
bitmath Documentation
Release 1.3.3

Tim Bielawa

Feb 06, 2023

Contents

1 Installation 3

2 Contents 5
2.1 The bitmath Module . 5
2.2 The bitmath command-line Tool . 19
2.3 Classes . 20
2.4 Instances . 23
2.5 Getting Started . 29
2.6 Real Life Examples . 32
2.7 Contributing to bitmath . 41
2.8 Appendices . 45
2.9 NEWS . 51
2.10 Contact . 56
2.11 Copyright . 57
2.12 Examples . 57

Python Module Index 63

Index 65

i

ii

bitmath Documentation, Release 1.3.3

bitmath simplifies many facets of interacting with file sizes in various units. Originally focusing on file size unit
conversion, functionality now includes:

• Converting between SI and NIST prefix units (kB to GiB)

• Converting between units of the same type (SI to SI, or NIST to NIST)

• Automatic human-readable prefix selection (like in hurry.filesize)

• Basic arithmetic operations (subtracting 42KiB from 50GiB)

• Rich comparison operations (1024 Bytes == 1KiB)

• bitwise operations (<<, >>, &, |, ^)

• Reading a device’s storage capacity (Linux/OS X support only)

• argparse integration as a custom type

• click integration as a custom parameter type

• progressbar integration as a better file transfer speed widget

• String parsing

• Sorting

In addition to the conversion and math operations, bitmath provides human readable representations of values which
are suitable for use in interactive shells as well as larger scripts and applications. The format produced for these
representations is customizable via the functionality included in stdlibs string.format.

In discussion we will refer to the NIST units primarily. I.e., instead of “megabyte” we will refer to “mebibyte”. The
former is 10^3 = 1,000,000 bytes, whereas the second is 2^20 = 1,048,576 bytes. When you see file sizes
or transfer rates in your web browser, most of the time what you’re really seeing are the base-2 sizes/rates.

Don’t Forget! The source for bitmath is available on GitHub.

And did we mention there’s almost 200 unittests? Check them out for yourself.

• Examples after the TOC.

Contents 1

https://travis-ci.org/tbielawa/bitmath/
https://coveralls.io/github/tbielawa/bitmath
http://bitmath.readthedocs.org/en/latest/
https://pypi.python.org/pypi/hurry.filesize
https://docs.python.org/2/library/argparse.html
https://click.palletsprojects.com/
https://github.com/niltonvolpato/python-progressbar
https://docs.python.org/2/library/string.html
https://github.com/tbielawa/bitmath
https://github.com/tbielawa/bitmath/tree/master/tests

bitmath Documentation, Release 1.3.3

2 Contents

CHAPTER 1

Installation

The easiest way to install bitmath is via dnf (or yum) if you’re on a Fedora/RHEL based distribution. bitmath is
available in the main Fedora repositories, as well as the EPEL6 and EPEL7 repositories. There are now dual python2.x
and python3.x releases available.

Python 2.x:

$ sudo dnf install python2-bitmath

Python 3.x:

$ sudo dnf install python3-bitmath

Note: Upgrading: If you have the old python-bitmath package installed presently, you could also run sudo dnf
update python-bitmath instead

PyPi:

You could also install bitmath from PyPi if you like:

$ sudo pip install bitmath

Note: pip installs need pip >= 1.1. To workaround this, download bitmath, from PyPi and then pip install
bitmath-x.y.z.tar.gz. See issue #57 for more information.

PPA:

Ubuntu Xenial, Wily, Vivid, Trusty, and Precise users can install bitmath from the launchpad PPA:

$ sudo add-apt-repository ppa:tbielawa/bitmath
$ sudo apt-get update
$ sudo apt-get install python-bitmath

3

https://pypi.python.org/pypi/bitmath
https://pypi.python.org/pypi/bitmath/#downloads
https://github.com/tbielawa/bitmath/issues/57#issuecomment-227018168
https://launchpad.net/~tbielawa/+archive/ubuntu/bitmath

bitmath Documentation, Release 1.3.3

Source:

Or, if you want to install from source:

$ sudo python ./setup.py install

If you want the bitmath manpage installed as well:

$ sudo make install

4 Chapter 1. Installation

CHAPTER 2

Contents

2.1 The bitmath Module

• Functions

– bitmath.getsize()

– bitmath.listdir()

– bitmath.parse_string()

– bitmath.parse_string_unsafe()

– bitmath.query_device_capacity()

• Context Managers

– bitmath.format()

• Module Variables

• 3rd Party Module Integrations

– argparse

– progressbar

2.1.1 Functions

This section describes utility functions included in the bitmath module.

