com/image.png">
 <h2>This slide will have a full-size background image.</h2>
</section>
<section data-background="http://example.com/image.png" data-background-size="100px" data-background-repeat="repeat">
 <h2>This background image will be sized to 100px and repeated.</h2>
</section>

Backgrounds transition using a fade animation by default. This can be changed to a linear sliding transition by passing backgroundTransition: 'slide' to the Reveal.initialize() call. Alternatively you can set data-background-transition on any section with a background to override that specific transition.

Parallax Background

If you want to use a parallax scrolling background, set the two following config properties when initializing reveal.js (the third one is optional).

Reveal.initialize({

 // Parallax background image
 parallaxBackgroundImage: '', // e.g. "https://s3.amazonaws.com/hakim-static/reveal-js/reveal-parallax-1.jpg"

 // Parallax background size
 parallaxBackgroundSize: '', // CSS syntax, e.g. "2100px 900px" - currently only pixels are supported (don't use % or auto)

 // This slide transition gives best results:
 transition: linear

});

Make sure that the background size is much bigger than screen size to allow for some scrolling. View example [http://lab.hakim.se/reveal-js/?parallaxBackgroundImage=https%3A%2F%2Fs3.amazonaws.com%2Fhakim-static%2Freveal-js%2Freveal-parallax-1.jpg¶llaxBackgroundSize=2100px%20900px].

Slide Transitions

The global presentation transition is set using the transition config value. You can override the global transition for a specific slide by using the data-transition attribute:

<section data-transition="zoom">
 <h2>This slide will override the presentation transition and zoom!</h2>
</section>

<section data-transition-speed="fast">
 <h2>Choose from three transition speeds: default, fast or slow!</h2>
</section>

Note that this does not work with the page and cube transitions.

Internal links

It’s easy to link between slides. The first example below targets the index of another slide whereas the second targets a slide with an ID attribute (<section id="some-slide">):

Link
Link

You can also add relative navigation links, similar to the built in reveal.js controls, by appending one of the following classes on any element. Note that each element is automatically given an enabled class when it’s a valid navigation route based on the current slide.

 <!-- Previous vertical or horizontal slide -->
 <!-- Next vertical or horizontal slide -->

Fragments

Fragments are used to highlight individual elements on a slide. Every element with the class fragment will be stepped through before moving on to the next slide. Here’s an example: http://lab.hakim.se/reveal-js/#/fragments

The default fragment style is to start out invisible and fade in. This style can be changed by appending a different class to the fragment:

<section>
 <p class="fragment grow">grow</p>
 <p class="fragment shrink">shrink</p>
 <p class="fragment roll-in">roll-in</p>
 <p class="fragment fade-out">fade-out</p>
 <p class="fragment current-visible">visible only once</p>
 <p class="fragment highlight-current-blue">blue only once</p>
 <p class="fragment highlight-red">highlight-red</p>
 <p class="fragment highlight-green">highlight-green</p>
 <p class="fragment highlight-blue">highlight-blue</p>
</section>

Multiple fragments can be applied to the same element sequentially by wrapping it, this will fade in the text on the first step and fade it back out on the second.

<section>

 I'll fade in, then out

</section>

The display order of fragments can be controlled using the data-fragment-index attribute.

<section>
 <p class="fragment" data-fragment-index="3">Appears last</p>
 <p class="fragment" data-fragment-index="1">Appears first</p>
 <p class="fragment" data-fragment-index="2">Appears second</p>
</section>

Fragment events

When a slide fragment is either shown or hidden reveal.js will dispatch an event.

Some libraries, like MathJax (see #505), get confused by the initially hidden fragment elements. Often times this can be fixed by calling their update or render function from this callback.

Reveal.addEventListener('fragmentshown', function(event) {
 // event.fragment = the fragment DOM element
});
Reveal.addEventListener('fragmenthidden', function(event) {
 // event.fragment = the fragment DOM element
});

Code syntax highlighting

By default, Reveal is configured with highlight.js [http://softwaremaniacs.org/soft/highlight/en/] for code syntax highlighting. Below is an example with clojure code that will be syntax highlighted. When the data-trim attribute is present surrounding whitespace is automatically removed.

<section>
 <pre><code data-trim>
(def lazy-fib
 (concat
 [0 1]
 ((fn rfib [a b]
 (lazy-cons (+ a b) (rfib b (+ a b)))) 0 1)))
 </code></pre>
</section>

Slide number

If you would like to display the page number of the current slide you can do so using the slideNumber configuration value.

Reveal.configure({ slideNumber: true });

Overview mode

Press “Esc” or “o” keys to toggle the overview mode on and off. While you’re in this mode, you can still navigate between slides,
as if you were at 1,000 feet above your presentation. The overview mode comes with a few API hooks:

Reveal.addEventListener('overviewshown', function(event) { /* ... */ });
Reveal.addEventListener('overviewhidden', function(event) { /* ... */ });

// Toggle the overview mode programmatically
Reveal.toggleOverview();

Fullscreen mode

Just press »F« on your keyboard to show your presentation in fullscreen mode. Press the »ESC« key to exit fullscreen mode.

Embedded media

Embedded HTML5 <video>/<audio> and YouTube iframes are automatically paused when you navigate away from a slide. This can be disabled by decorating your element with a data-ignore attribute.

Add data-autoplay to your media element if you want it to automatically start playing when the slide is shown:

<video data-autoplay src="http://clips.vorwaerts-gmbh.de/big_buck_bunny.mp4"></video>

Additionally the framework automatically pushes two post messages [https://developer.mozilla.org/en-US/docs/Web/API/Window.postMessage] to all iframes, slide:start when the slide containing the iframe is made visible and slide:stop when it is hidden.

Stretching elements

Sometimes it’s desirable to have an element, like an image or video, stretch to consume as much space as possible within a given slide. This can be done by adding the .stretch class to an element as seen below:

<section>
 <h2>This video will use up the remaining space on the slide</h2>
 <video class="stretch" src="http://clips.vorwaerts-gmbh.de/big_buck_bunny.mp4"></video>
</section>

Limitations:

		Only direct descendants of a slide section can be stretched

		Only one descendant per slide section can be stretched

PDF Export

Presentations can be exported to PDF via a special print stylesheet. This feature requires that you use Google Chrome [http://google.com/chrome].
Here’s an example of an exported presentation that’s been uploaded to SlideShare: http://www.slideshare.net/hakimel/revealjs-13872948.

		Open your presentation with css/print/pdf.css [https://github.com/hakimel/reveal.js/blob/master/css/print/pdf.css] included on the page. The default index HTML lets you add print-pdf anywhere in the query to include the stylesheet, for example: lab.hakim.se/reveal-js?print-pdf [http://lab.hakim.se/reveal-js?print-pdf].

		Open the in-browser print dialog (CMD+P).

		Change the Destination setting to Save as PDF.

		Change the Layout to Landscape.

		Change the Margins to None.

		Click Save.

[image: Chrome Print Settings]

Theming

The framework comes with a few different themes included:

		default: Gray background, white text, blue links

		beige: Beige background, dark text, brown links

		sky: Blue background, thin white text, blue links

		night: Black background, thick white text, orange links

		serif: Cappuccino background, gray text, brown links

		simple: White background, black text, blue links

		solarized: Cream-colored background, dark green text, blue links

Each theme is available as a separate stylesheet. To change theme you will need to replace default below with your desired theme name in index.html:

<link rel="stylesheet" href="css/theme/default.css" id="theme">

If you want to add a theme of your own see the instructions here: /css/theme/README.md [https://github.com/hakimel/reveal.js/blob/master/css/theme/README.md].

Speaker Notes

reveal.js comes with a speaker notes plugin which can be used to present per-slide notes in a separate browser window. The notes window also gives you a preview of the next upcoming slide so it may be helpful even if you haven’t written any notes. Press the ‘s’ key on your keyboard to open the notes window.

Notes are defined by appending an <aside> element to a slide as seen below. You can add the data-markdown attribute to the aside element if you prefer writing notes using Markdown.

When used locally, this feature requires that reveal.js runs from a local web server.

<section>
 <h2>Some Slide</h2>

 <aside class="notes">
 Oh hey, these are some notes. They'll be hidden in your presentation, but you can see them if you open the speaker notes window (hit 's' on your keyboard).
 </aside>
</section>

If you’re using the external Markdown plugin, you can add notes with the help of a special delimiter:

<section data-markdown="example.md" data-separator="^\n\n\n" data-vertical="^\n\n" data-notes="^Note:"></section>

Title
Sub-title

Here is some content...

Note:
This will only display in the notes window.

Server Side Speaker Notes

In some cases it can be desirable to run notes on a separate device from the one you’re presenting on. The Node.js-based notes plugin lets you do this using the same note definitions as its client side counterpart. Include the required scripts by adding the following dependencies:

Reveal.initialize({
 ...

 dependencies: [
 { src: 'socket.io/socket.io.js', async: true },
 { src: 'plugin/notes-server/client.js', async: true }
]
});

Then:

		Install Node.js [http://nodejs.org/]

		Run npm install

		Run node plugin/notes-server

Multiplexing

The multiplex plugin allows your audience to view the slides of the presentation you are controlling on their own phone, tablet or laptop. As the master presentation navigates the slides, all client presentations will update in real time. See a demo at http://revealjs.jit.su/.

The multiplex plugin needs the following 3 things to operate:

		Master presentation that has control

		Client presentations that follow the master

		Socket.io server to broadcast events from the master to the clients

More details:

Master presentation

Served from a static file server accessible (preferably) only to the presenter. This need only be on your (the presenter’s) computer. (It’s safer to run the master presentation from your own computer, so if the venue’s Internet goes down it doesn’t stop the show.) An example would be to execute the following commands in the directory of your master presentation:

		npm install node-static

		static

If you want to use the speaker notes plugin with your master presentation then make sure you have the speaker notes plugin configured correctly along with the configuration shown below, then execute node plugin/notes-server in the directory of your master presentation. The configuration below will cause it to connect to the socket.io server as a master, as well as launch your speaker-notes/static-file server.

You can then access your master presentation at http://localhost:1947

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: '13652805320794272084', // Obtained from the socket.io server. Gives this (the master) control of the presentation
 id: '1ea875674b17ca76', // Obtained from socket.io server
 url: 'revealjs.jit.su:80' // Location of socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/master.js', async: true },

 // and if you want speaker notes
 { src: 'plugin/notes-server/client.js', async: true }

 // other dependencies...
]
});

Client presentation

Served from a publicly accessible static file server. Examples include: GitHub Pages, Amazon S3, Dreamhost, Akamai, etc. The more reliable, the better. Your audience can then access the client presentation via http://example.com/path/to/presentation/client/index.html, with the configuration below causing them to connect to the socket.io server as clients.

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: null, // null so the clients do not have control of the master presentation
 id: '1ea875674b17ca76', // id, obtained from socket.io server
 url: 'revealjs.jit.su:80' // Location of socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]
});

Socket.io server

Server that receives the slideChanged events from the master presentation and broadcasts them out to the connected client presentations. This needs to be publicly accessible. You can run your own socket.io server with the commands:

		npm install

		node plugin/multiplex

Or you use the socket.io server at http://revealjs.jit.su.

You’ll need to generate a unique secret and token pair for your master and client presentations. To do so, visit http://example.com/token, where http://example.com is the location of your socket.io server. Or if you’re going to use the socket.io server at http://revealjs.jit.su, visit http://revealjs.jit.su/token.

You are very welcome to point your presentations at the Socket.io server running at http://revealjs.jit.su, but availability and stability are not guaranteed. For anything mission critical I recommend you run your own server. It is simple to deploy to nodejitsu, heroku, your own environment, etc.

socket.io server as file static server

The socket.io server can play the role of static file server for your client presentation, as in the example at http://revealjs.jit.su. (Open http://revealjs.jit.su in two browsers. Navigate through the slides on one, and the other will update to match.)

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: null, // null so the clients do not have control of the master presentation
 id: '1ea875674b17ca76', // id, obtained from socket.io server
 url: 'example.com:80' // Location of your socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]

It can also play the role of static file server for your master presentation and client presentations at the same time (as long as you don’t want to use speaker notes). (Open http://revealjs.jit.su in two browsers. Navigate through the slides on one, and the other will update to match. Navigate through the slides on the second, and the first will update to match.) This is probably not desirable, because you don’t want your audience to mess with your slides while you’re presenting. ;)

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: '13652805320794272084', // Obtained from the socket.io server. Gives this (the master) control of the presentation
 id: '1ea875674b17ca76', // Obtained from socket.io server
 url: 'example.com:80' // Location of your socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/master.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]
});

Leap Motion

The Leap Motion plugin lets you utilize your Leap Motion [https://www.leapmotion.com/] device to control basic navigation of your presentation. The gestures currently supported are:

1 to 2 fingers

Pointer

—

 Point to anything on screen. Move your finger past the device to expand the pointer.

1 hand + 3 or more fingers (left/right/up/down)

Navigate through your slides. See config options to invert movements.

2 hands upwards

Toggle the overview mode. Do it a second time to exit the overview.

Config Options

You can edit the following options:

| Property | Default | Description
| —————– |:—————–:| :————-
| autoCenter | true | Center the pointer based on where you put your finger into the leap motions detection field.
| gestureDelay | 500 | How long to delay between gestures in milliseconds.
| naturalSwipe | true | Swipe as though you were touching a touch screen. Set to false to invert.
| pointerColor | #00aaff | The color of the pointer.
| pointerOpacity | 0.7 | The opacity of the pointer.
| pointerSize | 15 | The minimum height and width of the pointer.
| pointerTolerance | 120 | Bigger = slower pointer.

Example configuration:

Reveal.initialize({

 // other options...

 leap: {
 naturalSwipe : false, // Invert swipe gestures
 pointerOpacity : 0.5, // Set pointer opacity to 0.5
 pointerColor : '#d80000' // Red pointer
 },

 dependencies: [
 { src: 'plugin/leap/leap.js', async: true }
]

});

MathJax

If you want to display math equations in your presentation you can easily do so by including this plugin. The plugin is a very thin wrapper around the MathJax [http://www.mathjax.org/] library. To use it you’ll need to include it as a reveal.js dependency, find our more about dependencies here.

The plugin defaults to using LaTeX [http://en.wikipedia.org/wiki/LaTeX] but that can be adjusted through the math configuration object. Note that MathJax is loaded from a remote server. If you want to use it offline you’ll need to download a copy of the library and adjust the mathjax configuration value.

Below is an example of how the plugin can be configured. If you don’t intend to change these values you do not need to include the math config object at all.

Reveal.initialize({

 // other options ...

 math: {
 mathjax: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js',
 config: 'TeX-AMS_HTML-full' // See http://docs.mathjax.org/en/latest/config-files.html
 },

 dependencies: [
 { src: 'plugin/math/math.js', async: true }
]

});

Read MathJax’s documentation if you need HTTPS delivery [http://docs.mathjax.org/en/latest/start.html#secure-access-to-the-cdn] or serving of specific versions [http://docs.mathjax.org/en/latest/configuration.html#loading-mathjax-from-the-cdn] for stability.

Installation

The basic setup is for authoring presentations only. The full setup gives you access to all reveal.js features and plugins such as speaker notes as well as the development tasks needed to make changes to the source.

Basic setup

The core of reveal.js is very easy to install. You’ll simply need to download a copy of this repository and open the index.html file directly in your browser.

		Download the latest version of reveal.js from https://github.com/hakimel/reveal.js/releases

		Unzip and replace the example contents in index.html with your own

		Open index.html in a browser to view it

Full setup

Some reveal.js features, like external markdown and speaker notes, require that presentations run from a local web server. The following instructions will set up such a server as well as all of the development tasks needed to make edits to the reveal.js source code.

		Install Node.js [http://nodejs.org/]

		Install Grunt [http://gruntjs.com/getting-started#installing-the-cli]

		Clone the reveal.js repository

$ git clone https://github.com/hakimel/reveal.js.git

		Navigate to the reveal.js folder

$ cd reveal.js

		Install dependencies

$ npm install

		Serve the presentation and monitor source files for changes

$ grunt serve

		Open http://localhost:8000 to view your presentation

You can change the port by using grunt serve --port 8001.

Folder Structure

		css/ Core styles without which the project does not function

		js/ Like above but for JavaScript

		plugin/ Components that have been developed as extensions to reveal.js

		lib/ All other third party assets (JavaScript, CSS, fonts)

Contributing

Please keep the issue tracker [http://github.com/hakimel/reveal.js/issues] limited to bug reports, feature requests and pull requests. If you are reporting a bug make sure to include information about which browser and operating system you are using as well as the necessary steps to reproduce the issue.

If you have personal support questions use StackOverflow [http://stackoverflow.com/questions/tagged/reveal.js].

Pull requests

		Should follow the coding style of the file you work in, most importantly:
		Tabs to indent

		Single-quoted strings

		Should be made towards the dev branch

		Should be submitted from a feature/topic branch (not your master)

		Should not include the minified reveal.min.js file

License

MIT licensed

Copyright (C) 2014 Hakim El Hattab, http://hakim.se

 © Copyright 2012, Continuum Analytics.

_static/presentations/sfpython-aug-2014.html

		

			

		

		
		

		

_static/presentations/dask-graphs.html

		

			

		

		
		

		

_static/up.png

_static/plus.png

_static/down.png

_build/html/_static/presentations/markdown/dask-core.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

dask.core

Dead simple task scheduling

dask.pydata.org [http://dask.pydata.org/en/latest/]

We’ve seen dask.array

		Turns Numpy-ish code

 (2*x + 1) ** 3

		Into Graphs

[image:]

We’ve seen dask.array

		.

.

		Then executes those graphs

[image:]

Dask works for more than just arrays

		dask.array = numpy + threading

		dask.bag = toolz + multiprocessing

		dask.dataframe = pandas + multiprocessing/threading?

dask.bag

		Unordered collection of Python objects

		Good for log files, JSON blobs, etc..

		Uses multiprocessing by default

import dask.bag as db
b = db.from_filenames("data/2014-*.json.gz").map(json.loads)
b.groupby("username")

[image:]

dask.dataframe

		Partition Pandas DataDrames

		Uses single-threaded or multiprocessing

		Not yet robust for public use

import dask.dataframe as dd
df = dd.read_csv('data/data.*.csv', parse_dates=...)
df.groupby(df.account).balance.mean()

		Collections build graphs

		Schedulers execute graphs

[image:]

		Neither side needs the other

Q: What constitutes a dask graph?

[image: A simple dask dictionary]

Normal Python

def inc(i):
 return i + 1

def add(a, b):
 return a + b

x = 1
y = inc(x)
z = add(y, 10)

		CPython manages execution

Dask graph

d = {"x": 1,
 "y": (inc, "x"),
 "z": (add, "y", 10)}

		Schedulers manage execution

Example - dask.array

>>> import dask.array as da

>>> x = da.arange(15, chunks=(5,))
dask.array<x, shape=(15,), chunks=((5, 5, 5)), dtype=None>

>>> x.dask
{("x", 0): (np.arange, 0, 5),
 ("x", 1): (np.arange, 5, 10),
 ("x", 2): (np.arange, 10, 15)}

>>> (x + 100).dask
{("x", 0): (np.arange, 0, 5),
 ("x", 1): (np.arange, 5, 10),
 ("x", 2): (np.arange, 10, 15),
 ("y", 0): (add, ("x", 0), 100),
 ("y", 1): (add, ("x", 1), 100),
 ("y", 2): (add, ("x", 2), 100)}

Example - dask.array

>>> import dask.array as da

>>> x = da.arange(15, chunks=(5,))
dask.array<x, shape=(15,), chunks=((5, 5, 5)), dtype=None>

>>> x.dask
{("x", 0): (np.arange, 0, 5),
 ("x", 1): (np.arange, 5, 10),
 ("x", 2): (np.arange, 10, 15)}

>>> x.sum()
{("x", 0): (np.arange, 0, 5),
 ("x", 1): (np.arange, 5, 10),
 ("x", 2): (np.arange, 10, 15),
 ("y", 0): (np.sum, ("x", 0)),
 ("y", 1): (np.sum, ("x", 1)),
 ("y", 2): (np.sum, ("x", 2)),
 ("z",): (np.sum, [("y", 0), ("y", 1), ("y", 2)])}

Example - custom graph

def load(filename):
 ...
def clean(data):
 ...
def analyze(sequence_of_data):
 ...
def store(result):
 ...

dsk = {"load-1": (load, "myfile.a.data"),
 "load-2": (load, "myfile.b.data"),
 "load-3": (load, "myfile.c.data"),
 "preprocess-1": (clean, "load-1"),
 "preprocess-2": (clean, "load-2"),
 "preprocess-3": (clean, "load-3"),
 "analyze": (analyze, ["preprocess-%d" % i for i in [1, 2, 3]]),
 "store": (store, "analyze")}

.

from dask.multiprocessing import get
result = get(dsk, ["store"])

Dask’s schedulers enable sane parallelism

... even if your workflow isn’t arrays

		Simple description of computation with data dependencies

		Uses battle-tested schedulers

		Raw dicts probably not for end users

		But maybe for library developers

		Regardless, the community should search for a parallelism abstraction
(many good options)

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/blaze-server.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze Server

Blaze server exposes Python data through a JSON web API

		Easily spin up a data server

		Interact with that server through JSON

		Support many data resources (Lists, DataFrames, SQL databases, Hadoop clusters)

		Interact with server with Blaze on client side

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Query data through JSON API

$ curl \
 -H "Content-Type: application/json" \
 -d '{"expr": "iris"}' \
 localhost:5000/compute/iris.json
{
 "data": [
 [
 5.1,
 3.5,
 1.4,
 0.2,
 "Iris-setosa"
],
 [
 4.9,
 3.0,
 1.4,
 0.2,
 "Iris-setosa"
],

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Interact through Python (or any language)

>>> import json
>>> import requests

>>> query = {'expr': 'iris'}

>>> response = requests.get('http://localhost:5000/compute/iris.json',
... data=json.dumps(query),
... headers={'Content-Type': 'application/json'})

>>> json.loads(response.content)
{u'data': [[5.1, 3.5, 1.4, 0.2, u'Iris-setosa'],
 [4.9, 3.0, 1.4, 0.2, u'Iris-setosa'],
 [4.7, 3.2, 1.3, 0.2, u'Iris-setosa'],
 [4.6, 3.1, 1.5, 0.2, u'Iris-setosa'],
 [5.0, 3.6, 1.4, 0.2, u'Iris-setosa'],
...

