

 Navigation

 	
 index

 	
 next |

 	Bitmazk Pte. Ltd. 0.1 documentation

Welcome to Bitmazk Pte. Ltd.’s documentation!

Contents:

	Introduction
	Foreword

	Our Mission

	Who are we?

	Management
	Salary

	Infrastructure
	Google Apps

	Telephone and Fax

	Skype

	Time Tracking

	Project Management

	GitHub

	Barkeep

	Workflows
	PyPi Release

	Code Conventions
	HTML

	JavaScript

	Python

	SASS

	Toolbelt
	Operating System

	Autojump

	Dotfiles Repository

	Git

	SSH

	Vim

	GNU Screen

	Regular expressions

	Python

	Django

	Continuous Learning

	Library
	RSS

	Books

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

Introduction

Contents:

	Foreword

	Our Mission

	Who are we?
	Self-taught

	Self-motivated

	Self-disciplined

	Self-aware

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Introduction

Foreword

Bitmazk.

Beautifying bits and bytes.

We are a small web agency providing full stack services for Python and Django
based websites and web applications. You give us your idea. We give you a
working product.

For ourselves and when working on client projects we follow the lean startup
approach which means that we try to get a working prototype out as quickly as
possible and then iterate until the project reaches a point where all parties
are happy.

We have a stable and constantly growing customer base and while our client work
is currently our main source of income we are working on our own products in
order to establish new income streams.

We are not funded and we want to keep it like that. Our main motivation to wake
up in the morning and get some work done is the passion to create great
products and the will to grow personally and professionally. It shall never be
the urge to please some investors. Likewise the products that we create should
solve meaningful problems and should not be money printing machines that
exploit the weaknesses of people. You could say that we are not doing this for
the money. We are doing this in order to create the work of our lifes’.

And one thing is for sure: This job _is_ life consuming. Almost everything that
we do is the complete opposite of the ordinary 9 to 5 office job. We don’t have
offices. We don’t have work hours. We don’t have vacation days. We don’t even
have job descriptions.

How is this supposed to work? We are not quite sure, yet, but a key ingredient
for our long term success is to create the happiest work environment in the
world.

Luckily, as technology advances rapidly and even social and political systems
evolve (not so rapidly) signs are good that the global virtual tech startup
will be the standard form of employment in the near future. We want to be early
adopters and take an active part in shaping that future.

This document is an ongoing effort to solve a few problems:

	To find out who we are why we do this and what we have to offer

	To describe every little detail about our company as a form of self
reflection and self auditing

	To spread the word and find those rare crazy people that would love to work
with us

To some extend we are hereby open sourcing our whole company. We think that we
are good but we also know that we are not perfect. If you think that we suck
please fork us on GitHub [https://github.com/bitmazk/bitmazk-book] and change our company (or start your own).

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Introduction

Our Mission

If you aim for the impossible and reach just half of it, you are still going to
amaze a whole lot of people. Therefore our mission is at the same time
incredibly simple and seemingly incredibly hard to achieve:

We want to make the world a better place.

“Why do we want to do this?”, you might ask.
“Why would anyone NOT want to do this?”, we would answer.

Without any doubt we are living in an age of technology. Machines are
increasingly replacing humans, creating all kinds of problems:

	a global problem of unemployment

	an ever accelerating globalization

	an always increasing global energy consumption

	which leads to increasing exhaustion of natural resources

	and global warming

Our generation might not have it’s World War II but that doesn’t matter. We
have global problems that might even be worse than that and while that sounds
like a horribly negative depiction of our times it is in fact a good thing:

During times of great risk there are always also great opportunities.

While our age of technology created a whole lot of problems it did also create
one incredible opportunity:

Knowledge is available almost for free, almost instantaneously and information
can “go viral” and travel across the globe in a matter of hours. Ideas can be
turned into prototypes without large amounts of investment capital or massive
production sites. Think about Open Source. Think about startups that turn into
billion dollar companies and render established corporations obsolete.
Think about the Arab Spring. Think about Kickstarter. Think about Wikileaks.

In short: In human history there has never been a time where one individual had
more power to make a global impact. This is the huge opportunity of our
generation.