5

bitmath Documentation, Release 1.3.3

bitmath.getsize()

bitmath.getsize(path[, bestprefix=True[, system=NIST]])
Return a bitmath instance representing the size of a file at any given path.

Parameters

• path (string) – The path of a file to read the size of

• bestprefix (bool) – Default: True, the returned instance will be in the best human-
readable prefix unit. If set to False the result is a bitmath.Byte instance.

• system (One of bitmath.NIST or bitmath.SI) – Default: bitmath.NIST. The
preferred system of units for the returned instance.

Internally bitmath.getsize() calls os.path.realpath() before calling os.path.getsize()
on any paths.

Here’s an example of where we’ll run bitmath.getsize() on the bitmath source code using the defaults
for the bestprefix and system parameters:

>>> import bitmath
>>> print bitmath.getsize('./bitmath/__init__.py')
33.3583984375 KiB

Let’s say we want to see the results in bytes. We can do this by setting bestprefix to False:

>>> import bitmath
>>> print bitmath.getsize('./bitmath/__init__.py', bestprefix=False)
34159.0 Byte

Recall, the default for representation is with the best human-readable prefix. We can control the prefix system
used by setting system to either bitmath.NIST (the default) or bitmath.SI:

1 >>> print bitmath.getsize('./bitmath/__init__.py')
2 33.3583984375 KiB
3 >>> print bitmath.getsize('./bitmath/__init__.py', system=bitmath.NIST)
4 33.3583984375 KiB
5 >>> print bitmath.getsize('./bitmath/__init__.py', system=bitmath.SI)
6 34.159 kB

We can see in lines 1 → 4 that the same result is returned when system is not set and when system is set to
bitmath.NIST (the default).

New in version 1.0.7.

bitmath.listdir()

bitmath.listdir(search_base[, followlinks=False[, filter=’*’[, relpath=False[, bestprefix=False[, sys-
tem=NIST]]]]])

This is a generator which recurses a directory tree yielding 2-tuples of:

• The absolute/relative path to a discovered file

• A bitmath instance representing the apparent size of the file

Parameters

• search_base (string) – The directory to begin walking down

6 Chapter 2. Contents

https://docs.python.org/2/tutorial/classes.html#generators

bitmath Documentation, Release 1.3.3

• followlinks (bool) – Default: False, do not follow links. Whether or not to follow
symbolic links to directories. Setting to True enables directory link following

• filter (string) – Default: * (everything). A glob to filter results with. See fnmatch
for more details about globs

• relpath (bool) – Default: False, returns the fully qualified to each discovered file.
True to return the relative path from the present working directory to the discovered
file. If relpath is False, then bitmath.listdir() internally calls os.path.
realpath() to normalize path references

• bestprefix (bool) – Default: False, returns bitmath.Byte instances. Set to
True to return the best human-readable prefix unit for representation

• system (One of bitmath.NIST or bitmath.SI) – Default: bitmath.NIST. Set a
prefix preferred unit system. Requires bestprefix is True

Note:

• This function does not return tuples for directory entities. Including directories in results is scheduled for
introduction in the upcoming 1.1.0 release.

• Symlinks to files are followed automatically

When interpreting the results from this function it is crucial to understand exactly which items are being taken
into account, what decisions were made to select those items, and how their sizes are measured.

Results from this function may seem invalid when directly compared to the results from common command line
utilities, such as du, or tree.

Let’s pretend we have a directory structure like the following:

some_files/
deeper_files/

second_file
first_file

Where some_files/ is a directory, and so is some_files/deeper_files/. There are two regular files
in this tree:

• somefiles/first_file - 1337 Bytes

• some_files/deeper_files/second_file - 13370 Bytes

The total size of the files in this tree is 1337 + 13370 = 14707 bytes.

