
bitpit Documentation
Release 1.2.0

Mohammad Alghafli

Oct 13, 2019

Contents

1 Content 3
1.1 Installation . 3
1.2 Quick Guide . 4
1.3 Download a File . 5
1.4 Display Download Information . 6
1.5 Automatic Restart . 10
1.6 Specify Path and Rate Limit . 11
1.7 Additional Tuning . 13
1.8 Elegant Output . 14
1.9 bitpit Reference . 18
1.10 Indices and tables . 24

Python Module Index 25

Index 27

i

ii

bitpit Documentation, Release 1.2.0

This tutorial gives an introduction to how to use bitpit python library and its features.

This is not a python tutorial. You are expected to have general knowledge in python before you start this tutorial.

If you are looking for quick guide and do not want to spend much time reading, have a look at the quick guide section.

Contents 1

bitpit Documentation, Release 1.2.0

2 Contents

CHAPTER 1

Content

1.1 Installation

1.1.1 Requirements

The major requirement of bitpit is python 3. bitpit is a python 3 library and was never tested in python 2. So
first make sure your version of python is 3.

1.1.2 Installation

Make sure you have pip for python 3 installed.

On windows install using pip by running the command:

pip install bitpit

Or on linux:

pip3 install bitpit

Of course, pip command should be in your PATH environment variable. If you are using windows there is a good
chance pip is not in your PATH. In this case you should specify the full pip path. Search about how to use pip on
windows if you are having trouble.

Try to import bitpit to be sure it was installed successfully:

>>> import bitpit
>>>

If it is imported without errors, you are ready to use it. You may want to have a look at one or more of the following
documents:

• Quick Guide For those who want short and quick highlights and usage example.

3

bitpit Documentation, Release 1.2.0

• Download a File This is the start of the library tutorial. It shows different library features.

• bitpit Reference This is the library reference. All classes and functions documentation is here.

1.2 Quick Guide

This is a quick guide to use the library. Read it if you want to have a quick look in the library and do not want to spend
much time here.

bitpit is an event driven http download library with automatic resume and other features. The library is written in an
event-driven style similar to GTK+.

1.2.1 Usage example

This is a typical usage example:

import bitpit

#will download this
url = 'https://www.python.org/static/img/python-logo.png'
d = bitpit.Downloader(url) #downloader instance

#listen to download events and call a function whenever an event happens
#print state when state changes
d.listen(

'state-changed',
lambda var, old_state: print('download state:', var.state)

)

#print speed in human readable format whenever speed changes
#speed is updated and callback is called every 1 second by default
d.listen(

'speed-changed',
lambda var: print('download speed:', *var.human_speed)

)

#register another callback function to the speed change signal
#print percentage downloaded whenever speed changes
d.listen('speed-changed', lambda var: print(int(var.percentage), '%'))

#print total file size in human readable format when the downloader knows the file
→˓size
d.listen(

'size-changed',
lambda var: print('total file size:', *var.human_size)

)

#done registering callbacks. lets start our download
#the following call will not block. it will start a new download thread
d.start()

#do some other work while download is taking place...

#wait for download completion or error
d.join()

4 Chapter 1. Content

bitpit Documentation, Release 1.2.0

1.2.2 As main script

This module can also be run as a main python script to download a file. You can have a look at the main function for
another usage example.

commandline syntax:

python -m bitpit.py <url>

args:

• url: the url to download.

1.2.3 Other arguments

Most of what you can do is done by passing the desired args to Downloader.__init__(). Here are most of the
args you can use:

1. url: URL to download

2. path: The path to download the file at. if not supplied, will guess the file name from the URL.

3. restart_wait: Time to wait in case of error before the download is retried. If not supplied, will never retry
in case of error.

4. update_period: The minimum time to wait before emitting speed-changed signal. Defaults to 1 second.

5. timeout: Connection timeout. Defaults to 10 seconds.

6. rate_limit: Maximum download bit rate. If not supplied, download without speed limit.

1.2.4 Tutorial

In Download a File you will find a more comprehensive bitpit tutorial.

1.3 Download a File

So we have bitpit installed and ready. Let’s start using it. In this tutorial we are going to make a little download
program. It is a little bit similar to the downloader function but we will make it a little bit better.

First, we need to import the library:

import bitpit

Now let’s specify the URL we are going to download. We are going to download python logo:

url = 'https://www.python.org/static/img/python-logo.png'

Next comes bitpit business. We create a Downloader instance:

dl = bitpit.Downloader(url)

Finally we start the download:

dl.start()
print('Download has started.')

1.3. Download a File 5

bitpit Documentation, Release 1.2.0

Now the download will start. Notice that Downloader.start() call will not block. The message Download
has started. will be printed immediately before the download finishes. Then our main thread will end but the
downloading thread will keep running until the file is fully downloaded or an error occures.

If you try the example above, you will see Download has started message printed on the screen and nothing
else. The program will freeze until the download finishes. Imagine if we have a very big file such as linux mint. It will
take a long time without us knowing how much we have downloaded. That is not so convenient isn’t it? We will look
at that later but for now, let’s look at the program we have written so far

import bitpit

#will download this
url = 'https://www.python.org/static/img/python-logo.png'

#this is our downloader
dl = bitpit.Downloader(url)

#start downloading and tell user download has started.
dl.start()
print('Download has started.')