We believe that when given financial security and the possibility to make free
decisions it is inherent in every human to do something and to do something
good in particular.

At Bitmazk we are trying to create an environment where each member has the
opportunity to grow as an individual, to live on this planet with their eyes
open, to identify meaningful problems and to provide lasting solutions.

Ironically the ever accelerating technological revolution threatens humanity on
many levels: environmental, physically, psychologically, ethically but
at the same time it has raised the average standard of living so much that it
allows each and every one of us to do the one thing that is truly human:

Making the world a better place.

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Introduction

Who are we?

We are self-taught. We are self-motivated. We are self-disciplined. We are
self-aware.

Self-taught

All of us went through trainee programs in software houses and through
university. In the end, all of us came to the same weird conclusion: Nothing
that we have been taught at university has any relevance in our day to day
work. The best way to learn programming is to have a mentor and to just do it.

The reason is not that our universities have been bad. The reason is that they
usually teach two kinds of skill-sets: soft-skills and hard-skills. The
soft-skills are kind of obvious. They are common sense and no one really needs
to waste three years at university picking them up. You would learn how to
negotiate in three days if you were forced to face a real customer in the real
world anyways.

The hard-skills are in our case, of course, all related to programming and
guess what: We already knew most of it before we started university. Most of
us wrote their first BASIC programs at the age of 10 or so. After all that was
the reason why we decided to study this field: We dreamt of turning our hobbies
into our jobs.

Please take this with a grain of salt. If you wanted to invent the next
programming language or worked as a software engineer for NASA, it would
probably be a good idea to have some extensive university knowledge backing up
your tasks. But we are doing web-development here. This is more like an art and
less like a serious profession (it is still serious, but in a less
life-threatening way than writing software for sending people to mars).

Our main skill-set is Python, Django, HTML, CSS, JavaScript. All of this is
perfectly documented on the internet and backed up by huge and helpful
communities. None of this is taught in universities or if it is, it is horribly
outdated and of no use in the real world.

One thing is for sure: We socialized at university. We learned to cope with
stress and deadlines. We learned how to think analytically. But the real skills
that pay our bills right now are 100% self-taught.

Self-motivated

TODO: Write about how we need to know where we are going as individuals in
order to fit into the company, wake up in the morning and push the company
forwards even though no one is forcing us to do so.

Self-disciplined

TODO: Write about the threats of working from home and the incredible amount
of self-discipline this demands.

Self-aware

TODO: Write how we are constantly questioning ourselves, trying to become more
effective in our work without losing sight of our private life goals.

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

Management

Contents:

	Salary

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Management

Salary

Everyone at Bitmazk earns the same.

We don’t know for how long we will be able to hold up this philosophy but as
long as we have less than 50 employees we are quite sure that everyone’s work
will be equally important to the company’s success.

This means that if you want to have a pay-rise, everyone will get a pay-rise
and obviously that has to be earned, otherwise we would probably go bankrupt
quickly.

We have a formula that determines how we handle pay-rises.

In simple words it goes like this: Every time we have one more month worth of
total salaries in the bank, we get a S$100 pay-rise.

To be more precise, here are some variables:

	starting salary - the first salary when the company was founded

	payrise count - the number of pay-rises that have been given when we will
get the next pay-rise

	total salary - equals starting salary * number of employees

	payrise amount - we set this to S$100

In order to get a pay-rise, the equity of the company (cash in the bank plus
outstanding invoices) must equal:

(total salary + (payrise amount * payrise count * number of employees))) * payrise_count

This is at the beginning of the month, after all of last month’s outstanding
payables and salaries have been paid.