Let’s call bitmath.listdir() on the some_files/ directory and see what the results look like. First
we’ll use all the default parameters, then we’ll set relpath to True:

1 >>> import bitmath
2 >>> for f in bitmath.listdir('./some_files'):
3 ... print f
4 ...
5 ('/tmp/tmp.P5lqtyqwPh/some_files/first_file', Byte(1337.0))
6 ('/tmp/tmp.P5lqtyqwPh/some_files/deeper_files/second_file', Byte(13370.0))
7 >>> for f in bitmath.listdir('./some_files', relpath=True):
8 ... print f
9 ...

10 ('some_files/first_file', Byte(1337.0))
11 ('some_files/deeper_files/second_file', Byte(13370.0))

2.1. The bitmath Module 7

https://docs.python.org/2/library/fnmatch.html
https://github.com/tbielawa/bitmath/issues/27
https://github.com/tbielawa/bitmath/issues/27

bitmath Documentation, Release 1.3.3

On lines 5 and 6 the results print the full path, whereas on lines 10 and 11 the path is relative to the present
working directory.

Let’s play with the filter parameter now. Let’s say we only want to include results for files whose name
begins with “second”:

>>> for f in bitmath.listdir('./some_files', filter='second*'):
... print f
...
('/tmp/tmp.P5lqtyqwPh/some_files/deeper_files/second_file', Byte(13370.0))

If we wish to avoid having to write for-loops, we can collect the results into a list rather simply:

>>> files = list(bitmath.listdir('./some_files'))
>>> print files
[('/tmp/tmp.P5lqtyqwPh/some_files/first_file', Byte(1337.0)), ('/tmp/tmp.
→˓P5lqtyqwPh/some_files/deeper_files/second_file', Byte(13370.0))]

Here’s a more advanced example where we will sum the size of all the returned results and then play around
with the possible formatting. Recall that a bitmath instance representing the size of the discovered file is the
second item in each returned tuple.

>>> discovered_files = [f[1] for f in bitmath.listdir('./some_files')]
>>> print discovered_files
[Byte(1337.0), Byte(13370.0)]
>>> print reduce(lambda x,y: x+y, discovered_files)
14707.0 Byte
>>> print reduce(lambda x,y: x+y, discovered_files).best_prefix()
14.3623046875 KiB
>>> print reduce(lambda x,y: x+y, discovered_files).best_prefix().format("{value:.
→˓3f} {unit}")
14.362 KiB

New in version 1.0.7.

bitmath.parse_string()

bitmath.parse_string(str_repr)
New in version 1.1.0.

Parse a string representing a unit into a proper bitmath object. All non-string inputs are rejected and will raise a
ValueError. Strings without units are also rejected. See the examples below for additional clarity.

Parameters str_repr (string) – The string to parse. May contain whitespace between the
value and the unit.

Returns A bitmath object representing str_repr

Raises ValueError – if str_repr can not be parsed

A simple usage example:

>>> import bitmath
>>> a_dvd = bitmath.parse_string("4.7 GiB")
>>> print type(a_dvd)
<class 'bitmath.GiB'>
>>> print a_dvd
4.7 GiB

8 Chapter 2. Contents

bitmath Documentation, Release 1.3.3

Caution: Caution is advised if you are reading values from an unverified external source, such as output
from a shell command or a generated file. Many applications (even /usr/bin/ls) still do not produce
file size strings with valid (or even correct) prefix units unless specially configured to do so. See bitmath.
parse_string_unsafe() as an alternative.

To protect your application from unexpected runtime errors it is recommended that calls to bitmath.
parse_string() are wrapped in a try statement:

>>> import bitmath
>>> try:
... a_dvd = bitmath.parse_string("4.7 G")
... except ValueError:
... print "Error while parsing string into bitmath object"
...
Error while parsing string into bitmath object

Here we can see some more examples of invalid input, as well as two acceptable inputs:

>>> import bitmath
>>> sizes = [1337, 1337.7, "1337", "1337.7", "1337 B", "1337B"]
>>> for size in sizes:
... try:
... print "Parsed size into %s" % bitmath.parse_string(size).best_prefix()
... except ValueError:
... print "Could not parse input: %s" % size
...
Could not parse input: 1337
Could not parse input: 1337.7
Could not parse input: 1337
Could not parse input: 1337.7
Parsed size into 1.3056640625 KiB
Parsed size into 1.3056640625 KiB

Changed in version 1.2.4: Added support for parsing octet units via issue #53 - parse french units. The usage of
“octet” is still common in some RFCs, as well as France, French Canada and Romania. See also, a table of the
octet units and their values on Wikipedia.