#end of the main thread

In Display Download Information, we will make the program give us information about the download such as whether
it has started or faced an error and also the download speed.

1.4 Display Download Information

At the moment we are able to download a file. But we have no information on how fast our download is and if it is
completed or there is some error.

Before we start, here is the tiny program we made previously if you need to refresh your mind:

import bitpit

#will download this
url = 'https://www.python.org/static/img/python-logo.png'

#this is our downloader
dl = bitpit.Downloader(url)

#start downloading and tell user download has started.
dl.start()
print('Download has started.')

#end of the main thread

Now it is time to make it better.

1.4.1 Display the file size

If we are downloading a file, we probably want to know the file size. bitpit is written in an event driven style. It is a
little similar to GTK library if you have used it before. We need to do 2 steps to show the file size. First, we need to
define a function that will be called when the file size is known:

6 Chapter 1. Content

http://mirrors.evowise.com/linuxmint/stable/18.3/linuxmint-18.3-cinnamon-64bit.iso

bitpit Documentation, Release 1.2.0

def on_size_changed(downloader):
print(downloader.size)

This function takes 1 argument: downloader which is the Downloader instance that we just knew its file size. In
the function, we print the Downloader.size property, which is just the file size in bytes.

Next, we need to tell the downloader to call this function as soon as it knows the file size. You probably want to do
this just before you start the download. This is done using Downloader.listen() method:

dl.listen('size-changed', on_size_changed)

The Downloader.listen() takes at least 2 arguments. The first is the signal to listen to. Here we listened to the
size-changed signal which is emitted whenever the downloader gets to know the size of the file being downloaded.
The second argument is the function to call when the signal is emitted. Here we put the function we defined above.

After this call to Downloader.listen(), our function will be called as soon as the file size is known. Our full
program now becomes as follows:

import bitpit

def on_size_changed(downloader):
print('The file size is', downloader.size)

#will download this
url = 'https://www.python.org/static/img/python-logo.png'

#this is our downloader
dl = bitpit.Downloader(url)

#listen to signals
#print size as soon as it is known
dl.listen('size-changed', on_size_changed)

#start downloading and tell user download has started.
dl.start()
print('Download has started.')

#end of the main thread

If you notice, the size is expressed in bytes. Showing the size in bytes gives us a very big number that is difficult for
humans to read. It would be easier for us if we could display the size in Kilobytes or Megabytes. This can be done by
modifying the callback function on_size_changed() to be as follows:

def on_size_changed(downloader):
print('The file size is', *downloader.human_size)

We just replaced Downloader.size property with Downloader.human_size property. Downloader.
human_size property gives us a 2-element tuple. The first element is a float representing the size and the second
element is a string suffix with the value KB for kilobytes or MB for megabytes and so on. In our call to print()
function, we unpacked the tuple arguments using python * operator. If you are not familiar with this, check it out in
the python here.

When I tried the new callback function, I got the following message printed:

The file size is 9.865234375 KB

We can use python string formatting to make it look better but we will leave it for later.

1.4. Display Download Information 7

https://docs.python.org/3/tutorial/controlflow.html#unpacking-argument-lists

bitpit Documentation, Release 1.2.0

1.4.2 Display the download speed

Other than the size, we want to know the download speed. Similar to the size, we define a callback function and
listen to a signal. The function we will define will print the speed just like the size. The property we will use is
Downloader.speed. Also like the size, there is a Downloader.human_speed. We will use Downloader.
human_speed:

def on_speed_changed(downloader):
print('The speed is', *downloader.human_speed)

The signal we want to listen to this time is speed-changed:

dl.listen('speed-changed', on_speed_changed)

The behaviour of speed-changed signal is a little bit different than size-changed. When the download starts,
the signal is emitted every 1 second . It will keep being emitted periodically as long as the download is running. In
our program, the signal will not work very well because the file size is very small. Try to download linux mint and
you will see the signal working properly.

There are other things we can do to improve our program regarding speed-changed signal. For example, we can
show how much we have downloaded so far in the callback function because we probably have downloaded some-
thing since the last time the signal was emitted. We can check Downloader.downloaded and Downloader.
human_downloaded to know that. Furthermore, our callback will be printing a message every second which makes
the terminal full of confusing text. We can make our output better. However, we will leave it to the end of the tutorial.
For now we will stick to what we have done so far.

Now our program has become as follows:

import bitpit

def on_size_changed(downloader):
print('The file size is', downloader.size)

def on_speed_changed(downloader):
print('The speed is', *downloader.human_speed)

#will download this
url = 'https://www.python.org/static/img/python-logo.png'

#this is our downloader
dl = bitpit.Downloader(url)

#listen to signals
#print size as soon as it is known
dl.listen('size-changed', on_size_changed)

#print speed periodically
dl.listen('speed-changed', on_speed_changed)

#start downloading and tell user download has started.
dl.start()
print('Download has started.')

#end of the main thread

Just as a final note in this section, you can change the time between speed-changed signal emissions in
Downloader.__init__() when you create the downloader instance by passing the desired number of seconds in
the update_period argument. Check the class documentation for more details.

8 Chapter 1. Content

http://mirrors.evowise.com/linuxmint/stable/18.3/linuxmint-18.3-cinnamon-64bit.iso

bitpit Documentation, Release 1.2.0

1.4.3 Display the download state

Another useful information we need in our download is its state. For example, did it start or not? Is it completed or
still in progress? Did it stop normally or because of an error? This is what we are going to do.