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Interact from web applications like Bokeh-JS plots

[image: Iris with Bokeh]

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Send computations to the server

>>> import json
>>> import requests

>>> # Ask for petal_length column: t.petal_length
>>> query = {'expr': {'op': 'Column', 'args': ['iris', 'petal_length']}}

>>> response = requests.get('http://localhost:5000/compute/iris.json',
... data=json.dumps(query),
... headers={'Content-Type': 'application/json'})

>>> json.loads(response.content)
{u'data': [1.4,
 1.4,
 1.3,
 1.5,
 1.4,
 1.7,
...

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Generate computations with symbolic Blaze

>>> from blaze import *
>>> t = Symbol('t', 'var * { sepal_length : ?float64, sepal_width : ?float64, petal_length : ?float64, petal_width : ?float64, species : string }')

>>> expr = by(t.species, # more complex query to send to server
... min=t.petal_length.min(),
... max=t.petal_length.max())

>>> query = to_tree(expr, names={t: 'iris'})
>>> query
{'args': [{'args': ['iris', 'species'], 'op': 'Column'},
 {'args': [{'args': ['iris', 'petal_length'], 'op': 'Column'},
 ['max', 'min'],
 [{'args': [{'args': ['iris', 'petal_length'], 'op': 'Column'}],
 'op': 'max'},
 {'args': [{'args': ['iris', 'petal_length'], 'op': 'Column'}],
 'op': 'min'}]],
 'op': 'Summary'}],
 'op': 'By'}

...

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Or drive a remote server from a Python Client

>>> from blaze import *
>>> from blaze.server import *

>>> t = Table('blaze://localhost:5000::iris') # Drive remote dataset
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> by(t.species, min=t.petal_length.min(), max=t.petal_length.max())
 species max min
0 Iris-virginica 6.9 4.5
1 Iris-setosa 1.9 1.0
2 Iris-versicolor 5.1 3.0

Server

Operate on any Blaze supported type

>>> from blaze import *
>>> df = into(DataFrame, CSV('examples/data/iris.csv'))

>>> from blaze.server import Server
>>> server = Server({'iris': df})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Or just drive a remote server

>>> from blaze import *
>>> from blaze.server import *

>>> t = Table('blaze://localhost:5000::iris') # Drive remote dataset
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> by(t.species, min=t.petal_length.min(), max=t.petal_length.max())
 species max min
0 Iris-virginica 6.9 4.5
1 Iris-setosa 1.9 1.0
2 Iris-versicolor 5.1 3.0

Server

Operate on any Blaze supported type

>>> from blaze import *
>>> import pymongo
>>> db = pymongo.MongoClient().db

>>> from blaze.server import Server
>>> server = Server({'iris': db.iris_collection})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Or just drive a remote server

>>> from blaze import *
>>> from blaze.server import *

>>> t = Table('blaze://localhost:5000::iris') # Drive remote dataset
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> by(t.species, min=t.petal_length.min(), max=t.petal_length.max())
 species max min
0 Iris-virginica 6.9 4.5
1 Iris-setosa 1.9 1.0
2 Iris-versicolor 5.1 3.0

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/dask-frames.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Frames

Think about common operations on DataFrames.

What do they look like?

Anatomy of a Dask.Frame

		Logically dask Arrays are a grid of NumPy Arrays

		Dask Frame is a sequence of Pandas DataFrames

		
		dask.array
		Naive dask.frame

		
		[image:]
		[image:]

For arrays blockshape information is critical for algorithms

Informs which blocks communicate with which others.

This supports the following operations

		Elementwise operations

 df.a + df.b

		Row-wise filtering

 df[df.a > 0]

		Reductions

 df.a.mean()

		Some split-apply-combine operations

 df.groupby(...).agg(...)

The Blaze chunking/streaming backend does this

People like this, but want more.

Does not support the following operations

		Joins

 join(a, b, 'a_column', 'b_column')

		Split-apply-combine with more complex transform or apply combine steps

 df.groupby(...).apply(arbitrary_function)

		Sliding window or resampling operations

 df.rolling_mean(...)

		Anything involving multiple datasets

 A.x[B.y > 0]

Partition on the Index values

Instead of partitioning based on the size of blocks we instead partition on
value ranges of the index.

		
		Partition on block size
		Partition on index value

		
		[image:]
		[image:]

Information about value ranges helps us to create dask graphs for more complex
operations (joins, sliding windows, ...)

Lets look at pictures again...

Reading files

>>> import bcolz
>>> trip = bcolz.ctable('trip.bcolz')

>>> import dask.frame as dfr
>>> f = dfr.from_array(trip, chunksize=20000000)

[image:]

Reading files

>>> import dask.frame as dfr
>>> f = dfr.read_csv('trip_data_1.csv', chunksize=1000000)

[image:]

Frame operations are different. Often messier

DataFrame

>>> import pandas as pd
>>> f = pd.read_csv('accounts.csv', sep=',')

 		
 		name
 		 balance

 		0
 		 Alice
 		 100

 		1
 		 Bob
 		 200

 		2
 		 Alice
 		 300

 		3
 		 Frank
 		 400

 		4
 		 Dan
 		 500

 		5
 		 Alice
 		 600

 		6
 		 Alice
 		 700

 		7
 		 Charlie
 		 800

 		8
 		 Alice
 		 900

 		9
 		 Edith
 		 1000

 		10
 		 Frank
 		 1100

 		11
 		 Bob
 		 1200

Dask.Frame

>>> import dask.frame as dfr
>>> f = dfr.read_csv('accounts.csv', sep=',', chunksize=4)

 		
 		name
 		 balance

 		0
 		 Alice
 		 100

 		1
 		 Bob
 		 200

 		2
 		 Alice
 		 300

 		3
 		 Frank
 		 400

 		
 		name
 		 balance

 		4
 		 Dan
 		 500

 		5
 		 Alice
 		 600

 		6
 		 Alice
 		 700

 		7
 		 Charlie
 		 800

 		
 		name
 		 balance

 		8
 		 Alice
 		 900

 		9
 		 Edith
 		 1000

 		10
 		 Frank
 		 1100

 		11
 		 Bob
 		 1200

Many Operations are the same

>>> f.balance.sum()

[image:]

Even some complex ones

>>> f.groupby('name').balance.sum().compute()
name
Alice 2600
Bob 1400
Charlie 800
Dan 500
Edith 1000
Frank 1500
Name: balance, dtype: int64

[image:]

But only in certain cases

		df.groupby(...).aggregate(...)

Works well for typical aggregations

This is because we know how to break apart operations like count into
count and sum

		df.groupby(...).apply(arbitrary_function)

Much harder. We need to assemble groups together (e.g. all of the Alice’s)

The Blaze chunking backend can do split-apply-aggregate well.

It will never be able to do the general apply.

Even though these are spelled similarly:

		df.groupby(...).aggregate(...)

		df.groupby(...).apply(arbitrary_function)

they are computationally different

Many operations require us to reshuffle our data. This breaks the task
scheduling model.

The Shuffle

Index by Name

To run arbitrary groupby(...).apply(func) operations we need to collect data
in to groups.

 name, balance name, balance
 Alice, 100 Alice, 100
 Bob, 200 Alice, 300
 Alice, 300 Alice, 600
 Frank, 400 Alice, 700
 Alice, 900
 name, balance
 Dan, 500 name, balance
 Alice, 600 -> Shuffle -> Bob, 200
 Alice, 700 Dan, 500
 Charlie, 800 Bob, 1200
 Charlie, 800
 name, balance
 Alice, 900 name, balance
 Edith, 1000 Frank, 400
 Frank, 1100 Edith, 1000
 Bob, 1200 Frank, 1100

		Find values on which to partition

(-oo, Bob), [Bob, Edith), [Edith, oo)

		Shard, communicate, concatenate

Find Good Partitions - By Approximate Quantiles

Now we find approximate quantiles. To find 100 evenly spaced groups:

		Call the following on each block

np.percentile(df['new-index-column'], range(100))

		Collect and merge these results together intelligently (thanks Erik!)

This gets us the right values on which to shard our data

Bob, Edith -> (-oo, Bob), [Bob, Edith), [Edith, oo)

Find Good Partitions - By Out-of-Core Sorting

We used to perform an external sort. This was kinda slow but could be improved.

We might want to try this again, but with more Cython.

Shard

Split old blocks, dump shards to dict

 name, balance name, balance
 Alice, 100 Alice, 100
 Bob, 200 -> Shard -> Alice, 300 -> dict
 Alice, 300
 Frank, 400 name, balance
 Bob, 200 -> dict

 name, balance
 Frank, 400 -> dict

 name, balance name, balance
 Dan, 500 Alice, 600
 Alice, 600 -> Shard -> Alice, 700 -> dict
 Alice, 700
 Charlie, 800 name, balance
 Dan, 500 -> dict
 Charlie, 800
 ...

Collect

Pull shards from dict, construct new blocks

 name, balance name, balance
 Alice, 100 Alice, 100
 dict -> Alice, 300 Alice, 300
 -> collect -> Alice, 600
 name, balance Alice, 700
 dict -> Alice, 600
 Alice, 700

 name, balance
 dict -> Bob, 200 name, balance
 -> collect -> Bob, 200
 name, balance Dan, 500
 dict -> Dan, 500 Charlie, 800
 Charlie, 800
 ...

dict < MutableMapping

The actual shuffle happens in a dict / MutableMapping

		dict - good for in-memory workflows

		chest - spills to disk

		Peer-to-peer key-value store - a fun project for the future?

This data structure determines our shuffle capabilities

Recent work

		BColz is sometimes slow

		Writing many small files to disk is a great way to crush a computer

		Serialization costs vary (msgpack oddly fast?)

		Serialization of object arrays is going to be a pain

(maybe push on categoricals?)

Split Financial data by stock

import dask.frame as dfr
df = dfr.read_csv('20140616-r-00032', sep='\t',
 names=fieldnames,
 parse_dates={'datetime': ['System Date', 'System Time']},
 usecols=['System Date', 'System Time', 'Symbol'])

Grab list of unique symbols
symbols = list(df.Symbol.drop_duplicates().compute().sort())

Shard and write to disk
def write_file(df):
 df.to_csv('stocks/' + df.index[0] + '.csv')
df2 = df.set_partition('Symbol', symbols)
df2.map_blocks(write_file).compute()

mrocklin@workstation:~/data/xdata/stocks$ ls
cAUD.CAD,(non_opt).csv fNG.H15,(non_opt).csv zBZ.V14_X14,(non_opt).csv
cAUD.CHF,(non_opt).csv fNG.J15,(non_opt).csv zBZ.V14_Z14,(non_opt).csv
cAUD.JPY,(non_opt).csv fNG.K15,(non_opt).csv zBZ.X14_F15,(non_opt).csv
cAUD.NZD,(non_opt).csv fNG.M15,(non_opt).csv zBZ.X14_Z14,(non_opt).csv
cAUD.USD,(non_opt).csv fNG.N14,(non_opt).csv zBZ.Z14_F15,(non_opt).csv
cCAD.CHF,(non_opt).csv fNG.N15,(non_opt).csv zBZ.Z14_G15,(non_opt).csv
...

Work to do

		Near term

		Still banging away on Shuffle

		A few interesting operations join, sliding window

		Easy support for categories

(probably essential for performance on text)

		There is a lot of Pandas API

		Bigger thoughts

		GIL

		HDFS aware scheduler

		Peer-to-peer distributed dict

Questions?

 name, balance name, balance
 Alice, 100 Alice, 100
 Bob, 200 Alice, 300
 Alice, 300 Alice, 600
 Frank, 400 Alice, 700
 Alice, 900
 name, balance
 Dan, 500 name, balance
 Alice, 600 -> Shuffle -> Bob, 200
 Alice, 700 Dan, 500
 Charlie, 800 Bob, 1200
 Charlie, 800
 name, balance
 Alice, 900 name, balance
 Edith, 1000 Frank, 400
 Frank, 1100 Edith, 1000
 Bob, 1200 Frank, 1100

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/nyc-start.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze

While we’re waiting you may want to try the following

Docs – http://blaze.pydata.org/

Install – conda install -c blaze blaze

Source –
http://github.com/ContinuumIO/blaze/

TL;DR

Blaze is an extensible interface for data analytics.

It feels like NumPy/Pandas. It drives other data systems.

Blaze expressions enable high-level reasoning.

Motivation

NumPy and Pandas serve as the foundation for the PyData stack

... but they are limited to memory

The state of biggish-data analysis is still wild

Approach

		Blaze is a user interface
		... and something like a compiler

		... for analytic processing (like Pandas, not like Redis)

		It isn’t a database or a Pandas replacement

		It complements pre-existing systems by improving user access

Play time

In which we pray to the demo gods

		Main points: Blaze ...
		has a familiar interface

		directs other mature projects to do your analysis

		extends beyond Python/Pandas

		Supports Pandas-like and NumPy-like computation

Also, in case you missed it

conda install -c blaze blaze

http://blaze.pydata.org/presentations/

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/dask-array.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

dask.array

Matthew Rocklin

Continuum Analytics

http://dask.pydata.org/

tl;dr

dask.array is...

		an out-of-core, multi-core, n-dimensional array library

		that copies the numpy interface

		using blocked algorithms

		and task scheduling

Related work

		Parallel BLAS implementations – ScaLAPACK, Plasma, ...

		Distributed arrays – PETSc/Trillinos, Elemental, HPF

		Parallel collections – Hadoop/Spark (Dryad, Disco, ...)

		Task scheduling frameworks – Luigi, swift-lang, ...

		Python big-numpy projects – Distarray, Spartan, Biggus

		Custom solutions with MPI, ZMQ, ...

Distinguishing features of dask.array

		Full ndarray support, instead of serious linear algebra

		Focus on shared memory parallelism (workstation, not cluster)

		Immediately usable - conda/pip installable

		Dask includes other non-array collections

tl;dr

dask.array is...

		an out-of-core, multi-core, n-dimensional array library

		that copies the numpy interface

		using blocked algorithms

		and task scheduling

NumPy interface

dask.array supports the following interface from numpy.

		Arithmetic – +, *, log, exp, ...

		Reductions – mean(), max(axis=0), ...

		Slicing – x[:100, 500:100:-2]

		Fancy indexing – x[:, [10, 1, 5]]

		Some linear algebra – tensordot, qr, svd

dask.array excludes some operations

		Sort, Eigenvalue solve, Mutation, ...

dask.array introduces some new operations

		Parallel algorithms (approximate quantiles, topk, ...)

		Slightly overlapping arrays

		Integration with HDF5

Blocked algorithms

		Problem – Given a trillion element array:

		Find the sum of all elements

		Find the mean of all elements

		Find the mean of all positive elements

		Solution – Break array into blocks that fit in-memory.

Use NumPy on each block.

Blocked algorithms - Sum

Blocked Sum

x = h5py.File('myfile.hdf5')['/x'] # Trillion element array on disk

sums = []
for i in range(1000000): # One million times
 chunk = x[1000000*i: 1000000*(i+1)] # Pull out chunk
 sums.append(np.sum(chunk)) # Sum chunk

total = sum(sums) # Sum intermediate sums

Blocked algorithms - Mean

Blocked mean of positive elements

x = h5py.File('myfile.hdf5')['/x'] # Trillion element array on disk

sums = []
counts = []
for i in range(1000000): # One million times
 chunk = x[1000000*i: 1000000*(i+1)] # Pull out chunk
 chunk = chunk[chunk > 0] # Filter
 sums.append(np.sum(b)) # Sum chunk
 counts.append(len(b)) # Count chunk

result = sum(sums) / sum(counts) # Aggregate results

Blocked algorithms

Consider matrix multiply:

[image:]

Blocked matrix algorithms look like their in-memory equivalents.

Blocked algorithms

We didn’t need the for loop.

x = h5py.File('myfile.hdf5')['/x'] # Trillion element array on disk

sums = []
for i in range(1000000): # One million times
 chunk = x[1000000*i: 1000000*(i+1)] # Pull out chunk
 sums.append(np.sum(chunk)) # Sum chunk

total = sum(sums) # Sum intermediate sums

This was parallelizable

Blocked algorithms

[image:]

Task scheduling

We execute these graphs with a multi-core scheduler

[image:]

And try to keep a small memory footprint

Task scheduling

Sometimes this fails (but that’s ok)

[image:]

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/expressions.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Expressions

		SymPy expressions...
		encode mathematical equations as Python objects

		generate numeric, high-performance, code

		enable mathematical reasoning

We combine high-level reasoning and low-level performance.

		Blaze expressions...
		encode relational and linear algebra, rather than calculus and trigonometry

		interpret to other systems

		enable data reasoning

		are extensible (in a way that keeps you sane)

We combine high-level reasoning and low-level performance.

Take-aways

		Separating expressions from computation ...
		enables users to transition easily between compute backends (right tool for
the job)

		enables developers to focus on user interface

		enables developers to focus on computational backends

		shares reasoning and query optimizations across backends

		eases growth of Blaze to new backends when they arise

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/index.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

title: Presentations
layout: default

		SF Python Meetup – August, 2014

		Webinar – October 8th, 2014
		Comparing Pandas and Blaze
nbviewer

		MongoDB and Github
nbviewer

		PySpark and HMDA
nbviewer

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/status.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze - Current Status

		Blaze usually works for moderately complex problems

		Ready for patient and vocal users

		Expect API breaks

Backends:
http://blaze.pydata.org/docs/latest/backends.html

Attribution

Funded by DARPA, Built by Continuum

mrocklin@workstation:~/workspace/blaze$ git shortlog -ns
 1493 Matthew Rocklin
 677 Mark Wiebe
 574 Phillip Cloud
 423 Francesc Alted
 268 Mark Florisson
 198 Stephen Diehl
 102 Andy R. Terrel
 95 Travis E. Oliphant
 90 Oscar Villellas
 71 Brittain Hard
 66 Benjamin Zaitlen
 35 talumbau
 24 Christine Doig
 13 T.J. Alumbaugh
 6 Matt Wescott
 5 brittainhard
 4 Hugo
 4 Valentin Haenel
 3 FrancescAlted
 3 Maggie Mari
 3 Peter Wang
 2 Continuum
 2 Dav Clark
 2 Ilan Schnell
 2 Stan Seibert
 2 majidaldo
 1 Damien Garaud
 1 Gaëtan de Menten
 1 Maggie-M
 1 Milos Popovic
 1 Robert Gieseke
 1 Wesley Emeneker

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/REVEAL_README.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

reveal.js [image: Build Status] [https://travis-ci.org/hakimel/reveal.js]

A framework for easily creating beautiful presentations using HTML. Check out the live demo [http://lab.hakim.se/reveal-js/].

reveal.js comes with a broad range of features including nested slides [https://github.com/hakimel/reveal.js#markup], markdown contents [https://github.com/hakimel/reveal.js#markdown], PDF export [https://github.com/hakimel/reveal.js#pdf-export], speaker notes [https://github.com/hakimel/reveal.js#speaker-notes] and a JavaScript API [https://github.com/hakimel/reveal.js#api]. It’s best viewed in a browser with support for CSS 3D transforms but fallbacks [https://github.com/hakimel/reveal.js/wiki/Browser-Support] are available to make sure your presentation can still be viewed elsewhere.

More reading:

		Installation: Step-by-step instructions for getting reveal.js running on your computer.

		Changelog [https://github.com/hakimel/reveal.js/releases]: Up-to-date version history.

		Examples [https://github.com/hakimel/reveal.js/wiki/Example-Presentations]: Presentations created with reveal.js, add your own!

		Browser Support [https://github.com/hakimel/reveal.js/wiki/Browser-Support]: Explanation of browser support and fallbacks.

Online Editor

Presentations are written using HTML or markdown but there’s also an online editor for those of you who prefer a graphical interface. Give it a try at http://slid.es.

Instructions

Markup

Markup hierarchy needs to be <div class="reveal"> <div class="slides"> <section> where the <section> represents one slide and can be repeated indefinitely. If you place multiple <section>‘s inside of another <section> they will be shown as vertical slides. The first of the vertical slides is the “root” of the others (at the top), and it will be included in the horizontal sequence. For example:

<div class="reveal">
 <div class="slides">
 <section>Single Horizontal Slide</section>
 <section>
 <section>Vertical Slide 1</section>
 <section>Vertical Slide 2</section>
 </section>
 </div>
</div>

Markdown

It’s possible to write your slides using Markdown. To enable Markdown, add the data-markdown attribute to your <section> elements and wrap the contents in a <script type="text/template"> like the example below.

This is based on data-markdown [https://gist.github.com/1343518] from Paul Irish [https://github.com/paulirish] modified to use marked [https://github.com/chjj/marked] to support Github Flavoured Markdown [https://help.github.com/articles/github-flavored-markdown]. Sensitive to indentation (avoid mixing tabs and spaces) and line breaks (avoid consecutive breaks).

<section data-markdown>
 <script type="text/template">
 ## Page title

 A paragraph with some text and a [link](http://hakim.se).
 </script>
</section>

External Markdown

You can write your content as a separate file and have reveal.js load it at runtime. Note the separator arguments which determine how slides are delimited in the external file. The data-charset attribute is optional and specifies which charset to use when loading the external file.

When used locally, this feature requires that reveal.js runs from a local web server.