Here are some simple examples of parsing octet based units:

1 >>> import bitmath
2 >>> a_mebibyte = bitmath.parse_string("1 MiB")
3 >>> a_mebioctet = bitmath.parse_string("1 Mio")
4 >>> print a_mebibyte, a_mebioctet
5 1.0 MiB 1.0 MiB
6 >>> print bitmath.parse_string("1Po")
7 1.0 PB
8 >>> print bitmath.parse_string("1337 Eio")
9 1337.0 EiB

Notice how on lines 4 and 5 that the variable a_mebibyte from the input 1 MiB is exactly equivalent to
a_mebioctet from the different input 1 Mio. This is because after bitmath parses the octet units the
results are normalized into their standard NIST/SI equivalents automatically.

Note: If your input isn’t compatible with bitmath.parse_string() you can try using bitmath.
parse_string_unsafe() instead. bitmath.parse_string_unsafe() is more forgiving with in-

2.1. The bitmath Module 9

https://www.gnu.org/software/coreutils/manual/html_node/Block-size.html#Block-size
https://github.com/tbielawa/bitmath/issues/53
https://en.wikipedia.org/wiki/Octet_(computing)#Use
https://en.wikipedia.org/wiki/Request_for_Comments
https://en.wikipedia.org/wiki/Octet_(computing)#Unit_multiples

bitmath Documentation, Release 1.3.3

put. Please read the documentation carefully so you understand the risks you assume using the unsafe parser.

bitmath.parse_string_unsafe()

bitmath.parse_string_unsafe(repr[, system=bitmath.SI])
New in version 1.3.1.

Parse a string or number into a proper bitmath object. This is the less strict version of the bitmath.
parse_string() function. While bitmath.parse_string() only accepts SI and NIST defined unit
prefixes, bitmath.parse_string_unsafe() accepts non-standard units such as those often displayed
in command-line output. Examples following the description.

Parameters

• repr – The value to parse. May contain whitespace between the value and the unit.

• system – bitmath.parse_string_unsafe() defaults to parsing units as SI
(base-10) units. Set the system parameter to bitmath.NIST if you know your input
is in NIST (base-2) format.

Returns A bitmath object representing repr

Raises ValueError – if repr can not be parsed

Use of this function comes with several caveats:

• All inputs are assumed to be byte-based (as opposed to bit based)

• Numerical inputs (those without any units) are assumed to be a number of bytes

• Inputs with single letter units (k, M, G, etc) are assumed to be SI units (base-10). See the system param-
eter description above to change this behavior

• Inputs with an i character following the leading letter (Ki, Mi, Gi) are assumed to be NIST units (base-2)

• Capitalization does not matter

What exactly are these non-standard units? Generally speaking non-standard units will not include enough
information to be able to identify exactly which unit system is being used. This is caused by mis-capitalized
characters (capital k’s for SI kilo units when they should be lower case), or omitted Byte or Bit suffixes. You
can find examples of non-standard units in many common command line functions or parameters. For example:

• The ls command will print out single-letter units when given the -h option flag

• Running qemu-img info virtualdisk.img will also report with single letter units

• The df command also uses single-letter units

• Kubernetes will display items like memory limits using two letter NIST units (ex: memory: 2370Mi)

Given those considerations, understanding exactly what values you are feeding into this function is crucial to
getting accurate results. You can control the output of some commands with various option flags. For example,
you could ensure the GNU ls and df commands print with SI values by providing the --si option flag. By
default those commands will print out using NIST (base-2) values.