Similar to the size and speed, we define a callback function and listen to a signal:

def on_state_changed(downloader, old_state):
print('The state changed to:', downloader.state)

dl.listen('state-changed', on_state_changed)

Notice that state-changed signal takes at least 2 positional argumetns. The Downloader that changed state
and the old state the downloader was on. The state-changed signal is emitted whenever the download is started,
stopped, or completed. To know the new state, check the Downloader.state property. It can be one of the
following: * pause: The download is not started or started then stopped by a calling Downloader.stop()
method. * start: The download just started but is not download anything yet. * download: The download
is running and in progress. * error: The download stopped bacause of an error. * complete: The download
completed.

Our program now has become like this:

import bitpit

def on_size_changed(downloader):
print('The file size is', downloader.size)

def on_speed_changed(downloader):
print('The speed is', *downloader.human_speed)

def on_state_changed(downloader, old_state):
print('The state changed to:', downloader.state)

#will download this
url = 'https://www.python.org/static/img/python-logo.png'

#this is our downloader
dl = bitpit.Downloader(url)

#listen to signals
#print size as soon as it is known
dl.listen('size-changed', on_size_changed)

#print speed periodically
dl.listen('speed-changed', on_speed_changed)

#print state
dl.listen('state-changed', on_state_changed)

#start downloading and tell user download has started.
dl.start()
print('Download has started.')

#end of the main thread

In Automatic Restart, we will make our downloader automatically resume the download when the download is inter-
rupted due to an error.

1.4. Display Download Information 9

bitpit Documentation, Release 1.2.0

1.5 Automatic Restart

So far, our program freezes until the download stops. However, when the program ends we are not sure whether the file
is stopped because it is completely downloaded or because an error occured. What if an error occured and we want to
restart the download again? This is easy. We just pass restart_wait argument to Downloader.__init__():

dl = bitpit.Downloader(url, restart_wait=30)

This argument decides the time to wait before the downloader retries downloading when an error occures. It defaults
to -1 if not given which means do not restart even after an error. Because we gave it the value 30 here, anytime an error
happens, the downloader will wait for 30 seconds and then retry again. Try to download linux mint and shutdown your
internet connection. Here is the output I got:

The file size is 1899528192
The speed is 0 B/s
The state changed to: start
The speed is 207.0622560278128 KB/s
The speed is 474.6406851817469 KB/s
The speed is 0 B/s
The state changed to: error
The file size is 1899528192
The speed is 0 B/s
The state changed to: start
The speed is 506.2438224533826 KB/s
The speed is 594.6743846283302 KB/s

You can see the state has changed to error after I shutdown my internet but the program did not terminate. After 30
seconds, the state changed again to start and the download continued. Now our program will only terminate when
the download is successfully completed.

One last note, some connection errors are perminant. For instance, if you get a 404 NOT FOUND error, then no matter
how many times you try, the error will keep happening. bitpit does not handle that and will keep trying to download
regardless of the error. You can check the error that happened by looking at the Downloader.last_exception
property. You will most probably get an exception from requests.exceptions module.

We have only changed 1 line in this lesson. Now our program so far has become:

import bitpit

def on_size_changed(downloader):
print('The file size is', downloader.size)

def on_speed_changed(downloader):
print('The speed is', *downloader.human_speed)

def on_state_changed(downloader, old_state):
print('The state changed to:', downloader.state)

#will download this
url = 'https://www.python.org/static/img/python-logo.png'

#this is our downloader
dl = bitpit.Downloader(url, restart_wait=30)

#listen to signals
#print size as soon as it is known
dl.listen('size-changed', on_size_changed)

(continues on next page)

10 Chapter 1. Content

http://mirrors.evowise.com/linuxmint/stable/18.3/linuxmint-18.3-cinnamon-64bit.iso

bitpit Documentation, Release 1.2.0

(continued from previous page)

#print speed periodically
dl.listen('speed-changed', on_speed_changed)

#print state
dl.listen('state-changed', on_state_changed)

#start downloading and tell user download has started.
dl.start()
print('Download has started.')

#end of the main thread

We are getting closer to the end.

In Specify Path and Rate Limit, we will specify the path and name to save our file instead of saving it in the current
directory with the default name. We will also start limiting the download speed instead of eating up all our internet
bandwidth before my brother gets angry.

1.6 Specify Path and Rate Limit

So far our program gives us most of the information we need and also restarts when an error occures. There are 2
things we will do in this lesson: First we will specify where we want to save our file and second we want to limit the
download speed so that the internet does not become slow for the rest of the family. I grouped the two in 1 lesson
because both are straight forward.

1.6.1 Specify the file path

We want to decide where our file will be saved. This is done using the path argument to Downloader.
__init__():

dl = Downloader(url, path='~/Desktop/logo.png', restart_wait=30)

The above instruction tells the downloader to save the file in my desktop with the name logo.png. In case you do
not know what ~ means in a path, it means the user home directory in linux systems. This will probably not work
on windows. We can make a portable way that works in both linux and windows by importing and using pathlib
standard python library:

dl = Downloader(
url,
path=pathlib.Path.home() / 'Desktop' / 'logo.png',
restart_wait=30

)

If you are not familiar with pathlib, then you should have a look at this awsome library.