<section data-markdown="example.md"
 data-separator="^\n\n\n"
 data-vertical="^\n\n"
 data-notes="^Note:"
 data-charset="iso-8859-15">
</section>

Element Attributes

Special syntax (in html comment) is available for adding attributes to Markdown elements. This is useful for fragments, amongst other things.

<section data-markdown>
 <script type="text/template">
 - Item 1 <!-- .element: class="fragment" data-fragment-index="2" -->
 - Item 2 <!-- .element: class="fragment" data-fragment-index="1" -->
 </script>
</section>

Slide Attributes

Special syntax (in html comment) is available for adding attributes to the slide <section> elements generated by your Markdown.

<section data-markdown>
 <script type="text/template">
 <!-- .slide: data-background="#ff0000" -->
 Markdown content
 </script>
</section>

Configuration

At the end of your page you need to initialize reveal by running the following code. Note that all config values are optional and will default as specified below.

Reveal.initialize({

 // Display controls in the bottom right corner
 controls: true,

 // Display a presentation progress bar
 progress: true,

 // Display the page number of the current slide
 slideNumber: false,

 // Push each slide change to the browser history
 history: false,

 // Enable keyboard shortcuts for navigation
 keyboard: true,

 // Enable the slide overview mode
 overview: true,

 // Vertical centering of slides
 center: true,

 // Enables touch navigation on devices with touch input
 touch: true,

 // Loop the presentation
 loop: false,

 // Change the presentation direction to be RTL
 rtl: false,

 // Turns fragments on and off globally
 fragments: true,

 // Flags if the presentation is running in an embedded mode,
 // i.e. contained within a limited portion of the screen
 embedded: false,

 // Number of milliseconds between automatically proceeding to the
 // next slide, disabled when set to 0, this value can be overwritten
 // by using a data-autoslide attribute on your slides
 autoSlide: 0,

 // Stop auto-sliding after user input
 autoSlideStoppable: true,

 // Enable slide navigation via mouse wheel
 mouseWheel: false,

 // Hides the address bar on mobile devices
 hideAddressBar: true,

 // Opens links in an iframe preview overlay
 previewLinks: false,

 // Transition style
 transition: 'default', // default/cube/page/concave/zoom/linear/fade/none

 // Transition speed
 transitionSpeed: 'default', // default/fast/slow

 // Transition style for full page slide backgrounds
 backgroundTransition: 'default', // default/none/slide/concave/convex/zoom

 // Number of slides away from the current that are visible
 viewDistance: 3,

 // Parallax background image
 parallaxBackgroundImage: '', // e.g. "'https://s3.amazonaws.com/hakim-static/reveal-js/reveal-parallax-1.jpg'"

 // Parallax background size
 parallaxBackgroundSize: '' // CSS syntax, e.g. "2100px 900px"

});

Note that the new default vertical centering option will break compatibility with slides that were using transitions with backgrounds (cube and page). To restore the previous behavior, set center to false.

The configuration can be updated after initialization using the configure method:

// Turn autoSlide off
Reveal.configure({ autoSlide: 0 });

// Start auto-sliding every 5s
Reveal.configure({ autoSlide: 5000 });

Dependencies

Reveal.js doesn’t rely on any third party scripts to work but a few optional libraries are included by default. These libraries are loaded as dependencies in the order they appear, for example:

Reveal.initialize({
 dependencies: [
 // Cross-browser shim that fully implements classList - https://github.com/eligrey/classList.js/
 { src: 'lib/js/classList.js', condition: function() { return !document.body.classList; } },

 // Interpret Markdown in <section> elements
 { src: 'plugin/markdown/marked.js', condition: function() { return !!document.querySelector('[data-markdown]'); } },
 { src: 'plugin/markdown/markdown.js', condition: function() { return !!document.querySelector('[data-markdown]'); } },

 // Syntax highlight for <code> elements
 { src: 'plugin/highlight/highlight.js', async: true, callback: function() { hljs.initHighlightingOnLoad(); } },

 // Zoom in and out with Alt+click
 { src: 'plugin/zoom-js/zoom.js', async: true, condition: function() { return !!document.body.classList; } },

 // Speaker notes
 { src: 'plugin/notes/notes.js', async: true, condition: function() { return !!document.body.classList; } },

 // Remote control your reveal.js presentation using a touch device
 { src: 'plugin/remotes/remotes.js', async: true, condition: function() { return !!document.body.classList; } },

 // MathJax
 { src: 'plugin/math/math.js', async: true }
]
});

You can add your own extensions using the same syntax. The following properties are available for each dependency object:

		src: Path to the script to load

		async: [optional] Flags if the script should load after reveal.js has started, defaults to false

		callback: [optional] Function to execute when the script has loaded

		condition: [optional] Function which must return true for the script to be loaded

Presentation Size

All presentations have a normal size, that is the resolution at which they are authored. The framework will automatically scale presentations uniformly based on this size to ensure that everything fits on any given display or viewport.

See below for a list of configuration options related to sizing, including default values:

Reveal.initialize({

 ...

 // The "normal" size of the presentation, aspect ratio will be preserved
 // when the presentation is scaled to fit different resolutions. Can be
 // specified using percentage units.
 width: 960,
 height: 700,

 // Factor of the display size that should remain empty around the content
 margin: 0.1,

 // Bounds for smallest/largest possible scale to apply to content
 minScale: 0.2,
 maxScale: 1.0

});

Auto-sliding

Presentations can be configure to progress through slides automatically, without any user input. To enable this you will need to tell the framework how many milliseconds it should wait between slides:

// Slide every five seconds
Reveal.configure({
 autoSlide: 5000
});

When this is turned on a control element will appear that enables users to pause and resume auto-sliding. Sliding is also paused automatically as soon as the user starts navigating. You can disable these controls by specifying autoSlideStoppable: false in your reveal.js config.

You can also override the slide duration for individual slides by using the data-autoslide attribute on individual sections:

<section data-autoslide="10000">This will remain on screen for 10 seconds</section>

Keyboard Bindings

If you’re unhappy with any of the default keyboard bindings you can override them using the keyboard config option:

Reveal.configure({
 keyboard: {
 13: 'next', // go to the next slide when the ENTER key is pressed
 27: function() {}, // do something custom when ESC is pressed
 32: null // don't do anything when SPACE is pressed (i.e. disable a reveal.js default binding)
 }
});

API

The Reveal class provides a JavaScript API for controlling navigation and reading state:

// Navigation
Reveal.slide(indexh, indexv, indexf);
Reveal.left();
Reveal.right();
Reveal.up();
Reveal.down();
Reveal.prev();
Reveal.next();
Reveal.prevFragment();
Reveal.nextFragment();
Reveal.toggleOverview();
Reveal.togglePause();

// Retrieves the previous and current slide elements
Reveal.getPreviousSlide();
Reveal.getCurrentSlide();

Reveal.getIndices(); // { h: 0, v: 0 } }

// State checks
Reveal.isFirstSlide();
Reveal.isLastSlide();
Reveal.isOverview();
Reveal.isPaused();

Ready Event

The ‘ready’ event is fired when reveal.js has loaded all (synchronous) dependencies and is ready to start navigating.

Reveal.addEventListener('ready', function(event) {
 // event.currentSlide, event.indexh, event.indexv
});

Slide Changed Event

An ‘slidechanged’ event is fired each time the slide is changed (regardless of state). The event object holds the index values of the current slide as well as a reference to the previous and current slide HTML nodes.

Some libraries, like MathJax (see #226 [https://github.com/hakimel/reveal.js/issues/226#issuecomment-10261609]), get confused by the transforms and display states of slides. Often times, this can be fixed by calling their update or render function from this callback.

Reveal.addEventListener('slidechanged', function(event) {
 // event.previousSlide, event.currentSlide, event.indexh, event.indexv
});

States

If you set data-state="somestate" on a slide <section>, “somestate” will be applied as a class on the document element when that slide is opened. This allows you to apply broad style changes to the page based on the active slide.

Furthermore you can also listen to these changes in state via JavaScript:

Reveal.addEventListener('somestate', function() {
 // TODO: Sprinkle magic
}, false);

Slide Backgrounds

Slides are contained within a limited portion of the screen by default to allow them to fit any display and scale uniformly. You can apply full page background colors or images by applying a data-background attribute to your <section> elements. Below are a few examples.

<section data-background="#ff0000">
 <h2>All CSS color formats are supported, like rgba() or hsl().</h2>
</section>
<section data-background="http://example.com/image.png">
 <h2>This slide will have a full-size background image.</h2>
</section>
<section data-background="http://example.com/image.png" data-background-size="100px" data-background-repeat="repeat">
 <h2>This background image will be sized to 100px and repeated.</h2>
</section>

Backgrounds transition using a fade animation by default. This can be changed to a linear sliding transition by passing backgroundTransition: 'slide' to the Reveal.initialize() call. Alternatively you can set data-background-transition on any section with a background to override that specific transition.

Parallax Background

If you want to use a parallax scrolling background, set the two following config properties when initializing reveal.js (the third one is optional).

Reveal.initialize({

 // Parallax background image
 parallaxBackgroundImage: '', // e.g. "https://s3.amazonaws.com/hakim-static/reveal-js/reveal-parallax-1.jpg"

 // Parallax background size
 parallaxBackgroundSize: '', // CSS syntax, e.g. "2100px 900px" - currently only pixels are supported (don't use % or auto)

 // This slide transition gives best results:
 transition: linear

});

Make sure that the background size is much bigger than screen size to allow for some scrolling. View example [http://lab.hakim.se/reveal-js/?parallaxBackgroundImage=https%3A%2F%2Fs3.amazonaws.com%2Fhakim-static%2Freveal-js%2Freveal-parallax-1.jpg¶llaxBackgroundSize=2100px%20900px].

Slide Transitions

The global presentation transition is set using the transition config value. You can override the global transition for a specific slide by using the data-transition attribute:

<section data-transition="zoom">
 <h2>This slide will override the presentation transition and zoom!</h2>
</section>

<section data-transition-speed="fast">
 <h2>Choose from three transition speeds: default, fast or slow!</h2>
</section>

Note that this does not work with the page and cube transitions.

Internal links

It’s easy to link between slides. The first example below targets the index of another slide whereas the second targets a slide with an ID attribute (<section id="some-slide">):

Link
Link

You can also add relative navigation links, similar to the built in reveal.js controls, by appending one of the following classes on any element. Note that each element is automatically given an enabled class when it’s a valid navigation route based on the current slide.

 <!-- Previous vertical or horizontal slide -->
 <!-- Next vertical or horizontal slide -->

Fragments

Fragments are used to highlight individual elements on a slide. Every element with the class fragment will be stepped through before moving on to the next slide. Here’s an example: http://lab.hakim.se/reveal-js/#/fragments

The default fragment style is to start out invisible and fade in. This style can be changed by appending a different class to the fragment:

<section>
 <p class="fragment grow">grow</p>
 <p class="fragment shrink">shrink</p>
 <p class="fragment roll-in">roll-in</p>
 <p class="fragment fade-out">fade-out</p>
 <p class="fragment current-visible">visible only once</p>
 <p class="fragment highlight-current-blue">blue only once</p>
 <p class="fragment highlight-red">highlight-red</p>
 <p class="fragment highlight-green">highlight-green</p>
 <p class="fragment highlight-blue">highlight-blue</p>
</section>

Multiple fragments can be applied to the same element sequentially by wrapping it, this will fade in the text on the first step and fade it back out on the second.

<section>

 I'll fade in, then out

</section>

The display order of fragments can be controlled using the data-fragment-index attribute.

<section>
 <p class="fragment" data-fragment-index="3">Appears last</p>
 <p class="fragment" data-fragment-index="1">Appears first</p>
 <p class="fragment" data-fragment-index="2">Appears second</p>
</section>

Fragment events

When a slide fragment is either shown or hidden reveal.js will dispatch an event.

Some libraries, like MathJax (see #505), get confused by the initially hidden fragment elements. Often times this can be fixed by calling their update or render function from this callback.

Reveal.addEventListener('fragmentshown', function(event) {
 // event.fragment = the fragment DOM element
});
Reveal.addEventListener('fragmenthidden', function(event) {
 // event.fragment = the fragment DOM element
});

Code syntax highlighting

By default, Reveal is configured with highlight.js [http://softwaremaniacs.org/soft/highlight/en/] for code syntax highlighting. Below is an example with clojure code that will be syntax highlighted. When the data-trim attribute is present surrounding whitespace is automatically removed.

<section>
 <pre><code data-trim>
(def lazy-fib
 (concat
 [0 1]
 ((fn rfib [a b]
 (lazy-cons (+ a b) (rfib b (+ a b)))) 0 1)))
 </code></pre>
</section>

Slide number

If you would like to display the page number of the current slide you can do so using the slideNumber configuration value.

Reveal.configure({ slideNumber: true });

Overview mode

Press “Esc” or “o” keys to toggle the overview mode on and off. While you’re in this mode, you can still navigate between slides,
as if you were at 1,000 feet above your presentation. The overview mode comes with a few API hooks:

Reveal.addEventListener('overviewshown', function(event) { /* ... */ });
Reveal.addEventListener('overviewhidden', function(event) { /* ... */ });

// Toggle the overview mode programmatically
Reveal.toggleOverview();

Fullscreen mode

Just press »F« on your keyboard to show your presentation in fullscreen mode. Press the »ESC« key to exit fullscreen mode.

Embedded media

Embedded HTML5 <video>/<audio> and YouTube iframes are automatically paused when you navigate away from a slide. This can be disabled by decorating your element with a data-ignore attribute.

Add data-autoplay to your media element if you want it to automatically start playing when the slide is shown:

<video data-autoplay src="http://clips.vorwaerts-gmbh.de/big_buck_bunny.mp4"></video>

Additionally the framework automatically pushes two post messages [https://developer.mozilla.org/en-US/docs/Web/API/Window.postMessage] to all iframes, slide:start when the slide containing the iframe is made visible and slide:stop when it is hidden.

Stretching elements

Sometimes it’s desirable to have an element, like an image or video, stretch to consume as much space as possible within a given slide. This can be done by adding the .stretch class to an element as seen below:

<section>
 <h2>This video will use up the remaining space on the slide</h2>
 <video class="stretch" src="http://clips.vorwaerts-gmbh.de/big_buck_bunny.mp4"></video>
</section>

Limitations:

		Only direct descendants of a slide section can be stretched

		Only one descendant per slide section can be stretched

PDF Export

Presentations can be exported to PDF via a special print stylesheet. This feature requires that you use Google Chrome [http://google.com/chrome].
Here’s an example of an exported presentation that’s been uploaded to SlideShare: http://www.slideshare.net/hakimel/revealjs-13872948.

		Open your presentation with css/print/pdf.css [https://github.com/hakimel/reveal.js/blob/master/css/print/pdf.css] included on the page. The default index HTML lets you add print-pdf anywhere in the query to include the stylesheet, for example: lab.hakim.se/reveal-js?print-pdf [http://lab.hakim.se/reveal-js?print-pdf].

		Open the in-browser print dialog (CMD+P).

		Change the Destination setting to Save as PDF.

		Change the Layout to Landscape.

		Change the Margins to None.

		Click Save.

[image: Chrome Print Settings]

Theming

The framework comes with a few different themes included:

		default: Gray background, white text, blue links

		beige: Beige background, dark text, brown links

		sky: Blue background, thin white text, blue links

		night: Black background, thick white text, orange links

		serif: Cappuccino background, gray text, brown links

		simple: White background, black text, blue links

		solarized: Cream-colored background, dark green text, blue links

Each theme is available as a separate stylesheet. To change theme you will need to replace default below with your desired theme name in index.html:

<link rel="stylesheet" href="css/theme/default.css" id="theme">

If you want to add a theme of your own see the instructions here: /css/theme/README.md [https://github.com/hakimel/reveal.js/blob/master/css/theme/README.md].

Speaker Notes

reveal.js comes with a speaker notes plugin which can be used to present per-slide notes in a separate browser window. The notes window also gives you a preview of the next upcoming slide so it may be helpful even if you haven’t written any notes. Press the ‘s’ key on your keyboard to open the notes window.

Notes are defined by appending an <aside> element to a slide as seen below. You can add the data-markdown attribute to the aside element if you prefer writing notes using Markdown.

When used locally, this feature requires that reveal.js runs from a local web server.

<section>
 <h2>Some Slide</h2>

 <aside class="notes">
 Oh hey, these are some notes. They'll be hidden in your presentation, but you can see them if you open the speaker notes window (hit 's' on your keyboard).
 </aside>
</section>

If you’re using the external Markdown plugin, you can add notes with the help of a special delimiter:

<section data-markdown="example.md" data-separator="^\n\n\n" data-vertical="^\n\n" data-notes="^Note:"></section>

Title
Sub-title

Here is some content...

Note:
This will only display in the notes window.

Server Side Speaker Notes

In some cases it can be desirable to run notes on a separate device from the one you’re presenting on. The Node.js-based notes plugin lets you do this using the same note definitions as its client side counterpart. Include the required scripts by adding the following dependencies:

Reveal.initialize({
 ...

 dependencies: [
 { src: 'socket.io/socket.io.js', async: true },
 { src: 'plugin/notes-server/client.js', async: true }
]
});

Then:

		Install Node.js [http://nodejs.org/]

		Run npm install

		Run node plugin/notes-server

Multiplexing

The multiplex plugin allows your audience to view the slides of the presentation you are controlling on their own phone, tablet or laptop. As the master presentation navigates the slides, all client presentations will update in real time. See a demo at http://revealjs.jit.su/.

The multiplex plugin needs the following 3 things to operate:

		Master presentation that has control

		Client presentations that follow the master

		Socket.io server to broadcast events from the master to the clients

More details:

Master presentation

Served from a static file server accessible (preferably) only to the presenter. This need only be on your (the presenter’s) computer. (It’s safer to run the master presentation from your own computer, so if the venue’s Internet goes down it doesn’t stop the show.) An example would be to execute the following commands in the directory of your master presentation:

		npm install node-static

		static

If you want to use the speaker notes plugin with your master presentation then make sure you have the speaker notes plugin configured correctly along with the configuration shown below, then execute node plugin/notes-server in the directory of your master presentation. The configuration below will cause it to connect to the socket.io server as a master, as well as launch your speaker-notes/static-file server.

You can then access your master presentation at http://localhost:1947

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: '13652805320794272084', // Obtained from the socket.io server. Gives this (the master) control of the presentation
 id: '1ea875674b17ca76', // Obtained from socket.io server
 url: 'revealjs.jit.su:80' // Location of socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/master.js', async: true },

 // and if you want speaker notes
 { src: 'plugin/notes-server/client.js', async: true }

 // other dependencies...
]
});

Client presentation

Served from a publicly accessible static file server. Examples include: GitHub Pages, Amazon S3, Dreamhost, Akamai, etc. The more reliable, the better. Your audience can then access the client presentation via http://example.com/path/to/presentation/client/index.html, with the configuration below causing them to connect to the socket.io server as clients.

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: null, // null so the clients do not have control of the master presentation
 id: '1ea875674b17ca76', // id, obtained from socket.io server
 url: 'revealjs.jit.su:80' // Location of socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]
});

Socket.io server

Server that receives the slideChanged events from the master presentation and broadcasts them out to the connected client presentations. This needs to be publicly accessible. You can run your own socket.io server with the commands:

		npm install

		node plugin/multiplex

Or you use the socket.io server at http://revealjs.jit.su.

You’ll need to generate a unique secret and token pair for your master and client presentations. To do so, visit http://example.com/token, where http://example.com is the location of your socket.io server. Or if you’re going to use the socket.io server at http://revealjs.jit.su, visit http://revealjs.jit.su/token.

You are very welcome to point your presentations at the Socket.io server running at http://revealjs.jit.su, but availability and stability are not guaranteed. For anything mission critical I recommend you run your own server. It is simple to deploy to nodejitsu, heroku, your own environment, etc.

socket.io server as file static server

The socket.io server can play the role of static file server for your client presentation, as in the example at http://revealjs.jit.su. (Open http://revealjs.jit.su in two browsers. Navigate through the slides on one, and the other will update to match.)

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: null, // null so the clients do not have control of the master presentation
 id: '1ea875674b17ca76', // id, obtained from socket.io server
 url: 'example.com:80' // Location of your socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]

It can also play the role of static file server for your master presentation and client presentations at the same time (as long as you don’t want to use speaker notes). (Open http://revealjs.jit.su in two browsers. Navigate through the slides on one, and the other will update to match. Navigate through the slides on the second, and the first will update to match.) This is probably not desirable, because you don’t want your audience to mess with your slides while you’re presenting. ;)

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: '13652805320794272084', // Obtained from the socket.io server. Gives this (the master) control of the presentation
 id: '1ea875674b17ca76', // Obtained from socket.io server
 url: 'example.com:80' // Location of your socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/master.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]
});

Leap Motion

The Leap Motion plugin lets you utilize your Leap Motion [https://www.leapmotion.com/] device to control basic navigation of your presentation. The gestures currently supported are:

1 to 2 fingers

Pointer

—

 Point to anything on screen. Move your finger past the device to expand the pointer.

1 hand + 3 or more fingers (left/right/up/down)

Navigate through your slides. See config options to invert movements.

2 hands upwards

Toggle the overview mode. Do it a second time to exit the overview.

Config Options

You can edit the following options:

| Property | Default | Description
| —————– |:—————–:| :————-
| autoCenter | true | Center the pointer based on where you put your finger into the leap motions detection field.
| gestureDelay | 500 | How long to delay between gestures in milliseconds.
| naturalSwipe | true | Swipe as though you were touching a touch screen. Set to false to invert.
| pointerColor | #00aaff | The color of the pointer.
| pointerOpacity | 0.7 | The opacity of the pointer.
| pointerSize | 15 | The minimum height and width of the pointer.
| pointerTolerance | 120 | Bigger = slower pointer.