In this example let’s pretend we’re parsing the output of running df -H / /boot /home on our filesystems.
Assume the output is saved into a file called /tmp/df-output.txt and looks like this:

Filesystem Size Used Avail Use% Mounted on
/dev/mapper/luks-ca8d5493-72bb-4691-afe1 107G 64G 38G 63% /
/dev/sda1 500M 391M 78M 84% /boot
/dev/mapper/vg_deepfryer-lv_home 129G 118G 4.7G 97% /home

10 Chapter 2. Contents

http://kubernetes.io/docs/user-guide/compute-resources/

bitmath Documentation, Release 1.3.3

Now let’s read this file, parse the Used column, and then print out the space used (line 7):

1 >>> with open('/tmp/df-output.txt', 'r') as fp:
2 ... # Skip parsing the 'df' header column
3 ... _ = fp.readline()
4 ... for line in fp.readlines():
5 ... cols = line.split()[0:4]
6 ... print """Filesystem: %s
7 ... - Used: %s""" % (cols[0], bitmath.parse_string_unsafe(cols[1]))
8 Filesystem: /dev/mapper/luks-ca8d5493-72bb-4691-afe1
9 - Used: 107.0 GB

10 Filesystem: /dev/sda1
11 - Used: 500.0 MB
12 Filesystem: /dev/mapper/vg_deepfryer-lv_home
13 - Used: 129.0 GB

If we had ran the df command with the -h option (instead of -H) we will get base-2 (NIST) output. That would
look like this:

Filesystem Size Used Avail Use% Mounted on
/dev/mapper/luks-ca8d5493-72bb-4691-afe1 100G 59G 36G 63% /
/dev/sda1 477M 373M 75M 84% /boot
/dev/mapper/vg_deepfryer-lv_home 120G 110G 4.4G 97% /home

Because we switch from SI output to NIST output the values displayed are slightly different. However they
still print using the same prefix unit, G. We can tell bitmath.parse_string_unsafe() that the input is
NIST (base-2) by giving bitmath.NIST to the system parameter like this (line 8):

1 >>> with open('/tmp/df-output.txt', 'r') as fp:
2 ... # Skip parsing the 'df' header column
3 ... _ = fp.readline()
4 ... for line in fp.readlines():
5 ... cols = line.split()[0:4]
6 ... print """Filesystem: %s
7 ... - Used: %s""" % (cols[0],
8 ... bitmath.parse_string_unsafe(cols[1], \
9 ... system=bitmath.NIST))

10 Filesystem: /dev/mapper/luks-ca8d5493-72bb-4691-afe1
11 - Used: 100.0 GiB
12 Filesystem: /dev/sda1
13 - Used: 477.0 MiB
14 Filesystem: /dev/mapper/vg_deepfryer-lv_home
15 - Used: 120.0 GiB

The results printed use the proper NIST prefix unit syntax now: Capital G followed by a lower-case i ending
with a capital B, GiB.

bitmath.query_device_capacity()

bitmath.query_device_capacity(device_fd)
Create bitmath.Byte instances representing the capacity of a block device.

Parameters device_fd (file) – An open file handle (handle = open('/dev/sda')) of
the target device.

Returns A bitmath.Byte equal to the size of device_fd.

Raises

2.1. The bitmath Module 11

bitmath Documentation, Release 1.3.3

• ValueError – if file descriptor device_fd is not of a device type.

• IOError –

– IOError[13] - If the effective uid of this process does not have access to issue raw
commands to block devices. I.e., this process does not have super-user rights.

– IOError[2] - If the device device_fd points to does not exist.

Important: Superuser (root/admin) privileges are required to allow bitmath.
query_device_capacity() to make system calls to read a devices capacity. Use of this function
on a device the user does not have access to will result in run-time errors.

Examples of supported devices include:

• Standard Hard Drives/External Drives

• Filesystem Partitions

• Loop Devices

• LVM Logical Volumes

• Encrypted LUKS Volumes

• iSCSI Devices

Here’s an example using the with context manager to open a device and print its capacity with the best-human
readable prefix (line 3):

1 >>> import bitmath
2 >>> with open("/dev/sda") as device:
3 ... size = bitmath.query_device_capacity(device).best_prefix()
4 ... print "Device %s capacity: %s (%s Bytes)" % (device.name, size, size_

→˓bytes)
5 Device /dev/sda capacity: 238.474937439 GiB (2.56060514304e+11 Bytes)

Important: Platform Notice: bitmath.query_device_capacity() is only verified to work on Linux
and Mac OS X platforms. To file a bug report, please follow the instructions in the contributing section.

New in version 1.2.4.

2.1.2 Context Managers

This section describes all of the context managers provided by the bitmath class.

Warning: It is a known limitation that the bitmath context managers are not thread-safe. You may get unexpected
results or errors using these in a threaded environment.