You notice that in our first modification above, we supplied a python string in the path argument. However, in our
second modification, we gave a pathlib.Path object. The argument path can take both. In fact, you can give
anything that pathlib.Path.__ini__() supports. If you want, you can also give a binary file-like object and
the data will be saved in it.

1.6. Specify Path and Rate Limit 11

bitpit Documentation, Release 1.2.0

1.6.2 Download rate limit

To limit the download rate, you simply give rate_limit argument to Downloader.__init__():

dl = Downloader(
url,
path=pathlib.Path.home() / 'Desktop' / 'logo.png',
restart_wait=30,
rate_limit=2048

)

In our example here, we made our maximum download speed 2 KB/s. Let’s see the program output now:

The file size is 10102
The speed is 0 B/s
The state changed to: start
The speed is 1.9989241550312336 KB/s
The speed is 1.9988802572634587 KB/s
The speed is 1.9987825036005515 KB/s
The speed is 1.9989528185814844 KB/s
The file size is 10102
The speed is 0 B/s
The state changed to: complete

You can see that the download speed became very close to 2 KB/s (or a little less). However, note that this may not
work as expected for small files.

Our full program so far became:

import bitpit
import pathlib

def on_size_changed(downloader):
print('The file size is', downloader.size)

def on_speed_changed(downloader):
print('The speed is', *downloader.human_speed)

def on_state_changed(downloader, old_state):
print('The state changed to:', downloader.state)

#will download this
url = 'https://www.python.org/static/img/python-logo.png'

#this is our downloader
dl = bitpit.Downloader(

url,
path=pathlib.Path.home() / 'Desktop' / 'logo.png',
restart_wait=30,
rate_limit=2048

)

#listen to signals
#print size as soon as it is known
dl.listen('size-changed', on_size_changed)

#print speed periodically
dl.listen('speed-changed', on_speed_changed)

(continues on next page)

12 Chapter 1. Content

bitpit Documentation, Release 1.2.0

(continued from previous page)

#print state
dl.listen('state-changed', on_state_changed)

#start downloading and tell user download has started.
dl.start()
print('Download has started.')

#end of the main thread

In Additional Tuning, we will do our final tunes to our downloader.

1.7 Additional Tuning

Now we have most of our work done. We are going to look into a few minor additional things we can do to modify
our downloader behaviour.

1.7.1 Connection Timeout

We can change the connection timeout settings by giving the timeout argument to Downloader.__init__().
The default value is 10 seconds. That is relatively small. Let’s make it 1 minute:

dl = bitpit.Downloader(
url,
path=pathlib.Path.home() / 'Desktop' / 'logo.png',
restart_wait=30,
rate_limit=2048,
timeout=60

)

1.7.2 Chunk Size

We can also supply the download chunk_size to Downloader.__init__(). The chunk size is the maximum
number of bytes to download in a single network read operation. You do not really need to change this at all but just
in case you want to change it. Having very low or very high values may slightly affect download speed. There is no
hard rule to figure out the best other than trying. In my computer, the default value worked best. The default value is
4 KB. For practice, let’s change it to 1 KB:

dl = bitpit.Downloader(
url,
path=pathlib.Path.home() / 'Desktop' / 'logo.png',
restart_wait=30,
rate_limit=2048,
timeout=60,
chunk_size=1024

)

The chunk_size cannot be greater than rate_limit. If it is greater, bitpit will force it to be equal to
rate_limit.

Here is our program so far:

1.7. Additional Tuning 13

bitpit Documentation, Release 1.2.0

import bitpit
import pathlib

def on_size_changed(downloader):
print('The file size is', downloader.size)

def on_speed_changed(downloader):
print('The speed is', *downloader.human_speed)

def on_state_changed(downloader, old_state):
print('The state changed to:', downloader.state)

#will download this
url = 'https://www.python.org/static/img/python-logo.png'

#this is our downloader
dl = bitpit.Downloader(

url,
path=pathlib.Path.home() / 'Desktop' / 'logo.png',
restart_wait=30,
rate_limit=2048,
timeout=60,
chunk_size=1024

)

#listen to signals
#print size as soon as it is known
dl.listen('size-changed', on_size_changed)

#print speed periodically
dl.listen('speed-changed', on_speed_changed)

#print state
dl.listen('state-changed', on_state_changed)

#start downloading and tell user download has started.
dl.start()
print('Download has started.')

#end of the main thread

Now we have only one thing left to do. If you have noticed, our output is ugly.

In Elegant Output we are going to make it pretty. We will also introduce some useful things in bitpit.

1.8 Elegant Output

We are finally in the last lesson. Let’s make our output beautiful.

Our goal will be to make the output look like this:

<state> | <File size> | <Downloaded> | <speed> [<progress bar>] <percentage>% <eta>

We have all the information in 1 line seperated by a pipe character “|”. The state will show us in real time if there is
any error. The file size, downloaded bytes and speed will be in human readable form so that we can easily read it.
The progress bar will indicate how much portion we have downloaded so far. The percentage will indicate the same

14 Chapter 1. Content

bitpit Documentation, Release 1.2.0

as the progress bar but in numbers. Finally, eta is the estimated time to finish the download. The information will be
printed in only 1 line. If it changes, we will make the information be updated in the same line instead of printing so
many lines like we did in the on_speed_changed callback.