Example configuration:

Reveal.initialize({

 // other options...

 leap: {
 naturalSwipe : false, // Invert swipe gestures
 pointerOpacity : 0.5, // Set pointer opacity to 0.5
 pointerColor : '#d80000' // Red pointer
 },

 dependencies: [
 { src: 'plugin/leap/leap.js', async: true }
]

});

MathJax

If you want to display math equations in your presentation you can easily do so by including this plugin. The plugin is a very thin wrapper around the MathJax [http://www.mathjax.org/] library. To use it you’ll need to include it as a reveal.js dependency, find our more about dependencies here.

The plugin defaults to using LaTeX [http://en.wikipedia.org/wiki/LaTeX] but that can be adjusted through the math configuration object. Note that MathJax is loaded from a remote server. If you want to use it offline you’ll need to download a copy of the library and adjust the mathjax configuration value.

Below is an example of how the plugin can be configured. If you don’t intend to change these values you do not need to include the math config object at all.

Reveal.initialize({

 // other options ...

 math: {
 mathjax: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js',
 config: 'TeX-AMS_HTML-full' // See http://docs.mathjax.org/en/latest/config-files.html
 },

 dependencies: [
 { src: 'plugin/math/math.js', async: true }
]

});

Read MathJax’s documentation if you need HTTPS delivery [http://docs.mathjax.org/en/latest/start.html#secure-access-to-the-cdn] or serving of specific versions [http://docs.mathjax.org/en/latest/configuration.html#loading-mathjax-from-the-cdn] for stability.

Installation

The basic setup is for authoring presentations only. The full setup gives you access to all reveal.js features and plugins such as speaker notes as well as the development tasks needed to make changes to the source.

Basic setup

The core of reveal.js is very easy to install. You’ll simply need to download a copy of this repository and open the index.html file directly in your browser.

		Download the latest version of reveal.js from https://github.com/hakimel/reveal.js/releases

		Unzip and replace the example contents in index.html with your own

		Open index.html in a browser to view it

Full setup

Some reveal.js features, like external markdown and speaker notes, require that presentations run from a local web server. The following instructions will set up such a server as well as all of the development tasks needed to make edits to the reveal.js source code.

		Install Node.js [http://nodejs.org/]

		Install Grunt [http://gruntjs.com/getting-started#installing-the-cli]

		Clone the reveal.js repository

$ git clone https://github.com/hakimel/reveal.js.git

		Navigate to the reveal.js folder

$ cd reveal.js

		Install dependencies

$ npm install

		Serve the presentation and monitor source files for changes

$ grunt serve

		Open http://localhost:8000 to view your presentation

You can change the port by using grunt serve --port 8001.

Folder Structure

		css/ Core styles without which the project does not function

		js/ Like above but for JavaScript

		plugin/ Components that have been developed as extensions to reveal.js

		lib/ All other third party assets (JavaScript, CSS, fonts)

Contributing

Please keep the issue tracker [http://github.com/hakimel/reveal.js/issues] limited to bug reports, feature requests and pull requests. If you are reporting a bug make sure to include information about which browser and operating system you are using as well as the necessary steps to reproduce the issue.

If you have personal support questions use StackOverflow [http://stackoverflow.com/questions/tagged/reveal.js].

Pull requests

		Should follow the coding style of the file you work in, most importantly:
		Tabs to indent

		Single-quoted strings

		Should be made towards the dev branch

		Should be submitted from a feature/topic branch (not your master)

		Should not include the minified reveal.min.js file

License

MIT licensed

Copyright (C) 2014 Hakim El Hattab, http://hakim.se

 © Copyright 2012, Continuum Analytics.

_static/img/logo.png

_static/img/glyphicons-halflings-white.png
VO a
SO U

_static/comment-bright.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/presentations/markdown/status.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze - Current Status

		Blaze usually works for moderately complex problems

		Ready for patient and vocal users

		Expect API breaks

Backends:
http://blaze.pydata.org/docs/latest/backends.html

Attribution

Funded by DARPA, Built by Continuum

mrocklin@workstation:~/workspace/blaze$ git shortlog -ns
 1493 Matthew Rocklin
 677 Mark Wiebe
 574 Phillip Cloud
 423 Francesc Alted
 268 Mark Florisson
 198 Stephen Diehl
 102 Andy R. Terrel
 95 Travis E. Oliphant
 90 Oscar Villellas
 71 Brittain Hard
 66 Benjamin Zaitlen
 35 talumbau
 24 Christine Doig
 13 T.J. Alumbaugh
 6 Matt Wescott
 5 brittainhard
 4 Hugo
 4 Valentin Haenel
 3 FrancescAlted
 3 Maggie Mari
 3 Peter Wang
 2 Continuum
 2 Dav Clark
 2 Ilan Schnell
 2 Stan Seibert
 2 majidaldo
 1 Damien Garaud
 1 Gaëtan de Menten
 1 Maggie-M
 1 Milos Popovic
 1 Robert Gieseke
 1 Wesley Emeneker

 © Copyright 2012, Continuum Analytics.

_build/json/_static/presentations/markdown/status.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze - Current Status

		Blaze usually works for moderately complex problems

		Ready for patient and vocal users

		Expect API breaks

Backends:
http://blaze.pydata.org/docs/latest/backends.html

Attribution

Funded by DARPA, Built by Continuum

mrocklin@workstation:~/workspace/blaze$ git shortlog -ns
 1493 Matthew Rocklin
 677 Mark Wiebe
 574 Phillip Cloud
 423 Francesc Alted
 268 Mark Florisson
 198 Stephen Diehl
 102 Andy R. Terrel
 95 Travis E. Oliphant
 90 Oscar Villellas
 71 Brittain Hard
 66 Benjamin Zaitlen
 35 talumbau
 24 Christine Doig
 13 T.J. Alumbaugh
 6 Matt Wescott
 5 brittainhard
 4 Hugo
 4 Valentin Haenel
 3 FrancescAlted
 3 Maggie Mari
 3 Peter Wang
 2 Continuum
 2 Dav Clark
 2 Ilan Schnell
 2 Stan Seibert
 2 majidaldo
 1 Damien Garaud
 1 Gaëtan de Menten
 1 Maggie-M
 1 Milos Popovic
 1 Robert Gieseke
 1 Wesley Emeneker

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/nyc-start.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze

While we’re waiting you may want to try the following

Docs – http://blaze.pydata.org/

Install – conda install -c blaze blaze

Source –
http://github.com/ContinuumIO/blaze/

TL;DR

Blaze is an extensible interface for data analytics.

It feels like NumPy/Pandas. It drives other data systems.

Blaze expressions enable high-level reasoning.

Motivation

NumPy and Pandas serve as the foundation for the PyData stack

... but they are limited to memory

The state of biggish-data analysis is still wild

Approach

		Blaze is a user interface
		... and something like a compiler

		... for analytic processing (like Pandas, not like Redis)

		It isn’t a database or a Pandas replacement

		It complements pre-existing systems by improving user access

Play time

In which we pray to the demo gods

		Main points: Blaze ...
		has a familiar interface

		directs other mature projects to do your analysis

		extends beyond Python/Pandas

		Supports Pandas-like and NumPy-like computation

Also, in case you missed it

conda install -c blaze blaze

http://blaze.pydata.org/presentations/

 © Copyright 2012, Continuum Analytics.

_static/minus.png

_static/img/glyphicons-halflings.png
TnQ=e® x %28 S vxQaQaQqoOue

ALOALOOGOQOCCEEM™O=< w5l

SSEFRAa2@ABIITT L~

/79006CCE &K KU <>

000000406000« - *

0EsFHYOOALE XM -
A NN -]

_static/file.png

_static/html/capabilities.html

_static/comment-close.png

_build/html/_static/presentations/markdown/template.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Title

Slide one

Three spaces for slide

Slide two

Two spaces for subslide

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/start.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze - an interface

While we’re waiting you may want to try the following

Docs – http://blaze.pydata.org/

Install – conda install blaze

Source –
http://github.com/ContinuumIO/blaze/

TL;DR

Blaze is an extensible interface for data analytics.

It feels like NumPy/Pandas to users but drives other data systems.

We achieve performance through accessibility

 © Copyright 2012, Continuum Analytics.

_build/html/_static/presentations/markdown/dask.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Dask - Task scheduling and Large Arrays

[image:]

expr = x.T.dot(y) - y.mean(axis=0)

NumPy

		NumPy powers the scientific software stack
		Pandas

		SciPy

		Matplotlib

		Scikit learn, image, ...

>>> import numpy as np
>>> x = np.load(...)
>>> y = ...

>>> x.T.dot(y) - y.mean(axis=0) # Complex, expressive, fast

		But NumPy is (mostly) restricted to memory and a single core
		Along with the rest of the stack

... this is usually fine

99% of problems fit in memory

dask.array

		Implement blocked array algorithms

		is a drop in replacement for a subset of NumPy

		Keeps a small memory footprint

		Uses all of your cores

>>> import h5py
>>> d = h5py.File('myfile.hdf5')['/my/huge/array'] # a giant on-disk array
>>> d.shape
(1000000, 1000000)

>>> import dask.array as da
>>> x = da.from_array(d, blockshape=(1000, 1000)) # cut up array into blocks

>>> y = x.T.dot(x).mean(axis=0) # do numpy math
>>> plot(y[::100]) # use result as normal

But first, dask

[image:]

		Consider the following program:

def inc(i):
 return i + 1

def add(a, b):
 return a + b

x = 1
y = inc(x)
z = add(y, 10)

		Encode as a dictionary:

d = {'x': 1,
 'y': (inc, 'x'),
 'z': (add, 'y', 10)}

We choose how and when to execute this code.

		Dask graph

d = {'x': 1,
 'y': (inc, 'x'),
 'z': (add, 'y', 10)}

		Simple scheduler / execution

>>> dask.core.get(d, 'x')
1
>>> dask.core.get(d, 'z')
12

		Use different schedulers for different hardware

Dask arrays create graphs from numpy-like code

live demo

Execute results with asynchronous scheduler

[image:]

Example: Stack of Meteorological Data

$ ls
2014-01-01.nc3 2014-03-18.nc3 2014-06-02.nc3 2014-08-17.nc3 2014-11-01.nc3
2014-01-02.nc3 2014-03-19.nc3 2014-06-03.nc3 2014-08-18.nc3 2014-11-02.nc3
2014-01-03.nc3 2014-03-20.nc3 2014-06-04.nc3 2014-08-19.nc3 2014-11-03.nc3
2014-01-04.nc3 2014-03-21.nc3 2014-06-05.nc3 2014-08-20.nc3 2014-11-04.nc3
...

>>> import netCDF4
>>> t = netCDF4.Dataset('2014-01-01.nc3').variables['t2m']
>>> t.shape
(4, 721, 1440)

Collect all temperature data

>>> from glob import glob
>>> filenames = sorted(glob('2014-*.nc3'))
>>> temps = [netCDF4.Dataset(fn).variables['t2m'] for fn in filenames]

Concatenate with dask.array

>>> import dask.array as da
>>> arrays = [da.from_array(t, blockshape=(4, 200, 200)) for t in temps]
>>> x = da.concatenate(arrays, axis=0)

>>> x.shape
(1464, 721, 1440)

Plot

>>> imshow(x.mean(axis=0), cmap='bone')
>>> imshow(x[1000] - x.mean(axis=0), cmap='RdBu_r')

[image:]
[image:]

Plot

>>> imshow(x[::4].mean(axis=0) - x[2::4].mean(axis=0), cmap='RdBu_r')

[image:]

Questions?

		Source: http://github.com/ContinuumIO/dask/

		Docs: http://dask.readthedocs.org

[image:]

expr = x.T.dot(y) - y.mean(axis=0)

 © Copyright 2012, Continuum Analytics.

examples.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Examples

Blaze can help solve many common problems that data analysts and scientists encounter. Here are a few examples of common issues that can be solved using blaze.

Combining separate, gzipped csv files.

>>> from blaze import odo
>>> from pandas import DataFrame
>>> odo('blaze/examples/data/accounts_*.csv.gz', DataFrame)
 id name amount
0 1 Alice 100
1 2 Bob 200
2 3 Charlie 300
3 4 Dan 400
4 5 Edith 500

Split-Apply-Combine

>>> from blaze import Data, by
>>> t = Data('sqlite:///blaze/examples/data/iris.db::iris')
>>> t
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
5 5.4 3.9 1.7 0.4 Iris-setosa
6 4.6 3.4 1.4 0.3 Iris-setosa
7 5.0 3.4 1.5 0.2 Iris-setosa
8 4.4 2.9 1.4 0.2 Iris-setosa
9 4.9 3.1 1.5 0.1 Iris-setosa
...
>>> by(t.species, max=t.petal_length.max(), min=t.petal_length.min())
 species max min
0 Iris-setosa 1.9 1.0
1 Iris-versicolor 5.1 3.0
2 Iris-virginica 6.9 4.5

 © Copyright 2012, Continuum Analytics.

_images/numpy_plus.png
uauu

=

Chunked Arrays ~ Synthetic Dimensions Missing Values

= uvwxyz
=g 4

Type Heterogeneity Shape Heterogeneity Labeled Arrays

_images/blaze_med.png
Blaze

_images/xyz.png

_build/localmedia/_static/presentations/css/theme/README.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Dependencies

Themes are written using Sass to keep things modular and reduce the need for repeated selectors across files. Make sure that you have the reveal.js development environment including the Grunt dependencies installed before proceding: https://github.com/hakimel/reveal.js#full-setup

You also need to install Ruby and then Sass (with gem install sass).

Creating a Theme

To create your own theme, start by duplicating any .scss file in /css/theme/source [https://github.com/hakimel/reveal.js/blob/master/css/theme/source] and adding it to the compilation list in the Gruntfile [https://github.com/hakimel/reveal.js/blob/master/Gruntfile.js].

Each theme file does four things in the following order:

		Include /css/theme/template/mixins.scss [https://github.com/hakimel/reveal.js/blob/master/css/theme/template/mixins.scss]
Shared utility functions.

		Include /css/theme/template/settings.scss [https://github.com/hakimel/reveal.js/blob/master/css/theme/template/settings.scss]
Declares a set of custom variables that the template file (step 4) expects. Can be overridden in step 3.

		Override
This is where you override the default theme. Either by specifying variables (see settings.scss [https://github.com/hakimel/reveal.js/blob/master/css/theme/template/settings.scss] for reference) or by adding full selectors with hardcoded styles.

		Include /css/theme/template/theme.scss [https://github.com/hakimel/reveal.js/blob/master/css/theme/template/theme.scss]
The template theme file which will generate final CSS output based on the currently defined variables.

When you are done, run grunt themes to compile the Sass file to CSS and you are ready to use your new theme.

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/dask-array-meteorology.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Meteorological data

We have a pile of NetCDF files

$ ls
2014-01-01.nc 2014-03-18.nc 2014-06-02.nc 2014-08-17.nc 2014-11-01.nc
2014-01-02.nc 2014-03-19.nc 2014-06-03.nc 2014-08-18.nc 2014-11-02.nc
2014-01-03.nc 2014-03-20.nc 2014-06-04.nc 2014-08-19.nc 2014-11-03.nc
2014-01-04.nc 2014-03-21.nc 2014-06-05.nc 2014-08-20.nc 2014-11-04.nc
...

Four measurements per day, quarter degree resolution, for 2014

>>> import netCDF4
>>> t = netCDF4.Dataset('2014-01-01.nc').variables['t2m']
>>> t.shape
(4, 721, 1440)

Meteorological data

Point to a bunch of NetCDF datasets

>>> filenames = sorted(glob('2014-*.nc'))
>>> temps = [netCDF4.Dataset(fn).variables['t2m'] for fn in filenames]

Wrap each with dask.array

>>> import dask.array as da
>>> arrays = [da.from_array(t, chunks=(4, 200, 200)) for t in temps]

Manipulate arrays with numpy syntax

>>> x = da.concatenate(arrays, axis=0)
>>> x.shape
(1464, 721, 1440)

Meteorological data

Interact with the ecosystem

>>> from matplotlib import imshow
>>> imshow(x.mean(axis=0), cmap='bone')

[image:]

Meteorological data

Interact with the ecosystem

>>> from matplotlib import imshow
>>> imshow(x[1000] - x.mean(axis=0), cmap='RdBu_r')

[image:]

Meteorological data

Interact with the ecosystem

>>> from matplotlib import imshow
>>> imshow(x[::4].mean(axis=0) - x[2::4].mean(axis=0), cmap='RdBu_r')

[image:]

XRay

[image:]

Dask.array integrates with XRay.
http://xray.readthedocs.org

		Implements the netCDF model
		Set of associated ndarrays / variables

		Pandas index along each axis

		Index and reason using named axes with labels
		NumPy – x[40:100].mean(axis=2)

		XRay – ds.sel(time='2014-04').mean('time')

Written by Stephan Hoyer (@shoyer) at Climate Corp

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/REVEAL_README.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

reveal.js [image: Build Status] [https://travis-ci.org/hakimel/reveal.js]

A framework for easily creating beautiful presentations using HTML. Check out the live demo [http://lab.hakim.se/reveal-js/].

reveal.js comes with a broad range of features including nested slides [https://github.com/hakimel/reveal.js#markup], markdown contents [https://github.com/hakimel/reveal.js#markdown], PDF export [https://github.com/hakimel/reveal.js#pdf-export], speaker notes [https://github.com/hakimel/reveal.js#speaker-notes] and a JavaScript API [https://github.com/hakimel/reveal.js#api]. It’s best viewed in a browser with support for CSS 3D transforms but fallbacks [https://github.com/hakimel/reveal.js/wiki/Browser-Support] are available to make sure your presentation can still be viewed elsewhere.

More reading:

		Installation: Step-by-step instructions for getting reveal.js running on your computer.

		Changelog [https://github.com/hakimel/reveal.js/releases]: Up-to-date version history.

		Examples [https://github.com/hakimel/reveal.js/wiki/Example-Presentations]: Presentations created with reveal.js, add your own!

		Browser Support [https://github.com/hakimel/reveal.js/wiki/Browser-Support]: Explanation of browser support and fallbacks.

Online Editor

Presentations are written using HTML or markdown but there’s also an online editor for those of you who prefer a graphical interface. Give it a try at http://slid.es.

Instructions

Markup

Markup hierarchy needs to be <div class="reveal"> <div class="slides"> <section> where the <section> represents one slide and can be repeated indefinitely. If you place multiple <section>‘s inside of another <section> they will be shown as vertical slides. The first of the vertical slides is the “root” of the others (at the top), and it will be included in the horizontal sequence. For example:

<div class="reveal">
 <div class="slides">
 <section>Single Horizontal Slide</section>
 <section>
 <section>Vertical Slide 1</section>
 <section>Vertical Slide 2</section>
 </section>
 </div>
</div>

Markdown

It’s possible to write your slides using Markdown. To enable Markdown, add the data-markdown attribute to your <section> elements and wrap the contents in a <script type="text/template"> like the example below.

This is based on data-markdown [https://gist.github.com/1343518] from Paul Irish [https://github.com/paulirish] modified to use marked [https://github.com/chjj/marked] to support Github Flavoured Markdown [https://help.github.com/articles/github-flavored-markdown]. Sensitive to indentation (avoid mixing tabs and spaces) and line breaks (avoid consecutive breaks).

<section data-markdown>
 <script type="text/template">
 ## Page title

 A paragraph with some text and a [link](http://hakim.se).
 </script>
</section>

External Markdown

You can write your content as a separate file and have reveal.js load it at runtime. Note the separator arguments which determine how slides are delimited in the external file. The data-charset attribute is optional and specifies which charset to use when loading the external file.

When used locally, this feature requires that reveal.js runs from a local web server.

<section data-markdown="example.md"
 data-separator="^\n\n\n"
 data-vertical="^\n\n"
 data-notes="^Note:"
 data-charset="iso-8859-15">
</section>

Element Attributes

Special syntax (in html comment) is available for adding attributes to Markdown elements. This is useful for fragments, amongst other things.

<section data-markdown>
 <script type="text/template">
 - Item 1 <!-- .element: class="fragment" data-fragment-index="2" -->
 - Item 2 <!-- .element: class="fragment" data-fragment-index="1" -->
 </script>
</section>

Slide Attributes

Special syntax (in html comment) is available for adding attributes to the slide <section> elements generated by your Markdown.

<section data-markdown>
 <script type="text/template">
 <!-- .slide: data-background="#ff0000" -->
 Markdown content
 </script>
</section>

Configuration

At the end of your page you need to initialize reveal by running the following code. Note that all config values are optional and will default as specified below.

Reveal.initialize({

 // Display controls in the bottom right corner
 controls: true,

 // Display a presentation progress bar
 progress: true,

 // Display the page number of the current slide
 slideNumber: false,

 // Push each slide change to the browser history
 history: false,

 // Enable keyboard shortcuts for navigation
 keyboard: true,

 // Enable the slide overview mode
 overview: true,

 // Vertical centering of slides
 center: true,

 // Enables touch navigation on devices with touch input
 touch: true,

 // Loop the presentation
 loop: false,

 // Change the presentation direction to be RTL
 rtl: false,

 // Turns fragments on and off globally
 fragments: true,

 // Flags if the presentation is running in an embedded mode,
 // i.e. contained within a limited portion of the screen
 embedded: false,

 // Number of milliseconds between automatically proceeding to the
 // next slide, disabled when set to 0, this value can be overwritten
 // by using a data-autoslide attribute on your slides
 autoSlide: 0,

 // Stop auto-sliding after user input
 autoSlideStoppable: true,

 // Enable slide navigation via mouse wheel
 mouseWheel: false,

 // Hides the address bar on mobile devices
 hideAddressBar: true,

 // Opens links in an iframe preview overlay
 previewLinks: false,

 // Transition style
 transition: 'default', // default/cube/page/concave/zoom/linear/fade/none

 // Transition speed
 transitionSpeed: 'default', // default/fast/slow

 // Transition style for full page slide backgrounds
 backgroundTransition: 'default', // default/none/slide/concave/convex/zoom

 // Number of slides away from the current that are visible
 viewDistance: 3,

 // Parallax background image
 parallaxBackgroundImage: '', // e.g. "'https://s3.amazonaws.com/hakim-static/reveal-js/reveal-parallax-1.jpg'"

 // Parallax background size
 parallaxBackgroundSize: '' // CSS syntax, e.g. "2100px 900px"

});

Note that the new default vertical centering option will break compatibility with slides that were using transitions with backgrounds (cube and page). To restore the previous behavior, set center to false.