Example:

	Pay-rise count: 1

	Starting salary: S$4,200

	Employees: 3

	Total salary: 3 * S$4,200 = S$12,600

	Necessary equity: (S$12,600 + (S$100 * 1 * 3)) * 1 = S$12,900

	Employees
	Salary
	Total salary
	Payrise count
	Payrise amount
	Necessary equity

	3
	4200
	12600
	1
	100
	12900

	3
	4300
	12900
	2
	100
	26400

	3
	4400
	13200
	3
	100
	40500

	3
	4500
	13500
	4
	100
	55200

	3
	4600
	13800
	5
	100
	70500

	3
	4700
	14100
	6
	100
	86400

	3
	4800
	14400
	7
	100
	102900

	3
	4900
	14700
	8
	100
	120000

	3
	5000
	15000
	9
	100
	137700

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

Infrastructure

Contents:

	Google Apps

	Telephone and Fax

	Skype

	Time Tracking

	Project Management

	GitHub

	Barkeep
	Settings

	Commits View

	Workflow and rules in short

	Committing

	Issues

	Suggestions

	Approving commits

	How to add new repos

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Infrastructure

Google Apps

	Connecting your domain to Google Apps

	Setting up Email

	Setting up Google Docs

	Setting up Google Calendar

	Setting up Rietveld for Codereviews

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Infrastructure

Telephone and Fax

	Setting up Sipgate

	Setting up Sipdroid on Android

	Using the online fax

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Infrastructure

Skype

	Using Skype for conference calls

	Using Skype for screen sharing (pair programming)

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Infrastructure

Time Tracking

We use [Freckle](http://letsfreckle.com) as our time tracking tool. It has
resonable pricing tiers and is one of the most beautiful, intuitive and useful
apps on the internet.

People

Every employee has one account. Freelancers can also be added as users, they
are not able to see every project.

Projects

For every customer project we create a project in Freckle.

If one customer gives us several different projects, we would also create
several different projects in Freckle. In this case we would group the projects
alphabetically, by giving them similar names like CN: Foobar and
CN: Barfoo (where CN is a shortcur for the customer name).

Additionally we add one project for our own company. When we have company
meetings that are not related to one specific project, we will track the time
here.

Finally every team member get’s their own project as well. When you are doing
some research about some new technology or working on a personal side-project
and you feel that the work could be (some day?) relevant for the company, you
can track your time here.

Tags

Every entry should have a tag. We try to keep the list of tags as short as
possible. If you are not sure about the available tags, just have a look at the
tags page on Freckle. If you think that we will need a new tag very often in
the future, announce it to the team and describe the reason.

Currently, we have the following tags:

django

This is the core competence of our company. Our day to day web development is
tracked under this tag. If the gros of your work was writing .py files, you
should probably tag it as #django.

html-css

This is the second most important tag that we have. It covers anything that
touches html, less, sass, css files.

js

JavaScript and jQuery related tasks will be tagged as such.

design

When doing work in Photoshop or just quickly creating vanilla Bootstrap markup
for a prototype, it should be tracked as #design.

open-source

Sometimes we have to update old open-source apps or react to issues or
pull-requests. This is usually not covered by any customer budget, so it should
be tracked as #open-source on the internal company project.

documentation

As the name suggests, when time is spent writing documentation (usually user
manuals for the customer), it will be tagged as such.

FREE*

Sometimes we are involved in a customer project but for some reason we don’t
want to tag the task as billable hours. In these cases, we add the #FREE*
tag to the other tag that describes the task.

communication

Whenever we talk on IRC, Skype, Hangouts, phone, email or in person for an
extended amount of time, we tag the time as communication and roughly describe
what the conversation was about (just a few words).

maintenance

This covers simple tasks like adding content to the CMS. Usually those are
tasks, that the customer could do themselves but for some reason prefers to
delegate the task to us.

codereview

Like the name says. When we do codereviews for a colleague, we tag the time as
such.

server

All tasks that are not real programming tasks but infrastructure tasks are
tagged as #server. This includes setting up new Webfaction servers, adding
cronjobs, running deployments, restarting the webserver and so on.

infrastructure

When setting up new subdomains or setting up a new server to install an internal
tool (like Gitlab), this is not really programming work and it is also not
server work (in the sense that we sell this work to a customer). Instead, this
is internal infrastrucutre work and should be tagged as such.

setup

When you need to mess around with your local development environment in order
to be able to start working, you can track this time with #setup.

research

When venturing into unknown territory where new technology needs to be used, a
lot of time is usually spent with trial and error, googling, reading READMEs,
setting up test-servers or local instances and so on. This time can be tagged
as #research.

finances

Time spent on updating our internal finance tracking app or creating and
sending invoices will be tagged as #finances.

acquisition

Time spent for answering emails to potential customers or spent for meetings
with potential customers is tagges as #acquisition.

management

Anything that doesn’t fit into any of the above tasks but somehow seems to be
important to run the company an be tracked with #management.