1.8.1 Showing information in one line

First, instead of having a callback function for each signal, let’s make 1 callback that will update all the information
whenever 1 thing changes. Let’s remove on_size_changed, on_speed_changed and on_state_changed
callbacks and write 1 callback to print the state, size, downloaded, and speed instead:

def on_anything_changed(downloader, old_state=None):
state = downloader.state
size = '{} {}'.format(*downloader.human_size)
downloaded = '{} {}'.format(*downloader.human_downloaded)
speed = '{} {}'.format(*downloader.human_speed)

text = '{} | {} | {} | {}'.format(state, size, downloaded, speed)
print(text)

We will do the progress bar, the percentage and the estimated download time in a later section.

Next, we modify all Downloader.listen() calls to register the new function:

#listen to everything
dl.listen('size-changed', on_anything_changed)
dl.listen('speed-changed', on_anything_changed)
dl.listen('state-changed', on_anything_changed)

Now our callback will be called when the state changes, when we know the size and periodically when
speed-change signal is emitted. Notice that we also printed number of bytes downloaded which we did not
do in previous lessons. Now our output will be something like this:

pause | 9.865234375 KB | 0 B | 0 B/s
start | 9.865234375 KB | 0 B | 0 B/s
start | 9.865234375 KB | 0 B | 0 B/s
start | 9.865234375 KB | 2.0 KB | 1.9990254031527928 KB/s
start | 9.865234375 KB | 4.0 KB | 1.9989961600987338 KB/s
start | 9.865234375 KB | 6.0 KB | 1.9988544205541783 KB/s
start | 9.865234375 KB | 8.0 KB | 1.9987502773920875 KB/s
start | 9.865234375 KB | 9.865234375 KB | 1.9987502773920875 KB/s
complete | 9.865234375 KB | 9.865234375 KB | 0 B/s
complete | 9.865234375 KB | 9.865234375 KB | 0 B/s

Ok. We still have ugly output. First, let’s make all numbers rounded to 2 decimal places. In the callback, we will
modify our format strings:

state = downloader.state
size = '{:0.2f} {}'.format(*downloader.human_size)
downloaded = '{:0.2f} {}'.format(*downloader.human_downloaded)
speed = '{:0.2f} {}'.format(*downloader.human_speed)

Second, we do not want to print multiple lines. We want to print only 1 line. Let’s use the print function arguments
to stay on the same line and use the character \r to update it:

text = '\r{} | {} | {} | {}'.format(state, size, downloaded, speed)
print(text, end='', flush=True)

1.8. Elegant Output 15

bitpit Documentation, Release 1.2.0

Now our callback will not print many lines. Instead, it will go back to the beginning of the line and print the information
on the same line erasing anything previously shown.

Furthermore, let’s modify the print call to print spaces to fill all the line with 79 characters just to erase the whole
line in case we have garbage out of our text width:

print(text.ljust(79), end='', flush=True)

Our callback now becomes:

def on_anything_changed(downloader, old_state=None):
state = downloader.state
size = '{:0.2f} {}'.format(*downloader.human_size)
downloaded = '{:0.2f} {}'.format(*downloader.human_downloaded)
speed = '{:0.2f} {}'.format(*downloader.human_speed)

text = '\r{} | {} | {} | {}'.format(state, size, downloaded, speed)
print(text.ljust(79), end='', flush=True)

1.8.2 Showing the progress bar, percentage and ETA

Let’s start with the progress bar. We use Downlaoder.bar() function to generate a progress bar. The function
takes 2 optional arguments. The first is width which is the length in characters of the progress bar. It defaults to 30.
Let’s make it 10. The second is char which is the character to use to fill the bar. It defaults to ‘=’. Let’s make this a
dash instead:

bar = downloader.bar(width=10, char='-')

Our callback now becomes:

def on_anything_changed(downloader, old_state=None):
state = downloader.state
size = '{:0.2f} {}'.format(*downloader.human_size)
downloaded = '{:0.2f} {}'.format(*downloader.human_downloaded)
speed = '{:0.2f} {}'.format(*downloader.human_speed)
bar = downloader.bar(width=10, char='-')

text = '\r{} | {} | {} | {} [{}]'.format(
state,
size,
downloaded,
speed,
bar

)
print(text.ljust(79), end='', flush=True)

Notice how we enclosed the progress bar in brackes within our format string.

Percentage and ETA are straight forward. We use Downloader.percentage and Downloader.eta properties
of the downloader:

percentage = int(downloader.percentage)
eta = downloader.eta

Downloader.percentage property returns the percentage (from 0 to 100) as a float. we converted it to int to
remove any digits after the decimal point to reduce user confusion. eta returns a datetime.timedelta instance
which tells us the estimated time remaining until the download is completed.