The suggested workaround is to apply formatting to each object instance directly. See the instance format method
docs for additional reference.

Note: For a bit of background, a context manager (specifically, the with statement) is a feature of the Python
language which is commonly used to:

12 Chapter 2. Contents

https://docs.python.org/2/reference/datamodel.html#context-managers

bitmath Documentation, Release 1.3.3

• Decorate, or wrap, an arbitrary block of code. I.e., effect a certain condition onto a specific body of code

• Automatically open and close an object which is used in a specific context. I.e., handle set-up and tear-down of
objects in the place they are used.

See also:

PEP 343 The “with” Statement

PEP 318 Decorators for Functions and Methods

bitmath.format()

bitmath.format([fmt_str=None[, plural=False[, bestprefix=False]]])
The bitmath.format() context manager allows you to specify the string representation of all bitmath
instances within a specific block of code.

This is effectively equivalent to applying the format() method to an entire region of code.

Parameters

• fmt_str (str) – a formatting mini-language compat formatting string. See the instance
attributes for a list of available items.

• plural (bool) – True enables printing instances with trailing s’s if they’re plural.
False (default) prints them as singular (no trailing ‘s’)

• bestprefix (bool) – True enables printing instances in their best human-readable rep-
resentation. False, the default, prints instances using their current prefix unit.

Note: The bestprefix parameter is not yet implemented!

Let’s look at an example of toggling pluralization on and off. First we’ll look over a demonstration script
(below), and then we’ll review the output.

1 import bitmath
2

3 a_single_bit = bitmath.Bit(1)
4 technically_plural_bytes = bitmath.Byte(0)
5 always_plural_kbs = bitmath.kb(42)
6

7 formatting_args = {
8 'not_plural': a_single_bit,
9 'technically_plural': technically_plural_bytes,

10 'always_plural': always_plural_kbs
11 }
12

13 print """None of the following will be pluralized, because that feature is turned
→˓off

14 """
15

16 test_string = """ One unit of 'Bit': {not_plural}
17

18 0 of a unit is typically said pluralized in US English: {technically_plural}
19

20 several items of a unit will always be pluralized in normal US English
21 speech: {always_plural}"""

(continues on next page)

2.1. The bitmath Module 13

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0318

bitmath Documentation, Release 1.3.3

(continued from previous page)

22

23 print test_string.format(**formatting_args)
24

25 print """
26 --
27 """
28

29 print """Now, we'll use the bitmath.format() context manager
30 to print the same test string, but with pluralization enabled.
31 """
32

33 with bitmath.format(plural=True):
34 print test_string.format(**formatting_args)

The context manager is demonstrated in lines 33 → 34. In these lines we use the bitmath.format() context
manager, setting plural to True, to print the original string again. By doing this we have enabled pluralized
string representations (where appropriate). Running this script would have the following output:

None of the following will be pluralized, because that feature is turned off

One unit of 'Bit': 1.0 Bit

0 of a unit is typically said pluralized in US English: 0.0 Byte

several items of a unit will always be pluralized in normal US English
speech: 42.0 kb

--

Now, we'll use the bitmath.format() context manager
to print the same test string, but with pluralization enabled.

One unit of 'Bit': 1.0 Bit

0 of a unit is typically said pluralized in US English: 0.0 Bytes

several items of a unit will always be pluralized in normal US English
speech: 42.0 kbs

Here’s a shorter example, where we’ll:

• Print a string containing bitmath instances using the default formatting (lines 2 → 3)

• Use the context manager to print the instances in scientific notation (lines 4 → 7)

• Print the string one last time to demonstrate how the formatting automatically returns to the default format
(lines 8 → 9)

1 >>> import bitmath
2 >>> print "Some instances: %s, %s" % (bitmath.KiB(1 / 3.0), bitmath.Bit(512))
3 Some instances: 0.333333333333 KiB, 512.0 Bit
4 >>> with bitmath.format("{value:e}-{unit}"):
5 ... print "Some instances: %s, %s" % (bitmath.KiB(1 / 3.0), bitmath.Bit(512))
6 ...
7 Some instances: 3.333333e-01-KiB, 5.120000e+02-Bit
8 >>> print "Some instances: %s, %s" % (bitmath.KiB(1 / 3.0), bitmath.Bit(512))
9 Some instances: 0.333333333333 KiB, 512.0 Bit

14 Chapter 2. Contents

bitmath Documentation, Release 1.3.3

New in version 1.0.8.