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Infrastructure

Project Management

	Setting up Trello

	Layout of a typcal project board

	Conventions when using trello

	Tips & Tricks when using Trello

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Infrastructure

GitHub

	Our company profile can be found at https://github.com/bitmazk

	Even though we will add you to our team, you should watch all projects in
that organization, otherwise you will not get email notifications when users
create issues or send pull requests for our projects.

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Infrastructure

Barkeep

We use Barkeep [http://getbarkeep.org] as our main codereview tool.

The goal is that every single line anyone commits to any master branch in any
of our projects gets reviewed by at least one other team member.

This might sound like a daunting task at first but it actually takes lesser
time than one might think and creates huge benefits in the long run since the
knowledge gets quickly spread from more experienced developers to less
experienced ones.

Settings

After logging in for the first time you should go to Settings and

	set the line length indicator to 80 characters

	Set your name

Commits View

On this view you can created searches. You should at least have two searches:

	An empty search that shows all commits on all master branches

	A search for branches:all that shows all commits on all branches

Using the Search options for both searches you can set Only show
unapproved.

With this setup you can easily see all unapproved commits accross all our
projects.

Whenever you push your commits it will take a few minutes before Barkeep
automatically fetches the commit. You don’t need to do anything in order to
upload a commit for review.

Workflow and rules in short

	No one is allowed to approve their own commits.

	If you feel unsure about the commit (maybe because you lack the experience)
but you think that it looks good, do not approve the commit but leave a
comment LGTM (Looks Good To Me). Someone else with enough experience
will approve the commit.

	If someone else already left a LGTM and you yourself feel unsure as well
and you are the last employee to review, you leave a LGTM as well but
you also approve the commit.

	When someone leaves comments for you and suggests improvements, please do
them in a new commit. The commit message should be codereview fixes for
6jau2hrd, followed by a more explanatory text of what you changed, so that
we can still guess from the commit message what has been done, without
needing to open the referred to commit in barkeep.

Committing

When the project is added to barkeep, you just push your code and after a few
moments barkeep will have added the commit to the list. You can even push your
feature branches to origin and they will show up in barkeep. Of course this
has the disadvantage that all this code will show up again when you finally
merge it. So far it has turned out that we rarely need to work on huge feature
branches.

Issues

If someone finds something that needs improvement, he will comment on the line
where the mistake is found. Also if something is unclear, questions will be
asked in the same manner directly attached to the corresponding lines.

When you fixe an issue, reply with “DONE” to the comment that raised the issue.
This way you know how many issues are left and the reviewer knows that a path
with fixes is on its way. After fixing all issues add a general comment with
“fixed in <commit number>” for reference purposes and to show, that the fixes
have been committed.

If a fix is expected to be bigger, it is possible to add a Trello card for the
issue and to link to it in a comment. The issue is then considered as about to
be solved in later commits.

Suggestions

If there is something, that is not really a mistake but just a suggestion for
improval you add “SUGGESTION” to the comment. Suggestions don’t need to be
fixed in the patch set like the regular issues.

Approving commits

If all issues are fixed or there were no mistakes at all, the commit can be
approved.

If a reviewer is not 100% sure about the code, but has not found any real
mistakes, he can add “LGTM” for “looks good to me”. If the last one to review
the commit would also add a “LGTM” he can just approve the commit, since no
mistakes were found.

But keep in mind, that this can be a hint for the programmer that wrote the
code, that it might need further commenting or better structure, since the code
was not really understandable to all of his fellow colleagues.

How to add new repos

	SSH into out barkeep server

	Form there, SSH into the server that contains the repo. You will be asked
to add that new server to barkeep’s known_hosts file.

	Add barkeep’s public RSA key (cat ~/.ssh/id_rsa.pub) to the repo-server’s
authorized_keys file.

	Now barkeep should be able to SSH into the server that contains the repo
without needing a password.