16 Chapter 1. Content

bitpit Documentation, Release 1.2.0

Now our full callback function becomes:

def on_anything_changed(downloader, old_state=None):
state = downloader.state
size = '{:0.2f} {}'.format(*downloader.human_size)
downloaded = '{:0.2f} {}'.format(*downloader.human_downloaded)
speed = '{:0.2f} {}'.format(*downloader.human_speed)
bar = downloader.bar(width=10, char='-')
percentage = int(downloader.percentage)
eta = downloader.eta

text = '\r{} | {} | {} | {} [{}] {}% {}'.format(
state,
size,
downloaded,
speed,
bar,
percentage,
eta

)
print(text.ljust(79), end='', flush=True)

And now, this is our awesome program:

import bitpit
import pathlib

def on_anything_changed(downloader, old_state=None):
state = downloader.state
size = '{:0.2f} {}'.format(*downloader.human_size)
downloaded = '{:0.2f} {}'.format(*downloader.human_downloaded)
speed = '{:0.2f} {}'.format(*downloader.human_speed)
bar = downloader.bar(width=10, char='-')
percentage = int(downloader.percentage)
eta = downloader.eta

text = '\r{} | {} | {} | {} [{}] {}% {}'.format(
state,
size,
downloaded,
speed,
bar,
percentage,
eta

)
print(text.ljust(79), end='', flush=True)

#will download this
url = 'https://www.python.org/static/img/python-logo.png'

#this is our downloader
dl = bitpit.Downloader(

url,
path=pathlib.Path.home() / 'Desktop' / 'logo.png',
restart_wait=30,
rate_limit=2048,
timeout=60,
chunk_size=1024

(continues on next page)

1.8. Elegant Output 17

bitpit Documentation, Release 1.2.0

(continued from previous page)

)

#listen to everything
dl.listen('size-changed', on_anything_changed)
dl.listen('speed-changed', on_anything_changed)
dl.listen('state-changed', on_anything_changed)

#start downloading and tell user download has started.
dl.start()
print('Download has started.')

#end of the main thread

The output I got from this program is below:

start | 9.87 KB | 4.00 KB | 2.00 KB/s [----] 40% 0:00:02.934069

You can see that fractions of a second are shown in eta which is not very nice. However, I will leave this to you to
fix.

Finally we have an awesome download program. Of course, there are many things we can improve on it. But I believe
this form is enough to explain bitpit features and how to use it.

You may want to have a look at bitpit Reference for complete documentation of the library.

THE END. . .

1.9 bitpit Reference

Date 2019-10-13

Version 1.2.0

Authors

• Mohammad Alghafli <thebsom@gmail.com>

Event driven http download library with automatic resume and other features. The goal of this module is to ease
the process of downloading files and resuming interrupted downloads. The library is written in an event-driven style
similar to GTK. The module defines the class Downloader. Instances of this class download a file from an http server
and call callback functions whenever an event happens ralated to this download. Examples of events are download
state change (start, pause, complete, error) and download speed change. The following is a typical usage example:

import bitpit

#will download this
url = 'https://www.python.org/static/img/python-logo.png'
d = bitpit.Downloader(url) #downloader instance

#listen to download events and call a function whenever an event happens
#print state when state changes
d.listen('state-changed', lambda var: print('download state:', var.state))

#print speed in human readable format whenever speed changes
#speed is updated and callback is called every 1 second by default
d.listen('speed-changed', lambda var: print('download speed:', *var.human_speed))

(continues on next page)

18 Chapter 1. Content

mailto:thebsom@gmail.com

bitpit Documentation, Release 1.2.0

(continued from previous page)

#register another callback function to the speed change signal
#print percentage downloaded whenever speed changes
d.listen('speed-changed', lambda var: print(int(var.percentage), '%'))

#print total file size in human readable format when the downloader knows the file
→˓size
d.listen('size-changed', lambda var: print('total file size:', *var.human_size))

#done registering callbacks. lets start our download
#the following call will not block. it will start a new download thread
d.start()

#do some other work while download is taking place...

#wait for download completion or error
d.join()

This module can also be run as a main python script to download a file. You can have a look at the main function for
another usage example.

commandline syntax:

python -m bitpit.py [-r rate_limit] [-m max_running] url [url ...]

args:

• url: one or more urls to download.

• -r rate_limit: total rate limit for all running downloads.

• -m max_running: maximum number of running downloads at any single time.

class bitpit.Downloader(url, path=None, dir_path=False, rate_limit=0, timeout=10, up-
date_period=1, restart_wait=-1, chunk_size=4096)

downloader class. instances of this class are able to download files from an http or https server in a dedicated
thread, pause download and resume download. it subclasses Emitter.

in addition to listen and unlisten, you probably want to use the following methods:

• self.start()

• self.stop()

• self.join()

• self.bar()

properties:

1.9. bitpit Reference 19

bitpit Documentation, Release 1.2.0

name type access description
url str RW url to download. cannot

be set if is_alive is True.
path pathlib.Path or

io.BufferedIOBase
RW path to download at.

if an instance of path-
lib.Path, file will be
opened and content will
be written to it. the file
is closed whenever the
download stops (com-
pletion, pause or error).
if it is an instance of
io.BufferedIOBase, con-
tent is written to the ob-
ject and the object is
never closed. cannot be
set if is_alive property is
True.

restart_wait int RW number of seconds to
wait before restarting the
download in case of er-
ror. setting it when a
restart thread is active
will restart the thread
again.

restart_time datetime.datetime or
None

R the time when the down-
load will be restarted.
None if there is no
scheduled restart.

chunk_size int RW number of bytes to write
in a single write opera-
tion. ok to keep default
value. when set, new
value takes effect in the
next time the download
is started.

update_period int RW speed-changed signal is
emitted every this num-
ber of seconds.