The configuration can be updated after initialization using the configure method:

// Turn autoSlide off
Reveal.configure({ autoSlide: 0 });

// Start auto-sliding every 5s
Reveal.configure({ autoSlide: 5000 });

Dependencies

Reveal.js doesn’t rely on any third party scripts to work but a few optional libraries are included by default. These libraries are loaded as dependencies in the order they appear, for example:

Reveal.initialize({
 dependencies: [
 // Cross-browser shim that fully implements classList - https://github.com/eligrey/classList.js/
 { src: 'lib/js/classList.js', condition: function() { return !document.body.classList; } },

 // Interpret Markdown in <section> elements
 { src: 'plugin/markdown/marked.js', condition: function() { return !!document.querySelector('[data-markdown]'); } },
 { src: 'plugin/markdown/markdown.js', condition: function() { return !!document.querySelector('[data-markdown]'); } },

 // Syntax highlight for <code> elements
 { src: 'plugin/highlight/highlight.js', async: true, callback: function() { hljs.initHighlightingOnLoad(); } },

 // Zoom in and out with Alt+click
 { src: 'plugin/zoom-js/zoom.js', async: true, condition: function() { return !!document.body.classList; } },

 // Speaker notes
 { src: 'plugin/notes/notes.js', async: true, condition: function() { return !!document.body.classList; } },

 // Remote control your reveal.js presentation using a touch device
 { src: 'plugin/remotes/remotes.js', async: true, condition: function() { return !!document.body.classList; } },

 // MathJax
 { src: 'plugin/math/math.js', async: true }
]
});

You can add your own extensions using the same syntax. The following properties are available for each dependency object:

		src: Path to the script to load

		async: [optional] Flags if the script should load after reveal.js has started, defaults to false

		callback: [optional] Function to execute when the script has loaded

		condition: [optional] Function which must return true for the script to be loaded

Presentation Size

All presentations have a normal size, that is the resolution at which they are authored. The framework will automatically scale presentations uniformly based on this size to ensure that everything fits on any given display or viewport.

See below for a list of configuration options related to sizing, including default values:

Reveal.initialize({

 ...

 // The "normal" size of the presentation, aspect ratio will be preserved
 // when the presentation is scaled to fit different resolutions. Can be
 // specified using percentage units.
 width: 960,
 height: 700,

 // Factor of the display size that should remain empty around the content
 margin: 0.1,

 // Bounds for smallest/largest possible scale to apply to content
 minScale: 0.2,
 maxScale: 1.0

});

Auto-sliding

Presentations can be configure to progress through slides automatically, without any user input. To enable this you will need to tell the framework how many milliseconds it should wait between slides:

// Slide every five seconds
Reveal.configure({
 autoSlide: 5000
});

When this is turned on a control element will appear that enables users to pause and resume auto-sliding. Sliding is also paused automatically as soon as the user starts navigating. You can disable these controls by specifying autoSlideStoppable: false in your reveal.js config.

You can also override the slide duration for individual slides by using the data-autoslide attribute on individual sections:

<section data-autoslide="10000">This will remain on screen for 10 seconds</section>

Keyboard Bindings

If you’re unhappy with any of the default keyboard bindings you can override them using the keyboard config option:

Reveal.configure({
 keyboard: {
 13: 'next', // go to the next slide when the ENTER key is pressed
 27: function() {}, // do something custom when ESC is pressed
 32: null // don't do anything when SPACE is pressed (i.e. disable a reveal.js default binding)
 }
});

API

The Reveal class provides a JavaScript API for controlling navigation and reading state:

// Navigation
Reveal.slide(indexh, indexv, indexf);
Reveal.left();
Reveal.right();
Reveal.up();
Reveal.down();
Reveal.prev();
Reveal.next();
Reveal.prevFragment();
Reveal.nextFragment();
Reveal.toggleOverview();
Reveal.togglePause();

// Retrieves the previous and current slide elements
Reveal.getPreviousSlide();
Reveal.getCurrentSlide();

Reveal.getIndices(); // { h: 0, v: 0 } }

// State checks
Reveal.isFirstSlide();
Reveal.isLastSlide();
Reveal.isOverview();
Reveal.isPaused();

Ready Event

The ‘ready’ event is fired when reveal.js has loaded all (synchronous) dependencies and is ready to start navigating.

Reveal.addEventListener('ready', function(event) {
 // event.currentSlide, event.indexh, event.indexv
});

Slide Changed Event

An ‘slidechanged’ event is fired each time the slide is changed (regardless of state). The event object holds the index values of the current slide as well as a reference to the previous and current slide HTML nodes.

Some libraries, like MathJax (see #226 [https://github.com/hakimel/reveal.js/issues/226#issuecomment-10261609]), get confused by the transforms and display states of slides. Often times, this can be fixed by calling their update or render function from this callback.

Reveal.addEventListener('slidechanged', function(event) {
 // event.previousSlide, event.currentSlide, event.indexh, event.indexv
});

States

If you set data-state="somestate" on a slide <section>, “somestate” will be applied as a class on the document element when that slide is opened. This allows you to apply broad style changes to the page based on the active slide.

Furthermore you can also listen to these changes in state via JavaScript:

Reveal.addEventListener('somestate', function() {
 // TODO: Sprinkle magic
}, false);

Slide Backgrounds

Slides are contained within a limited portion of the screen by default to allow them to fit any display and scale uniformly. You can apply full page background colors or images by applying a data-background attribute to your <section> elements. Below are a few examples.

<section data-background="#ff0000">
 <h2>All CSS color formats are supported, like rgba() or hsl().</h2>
</section>
<section data-background="http://example.com/image.png">
 <h2>This slide will have a full-size background image.</h2>
</section>
<section data-background="http://example.com/image.png" data-background-size="100px" data-background-repeat="repeat">
 <h2>This background image will be sized to 100px and repeated.</h2>
</section>

Backgrounds transition using a fade animation by default. This can be changed to a linear sliding transition by passing backgroundTransition: 'slide' to the Reveal.initialize() call. Alternatively you can set data-background-transition on any section with a background to override that specific transition.

Parallax Background

If you want to use a parallax scrolling background, set the two following config properties when initializing reveal.js (the third one is optional).

Reveal.initialize({

 // Parallax background image
 parallaxBackgroundImage: '', // e.g. "https://s3.amazonaws.com/hakim-static/reveal-js/reveal-parallax-1.jpg"

 // Parallax background size
 parallaxBackgroundSize: '', // CSS syntax, e.g. "2100px 900px" - currently only pixels are supported (don't use % or auto)

 // This slide transition gives best results:
 transition: linear

});

Make sure that the background size is much bigger than screen size to allow for some scrolling. View example [http://lab.hakim.se/reveal-js/?parallaxBackgroundImage=https%3A%2F%2Fs3.amazonaws.com%2Fhakim-static%2Freveal-js%2Freveal-parallax-1.jpg¶llaxBackgroundSize=2100px%20900px].

Slide Transitions

The global presentation transition is set using the transition config value. You can override the global transition for a specific slide by using the data-transition attribute:

<section data-transition="zoom">
 <h2>This slide will override the presentation transition and zoom!</h2>
</section>

<section data-transition-speed="fast">
 <h2>Choose from three transition speeds: default, fast or slow!</h2>
</section>

Note that this does not work with the page and cube transitions.

Internal links

It’s easy to link between slides. The first example below targets the index of another slide whereas the second targets a slide with an ID attribute (<section id="some-slide">):

Link
Link

You can also add relative navigation links, similar to the built in reveal.js controls, by appending one of the following classes on any element. Note that each element is automatically given an enabled class when it’s a valid navigation route based on the current slide.

 <!-- Previous vertical or horizontal slide -->
 <!-- Next vertical or horizontal slide -->

Fragments

Fragments are used to highlight individual elements on a slide. Every element with the class fragment will be stepped through before moving on to the next slide. Here’s an example: http://lab.hakim.se/reveal-js/#/fragments

The default fragment style is to start out invisible and fade in. This style can be changed by appending a different class to the fragment:

<section>
 <p class="fragment grow">grow</p>
 <p class="fragment shrink">shrink</p>
 <p class="fragment roll-in">roll-in</p>
 <p class="fragment fade-out">fade-out</p>
 <p class="fragment current-visible">visible only once</p>
 <p class="fragment highlight-current-blue">blue only once</p>
 <p class="fragment highlight-red">highlight-red</p>
 <p class="fragment highlight-green">highlight-green</p>
 <p class="fragment highlight-blue">highlight-blue</p>
</section>

Multiple fragments can be applied to the same element sequentially by wrapping it, this will fade in the text on the first step and fade it back out on the second.

<section>

 I'll fade in, then out

</section>

The display order of fragments can be controlled using the data-fragment-index attribute.

<section>
 <p class="fragment" data-fragment-index="3">Appears last</p>
 <p class="fragment" data-fragment-index="1">Appears first</p>
 <p class="fragment" data-fragment-index="2">Appears second</p>
</section>

Fragment events

When a slide fragment is either shown or hidden reveal.js will dispatch an event.

Some libraries, like MathJax (see #505), get confused by the initially hidden fragment elements. Often times this can be fixed by calling their update or render function from this callback.

Reveal.addEventListener('fragmentshown', function(event) {
 // event.fragment = the fragment DOM element
});
Reveal.addEventListener('fragmenthidden', function(event) {
 // event.fragment = the fragment DOM element
});

Code syntax highlighting

By default, Reveal is configured with highlight.js [http://softwaremaniacs.org/soft/highlight/en/] for code syntax highlighting. Below is an example with clojure code that will be syntax highlighted. When the data-trim attribute is present surrounding whitespace is automatically removed.

<section>
 <pre><code data-trim>
(def lazy-fib
 (concat
 [0 1]
 ((fn rfib [a b]
 (lazy-cons (+ a b) (rfib b (+ a b)))) 0 1)))
 </code></pre>
</section>

Slide number

If you would like to display the page number of the current slide you can do so using the slideNumber configuration value.

Reveal.configure({ slideNumber: true });

Overview mode

Press “Esc” or “o” keys to toggle the overview mode on and off. While you’re in this mode, you can still navigate between slides,
as if you were at 1,000 feet above your presentation. The overview mode comes with a few API hooks:

Reveal.addEventListener('overviewshown', function(event) { /* ... */ });
Reveal.addEventListener('overviewhidden', function(event) { /* ... */ });

// Toggle the overview mode programmatically
Reveal.toggleOverview();

Fullscreen mode

Just press »F« on your keyboard to show your presentation in fullscreen mode. Press the »ESC« key to exit fullscreen mode.

Embedded media

Embedded HTML5 <video>/<audio> and YouTube iframes are automatically paused when you navigate away from a slide. This can be disabled by decorating your element with a data-ignore attribute.

Add data-autoplay to your media element if you want it to automatically start playing when the slide is shown:

<video data-autoplay src="http://clips.vorwaerts-gmbh.de/big_buck_bunny.mp4"></video>

Additionally the framework automatically pushes two post messages [https://developer.mozilla.org/en-US/docs/Web/API/Window.postMessage] to all iframes, slide:start when the slide containing the iframe is made visible and slide:stop when it is hidden.

Stretching elements

Sometimes it’s desirable to have an element, like an image or video, stretch to consume as much space as possible within a given slide. This can be done by adding the .stretch class to an element as seen below:

<section>
 <h2>This video will use up the remaining space on the slide</h2>
 <video class="stretch" src="http://clips.vorwaerts-gmbh.de/big_buck_bunny.mp4"></video>
</section>

Limitations:

		Only direct descendants of a slide section can be stretched

		Only one descendant per slide section can be stretched

PDF Export

Presentations can be exported to PDF via a special print stylesheet. This feature requires that you use Google Chrome [http://google.com/chrome].
Here’s an example of an exported presentation that’s been uploaded to SlideShare: http://www.slideshare.net/hakimel/revealjs-13872948.

		Open your presentation with css/print/pdf.css [https://github.com/hakimel/reveal.js/blob/master/css/print/pdf.css] included on the page. The default index HTML lets you add print-pdf anywhere in the query to include the stylesheet, for example: lab.hakim.se/reveal-js?print-pdf [http://lab.hakim.se/reveal-js?print-pdf].

		Open the in-browser print dialog (CMD+P).

		Change the Destination setting to Save as PDF.

		Change the Layout to Landscape.

		Change the Margins to None.

		Click Save.

[image: Chrome Print Settings]

Theming

The framework comes with a few different themes included:

		default: Gray background, white text, blue links

		beige: Beige background, dark text, brown links

		sky: Blue background, thin white text, blue links

		night: Black background, thick white text, orange links

		serif: Cappuccino background, gray text, brown links

		simple: White background, black text, blue links

		solarized: Cream-colored background, dark green text, blue links

Each theme is available as a separate stylesheet. To change theme you will need to replace default below with your desired theme name in index.html:

<link rel="stylesheet" href="css/theme/default.css" id="theme">

If you want to add a theme of your own see the instructions here: /css/theme/README.md [https://github.com/hakimel/reveal.js/blob/master/css/theme/README.md].

Speaker Notes

reveal.js comes with a speaker notes plugin which can be used to present per-slide notes in a separate browser window. The notes window also gives you a preview of the next upcoming slide so it may be helpful even if you haven’t written any notes. Press the ‘s’ key on your keyboard to open the notes window.

Notes are defined by appending an <aside> element to a slide as seen below. You can add the data-markdown attribute to the aside element if you prefer writing notes using Markdown.

When used locally, this feature requires that reveal.js runs from a local web server.

<section>
 <h2>Some Slide</h2>

 <aside class="notes">
 Oh hey, these are some notes. They'll be hidden in your presentation, but you can see them if you open the speaker notes window (hit 's' on your keyboard).
 </aside>
</section>

If you’re using the external Markdown plugin, you can add notes with the help of a special delimiter:

<section data-markdown="example.md" data-separator="^\n\n\n" data-vertical="^\n\n" data-notes="^Note:"></section>

Title
Sub-title

Here is some content...

Note:
This will only display in the notes window.

Server Side Speaker Notes

In some cases it can be desirable to run notes on a separate device from the one you’re presenting on. The Node.js-based notes plugin lets you do this using the same note definitions as its client side counterpart. Include the required scripts by adding the following dependencies:

Reveal.initialize({
 ...

 dependencies: [
 { src: 'socket.io/socket.io.js', async: true },
 { src: 'plugin/notes-server/client.js', async: true }
]
});

Then:

		Install Node.js [http://nodejs.org/]

		Run npm install

		Run node plugin/notes-server

Multiplexing

The multiplex plugin allows your audience to view the slides of the presentation you are controlling on their own phone, tablet or laptop. As the master presentation navigates the slides, all client presentations will update in real time. See a demo at http://revealjs.jit.su/.

The multiplex plugin needs the following 3 things to operate:

		Master presentation that has control

		Client presentations that follow the master

		Socket.io server to broadcast events from the master to the clients

More details:

Master presentation

Served from a static file server accessible (preferably) only to the presenter. This need only be on your (the presenter’s) computer. (It’s safer to run the master presentation from your own computer, so if the venue’s Internet goes down it doesn’t stop the show.) An example would be to execute the following commands in the directory of your master presentation:

		npm install node-static

		static

If you want to use the speaker notes plugin with your master presentation then make sure you have the speaker notes plugin configured correctly along with the configuration shown below, then execute node plugin/notes-server in the directory of your master presentation. The configuration below will cause it to connect to the socket.io server as a master, as well as launch your speaker-notes/static-file server.

You can then access your master presentation at http://localhost:1947

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: '13652805320794272084', // Obtained from the socket.io server. Gives this (the master) control of the presentation
 id: '1ea875674b17ca76', // Obtained from socket.io server
 url: 'revealjs.jit.su:80' // Location of socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/master.js', async: true },

 // and if you want speaker notes
 { src: 'plugin/notes-server/client.js', async: true }

 // other dependencies...
]
});

Client presentation

Served from a publicly accessible static file server. Examples include: GitHub Pages, Amazon S3, Dreamhost, Akamai, etc. The more reliable, the better. Your audience can then access the client presentation via http://example.com/path/to/presentation/client/index.html, with the configuration below causing them to connect to the socket.io server as clients.

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: null, // null so the clients do not have control of the master presentation
 id: '1ea875674b17ca76', // id, obtained from socket.io server
 url: 'revealjs.jit.su:80' // Location of socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]
});

Socket.io server

Server that receives the slideChanged events from the master presentation and broadcasts them out to the connected client presentations. This needs to be publicly accessible. You can run your own socket.io server with the commands:

		npm install

		node plugin/multiplex

Or you use the socket.io server at http://revealjs.jit.su.

You’ll need to generate a unique secret and token pair for your master and client presentations. To do so, visit http://example.com/token, where http://example.com is the location of your socket.io server. Or if you’re going to use the socket.io server at http://revealjs.jit.su, visit http://revealjs.jit.su/token.

You are very welcome to point your presentations at the Socket.io server running at http://revealjs.jit.su, but availability and stability are not guaranteed. For anything mission critical I recommend you run your own server. It is simple to deploy to nodejitsu, heroku, your own environment, etc.

socket.io server as file static server

The socket.io server can play the role of static file server for your client presentation, as in the example at http://revealjs.jit.su. (Open http://revealjs.jit.su in two browsers. Navigate through the slides on one, and the other will update to match.)

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: null, // null so the clients do not have control of the master presentation
 id: '1ea875674b17ca76', // id, obtained from socket.io server
 url: 'example.com:80' // Location of your socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]

It can also play the role of static file server for your master presentation and client presentations at the same time (as long as you don’t want to use speaker notes). (Open http://revealjs.jit.su in two browsers. Navigate through the slides on one, and the other will update to match. Navigate through the slides on the second, and the first will update to match.) This is probably not desirable, because you don’t want your audience to mess with your slides while you’re presenting. ;)

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: '13652805320794272084', // Obtained from the socket.io server. Gives this (the master) control of the presentation
 id: '1ea875674b17ca76', // Obtained from socket.io server
 url: 'example.com:80' // Location of your socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/master.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]
});

Leap Motion

The Leap Motion plugin lets you utilize your Leap Motion [https://www.leapmotion.com/] device to control basic navigation of your presentation. The gestures currently supported are:

1 to 2 fingers

Pointer

—

 Point to anything on screen. Move your finger past the device to expand the pointer.

1 hand + 3 or more fingers (left/right/up/down)

Navigate through your slides. See config options to invert movements.

2 hands upwards

Toggle the overview mode. Do it a second time to exit the overview.

Config Options

You can edit the following options:

| Property | Default | Description
| —————– |:—————–:| :————-
| autoCenter | true | Center the pointer based on where you put your finger into the leap motions detection field.
| gestureDelay | 500 | How long to delay between gestures in milliseconds.
| naturalSwipe | true | Swipe as though you were touching a touch screen. Set to false to invert.
| pointerColor | #00aaff | The color of the pointer.
| pointerOpacity | 0.7 | The opacity of the pointer.
| pointerSize | 15 | The minimum height and width of the pointer.
| pointerTolerance | 120 | Bigger = slower pointer.

Example configuration:

Reveal.initialize({

 // other options...

 leap: {
 naturalSwipe : false, // Invert swipe gestures
 pointerOpacity : 0.5, // Set pointer opacity to 0.5
 pointerColor : '#d80000' // Red pointer
 },

 dependencies: [
 { src: 'plugin/leap/leap.js', async: true }
]

});

MathJax

If you want to display math equations in your presentation you can easily do so by including this plugin. The plugin is a very thin wrapper around the MathJax [http://www.mathjax.org/] library. To use it you’ll need to include it as a reveal.js dependency, find our more about dependencies here.

The plugin defaults to using LaTeX [http://en.wikipedia.org/wiki/LaTeX] but that can be adjusted through the math configuration object. Note that MathJax is loaded from a remote server. If you want to use it offline you’ll need to download a copy of the library and adjust the mathjax configuration value.

Below is an example of how the plugin can be configured. If you don’t intend to change these values you do not need to include the math config object at all.

Reveal.initialize({

 // other options ...

 math: {
 mathjax: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js',
 config: 'TeX-AMS_HTML-full' // See http://docs.mathjax.org/en/latest/config-files.html
 },

 dependencies: [
 { src: 'plugin/math/math.js', async: true }
]

});

Read MathJax’s documentation if you need HTTPS delivery [http://docs.mathjax.org/en/latest/start.html#secure-access-to-the-cdn] or serving of specific versions [http://docs.mathjax.org/en/latest/configuration.html#loading-mathjax-from-the-cdn] for stability.

Installation

The basic setup is for authoring presentations only. The full setup gives you access to all reveal.js features and plugins such as speaker notes as well as the development tasks needed to make changes to the source.

Basic setup

The core of reveal.js is very easy to install. You’ll simply need to download a copy of this repository and open the index.html file directly in your browser.

		Download the latest version of reveal.js from https://github.com/hakimel/reveal.js/releases

		Unzip and replace the example contents in index.html with your own

		Open index.html in a browser to view it

Full setup

Some reveal.js features, like external markdown and speaker notes, require that presentations run from a local web server. The following instructions will set up such a server as well as all of the development tasks needed to make edits to the reveal.js source code.