	Browse to our barkeep instance and go to /admin/repos/

	Add the new repo
(username@username.webfactional.com:/home/username/webapps/git/repos/projectname.git)

	Reload the page. The new repo should be shown under the headline
Repos scheduled to be cloned

	Reload the page a few more times until the repo is no longer shown under
that headline. Now scroll down all the way and check in the
clone_new_repo.log if it says Finished cloning the repo [reponame]

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

Workflows

Contents:

	PyPi Release
	Version numbers

	Uploading a new PyPi Release

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Workflows

PyPi Release

We try to release as many components of our work as possible. As a result you
can find a whole lot of our internal Django apps on Github at
https://github.com/bitmazk

Once a package is mature enough, we also create PyPi releases so that anyone
can easily install them via pip install package-name.

For the following description please understand the following terms:

Current release

This is the release that is currently the latest release on PyPi. The
CHANGELOG.txt of a project could look like this:

==== (ongoing) ===

* Added this and that

=== 0.4 ===

* Added this
* Added that

In this example, 0.4 is the current release.

Ongoing release

Given the example CHANGELOG.txt from above, the ongoing release is labelled
as (ongoing). This is the release that you would get if you cloned the
current master branch from github. You cannot install this release form PyPi,
yet, because it is still ongoing and we don’t know which version number it will
get, yet.

Version numbers

It’s a science of it’s own to do proper version number management. Here is how
we handle it:

	All packages start with version 0.1.

	When we introduce a new feature, we increase the sub-version to 0.2.

	When we add a bugfix or feature improvement, we increase the sub-sub-version
to 0.2.1.

	When we think that the package is finally feature complete, we increase the
major version to 1.0.

	A major version bump often means that the package might have backwards
incompatible changes or that it depends on new major versions of other
packages (such as Django).

Uploading a new PyPi Release

In order to upload a new PyPi Release for an existing package, the following
needs to be done:

	Make sure that you are an Owner or Maintainer for that package, if
not, ask the owner to add you as a maintainer.

	Develop your patch, always add a description of what you have done to
CHANGELOG.txt

	Commit and push your patch

	Now it is time to prepare a new release. For this we need to bump the version
number. Version number bumps should always be their own commits and never be
done alongside normal patches.

	Open CHANGELOG.txt and add a new headline called (ongoing).

	Remove the ongoing from the last version and give it a new version
number. Above you can find more information no how we chose version numbers.

	Open packagename/__init__.py and increase the version number to the new
current release.

	Commit those two files. The commit message should be: Released vX.X

	Run git tag -a X.X where X.X is the new current release.

	Add vX.X as a message for that tag.

	Push your changes.

At this point the new release is done on Github. The new tag signals to fellow
developers that the master branch at this tag is stable and save to use. Now it
is time to upload this release to PyPi:

	Remove the dist and package.egg.info folders

	Run python setup.py sdist

	Have a very close look at all the files. Make sure that there are no unwanted
HTML files (i.e. from the coverage folder) or other unwanted files, such as
*.pyc or .ropeproject. If this is the case, you need to improve the
MANIFEST.in file, and repeat the last three steps.

	Also make sure that there are no missing files, such as HTML files of
templates folder that you have newly added or *.md files for online
documentation. By default the MANIFEST.in only includes all *.py
files recursively below the package name. Anything else must be added
explicitly.

	When the files included in the distribution look good, run python setup.py
sdist upload

	Celebrate your new release!

Please note that at this point your projects of course do not yet profit from
the new release. As we usually create new releases in order to fix a customers
request, there is one last step left:

	Update requirements.txt files of projects that need the new release and
deploy those projects.

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

Code Conventions

Contents:

	HTML
	General HTML

	Django templates

	JavaScript
	Line length

	Casing

	Quote marks

	Indentation

	Lists

	Python
	Imports

	Breaking lines

	Strings

	SASS

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Code Conventions

HTML

General HTML

Line length

Unfortunately it is not very easy to produce HTML that fits into lines of 80
characters. Therefore for HTML it is OK tp produce lines that are longer and
aim for code that has very consequent indentation.

Quote marks

We use double quote marks (") to wrap HTML tag attributes and templatetag
parameters.