timeout int RW download will interrupt
when no bytes are re-
cieved for this number of
seconds. when set, new
value takes effect in the
next time the download
is started.

rate_limit int RW speed limit of the down-
loads in bytes per sec-
ond. may not work well
with small files.

human_rate_limit tuple R same as rate_limit but
as human readable tuple.
eg. (100.0, ‘KB/s’).

size int R total size of the file being
downloaded in bytes. -1
if unknown.

human_size tuple R same as size but as hu-
man readable tuple.

downloaded int R bytes downloaded so far.
human_downloaded tuple R same as downloaded but

as human readable tuple.
remaining int R bytes remaining to com-

plete the download.
human_remaining tuple R same as remaining but as

human readable tuple.
speed int R download speed in bytes

per second.
human_speed tuple R same as speed but as hu-

man readable tuple.
ratio float R downloaded / size. -1.0

if unknown.
percentage float R 100 * ratio
eta datetime.timedelta R estimated time remain-

ing to complete the
download.

state str R
one of the following:

• start: trying to
connect.

• download:
downloading
now.

• pause:
stopped.

• error: stopped
because of an
error.

• complete:
completed.

is_alive bool R True if download thread
is running. False other-
wise.

is_restarting bool R True if restart thread is
running. False other-
wise.

last_exception BaseException or None R last exception that oc-
cured during download.
None if no exception oc-
cured yet.

20 Chapter 1. Content

bitpit Documentation, Release 1.2.0

signals:

• state-changed: emitted when state property changes. its callback takes 2 positional argu-
ments, the Downloader instance which emitted the signal and the old state the Downloader
was in.

• size-changed: emitted when size property changes. its callback takes 1 positional argument,
the Downloader instance which emitted the signal.

• speed-changed: emitted when speed property changes. its callback takes 1 positional argu-
ment, the Downloader instance which emitted the signal.

• url-changed: emitted when url property changes. its callback takes 1 positional argument, the
Downloader instance which emitted the signal.

• path-changed: emitted when path property changes. its callback takes 1 positional argument,
the Downloader instance which emitted the signal.

• restart-time-changed: emitted when restart_time property changes. its callback takes 1 po-
sitional argument, the Downloader instance which emitted the signal.

• rate-limit-changed: emitted when rate_limit property changes. its callback takes 1 posi-
tional argument, the Downloader instance which emitted the signal.

bar(width=30, char=’=’, unknown=’?’)
returns a string of width width representing a progress bar. the string is filled with char and spaces.
the number of char represents the part of the file downloaded (e.g., if half of the file is downloaded, half
of the string will be filled with char). the rest of the string will be filled with spaces. if the ratio of
downloaded data is not known, returns a string of width width filled with the unknown argument.

args:

• width (int): number of characters in the bar.

• char (str) character to fill the bar with.

• unknown (str): character to fill the bar if the ratio downloaded is unknown.

returns: a string containing width characters filled with char and spaces to show the ratio of the down-
loaded bytes to the total file size.

examples: if the width is 8 and 25% of the file is downloaded, the returned string will be ‘== ‘

if the width is 8 and the ratio downloaded is not known, the returned string will be ‘????????’

join(timeout=None)
waits until the downloading thread terminates for any reason (download completion, error or pause). check
self.state after join if you want to know the state of the download.

args:

• timeout (None or int) the timeout for the join operation. defaults to None meaning no time-
out.

restart(wait=None)
schedules a download restart and returns. it is called when an error occures during download and self.
restart_wait property >= 0.

args:

• wait (float or None): seconds to wait before the restart. if None, uses self.
restart_wait.

1.9. bitpit Reference 21

bitpit Documentation, Release 1.2.0

start()
starts a downloading thread. if self.path has data, the download will resume and bytes will be ap-
pended to the end of the file. does nothing if the downloader is already started. if there is a scheduled
restart, it will be cancelled.

stop()
stops downloading thread. does nothing if the downloader is already stopped. if there is a scheduled restart,
it will be cancelled.

update_size()
sends a head request to get the size of the file update self.size.

class bitpit.Emitter
a base class for classes that implement event driven programming. a derived class should define the class
attribute __signals__ which is a sequence of its valid signals.

emit(signal, *args)
calls all callback functions previously registered for the signal by previous calls to self.listen().
emitting a signal not present in __signals__ class property raises KeyError. exceptions raised by
the callback function are printed to stderr and ignored.

args:

• signal (str): the signal to call its callbacks.

• args: positional arguments to be passed to the callbacks. args that were passed to self.
listen() will be after args that are passed to this method.

listen(signal, func, *args, **kwargs)
registers the callback function func for the signal signal. whenever the signal is emitted, the callback
function will be called with 1 argument which is the object that emitted the signal. listening to a signal
not present in class attribute __signals__ raises KeyError. registering a callback function multiple
times calls the function that number of times when the signal is emitted.

args:

• signal (str): the signal to listen to.

• func (a callable): the callback function.

• args: positional arguments to be passed to the callback.

• kwargs: keyword arguments to be passed to the callback.

unlisten(signal, func, *args, **kwargs)
unregisters the callback function func for the signal signal. unlistening from an unknown signal
raises KeyError. unlistening a callback which was not passed to listen method previously raises
a ValueError. unlistening a call back will remove it from callback list only once. if the callback was
passed to self.listen() multiple times, it must be unlistened that number of times to be completely
removed from the callback list.

args:

• signal (str): the signal to unlisten from.