		Install Node.js [http://nodejs.org/]

		Install Grunt [http://gruntjs.com/getting-started#installing-the-cli]

		Clone the reveal.js repository

$ git clone https://github.com/hakimel/reveal.js.git

		Navigate to the reveal.js folder

$ cd reveal.js

		Install dependencies

$ npm install

		Serve the presentation and monitor source files for changes

$ grunt serve

		Open http://localhost:8000 to view your presentation

You can change the port by using grunt serve --port 8001.

Folder Structure

		css/ Core styles without which the project does not function

		js/ Like above but for JavaScript

		plugin/ Components that have been developed as extensions to reveal.js

		lib/ All other third party assets (JavaScript, CSS, fonts)

Contributing

Please keep the issue tracker [http://github.com/hakimel/reveal.js/issues] limited to bug reports, feature requests and pull requests. If you are reporting a bug make sure to include information about which browser and operating system you are using as well as the necessary steps to reproduce the issue.

If you have personal support questions use StackOverflow [http://stackoverflow.com/questions/tagged/reveal.js].

Pull requests

		Should follow the coding style of the file you work in, most importantly:
		Tabs to indent

		Single-quoted strings

		Should be made towards the dev branch

		Should be submitted from a feature/topic branch (not your master)

		Should not include the minified reveal.min.js file

License

MIT licensed

Copyright (C) 2014 Hakim El Hattab, http://hakim.se

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/index.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

title: Presentations
layout: default

		SF Python Meetup – August, 2014

		Webinar – October 8th, 2014
		Comparing Pandas and Blaze
nbviewer

		MongoDB and Github
nbviewer

		PySpark and HMDA
nbviewer

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/functions.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze functions

Blaze uses a handful of functions:

		discover(data) – Get metadata

		compute(expr, data) – Execute expr on data

		into(type, data) – Migrate data to new container

		resource(uri) – Get the data behind uri string

		... drop, create_index, chunks, ...

We implement these functions for many different types/backends

discover

Discover metadata.

Returns datashape, Blaze’s internal data type system.

>>> from datashape import discover

>>> discover(3.14)
dshape("float64")

>>> discover([1, 2, 3])
dshape("3 * int64")

>>> df = pd.read_csv('iris.csv')
>>> discover(df)
dshape("150 * { sepal_length : float64, sepal_width : float64,
 petal_length : float64, petal_width : float64,
 species : string }")

>>> discover(...)

compute

Execute expression against data

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

>>> L = [[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]]

>>> from blaze.compute import compute
>>> compute(deadbeats, L) # Iterator in, Iterator out
<itertools.imap at 0x7fab104693d0>

>>> list(_)
['Bob', 'Edith']

into

migrate data between containers

>>> into(set, [1, 2, 3])
{1, 2, 3}

>>> into(np.ndarray, df)
rec.array([(5.1, 3.5, 1.4, 0.2, 'Iris-setosa'),
 (4.9, 3.0, 1.4, 0.2, 'Iris-setosa'),
 (4.7, 3.2, 1.3, 0.2, 'Iris-setosa'),
 (4.6, 3.1, 1.5, 0.2, 'Iris-setosa'),
 ...
 (5.9, 3.0, 5.1, 1.8, 'Iris-virginica')],
 dtype=[('sepal_length', '<f8'), ('sepal_width', '<f8'),
 ('petal_length', '<f8'), ('petal_width', '<f8'),
 ('species', 'O')])

>>> db = pymongo.MongoClient().db
>>> into(db.mycollection, df)
Collection(Database(MongoClient('localhost', 27017), u'db'), u'mycoll')

resource

find data from uri

>>> resource('iris.csv')
<blaze.data.csv.CSV at 0x7fdca8f93d10>

>>> resource('sqlite:///iris.db::iris')
<blaze.data.sql.SQL at 0x7fdca8f22910>

>>> resource('mongodb://localhost:27017/db::mycoll')
Collection(Database(MongoClient('localhost', 27017), u'db'), u'mycoll')

>>> resource('accounts.h5::/accounts')
/accounts (Table(5,)) ''
 description := {
 "id": Int64Col(shape=(), dflt=0, pos=0),
 "name": StringCol(itemsize=7, shape=(), dflt='', pos=1),
 "balance": Int64Col(shape=(), dflt=0, pos=2)}
 byteorder := 'little'
 chunkshape := (2849,)

Extending Blaze

You can extend these functions from outside of the Blaze codebase
(you don’t need our permission)

from blaze import dispatch, resource

@dispatch(MyType)
def discover(obj):
 return datashape of obj

@dispatch(blaze.expr.Head, MyType)
def compute_up(expr, myobj):
 return myobj[expr.n]

@dispatch(list, MyType)
def into(_, myobj):
 return myobj.to_list()

@resource.register(regex)
def resource(uri):
 return MyType(information-gathered-from-uri)

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/REVEAL_README.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

reveal.js [image: Build Status] [https://travis-ci.org/hakimel/reveal.js]

A framework for easily creating beautiful presentations using HTML. Check out the live demo [http://lab.hakim.se/reveal-js/].

reveal.js comes with a broad range of features including nested slides [https://github.com/hakimel/reveal.js#markup], markdown contents [https://github.com/hakimel/reveal.js#markdown], PDF export [https://github.com/hakimel/reveal.js#pdf-export], speaker notes [https://github.com/hakimel/reveal.js#speaker-notes] and a JavaScript API [https://github.com/hakimel/reveal.js#api]. It’s best viewed in a browser with support for CSS 3D transforms but fallbacks [https://github.com/hakimel/reveal.js/wiki/Browser-Support] are available to make sure your presentation can still be viewed elsewhere.

More reading:

		Installation: Step-by-step instructions for getting reveal.js running on your computer.

		Changelog [https://github.com/hakimel/reveal.js/releases]: Up-to-date version history.

		Examples [https://github.com/hakimel/reveal.js/wiki/Example-Presentations]: Presentations created with reveal.js, add your own!

		Browser Support [https://github.com/hakimel/reveal.js/wiki/Browser-Support]: Explanation of browser support and fallbacks.

Online Editor

Presentations are written using HTML or markdown but there’s also an online editor for those of you who prefer a graphical interface. Give it a try at http://slid.es.

Instructions

Markup

Markup hierarchy needs to be <div class="reveal"> <div class="slides"> <section> where the <section> represents one slide and can be repeated indefinitely. If you place multiple <section>‘s inside of another <section> they will be shown as vertical slides. The first of the vertical slides is the “root” of the others (at the top), and it will be included in the horizontal sequence. For example:

<div class="reveal">
 <div class="slides">
 <section>Single Horizontal Slide</section>
 <section>
 <section>Vertical Slide 1</section>
 <section>Vertical Slide 2</section>
 </section>
 </div>
</div>

Markdown

It’s possible to write your slides using Markdown. To enable Markdown, add the data-markdown attribute to your <section> elements and wrap the contents in a <script type="text/template"> like the example below.

This is based on data-markdown [https://gist.github.com/1343518] from Paul Irish [https://github.com/paulirish] modified to use marked [https://github.com/chjj/marked] to support Github Flavoured Markdown [https://help.github.com/articles/github-flavored-markdown]. Sensitive to indentation (avoid mixing tabs and spaces) and line breaks (avoid consecutive breaks).

<section data-markdown>
 <script type="text/template">
 ## Page title

 A paragraph with some text and a [link](http://hakim.se).
 </script>
</section>

External Markdown

You can write your content as a separate file and have reveal.js load it at runtime. Note the separator arguments which determine how slides are delimited in the external file. The data-charset attribute is optional and specifies which charset to use when loading the external file.

When used locally, this feature requires that reveal.js runs from a local web server.

<section data-markdown="example.md"
 data-separator="^\n\n\n"
 data-vertical="^\n\n"
 data-notes="^Note:"
 data-charset="iso-8859-15">
</section>

Element Attributes

Special syntax (in html comment) is available for adding attributes to Markdown elements. This is useful for fragments, amongst other things.

<section data-markdown>
 <script type="text/template">
 - Item 1 <!-- .element: class="fragment" data-fragment-index="2" -->
 - Item 2 <!-- .element: class="fragment" data-fragment-index="1" -->
 </script>
</section>

Slide Attributes

Special syntax (in html comment) is available for adding attributes to the slide <section> elements generated by your Markdown.

<section data-markdown>
 <script type="text/template">
 <!-- .slide: data-background="#ff0000" -->
 Markdown content
 </script>
</section>

Configuration

At the end of your page you need to initialize reveal by running the following code. Note that all config values are optional and will default as specified below.

Reveal.initialize({

 // Display controls in the bottom right corner
 controls: true,

 // Display a presentation progress bar
 progress: true,

 // Display the page number of the current slide
 slideNumber: false,

 // Push each slide change to the browser history
 history: false,

 // Enable keyboard shortcuts for navigation
 keyboard: true,

 // Enable the slide overview mode
 overview: true,

 // Vertical centering of slides
 center: true,

 // Enables touch navigation on devices with touch input
 touch: true,

 // Loop the presentation
 loop: false,

 // Change the presentation direction to be RTL
 rtl: false,

 // Turns fragments on and off globally
 fragments: true,

 // Flags if the presentation is running in an embedded mode,
 // i.e. contained within a limited portion of the screen
 embedded: false,

 // Number of milliseconds between automatically proceeding to the
 // next slide, disabled when set to 0, this value can be overwritten
 // by using a data-autoslide attribute on your slides
 autoSlide: 0,

 // Stop auto-sliding after user input
 autoSlideStoppable: true,

 // Enable slide navigation via mouse wheel
 mouseWheel: false,

 // Hides the address bar on mobile devices
 hideAddressBar: true,

 // Opens links in an iframe preview overlay
 previewLinks: false,

 // Transition style
 transition: 'default', // default/cube/page/concave/zoom/linear/fade/none

 // Transition speed
 transitionSpeed: 'default', // default/fast/slow

 // Transition style for full page slide backgrounds
 backgroundTransition: 'default', // default/none/slide/concave/convex/zoom

 // Number of slides away from the current that are visible
 viewDistance: 3,

 // Parallax background image
 parallaxBackgroundImage: '', // e.g. "'https://s3.amazonaws.com/hakim-static/reveal-js/reveal-parallax-1.jpg'"

 // Parallax background size
 parallaxBackgroundSize: '' // CSS syntax, e.g. "2100px 900px"

});

Note that the new default vertical centering option will break compatibility with slides that were using transitions with backgrounds (cube and page). To restore the previous behavior, set center to false.

The configuration can be updated after initialization using the configure method:

// Turn autoSlide off
Reveal.configure({ autoSlide: 0 });

// Start auto-sliding every 5s
Reveal.configure({ autoSlide: 5000 });

Dependencies

Reveal.js doesn’t rely on any third party scripts to work but a few optional libraries are included by default. These libraries are loaded as dependencies in the order they appear, for example:

Reveal.initialize({
 dependencies: [
 // Cross-browser shim that fully implements classList - https://github.com/eligrey/classList.js/
 { src: 'lib/js/classList.js', condition: function() { return !document.body.classList; } },

 // Interpret Markdown in <section> elements
 { src: 'plugin/markdown/marked.js', condition: function() { return !!document.querySelector('[data-markdown]'); } },
 { src: 'plugin/markdown/markdown.js', condition: function() { return !!document.querySelector('[data-markdown]'); } },

 // Syntax highlight for <code> elements
 { src: 'plugin/highlight/highlight.js', async: true, callback: function() { hljs.initHighlightingOnLoad(); } },

 // Zoom in and out with Alt+click
 { src: 'plugin/zoom-js/zoom.js', async: true, condition: function() { return !!document.body.classList; } },

 // Speaker notes
 { src: 'plugin/notes/notes.js', async: true, condition: function() { return !!document.body.classList; } },

 // Remote control your reveal.js presentation using a touch device
 { src: 'plugin/remotes/remotes.js', async: true, condition: function() { return !!document.body.classList; } },

 // MathJax
 { src: 'plugin/math/math.js', async: true }
]
});

You can add your own extensions using the same syntax. The following properties are available for each dependency object:

		src: Path to the script to load

		async: [optional] Flags if the script should load after reveal.js has started, defaults to false

		callback: [optional] Function to execute when the script has loaded

		condition: [optional] Function which must return true for the script to be loaded

Presentation Size

All presentations have a normal size, that is the resolution at which they are authored. The framework will automatically scale presentations uniformly based on this size to ensure that everything fits on any given display or viewport.

See below for a list of configuration options related to sizing, including default values:

Reveal.initialize({

 ...

 // The "normal" size of the presentation, aspect ratio will be preserved
 // when the presentation is scaled to fit different resolutions. Can be
 // specified using percentage units.
 width: 960,
 height: 700,

 // Factor of the display size that should remain empty around the content
 margin: 0.1,

 // Bounds for smallest/largest possible scale to apply to content
 minScale: 0.2,
 maxScale: 1.0

});

Auto-sliding

Presentations can be configure to progress through slides automatically, without any user input. To enable this you will need to tell the framework how many milliseconds it should wait between slides:

// Slide every five seconds
Reveal.configure({
 autoSlide: 5000
});

When this is turned on a control element will appear that enables users to pause and resume auto-sliding. Sliding is also paused automatically as soon as the user starts navigating. You can disable these controls by specifying autoSlideStoppable: false in your reveal.js config.

You can also override the slide duration for individual slides by using the data-autoslide attribute on individual sections:

<section data-autoslide="10000">This will remain on screen for 10 seconds</section>

Keyboard Bindings

If you’re unhappy with any of the default keyboard bindings you can override them using the keyboard config option:

Reveal.configure({
 keyboard: {
 13: 'next', // go to the next slide when the ENTER key is pressed
 27: function() {}, // do something custom when ESC is pressed
 32: null // don't do anything when SPACE is pressed (i.e. disable a reveal.js default binding)
 }
});

API

The Reveal class provides a JavaScript API for controlling navigation and reading state:

// Navigation
Reveal.slide(indexh, indexv, indexf);
Reveal.left();
Reveal.right();
Reveal.up();
Reveal.down();
Reveal.prev();
Reveal.next();
Reveal.prevFragment();
Reveal.nextFragment();
Reveal.toggleOverview();
Reveal.togglePause();

// Retrieves the previous and current slide elements
Reveal.getPreviousSlide();
Reveal.getCurrentSlide();

Reveal.getIndices(); // { h: 0, v: 0 } }

// State checks
Reveal.isFirstSlide();
Reveal.isLastSlide();
Reveal.isOverview();
Reveal.isPaused();

Ready Event

The ‘ready’ event is fired when reveal.js has loaded all (synchronous) dependencies and is ready to start navigating.

Reveal.addEventListener('ready', function(event) {
 // event.currentSlide, event.indexh, event.indexv
});

Slide Changed Event

An ‘slidechanged’ event is fired each time the slide is changed (regardless of state). The event object holds the index values of the current slide as well as a reference to the previous and current slide HTML nodes.

Some libraries, like MathJax (see #226 [https://github.com/hakimel/reveal.js/issues/226#issuecomment-10261609]), get confused by the transforms and display states of slides. Often times, this can be fixed by calling their update or render function from this callback.

Reveal.addEventListener('slidechanged', function(event) {
 // event.previousSlide, event.currentSlide, event.indexh, event.indexv
});

States

If you set data-state="somestate" on a slide <section>, “somestate” will be applied as a class on the document element when that slide is opened. This allows you to apply broad style changes to the page based on the active slide.

Furthermore you can also listen to these changes in state via JavaScript:

Reveal.addEventListener('somestate', function() {
 // TODO: Sprinkle magic
}, false);

Slide Backgrounds

Slides are contained within a limited portion of the screen by default to allow them to fit any display and scale uniformly. You can apply full page background colors or images by applying a data-background attribute to your <section> elements. Below are a few examples.

<section data-background="#ff0000">
 <h2>All CSS color formats are supported, like rgba() or hsl().</h2>
</section>
<section data-background="http://example.com/image.png">
 <h2>This slide will have a full-size background image.</h2>
</section>
<section data-background="http://example.com/image.png" data-background-size="100px" data-background-repeat="repeat">
 <h2>This background image will be sized to 100px and repeated.</h2>
</section>

Backgrounds transition using a fade animation by default. This can be changed to a linear sliding transition by passing backgroundTransition: 'slide' to the Reveal.initialize() call. Alternatively you can set data-background-transition on any section with a background to override that specific transition.

Parallax Background

If you want to use a parallax scrolling background, set the two following config properties when initializing reveal.js (the third one is optional).

Reveal.initialize({

 // Parallax background image
 parallaxBackgroundImage: '', // e.g. "https://s3.amazonaws.com/hakim-static/reveal-js/reveal-parallax-1.jpg"

 // Parallax background size
 parallaxBackgroundSize: '', // CSS syntax, e.g. "2100px 900px" - currently only pixels are supported (don't use % or auto)

 // This slide transition gives best results:
 transition: linear

});

Make sure that the background size is much bigger than screen size to allow for some scrolling. View example [http://lab.hakim.se/reveal-js/?parallaxBackgroundImage=https%3A%2F%2Fs3.amazonaws.com%2Fhakim-static%2Freveal-js%2Freveal-parallax-1.jpg¶llaxBackgroundSize=2100px%20900px].

Slide Transitions

The global presentation transition is set using the transition config value. You can override the global transition for a specific slide by using the data-transition attribute:

<section data-transition="zoom">
 <h2>This slide will override the presentation transition and zoom!</h2>
</section>

<section data-transition-speed="fast">
 <h2>Choose from three transition speeds: default, fast or slow!</h2>
</section>

Note that this does not work with the page and cube transitions.

Internal links

It’s easy to link between slides. The first example below targets the index of another slide whereas the second targets a slide with an ID attribute (<section id="some-slide">):

Link
Link

You can also add relative navigation links, similar to the built in reveal.js controls, by appending one of the following classes on any element. Note that each element is automatically given an enabled class when it’s a valid navigation route based on the current slide.

 <!-- Previous vertical or horizontal slide -->
 <!-- Next vertical or horizontal slide -->

Fragments

Fragments are used to highlight individual elements on a slide. Every element with the class fragment will be stepped through before moving on to the next slide. Here’s an example: http://lab.hakim.se/reveal-js/#/fragments

The default fragment style is to start out invisible and fade in. This style can be changed by appending a different class to the fragment:

<section>
 <p class="fragment grow">grow</p>
 <p class="fragment shrink">shrink</p>
 <p class="fragment roll-in">roll-in</p>
 <p class="fragment fade-out">fade-out</p>
 <p class="fragment current-visible">visible only once</p>
 <p class="fragment highlight-current-blue">blue only once</p>
 <p class="fragment highlight-red">highlight-red</p>
 <p class="fragment highlight-green">highlight-green</p>
 <p class="fragment highlight-blue">highlight-blue</p>
</section>

Multiple fragments can be applied to the same element sequentially by wrapping it, this will fade in the text on the first step and fade it back out on the second.

<section>

 I'll fade in, then out

</section>

The display order of fragments can be controlled using the data-fragment-index attribute.

<section>
 <p class="fragment" data-fragment-index="3">Appears last</p>
 <p class="fragment" data-fragment-index="1">Appears first</p>
 <p class="fragment" data-fragment-index="2">Appears second</p>
</section>

Fragment events

When a slide fragment is either shown or hidden reveal.js will dispatch an event.

Some libraries, like MathJax (see #505), get confused by the initially hidden fragment elements. Often times this can be fixed by calling their update or render function from this callback.

Reveal.addEventListener('fragmentshown', function(event) {
 // event.fragment = the fragment DOM element
});
Reveal.addEventListener('fragmenthidden', function(event) {
 // event.fragment = the fragment DOM element
});

Code syntax highlighting

By default, Reveal is configured with highlight.js [http://softwaremaniacs.org/soft/highlight/en/] for code syntax highlighting. Below is an example with clojure code that will be syntax highlighted. When the data-trim attribute is present surrounding whitespace is automatically removed.

<section>
 <pre><code data-trim>
(def lazy-fib
 (concat
 [0 1]
 ((fn rfib [a b]
 (lazy-cons (+ a b) (rfib b (+ a b)))) 0 1)))
 </code></pre>
</section>

Slide number

If you would like to display the page number of the current slide you can do so using the slideNumber configuration value.

Reveal.configure({ slideNumber: true });

Overview mode

Press “Esc” or “o” keys to toggle the overview mode on and off. While you’re in this mode, you can still navigate between slides,
as if you were at 1,000 feet above your presentation. The overview mode comes with a few API hooks:

Reveal.addEventListener('overviewshown', function(event) { /* ... */ });
Reveal.addEventListener('overviewhidden', function(event) { /* ... */ });

// Toggle the overview mode programmatically
Reveal.toggleOverview();

Fullscreen mode

Just press »F« on your keyboard to show your presentation in fullscreen mode. Press the »ESC« key to exit fullscreen mode.

Embedded media

Embedded HTML5 <video>/<audio> and YouTube iframes are automatically paused when you navigate away from a slide. This can be disabled by decorating your element with a data-ignore attribute.

Add data-autoplay to your media element if you want it to automatically start playing when the slide is shown:

<video data-autoplay src="http://clips.vorwaerts-gmbh.de/big_buck_bunny.mp4"></video>

Additionally the framework automatically pushes two post messages [https://developer.mozilla.org/en-US/docs/Web/API/Window.postMessage] to all iframes, slide:start when the slide containing the iframe is made visible and slide:stop when it is hidden.

Stretching elements

Sometimes it’s desirable to have an element, like an image or video, stretch to consume as much space as possible within a given slide. This can be done by adding the .stretch class to an element as seen below:

<section>
 <h2>This video will use up the remaining space on the slide</h2>
 <video class="stretch" src="http://clips.vorwaerts-gmbh.de/big_buck_bunny.mp4"></video>
</section>

Limitations:

		Only direct descendants of a slide section can be stretched

		Only one descendant per slide section can be stretched

PDF Export

Presentations can be exported to PDF via a special print stylesheet. This feature requires that you use Google Chrome [http://google.com/chrome].
Here’s an example of an exported presentation that’s been uploaded to SlideShare: http://www.slideshare.net/hakimel/revealjs-13872948.