Example:

<h1 id="anAttribute">Foobar</h1>
{% trans "This text is a templatetag parameter" %}

Indentation

Almost everything should be indented by 4 spaces. The only exception are {%
block %} tags and {% blocktrans %} tags.

Example for a {% block %} tag:

{% block main %}
<body>
 <h1>First indentation</h1>
 {% for object in object_list %}
 {% if object.pk %}
 <p>{{ object.name }}</p>
 {% endif %}
 {% endfor %}
</body>
{% endblock %}

Example for a {% blocktrans %} tag:

 {% blocktrans %}
 Hello world! This is a blocktransified text. And we use it when we
 want to translate a big block of text, that possibly spans multiple
 lines.
 {% endblocktrans %}

Casing & class names

HTML tags and attributes are written in minor letters. CSS classes, names and
IDs are written in as variables with dash in order to follow the naming
conventions of the Twitter Bootstrap CSS framework.

Example:

<h1 id="unique-element" name="some-name" class="element-class"></h1>

Data attributes

Never reference IDs, names or classes in JavaScript. The risk that someone
changes the class on an element and then accidentally breaks some JavaScript
is too big.

If you need to identify a unique element via JavaScript, use
$(‘[data-id=”element”]’) and give the element that attribute. If you need to
identify a group of elements use $(‘[data-class=”elements”]’). In fact you
can use any attribute name in order to add specific settings that can be read
by your JavaScript to all elements. We just prepend data- to all those
attributes because Twitter Bootstrap does the same and because it is a good
convention to indicate that this attribtue is used by some JavaScript.

Code blocks

Separate root level code via 2 empty lines.

Example:

{% block main %}
 ...
{% endblock %}

{% block extrajs %}
 ...
{% endblock %}

Ordering of attributes

ID, name and class are always the first attributes for a HTML tag. After that
come data-attributes and then everything else. For input elements, the type
shall come first.

Example:

<button type="submit" name="btn-foo" ...>Submit</button>

Django templates

i18n

Always wrap all string in {% trans "" %} tags.

Example:

{% load i18n %}
{% trans "Hello World!" %}

URLs

Always construct all URLs with the {% url "" %} tag. Make sure to load url
from future.

Example:

{% load url from future %}
Delete

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Code Conventions

JavaScript

We try to make our JavaScript code look as close as possible to Python code.

Line length

JavaScript allows to easily break lines, so we should try to keep our lines
shorter than 80 characters.

Casing

Casing for variable names, classes, functions and constants should be the same
as in Python.

Quote marks

Like in Python, we always use single quote marks ('), unless the string
itself contains a single quote mark.

Example:

$(document).ready(function() {
 $('#someId').hide()
 var foo = "Let's do it."
});

Indentation

Like in HTML and in Python, we indent by four spaces:

function my_function(foo) {
 if (foo===1) {
 return 1;
 }
}

Lists

JavaScript has the ugly pitfall that the last item of a list cannot be followed
by a comma. This can result in unnecessary bugs when someone inserts a new item
after the last item and forgets to add the missing comma. Therefore we prepend
the commas to the beginning of the list items:

var mylist = [
 item1
 ,item2
 ,item3
 ,item4
]

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Code Conventions

Python

Imports

	Imports appear in the following order:

python builtins (os, sys)

main frameworks (django)

other frameworks / 3rd party apps (milkman, registration)

our own stuff (appname.models)

[actual code]

	Never import *

	When the import line gets too long, wrap it like so, again alphabetically:

from foobar import (
 bar,
 foo,
)

	Classes are listed alphabetically

Breaking lines

	Break long strings with brackets, each newline starts with a space:

('My super'
' long'
' string')

	Break long conditionals with brackets:

if (this == that
 and that == this):
 foobar()

Strings

	always use single quote marks (') and not double quote marks (")

	use double quote marks (") only when the string inside has a single quote
mark ('):

bar = 'This is how we roll.'
foo = "It's just like this."