• func (a callable): the callback function.

• args: args that were passed to self.listen().

• kwargs: kwargs that were passed to self.listen().

class bitpit.Manager(max_running=0, rate_limit=0, restart_wait=30, **kwargs)
download manager class. multiple urls can be added to it. you can specify the maximum number of downloads
that run at a single time and the manager will start or stop downloads to reach and not exceed this number.

22 Chapter 1. Content

bitpit Documentation, Release 1.2.0

you can also specify the total download rate limit and the manager class will equally divide the speed over the
running downloads.

the Manager class subclasses Emitter and emits signals when a download is added or removed.

properties:

name type ac-
cess

description

rate_limitint RW rate limit for all running downloads. it will be divided equally over the them. a value <=
0 means no rate limit.

max_runningint RW maximum running downloads at a single time. if the number of started downloads ex-
ceed this number, the manager will stop some downloads. if the number is less than this
number, the manager will start some downloads. a value <= 0 means no limit.

restart_waitfloat RW minimum time before the manager starts the same download. even if max_running is
not reached, if restart_wait has not passed since the download last stopped, the
download not started immediately. the manager will wait until this number of seconds
has passed then start the download. this is to prevent frequent restarts in case of network
failure.

kwargsdict RW keyword arguments to added downloads when creating an instance of Downloader using
self.add()

down-
loads

list R downloads added to this manager. a list containing Downloader instances.

signals:

• add: emitted when a new Downloader is added. the signal’s callbacks take 2 positional argu-
ments, the Manager instance that emitted the signal and the Downloader that was just added.
the added Downloader can be found in self.downloads.

• remove: emitted when a Downloader is removed. the signal’s callbacks take 2 positional argu-
ments, the Manager instance that emitted the signal and the Downloader that was just re-
moved. the removed Downloader can no longer be found in self.downloads.

• property-changed: emitted when rate_limit, max_running, restart_wait or kwargs property is
changed.

add(d)
add a new download to the manager.

args:

• d (str or Downloader): the url or Downloader instance to add. if d type is str, a new
Downloader instance is created with arguments taken from self.kwargs property.

returns: the Downloader instance added.

remove(d)
remove a previously added download then emits remove signal. if the download is running, it is not
stopped.

args:

• d (Downloader): the downloader to remove.

start()
start download manager thread. after a call to this method, the manager will start checking added down-
loads to start, stop and change rate limit when necessary.

1.9. bitpit Reference 23

bitpit Documentation, Release 1.2.0

stop()
stop the manager thread.

stop_all()
pause all currently running downloads. the manager thread is not stopped. if you want to stop the manager
and all downloads, call self.stop() first.

update()
tell the manager thread to check pending downloads to see if there is need to start, stop or change rate limit
to some of them. this is called automatically when the state of any added download changes and when
manager properties are changed. you do not need to call it.

bitpit.human_readable(n, digits=3)
return a human readable number of bytes.

args:

• n (float): the number to return as human readable.

• digits (int): the number of digits before the decimal point.

returns:

tuple:

0. (float) human readable number or None if n is None.

1. (str) suffix or None if n is None.

bitpit.main(urls, rate_limit=’0’, max_running=5)
downloads the given urls until done downloading them all. displays statistics about downloads in the following
format: s | speed | downloaded | percent | eta | name

in the above format, the first item s is the first letter of the state of the download. for example, for complete
downloads, that would be the letter c. Similarly, e would be for error and f for fatal error. speed is the download
speed in human readable format. downloaded is the number of downloaded bytes in human readable format.
percent is percentage downloaded. eta is estimated time to complete the download. name is the name of the file
being downloaded or part of the name if the name is very long.

args:

• urls: the urls to download.

• rate_limit: total rate limit for all downloads

• max_running: maximum running downloads at any given time

1.10 Indices and tables

• genindex

• modindex

• search

24 Chapter 1. Content

Python Module Index

b
bitpit, 18

25

bitpit Documentation, Release 1.2.0

26 Python Module Index

Index

A
add() (bitpit.Manager method), 23

B
bar() (bitpit.Downloader method), 21
bitpit (module), 18

D
Downloader (class in bitpit), 19

E
emit() (bitpit.Emitter method), 22
Emitter (class in bitpit), 22

H
human_readable() (in module bitpit), 24

J
join() (bitpit.Downloader method), 21

L
listen() (bitpit.Emitter method), 22

M
main() (in module bitpit), 24
Manager (class in bitpit), 22

R
remove() (bitpit.Manager method), 23
restart() (bitpit.Downloader method), 21

S
start() (bitpit.Downloader method), 21
start() (bitpit.Manager method), 23
stop() (bitpit.Downloader method), 22
stop() (bitpit.Manager method), 23
stop_all() (bitpit.Manager method), 24

U
unlisten() (bitpit.Emitter method), 22
update() (bitpit.Manager method), 24
update_size() (bitpit.Downloader method), 22

27

	Content
	Installation
	Quick Guide
	Download a File
	Display Download Information
	Automatic Restart
	Specify Path and Rate Limit
	Additional Tuning
	Elegant Output
	bitpit Reference
	Indices and tables

	Python Module Index
	Index