		Open your presentation with css/print/pdf.css [https://github.com/hakimel/reveal.js/blob/master/css/print/pdf.css] included on the page. The default index HTML lets you add print-pdf anywhere in the query to include the stylesheet, for example: lab.hakim.se/reveal-js?print-pdf [http://lab.hakim.se/reveal-js?print-pdf].

		Open the in-browser print dialog (CMD+P).

		Change the Destination setting to Save as PDF.

		Change the Layout to Landscape.

		Change the Margins to None.

		Click Save.

[image: Chrome Print Settings]

Theming

The framework comes with a few different themes included:

		default: Gray background, white text, blue links

		beige: Beige background, dark text, brown links

		sky: Blue background, thin white text, blue links

		night: Black background, thick white text, orange links

		serif: Cappuccino background, gray text, brown links

		simple: White background, black text, blue links

		solarized: Cream-colored background, dark green text, blue links

Each theme is available as a separate stylesheet. To change theme you will need to replace default below with your desired theme name in index.html:

<link rel="stylesheet" href="css/theme/default.css" id="theme">

If you want to add a theme of your own see the instructions here: /css/theme/README.md [https://github.com/hakimel/reveal.js/blob/master/css/theme/README.md].

Speaker Notes

reveal.js comes with a speaker notes plugin which can be used to present per-slide notes in a separate browser window. The notes window also gives you a preview of the next upcoming slide so it may be helpful even if you haven’t written any notes. Press the ‘s’ key on your keyboard to open the notes window.

Notes are defined by appending an <aside> element to a slide as seen below. You can add the data-markdown attribute to the aside element if you prefer writing notes using Markdown.

When used locally, this feature requires that reveal.js runs from a local web server.

<section>
 <h2>Some Slide</h2>

 <aside class="notes">
 Oh hey, these are some notes. They'll be hidden in your presentation, but you can see them if you open the speaker notes window (hit 's' on your keyboard).
 </aside>
</section>

If you’re using the external Markdown plugin, you can add notes with the help of a special delimiter:

<section data-markdown="example.md" data-separator="^\n\n\n" data-vertical="^\n\n" data-notes="^Note:"></section>

Title
Sub-title

Here is some content...

Note:
This will only display in the notes window.

Server Side Speaker Notes

In some cases it can be desirable to run notes on a separate device from the one you’re presenting on. The Node.js-based notes plugin lets you do this using the same note definitions as its client side counterpart. Include the required scripts by adding the following dependencies:

Reveal.initialize({
 ...

 dependencies: [
 { src: 'socket.io/socket.io.js', async: true },
 { src: 'plugin/notes-server/client.js', async: true }
]
});

Then:

		Install Node.js [http://nodejs.org/]

		Run npm install

		Run node plugin/notes-server

Multiplexing

The multiplex plugin allows your audience to view the slides of the presentation you are controlling on their own phone, tablet or laptop. As the master presentation navigates the slides, all client presentations will update in real time. See a demo at http://revealjs.jit.su/.

The multiplex plugin needs the following 3 things to operate:

		Master presentation that has control

		Client presentations that follow the master

		Socket.io server to broadcast events from the master to the clients

More details:

Master presentation

Served from a static file server accessible (preferably) only to the presenter. This need only be on your (the presenter’s) computer. (It’s safer to run the master presentation from your own computer, so if the venue’s Internet goes down it doesn’t stop the show.) An example would be to execute the following commands in the directory of your master presentation:

		npm install node-static

		static

If you want to use the speaker notes plugin with your master presentation then make sure you have the speaker notes plugin configured correctly along with the configuration shown below, then execute node plugin/notes-server in the directory of your master presentation. The configuration below will cause it to connect to the socket.io server as a master, as well as launch your speaker-notes/static-file server.

You can then access your master presentation at http://localhost:1947

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: '13652805320794272084', // Obtained from the socket.io server. Gives this (the master) control of the presentation
 id: '1ea875674b17ca76', // Obtained from socket.io server
 url: 'revealjs.jit.su:80' // Location of socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/master.js', async: true },

 // and if you want speaker notes
 { src: 'plugin/notes-server/client.js', async: true }

 // other dependencies...
]
});

Client presentation

Served from a publicly accessible static file server. Examples include: GitHub Pages, Amazon S3, Dreamhost, Akamai, etc. The more reliable, the better. Your audience can then access the client presentation via http://example.com/path/to/presentation/client/index.html, with the configuration below causing them to connect to the socket.io server as clients.

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: null, // null so the clients do not have control of the master presentation
 id: '1ea875674b17ca76', // id, obtained from socket.io server
 url: 'revealjs.jit.su:80' // Location of socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]
});

Socket.io server

Server that receives the slideChanged events from the master presentation and broadcasts them out to the connected client presentations. This needs to be publicly accessible. You can run your own socket.io server with the commands:

		npm install

		node plugin/multiplex

Or you use the socket.io server at http://revealjs.jit.su.

You’ll need to generate a unique secret and token pair for your master and client presentations. To do so, visit http://example.com/token, where http://example.com is the location of your socket.io server. Or if you’re going to use the socket.io server at http://revealjs.jit.su, visit http://revealjs.jit.su/token.

You are very welcome to point your presentations at the Socket.io server running at http://revealjs.jit.su, but availability and stability are not guaranteed. For anything mission critical I recommend you run your own server. It is simple to deploy to nodejitsu, heroku, your own environment, etc.

socket.io server as file static server

The socket.io server can play the role of static file server for your client presentation, as in the example at http://revealjs.jit.su. (Open http://revealjs.jit.su in two browsers. Navigate through the slides on one, and the other will update to match.)

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: null, // null so the clients do not have control of the master presentation
 id: '1ea875674b17ca76', // id, obtained from socket.io server
 url: 'example.com:80' // Location of your socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]

It can also play the role of static file server for your master presentation and client presentations at the same time (as long as you don’t want to use speaker notes). (Open http://revealjs.jit.su in two browsers. Navigate through the slides on one, and the other will update to match. Navigate through the slides on the second, and the first will update to match.) This is probably not desirable, because you don’t want your audience to mess with your slides while you’re presenting. ;)

Example configuration:

Reveal.initialize({
 // other options...

 multiplex: {
 // Example values. To generate your own, see the socket.io server instructions.
 secret: '13652805320794272084', // Obtained from the socket.io server. Gives this (the master) control of the presentation
 id: '1ea875674b17ca76', // Obtained from socket.io server
 url: 'example.com:80' // Location of your socket.io server
 },

 // Don't forget to add the dependencies
 dependencies: [
 { src: '//cdnjs.cloudflare.com/ajax/libs/socket.io/0.9.10/socket.io.min.js', async: true },
 { src: 'plugin/multiplex/master.js', async: true },
 { src: 'plugin/multiplex/client.js', async: true }

 // other dependencies...
]
});

Leap Motion

The Leap Motion plugin lets you utilize your Leap Motion [https://www.leapmotion.com/] device to control basic navigation of your presentation. The gestures currently supported are:

1 to 2 fingers

Pointer

—

 Point to anything on screen. Move your finger past the device to expand the pointer.

1 hand + 3 or more fingers (left/right/up/down)

Navigate through your slides. See config options to invert movements.

2 hands upwards

Toggle the overview mode. Do it a second time to exit the overview.

Config Options

You can edit the following options:

| Property | Default | Description
| —————– |:—————–:| :————-
| autoCenter | true | Center the pointer based on where you put your finger into the leap motions detection field.
| gestureDelay | 500 | How long to delay between gestures in milliseconds.
| naturalSwipe | true | Swipe as though you were touching a touch screen. Set to false to invert.
| pointerColor | #00aaff | The color of the pointer.
| pointerOpacity | 0.7 | The opacity of the pointer.
| pointerSize | 15 | The minimum height and width of the pointer.
| pointerTolerance | 120 | Bigger = slower pointer.

Example configuration:

Reveal.initialize({

 // other options...

 leap: {
 naturalSwipe : false, // Invert swipe gestures
 pointerOpacity : 0.5, // Set pointer opacity to 0.5
 pointerColor : '#d80000' // Red pointer
 },

 dependencies: [
 { src: 'plugin/leap/leap.js', async: true }
]

});

MathJax

If you want to display math equations in your presentation you can easily do so by including this plugin. The plugin is a very thin wrapper around the MathJax [http://www.mathjax.org/] library. To use it you’ll need to include it as a reveal.js dependency, find our more about dependencies here.

The plugin defaults to using LaTeX [http://en.wikipedia.org/wiki/LaTeX] but that can be adjusted through the math configuration object. Note that MathJax is loaded from a remote server. If you want to use it offline you’ll need to download a copy of the library and adjust the mathjax configuration value.

Below is an example of how the plugin can be configured. If you don’t intend to change these values you do not need to include the math config object at all.

Reveal.initialize({

 // other options ...

 math: {
 mathjax: 'http://cdn.mathjax.org/mathjax/latest/MathJax.js',
 config: 'TeX-AMS_HTML-full' // See http://docs.mathjax.org/en/latest/config-files.html
 },

 dependencies: [
 { src: 'plugin/math/math.js', async: true }
]

});

Read MathJax’s documentation if you need HTTPS delivery [http://docs.mathjax.org/en/latest/start.html#secure-access-to-the-cdn] or serving of specific versions [http://docs.mathjax.org/en/latest/configuration.html#loading-mathjax-from-the-cdn] for stability.

Installation

The basic setup is for authoring presentations only. The full setup gives you access to all reveal.js features and plugins such as speaker notes as well as the development tasks needed to make changes to the source.

Basic setup

The core of reveal.js is very easy to install. You’ll simply need to download a copy of this repository and open the index.html file directly in your browser.

		Download the latest version of reveal.js from https://github.com/hakimel/reveal.js/releases

		Unzip and replace the example contents in index.html with your own

		Open index.html in a browser to view it

Full setup

Some reveal.js features, like external markdown and speaker notes, require that presentations run from a local web server. The following instructions will set up such a server as well as all of the development tasks needed to make edits to the reveal.js source code.

		Install Node.js [http://nodejs.org/]

		Install Grunt [http://gruntjs.com/getting-started#installing-the-cli]

		Clone the reveal.js repository

$ git clone https://github.com/hakimel/reveal.js.git

		Navigate to the reveal.js folder

$ cd reveal.js

		Install dependencies

$ npm install

		Serve the presentation and monitor source files for changes

$ grunt serve

		Open http://localhost:8000 to view your presentation

You can change the port by using grunt serve --port 8001.

Folder Structure

		css/ Core styles without which the project does not function

		js/ Like above but for JavaScript

		plugin/ Components that have been developed as extensions to reveal.js

		lib/ All other third party assets (JavaScript, CSS, fonts)

Contributing

Please keep the issue tracker [http://github.com/hakimel/reveal.js/issues] limited to bug reports, feature requests and pull requests. If you are reporting a bug make sure to include information about which browser and operating system you are using as well as the necessary steps to reproduce the issue.

If you have personal support questions use StackOverflow [http://stackoverflow.com/questions/tagged/reveal.js].

Pull requests

		Should follow the coding style of the file you work in, most importantly:
		Tabs to indent

		Single-quoted strings

		Should be made towards the dev branch

		Should be submitted from a feature/topic branch (not your master)

		Should not include the minified reveal.min.js file

License

MIT licensed

Copyright (C) 2014 Hakim El Hattab, http://hakim.se

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/blaze.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

blaze - a user interface

[image:]

>>> z = log(x - 1)**y

We often link interface and implementation

this yields both good and bad consequences

Blaze is a single interface to query many systems

demo

Blaze separates our intent:

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

from the data:

>>> L = [[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]]
...

then combines the two explicitly

>>> from blaze.compute import compute
>>> compute(deadbeats, L) # Iterator in, Iterator out
<itertools.imap at 0x7fce75a9f790>
>>> list(_)
['Bob', 'Edith']

Separating intent from data lets us switch backends

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

so we can drive Pandas instead

>>> df = DataFrame([[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]],
... columns=['id', 'name', 'balance'])

getting the same result through different means

>>> from blaze.compute import compute
>>> compute(deadbeats, df) # DataFrame in, DataFrame out
1 Bob
4 Edith
Name: name, dtype: object

Now we reach out into the ecosystem

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

and use newer technologies

>>> import pyspark
>>> sc = pyspark.SparkContext('local', 'Blaze-demo')

>>> rdd = into(sc, L) # migrate to Resilient Distributed Dataset (RDD)
>>> rdd
ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:315

evolving with the ecosystem

>>> from blaze.compute import compute
>>> compute(deadbeats, rdd) # RDD in, RDD out
PythonRDD[1] at RDD at PythonRDD.scala:43
>>> _.collect() # Pull results down to local Python
['Bob', 'Edith']

Why separate expressions from computation?

		Write once, run anywhere

		Scalable development

(start with CSV files, end with Impala/Spark)

		Rapid prototyping

(try Postgres, MongoDB, Spark, see what suits you best)

		Robust to changes in architecture

(assuming Blaze supports Hadoop++)

		Cross-backend query optimization

NYCTaxi CSV example [http://nbviewer.ipython.org/url/blaze.pydata.org/notebooks/timings-csv.ipynb]

Things Blaze Can’t Do

Blaze is generic (that’s the point) but we give up a lot:

		Blaze is not itself a database

		Blaze is not a Pandas/Spark replacement

		Blaze can’t do things that are hard to do in parallel (e.g. median,
full sorting, explicit groupings, quantiles)

		Blaze can’t do things that the underlying database can’t do (e.g. no joins
in Mongo)

Questions?

		Source: https://github.com/ContinuumIO/blaze

		Docs: http://blaze.pydata.org/

>>> import blaze as bz
>>> iris = bz.Data('iris.csv') # From the small
>>> db = bz.Data('impala://54.24.132.22/default') # To the large
...

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/blaze-conclusion.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze facilitates data science

		By connecting technologies to users

		By connecting technologies to each other

Learn: http://blaze.pydata.org/

Try: conda install blaze

Contribute:
http://github.com/ContinuumIO/blaze/

 © Copyright 2012, Continuum Analytics.

_static/presentations/markdown/dask-array-meteorology.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Meteorological data

We have a pile of NetCDF files

$ ls
2014-01-01.nc 2014-03-18.nc 2014-06-02.nc 2014-08-17.nc 2014-11-01.nc
2014-01-02.nc 2014-03-19.nc 2014-06-03.nc 2014-08-18.nc 2014-11-02.nc
2014-01-03.nc 2014-03-20.nc 2014-06-04.nc 2014-08-19.nc 2014-11-03.nc
2014-01-04.nc 2014-03-21.nc 2014-06-05.nc 2014-08-20.nc 2014-11-04.nc
...

Four measurements per day, quarter degree resolution, for 2014

>>> import netCDF4
>>> t = netCDF4.Dataset('2014-01-01.nc').variables['t2m']
>>> t.shape
(4, 721, 1440)

Meteorological data

Point to a bunch of NetCDF datasets

>>> filenames = sorted(glob('2014-*.nc'))
>>> temps = [netCDF4.Dataset(fn).variables['t2m'] for fn in filenames]

Wrap each with dask.array

>>> import dask.array as da
>>> arrays = [da.from_array(t, chunks=(4, 200, 200)) for t in temps]

Manipulate arrays with numpy syntax

>>> x = da.concatenate(arrays, axis=0)
>>> x.shape
(1464, 721, 1440)

Meteorological data

Interact with the ecosystem

>>> from matplotlib import imshow
>>> imshow(x.mean(axis=0), cmap='bone')

[image:]

Meteorological data

Interact with the ecosystem

>>> from matplotlib import imshow
>>> imshow(x[1000] - x.mean(axis=0), cmap='RdBu_r')

[image:]

Meteorological data

Interact with the ecosystem

>>> from matplotlib import imshow
>>> imshow(x[::4].mean(axis=0) - x[2::4].mean(axis=0), cmap='RdBu_r')

[image:]

XRay

[image:]

Dask.array integrates with XRay.
http://xray.readthedocs.org

		Implements the netCDF model
		Set of associated ndarrays / variables

		Pandas index along each axis

		Index and reason using named axes with labels
		NumPy – x[40:100].mean(axis=2)

		XRay – ds.sel(time='2014-04').mean('time')

Written by Stephan Hoyer (@shoyer) at Climate Corp

 © Copyright 2012, Continuum Analytics.

_static/presentations/css/theme/README.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Dependencies

Themes are written using Sass to keep things modular and reduce the need for repeated selectors across files. Make sure that you have the reveal.js development environment including the Grunt dependencies installed before proceding: https://github.com/hakimel/reveal.js#full-setup

You also need to install Ruby and then Sass (with gem install sass).

Creating a Theme

To create your own theme, start by duplicating any .scss file in /css/theme/source [https://github.com/hakimel/reveal.js/blob/master/css/theme/source] and adding it to the compilation list in the Gruntfile [https://github.com/hakimel/reveal.js/blob/master/Gruntfile.js].

Each theme file does four things in the following order:

		Include /css/theme/template/mixins.scss [https://github.com/hakimel/reveal.js/blob/master/css/theme/template/mixins.scss]
Shared utility functions.

		Include /css/theme/template/settings.scss [https://github.com/hakimel/reveal.js/blob/master/css/theme/template/settings.scss]
Declares a set of custom variables that the template file (step 4) expects. Can be overridden in step 3.

		Override
This is where you override the default theme. Either by specifying variables (see settings.scss [https://github.com/hakimel/reveal.js/blob/master/css/theme/template/settings.scss] for reference) or by adding full selectors with hardcoded styles.

		Include /css/theme/template/theme.scss [https://github.com/hakimel/reveal.js/blob/master/css/theme/template/theme.scss]
The template theme file which will generate final CSS output based on the currently defined variables.

When you are done, run grunt themes to compile the Sass file to CSS and you are ready to use your new theme.

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/foundations.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

PyData builds off of NumPy and Pandas

NumPy and Pandas provide foundational data structures

[image:]

Data structures enable composition

... cross-project interactions without coordination

But NumPy is old

mrocklin@notebook:~/scipy$ git log | tail

Author: Travis Oliphant <oliphant@enthought.com>
Date: Fri Feb 2 05:08:11 2001 +0000

 shouldn't work

commit 02de46a5464f182d3d64be5a7ee1087ae8be8646
Author: Eric Jones <eric@enthought.com>
Date: Thu Feb 1 08:32:30 2001 +0000

 Initial revision

NumPy and Pandas have limitations

		Single Threaded (mostly)

		In-memory data (mostly)

		Poor support for variable length strings

		Poor support for missing data

		...

These limitations affect the PyData ecosystem

Hardware has changed since 2001

[image:]

		Multiple cores
		4 cores – cheap laptop

		32 cores – workstation

		Distributed memory clusters in big data warehousing

		Fast Solid State Drives (disk is now extended memory)

Hardware has changed since 2001

[image:]

		Multiple cores
		4 cores – cheap laptop

		32 cores – workstation

		Distributed memory clusters in big data warehousing

		Fast Solid State Drives (disk is now extended memory)

Problems have changed since 2001

		Larger datasets

		Messier data

		More text data

Python has limitations

		Started in 1991

		Heritage outside of numerics

		Poor support for in-process parallelism

Global Interpreter Lock

		The Global Interpreter Lock (GIL) stops two Python threads from
manipulating Python objects simultaneously

		Solutions:
		Compute in separate processes (hard to share data)

		Release the GIL and use C/Fortran code

PyData rests on single-threaded foundations

[image:]

		Incredible domain expertise

		Optimal single-core execution (Scientific heritage)

		But painful to parallelize

Can we parallelize the ecosystem without touching downstream projects?

probably not

But this work might be straightforward

And we have an effective community

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/dask-core.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

dask.core

Dead simple task scheduling

dask.pydata.org [http://dask.pydata.org/en/latest/]

We’ve seen dask.array

		Turns Numpy-ish code

 (2*x + 1) ** 3

		Into Graphs

[image:]

We’ve seen dask.array

		.

.

		Then executes those graphs

[image:]

Dask works for more than just arrays

		dask.array = numpy + threading

		dask.bag = toolz + multiprocessing

		dask.dataframe = pandas + multiprocessing/threading?

dask.bag

		Unordered collection of Python objects

		Good for log files, JSON blobs, etc..

		Uses multiprocessing by default

import dask.bag as db
b = db.from_filenames("data/2014-*.json.gz").map(json.loads)
b.groupby("username")

[image:]

dask.dataframe

		Partition Pandas DataDrames

		Uses single-threaded or multiprocessing

		Not yet robust for public use

import dask.dataframe as dd
df = dd.read_csv('data/data.*.csv', parse_dates=...)
df.groupby(df.account).balance.mean()

		Collections build graphs

		Schedulers execute graphs

[image:]

		Neither side needs the other

Q: What constitutes a dask graph?