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Code Conventions

SASS

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

Toolbelt

Contents:

	Operating System

	Autojump

	Dotfiles Repository

	Git
	Workflow

	SSH

	Vim

	GNU Screen

	Regular expressions

	Python
	Virtualenv

	iPython and ipdb

	Fabric

	Gorun

	Django
	Django documentation

	Making queries

	Test Driven Development (TDD)

	Fixtures

	Creating Models

	South

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Toolbelt

Operating System

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Toolbelt

Autojump

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Toolbelt

Dotfiles Repository

	create folder username-dotfiles

	create README.md

	git status
git add .
git commit -am “Initial commit”

	login to GitHub

	create new repo “username-dotfiles”

	follow instructions for existing repo

	describe why git push -u

	add some dotfiles like .vimrc and .vim

	ln -s username-dotfiles/.vimrc and .vim

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Toolbelt

Git

	create .gitconfig

[color]
 diff = auto
 status = auto
 branch = auto
[alias]
 st = status
 ci = commit
 co = checkout
 br = branch -all
 log1 = log --pretty=oneline --abbrev-commit
 lg = log --graph --pretty=format:'%Cred%h..%Creset - %s %Cgreen(%cr)%Creset - %an' --abbrev-commit --date=relative
[merge]
 tool = meld
[rerere]
 enabled = true
[core]
 editor = nano
 excludesfile = ~/.gitignore_global
[user]
 name = Prename Surname
 email = user@example.com
[http]
 sslverify = false

	.gitignore_global

	create your profile

	create your ssh key

	add your ssh key to your profile

	how to create a repo

	how to add a new file to the repo

	how to commit

	how to push (-u)

	how to remove a file from the repo

	how to add a submodule (init and update)

	how to update an existing submodule

	how to remove a submodule

	how to create feature branches

	how to rebase master into feature branches

	how to merge –no-ff feature branches into master

	how to delete history with gitk

	how to solve merge conflicts with meld

Workflow

	git init -> creates new git repo

	add some files

	git add .

	git commit -am “Initial commit”

	git co -b branch_name -> creates new feature branch

	implement new features

	git add .

	git commit -> add as many commits as you want

A new day dawns:

	git co master

	git pull -> get latest code from team members

	git co feature_branch_name

	git rebase master –> pull in code from team members into own branch and fix
merge conflicts with git mergetool

When you are done with the feature:

	codereview.sh master -> like git diff master

	git co master

	git merge –no-ff feature_branch_name

	git st –> does everything look good?

	git br -D feature_branch_name –> a merged branch can immediately be deleted

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Toolbelt

SSH

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Toolbelt

Vim

	run vimtutor

	use dotfiles

	use pathogen

	install a plugin with pathogen

	setup vim as a python ide

	describe some useful movement keys to get around in the beginning

	how to add venv to .ropeproject
* open vim in root directory of project
* type :RopeOpenProject
* vim .ropeproject/config
* add python_path to ~/Envs/lib/python2.7/site-packages/

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Toolbelt

GNU Screen

	open new screen session
screen -d -R name

	CTRL+A w –> show open tabs

	CTRL+A c –> open new tab

	CTRL+A :title foobar –> set tab title

	CTRL+A 0-9 –> jump between tabs

	CTRL+A :quit –> terminate session

	exit into shell –> exit screen tab, terminates session when exiting last tab

	CTRL+A ? –> show help

	CTRL+A :multiuser on –> enable multiuser mode

	screen -xr sessionname –> attach to running multiuser session

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Toolbelt

Regular expressions

	regexpal.com

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Toolbelt

Python

Virtualenv

iPython and ipdb

Fabric

Gorun

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Toolbelt

Django

Django documentation

	learn the tutorial

	beware: topics vs. references

Making queries

	always use pk instead of id (objects.get(pk=5))

Test Driven Development (TDD)

General rules

	Whenever you create a file in a Django app, you also create a
filename_tests.py file in the tests folder.

	If you are going to write an integration test (i.e. views_tests) then put
it into a integration_tests subdirectory. That way we can chose to run
unittests only and exclude integration tests for everyday work.

	Test cases are named after the thing that is tested. If we test a class named
Foo then the test case will be named FooTestCase. If we test a method
named foo_bar() then the test case will be named FooBarTestCase.

	Always add a docstring to each test case like so:

Tests for the ``foo_bar()`` method.

This makes sure that if we are testing functions, the test case name is not
misleading (because it is CamelCase when the function was snake_case).

	Usually all tests for one class go into one TestCase. If you have a method
that should be tested and that method is super complex, then you can create
it’s own TestCase only for that method (name it like
ClassNameMethodNameTestCase).

	When you want to test different calls to a method with different parameters
and that TestCase has a setUp / tearDown that does a lot of stuff on the
database, it might me more performant to just write one test and call the
method with all its different parameters in that one test. In this case
please write assertion messages for each assert that describe which case you
are testing (since you don’t describe this through the test method name any
more)

	In a TestCase class, the setUp and tearDown methods come first. After that
getter methods follow, after that test methods follow. Test methods should
appear in a logical order as you develop the app, simplest tests first, edge
cases later.

Mixin

If your app has a model Foo and in your tests you need to add Foo objects to
your database, then you should add tests/mixins.py to your app and write a
FooMixin class that provides a create_foo() method. The method should also add
the newly created object to the class, so that we can make assertions on it in
the test without having to get it from the database again.

Models

	Before writing your model, test instantiation

	If the model has any methods that do stuff (for example get_full_name() or
get_absolute_url()) then these methods need to be covered by UnitTests.

	We do not test behavior that is given by Django such as testing if blank=True
works.

Views

	Before writing your views, test if the view is callable

	This can be done with self.client.get(url) or self.client.post(url, data)

	always use reverse() when referring to URLs

	Each ViewTestCase should have a method get_view_name() which returns the
namespace:name of the view in this project.

	For views that need to be called with parameters, the test case should have
a get_view_kwargs() method.

Fixtures

We make sure that a new developer can always clone the repository and run fab
rebuild. As a result he must have a fully functional site with all test data
needed to run all our selenium tests (that means, to test any possible thing
that is possible on the project’s website).

The workflow should be as follows:
* Create your model
* Add migrations for your model
* Add an admin for your model
* Login as admin, go the model admin, add some test data
* Extend fab dumpdata task so that your new testdata gets dumped as well
* All dumpdata commands should look like this:

dumpdata --indent=4 --natural appname > appname/fixtures/bootstrap.json

	run fab dumpdata and see if the generated .json file contains the model you
just added via the Django admin.

	if it looks good, run fab loaddata. As a result, you should have the exact
same data in your database as before.

	WARNING: Do not add tons of data in the admin, then extend fab dumpdata and
then run fab loaddata. If dumpdata was faulty and you run loaddata, your db
will be deleted and thanks to the faulty dumpdata command all your data might
be lost. So: First enter just a few items, do the workflow, see if everything
works, then add all the rest of the needed test data.

	Finally commit your changes like “Updated fixtures for appname”. It is
usually a good idea to make fixture changes as own commits and code changes
as own commits.

	conventions:
* user@example.com <– self describing usernames

password: test123

	admin <– admin user
password: test123

Creating Models

	always add a verbose_name, almost always the same as the field name, just in
a normal human readable form (without _ and stuff)

	we like to make CharFields of length 1,2,4,8,16,32,64,128,256... we dont’t
know why :)

South

	http://readthedocs.org/docs/south/en/latest/

Adding your new app to South:
* ./manage.py syncdb, because convert_to_south assumes that models and DB are

in sync already

	./manage.py convert_to_south appname

Adding new column to model
* implement new code
* ./manage.py schemamigration appname –auto
* ./manage.py migrate

	how to add a column

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

Continuous Learning

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

Library

Contents:

	RSS

	Books
	Self Growth

	Business

	Design

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Library

RSS

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Bitmazk Pte. Ltd. 0.1 documentation

 	Library

Books

Self Growth

	Mindfulness in Plain English

	7 Habits of Highly Effecitve People

	Stumbling on Happiness

Business

	Hackers & Painters

Design

	Design for Hackers

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Bitmazk Pte. Ltd. 0.1 documentation

Index

 Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

 _static/comment.png

search.html

 Navigation

 		
 index

 		Bitmazk Pte. Ltd. 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/ajax-loader.gif

toolbelt/getskeleton.html

 Navigation

 		
 index

 		Bitmazk Pte. Ltd. 0.1 documentation »

Skeleton CSS Framework

 © Copyright 2012, Martin Brochhaus.
 Created using Sphinx 1.2.2.