[image: A simple dask dictionary]

Normal Python

def inc(i):
 return i + 1

def add(a, b):
 return a + b

x = 1
y = inc(x)
z = add(y, 10)

		CPython manages execution

Dask graph

d = {"x": 1,
 "y": (inc, "x"),
 "z": (add, "y", 10)}

		Schedulers manage execution

Example - dask.array

>>> import dask.array as da

>>> x = da.arange(15, chunks=(5,))
dask.array<x, shape=(15,), chunks=((5, 5, 5)), dtype=None>

>>> x.dask
{("x", 0): (np.arange, 0, 5),
 ("x", 1): (np.arange, 5, 10),
 ("x", 2): (np.arange, 10, 15)}

>>> (x + 100).dask
{("x", 0): (np.arange, 0, 5),
 ("x", 1): (np.arange, 5, 10),
 ("x", 2): (np.arange, 10, 15),
 ("y", 0): (add, ("x", 0), 100),
 ("y", 1): (add, ("x", 1), 100),
 ("y", 2): (add, ("x", 2), 100)}

Example - dask.array

>>> import dask.array as da

>>> x = da.arange(15, chunks=(5,))
dask.array<x, shape=(15,), chunks=((5, 5, 5)), dtype=None>

>>> x.dask
{("x", 0): (np.arange, 0, 5),
 ("x", 1): (np.arange, 5, 10),
 ("x", 2): (np.arange, 10, 15)}

>>> x.sum()
{("x", 0): (np.arange, 0, 5),
 ("x", 1): (np.arange, 5, 10),
 ("x", 2): (np.arange, 10, 15),
 ("y", 0): (np.sum, ("x", 0)),
 ("y", 1): (np.sum, ("x", 1)),
 ("y", 2): (np.sum, ("x", 2)),
 ("z",): (np.sum, [("y", 0), ("y", 1), ("y", 2)])}

Example - custom graph

def load(filename):
 ...
def clean(data):
 ...
def analyze(sequence_of_data):
 ...
def store(result):
 ...

dsk = {"load-1": (load, "myfile.a.data"),
 "load-2": (load, "myfile.b.data"),
 "load-3": (load, "myfile.c.data"),
 "preprocess-1": (clean, "load-1"),
 "preprocess-2": (clean, "load-2"),
 "preprocess-3": (clean, "load-3"),
 "analyze": (analyze, ["preprocess-%d" % i for i in [1, 2, 3]]),
 "store": (store, "analyze")}

.

from dask.multiprocessing import get
result = get(dsk, ["store"])

Dask’s schedulers enable sane parallelism

... even if your workflow isn’t arrays

		Simple description of computation with data dependencies

		Uses battle-tested schedulers

		Raw dicts probably not for end users

		But maybe for library developers

		Regardless, the community should search for a parallelism abstraction
(many good options)

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/into.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

into(target, source)

[image:]

Q: How do you migrate a CSV file into a Mongo Database?

Q: How do you migrate a CSV file into a Mongo Database?

CSV -> DataFrames: pd.read_csv()
DataFrames -> NumPy Arrays: DataFrame.to_records()
NumPy Arrays -> Iterator: ndarray.tolist()
Iterator -> pymongo.Collection: Collection.insert

Q: How do you migrate a CSV file into a Mongo Database?

>>> # target source
>>> into('mongodb://localhost/db::mycollection', 'myfile.csv')

Q: How do you Load a JSON file on S3 into Postgres?

Q: How do you Load a JSON file on S3 into Postgres?

JSON on S3 -> Local JSON: boto
JSON to Python iterator: json library
Python iterator to DataFrames: partition_all() and DataFrame()
DataFrames -> CSV files: DataFrame.to_csv()
CSV -> Postgres: LOAD command in Postgres

Q: How do you Load a JSON file on S3 into Postgres?

>>> # target source
>>> into('postgresql://postgres:postgres@localhost::mytable',
... 's3://mybucket/myfile.json')

Data Science is hard

		Each step is straightforward

		The entire process is hell

Into embraces the complexity

[image:]

		Nodes are data types (DataFrame, list, sqlalchemy.Table, ...)

		Edges are functions (DataFrame -> CSV via read_csv, ...)

		Edges are weighted by speed, we search for the minimum path.

		Red nodes can be larger than memory. Transfers between two red nodes only
use the red subgraph

Today’s graph

[image:]

How to get and use into

conda install into
or
pip install into

>>> from into import into
>>> into(target, source)

or
$ into source target

		Inputs can be
		types – list – Create new target

		objects – [1, 2, 3] – Append to target

		strings – 'myfile.csv' – Use regex magic

How to extend into

from into import convert, resource

@convert.register(np.ndarray, pd.DataFrame, cost=1.0)
def dataframe_to_numpy(df, **kwargs):
 return df.to_records(index=False)

@convert.register(list, np.ndarray, cost=10.0)
def numpy_to_list(x, **kwargs):
 return x.tolist()

Questions?

		Source: https://github.com/ContinuumIO/into

		Docs: http://into.readthedocs.org/en/latest/

		Blog: http://matthewrocklin.com/blog

>>> from into import into
>>> happiness = into(target, source)

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/chunking.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Expression Chunking

... designing parallel algorithms

... out-of-core, parallel, numpy/pandas

Suppose we have a large array of integers

A trillion numbers

x = np.array([5, 3, 1, ... <one trillion numbers>, ... 12, 5, 10])

How do we compute the largest?

x.max()

Define the problem in Blaze

>>> from blaze import symbol
>>> x = symbol('x', '1000000000 * int')
>>> x.max()

Max by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Max of each chunk

aggregate[i] = chunk.max()

Max of aggregated results

aggregate.max()

>>> from blaze.expr.split import split
>>> split(x, x.max())
((chunk, max(chunk)),
 (aggregate, max(aggregate)))

Sum by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Sum of each chunk

aggregate[i] = chunk.sum()

Sum of aggregated results

aggregate.sum()

>>> from blaze.expr.split import split
>>> split(x, x.sum())
((chunk, sum(chunk)),
 (aggregate, sum(aggregate)))

Count by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Count each chunk

aggregate[i] = chunk.count()

Sum aggregated results

aggregate.sum()

>>> from blaze.expr.split import split
>>> split(x, x.count())
((chunk, count(chunk)),
 (aggregate, sum(aggregate)))

Mean by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Sum and count of each chunk

aggregate.total[i] = chunk.sum()
aggregate.n[i] = chunk.count()

Sum the total and count then divide

aggregate.total.sum() / aggregate.n.sum()

>>> from blaze.expr.split import split
>>> split(x, x.mean())
((chunk, summary(count=count(chunk), total=sum(chunk))),
 (aggregate, sum(aggregate.total)) / sum(aggregate.count))

Number of occurrences by Chunking

size = 1000000
chunk = x[size * i: size * (i + 1)]

Split-apply-combine on each chunk

by(x, freq=x.count())

Split-apply-combine on concatenation of results

by(aggregate, freq=aggregate.freq.sum())

>>> from blaze.expr.split import split
>>> split(x, by(x, freq=x.count())
((chunk, by(chunk, freq=count(chunk))),
 (aggregate, by(aggregate.chunk, freq=sum(aggregate.freq))))

N-Dimensional reductions

Data: a 10000 by 10000 by 10000 array of (x,y) coordinates

>>> points = symbol('points', '10000 * 10000 * 10000 * {x: int, y: int}')

Chunk: a cube of a billion elements

>>> chunk = symbol('chunk', '1000 * 1000 * 1000 * {x: int, y: int}')

Expr: The variance of their addition

>>> expr = (points.x + points.y).var(axis=0)
>>> split(points, expr, chunk=chunk)
((chunk,
 summary(n = count(chunk.x + chunk.y),
 x = sum(chunk.x + chunk.y),
 x2 = sum((chunk.x + chunk.y) ** 2))),
 (aggregate,
 (sum(aggregate.x2) / (sum(aggregate.n)))
 - ((sum(aggregate.x) / (sum(aggregate.n))) ** 2)))

Known shapes:

>>> aggregate.dshape
dshape("10 * 10 * 10 * {n: int32, x: float64, x2: float64}")

Recap

Blaze expressions let us design powerful algorihtms abstractly. Development is
fast and generally applicable.

Limitations

		No sorting, joining, etc..

		Only single-dataset operations (notably missing dot products)

		Only a third of a solution.
		Expression splitting - what do we want to compute?

		Task scheduling - where do we compute each piece?

		In-memory execution - how do we actually execute this?

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/dask-graphs.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Common Communication Patterns with Dask Arrays

Dask arrays/frames provide translation from NumPy/Pandas syntax to visual
blocked algorithms.

Make a dask array of ones

>>> import dask.array as da
>>> x = da.ones(15, blockshape=(5,))

And visualize the resulting dask graph

>>> from dask.dot import dot_graph
>>> dot_graph(x.dask)

[image:]

We’re going to do this for increasingly complex expressions which create
increasingly complex blocked algorithm task graphs.

Elementwise operations

>>> x + 1

[image:]

Elementwise operations

>>> (x + 1) * 2

[image:]

Elementwise operations

>>> ((x + 1) * 2) ** 3

[image:]

Reductions

>>> (x + 1).sum()

[image:]

Slicing

>>> (x + 1)[3:9].sum()

[image:]

Ghosting (shared boundaries)

>>> x = da.ones(100, blockshape=(10,))
>>> g = da.ghost.ghost(x, depth={0: 2}, boundary={0: np.nan})

[image:]

Two Dimensional Algorithms

>>> x = da.ones((15, 15), blockshape=(5, 5))

Partial Reductions

>>> x.mean(axis=0)

[image:]

Transpose

>>> x + x.T

[image:]

Matrix Multiply (index contraction)

>>> x.dot(x.T)

[image:]

Compound ad naseum

>>> x.dot(x.T + 1) - x.mean(axis=1)

[image:]

We can compound these operations forever. Constructing larger and larger
graphs before we hand off the work to a scheduler to execute.

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/blaze-server.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Blaze Server

Blaze server exposes Python data through a JSON web API

		Easily spin up a data server

		Interact with that server through JSON

		Support many data resources (Lists, DataFrames, SQL databases, Hadoop clusters)

		Interact with server with Blaze on client side

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Query data through JSON API

$ curl \
 -H "Content-Type: application/json" \
 -d '{"expr": "iris"}' \
 localhost:5000/compute/iris.json
{
 "data": [
 [
 5.1,
 3.5,
 1.4,
 0.2,
 "Iris-setosa"
],
 [
 4.9,
 3.0,
 1.4,
 0.2,
 "Iris-setosa"
],

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Interact through Python (or any language)

>>> import json
>>> import requests

>>> query = {'expr': 'iris'}

>>> response = requests.get('http://localhost:5000/compute/iris.json',
... data=json.dumps(query),
... headers={'Content-Type': 'application/json'})

>>> json.loads(response.content)
{u'data': [[5.1, 3.5, 1.4, 0.2, u'Iris-setosa'],
 [4.9, 3.0, 1.4, 0.2, u'Iris-setosa'],
 [4.7, 3.2, 1.3, 0.2, u'Iris-setosa'],
 [4.6, 3.1, 1.5, 0.2, u'Iris-setosa'],
 [5.0, 3.6, 1.4, 0.2, u'Iris-setosa'],
...

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Interact from web applications like Bokeh-JS plots

[image: Iris with Bokeh]

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Send computations to the server

>>> import json
>>> import requests

>>> # Ask for petal_length column: t.petal_length
>>> query = {'expr': {'op': 'Column', 'args': ['iris', 'petal_length']}}

>>> response = requests.get('http://localhost:5000/compute/iris.json',
... data=json.dumps(query),
... headers={'Content-Type': 'application/json'})

>>> json.loads(response.content)
{u'data': [1.4,
 1.4,
 1.3,
 1.5,
 1.4,
 1.7,
...

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Generate computations with symbolic Blaze

>>> from blaze import *
>>> t = Symbol('t', 'var * { sepal_length : ?float64, sepal_width : ?float64, petal_length : ?float64, petal_width : ?float64, species : string }')

>>> expr = by(t.species, # more complex query to send to server
... min=t.petal_length.min(),
... max=t.petal_length.max())

>>> query = to_tree(expr, names={t: 'iris'})
>>> query
{'args': [{'args': ['iris', 'species'], 'op': 'Column'},
 {'args': [{'args': ['iris', 'petal_length'], 'op': 'Column'},
 ['max', 'min'],
 [{'args': [{'args': ['iris', 'petal_length'], 'op': 'Column'}],
 'op': 'max'},
 {'args': [{'args': ['iris', 'petal_length'], 'op': 'Column'}],
 'op': 'min'}]],
 'op': 'Summary'}],
 'op': 'By'}

...

Server

Host data with Blaze Server

>>> from blaze import *
>>> csv = CSV('examples/data/iris.csv')

>>> from blaze.server import Server
>>> server = Server({'iris': csv})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Or drive a remote server from a Python Client

>>> from blaze import *
>>> from blaze.server import *

>>> t = Table('blaze://localhost:5000::iris') # Drive remote dataset
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> by(t.species, min=t.petal_length.min(), max=t.petal_length.max())
 species max min
0 Iris-virginica 6.9 4.5
1 Iris-setosa 1.9 1.0
2 Iris-versicolor 5.1 3.0

Server

Operate on any Blaze supported type

>>> from blaze import *
>>> df = into(DataFrame, CSV('examples/data/iris.csv'))

>>> from blaze.server import Server
>>> server = Server({'iris': df})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Or just drive a remote server

>>> from blaze import *
>>> from blaze.server import *

>>> t = Table('blaze://localhost:5000::iris') # Drive remote dataset
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> by(t.species, min=t.petal_length.min(), max=t.petal_length.max())
 species max min
0 Iris-virginica 6.9 4.5
1 Iris-setosa 1.9 1.0
2 Iris-versicolor 5.1 3.0

Server

Operate on any Blaze supported type

>>> from blaze import *
>>> import pymongo
>>> db = pymongo.MongoClient().db

>>> from blaze.server import Server
>>> server = Server({'iris': db.iris_collection})
>>> server.app.run(host='0.0.0.0', port=5000)

Client

Or just drive a remote server

>>> from blaze import *
>>> from blaze.server import *

>>> t = Table('blaze://localhost:5000::iris') # Drive remote dataset
>>> t.head(3)
 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

>>> by(t.species, min=t.petal_length.min(), max=t.petal_length.max())
 species max min
0 Iris-virginica 6.9 4.5
1 Iris-setosa 1.9 1.0
2 Iris-versicolor 5.1 3.0

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/pydata-berlin-fin.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Scikit Image Case Study

		Setup
		Scikit image has sophisticated single-threaded algorithms

		Dask.array parallelizes map on slighty overlapping blocks

[image:]

		Timeline
		Blake Griffith [http://github.com/cowlicks/]
creates
parallel apply function [https://github.com/scikit-image/scikit-image/pull/1493]
in scikit-image (1 week part time)

		People try it out; it’s not much faster

		Johannes Schönberger [http://www.cs.unc.edu/~jsch/] releases the GIL [https://github.com/scikit-image/scikit-image/pull/1519/files] (few days)

		Scikit image + dask.array sees
2x-3x speedups [https://github.com/ContinuumIO/dask/blob/master/notebooks/parallelize_image_filtering_workload.ipynb]
over Scikit image alone (experiments by @arve0 [http://arve0.github.io/])

Momentum

		Jeff Reback has a nogil Pandas branch [https://github.com/pydata/pandas/pull/10199]

This morning: I updated this. works for all groupbys now.

		Bottleneck issue [https://github.com/kwgoodman/bottleneck]

Final thoughts

http://dask.pydata.org

		Most data is small (you should ignore this talk)

		PyData has room to grow in parallelism (GIL is not an issue)

		Dask.array – a multi-core on-disk numpy clone

		Dask.core – an option for parallelism

[image:]

Finally: Parallelism is rarely important

		Most data is small

		For moderate data, think about storage and representation

		Pandas categoricals are possibly the biggest improvement to PyData performance in
the last year

Ignore everything I just said

		Most data is small

		For moderate data, think about storage and representation

		Pandas categoricals are possibly the biggest improvement to PyData performance in
the last year

Questions?

http://dask.pydata.org

[image:]

[image:]

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/frontbackends.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/how-does-blaze-work.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

How does Blaze work?

At its core, Blaze is the following:

		Symbolic expression system – Mathematica for data

		Interpreters to various backends

		User interface to make expression system accessible

		Dispatch system to make interpreters feasible

In practice, connecting to a new backend takes days, not months.

Blaze separates our intent:

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

from the data:

>>> L = [[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]]
...

then combines the two explicitly

>>> from blaze.compute import compute
>>> compute(deadbeats, L) # Iterator in, Iterator out
<itertools.imap at 0x7fce75a9f790>
>>> list(_)
['Bob', 'Edith']

Separating intent from data lets us switch backends

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

so we can drive Pandas instead

>>> df = DataFrame([[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Dennis', 400],
... [5, 'Edith', -500]],
... columns=['id', 'name', 'balance'])

getting the same result through different means

>>> from blaze.compute import compute
>>> compute(deadbeats, df) # DataFrame in, DataFrame out
1 Bob
4 Edith
Name: name, dtype: object

Now we reach out into the ecosystem

>>> from blaze.expr import Symbol
>>> bank = Symbol('bank', 'var * {id:int, name:string, balance:int}')

>>> deadbeats = bank[bank.balance < 0].name

and use newer technologies

>>> import pyspark
>>> sc = pyspark.SparkContext('local', 'Blaze-demo')

>>> rdd = into(sc, L) # migrate to Resilient Distributed Dataset (RDD)
>>> rdd
ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:315

evolving with the ecosystem

>>> from blaze.compute import compute
>>> compute(deadbeats, rdd) # RDD in, RDD out
PythonRDD[1] at RDD at PythonRDD.scala:43
>>> _.collect() # Pull results down to local Python
['Bob', 'Edith']

Why separate expressions from computation?

		Write once, run anywhere

		Scalable development

(start with CSV files, end with Impala/Spark)

		Rapid prototyping and system discovery

(try Postgres, MongoDB, Spark, see what suits you best)

		Robust to changes in architecture

(assuming Blaze will support Hadoop++)

 © Copyright 2012, Continuum Analytics.

_build/localmedia/_static/presentations/markdown/questions.html

 Navigation

 		
 index

 		
 modules |

 		Blaze 0.8.0-96-g04fdee5 documentation »

Questions?

Docs – http://blaze.pydata.org/

Install – conda install blaze

Source –
http://github.com/ContinuumIO/blaze/

 © Copyright 2012, Continuum Analytics.

_static/presentations/images/dask.2d-compound.png
(x28.2,2) (x28.1,2) (x_28.0,2)
ORNONNC
(x25.2,2) | |(x27.2)| | (x25.1.2) | | (x25.0.2)
many many many
A J
(x24,0,2) | | (x24,2,2) | | (x24.1,2)
£ func £ £
y
(x23.0,2) (x_26,2,0) (x26.2,2) (x26.2, 1) (x23.,2,2) (x23.1,2)
mean_chunk transpose mean_chunk transpose

(‘wrapped_3/, 2, 0)

(‘wrapped_3, 2, 2)

(wrapped_3, 2, 1)

(x28.2, 1)

(x28.1, 1) (x28.0, 1)

(wrapped_3), 1,0)

transpose

(wrapped_3, 1, 1)

mean_chunk

ones

(x25.2, 1) (x25.1, 1) (x27. 1) (x25.0, 1)
many many many
(x_24.,0, 1) (x24, 1, 1) (x24.2, 1)
£ I func
(x23.0, 1) x23. 1L, 1) | | (x26,1,0) | | (x26, 1, 1) | |(x26.1,2)
transpose mean_chunk

mean_chunk

(wrapped_3, 1, 2)

(x_28.,2,0) (x_28.1,0) (x_28.,0,0)
sub sub @
(x25.2,0) | | (x25.L,0) | [(x27.0)| |(x25.0,0
many many many
v
(x24,1,0) | | (x24,2,0) | | (x_24,0,0)

(x23.2, 1) (x23,1,0)

transpose transpose

(wrapped_3, 0, 1)

func

(x23,2,0) | | (x26,0,1)

(x26,0,2) | | (x26,0,0) | | (x_23,0,0)

mean_chunk

transpose

(‘wrapped_3, 0, 2)

mean_chunk

mean_chunk

(‘wrapped_3/, 0, 0)

transpose

_static/presentations/images/dask.ones3.png
(x_7,2) (x_7,0) (x_7,1)

ONENONENO.

A J
(x_6.,2) (x_6,0) (x_6,1)
vy y A J
(x_5.,2) (x_5',0) (x5, 1)
vy y A J

(wrapped_1',2) | | (wrapped_1',0) | | (wrapped_L', 1)

_static/presentations/images/frontbackends-full.png
High-level
interface
Low-level
fast code numpy . ¢ pandas .pyx

i

NoSQL Numeric Computing
HBas MongoDB HDF5/BColz|| PETSC/
Postgres Trillinos
hi [——
. SQL - SciDB/ HPC
Hiv yS5Q CouchBase Elastic Distarrayl|| Research
- 4
Oracle Search
Hadoop Spark

_static/presentations/plugin/notes/notes.html

		

		
			
		

		
			
			UPCOMING:
		

		
			
				Time

				0:00:00 AM
			

			
				Elapsed

				00:00:00
			

		

		

		
		
	

_static/presentations/plugin/postmessage/example.html

		

		
			
			
			
		

		

	

_static/presentations/plugin/notes-server/notes.html

		
			
		

		
			
			UPCOMING:
		

		

		
		

		

	

_static/presentations/images/dask.ones1.png
O

(x2. 1)

(‘wrapped_L', 0)

(‘wrapped_L', 2)

(‘wrapped_L', 1)

_static/presentations/images/avg.png
Average Global Temperature, 2014

300
290
280
270
260
250
240
230

0 200 400 600 800 1000 1200 1400

_static/presentations/images/diff.png
Temperature Difference from Average for Particular Day

200

400

600

800

1000

1200

1400

24

18

12

-12

-18

_static/presentations/images/ghosted-neighbors.png

_static/presentations/images/multicore-cpu.png
ont "enxrrxrng

_static/presentations/images/embarrassing.gif
TT 50,5 TTTT< 50| o] [ooenso] [(50,0,

[esnn] - [es] [om] [esen] [emes] [eoen] [oen] [an] [eoen] [one] o] [ees] [ons] [[0
o] oo [meo] [men] [mees] [mees] [mren] [aren] [wmia] [mees] [oew] [aee] [mmes] [meee] [mee] [aes]

son

_static/presentations/images/frame.png
January, 2014

February, 2014 |
March, 2014

April, 2014 |

(F,0)

Divisions

——2014-02-01T00:00:00

(F,1)

——2014-03-01T00:00:00

(F,2)

——2014-04-01T00:00:00

(F,3)