2.1.3 Module Variables

This section describes the module-level variables. Some of which are constants and are used for reference. Some of
which effect output or behavior.

Changed in version 1.0.7: The formatting strings were not available for manupulate/inspection in earlier versions

New in version 1.1.1: Prior to this version ALL_UNIT_TYPES was not defined

Note: Modifying these variables will change the default representation indefinitely. Use the bitmath.format()
context manager to limit changes to a specific block of code.

bitmath.format_string
This is the default string representation of all bitmath instances. The default value is {value} {unit}which,
when evaluated, formats an instance as a floating point number with at least one digit of precision, followed by
a character of whitespace, followed by the prefix unit of the instance.

For example, given bitmath instances representing the following values: 1337 MiB, 0.1234567 kb, and 0 B,
their printed output would look like the following:

>>> from bitmath import *
>>> print MiB(1337), kb(0.1234567), Byte(0)
1337.0 MiB 0.1234567 kb 0.0 Byte

We can make these instances print however we want to. Let’s wrap each one in square brackets ([,]), replace
the separating space character with a hyphen (-), and limit the precision to just 2 digits:

>>> import bitmath
>>> bitmath.format_string = "[{value:.2f}-{unit}]"
>>> print bitmath.MiB(1337), bitmath.kb(0.1234567), bitmath.Byte(0)
[1337.00-MiB] [0.12-kb] [0.00-Byte]

bitmath.format_plural
A boolean which controls the pluralization of instances in string representation. The default is False.

If we wanted to enable pluralization we could set the format_plural variable to True. First, let’s look at
some output using the default singular formatting.

>>> import bitmath
>>> print bitmath.MiB(1337)
1337.0 MiB

And now we’ll enable pluralization (line 2):

1 >>> import bitmath
2 >>> bitmath.format_plural = True
3 >>> print bitmath.MiB(1337)
4 1337.0 MiBs
5 >>> bitmath.format_plural = False
6 >>> print bitmath.MiB(1337)
7 1337.0 MiB

On line 5 we disable pluralization again and then see that the output has no trailing “s” character.

2.1. The bitmath Module 15

bitmath Documentation, Release 1.3.3

bitmath.NIST
Constant used as an argument to some functions to specify the NIST system.

bitmath.SI
Constant used as an argument to some functions to specify the SI system.

bitmath.SI_PREFIXES
An array of all of the SI unit prefixes (e.g., k, M, or E)

bitmath.SI_STEPS

SI_STEPS = {
'Bit': 1 / 8.0,
'Byte': 1,
'k': 1000,
'M': 1000000,
'G': 1000000000,
'T': 1000000000000,
'P': 1000000000000000,
'E': 1000000000000000000

}

bitmath.NIST_PREFIXES
An array of all of the NIST unit prefixes (e.g., Ki, Mi, or Ei)

bitmath.NIST_STEPS

NIST_STEPS = {
'Bit': 1 / 8.0,
'Byte': 1,
'Ki': 1024,
'Mi': 1048576,
'Gi': 1073741824,
'Ti': 1099511627776,
'Pi': 1125899906842624,
'Ei': 1152921504606846976

}

bitmath.ALL_UNIT_TYPES
An array of all combinations of known valid prefix units mixed with both bit and byte suffixes.

ALL_UNIT_TYPES = ['b', 'B', 'kb', 'kB', 'Mb', 'MB', 'Gb', 'GB',
'Tb', 'TB', 'Pb', 'PB', 'Eb', 'EB', 'Kib', 'KiB', 'Mib',
'MiB', 'Gib', 'GiB', 'Tib', 'TiB', 'Pib', 'PiB', 'Eib',
'EiB']

2.1.4 3rd Party Module Integrations

This section describes the various ways in which bitmath can be integrated with other 3rd pary modules.

To see a full demo of the argparse and progressbar integrations, as well as a comprehensive demonstrations of
the full capabilities of the bitmath library, see Creating Download Progress Bars in the Real Life Examples section.

16 Chapter 2. Contents

bitmath Documentation, Release 1.3.3

argparse

New in version 1.2.0.

The argparse module (part of stdlib) is used to parse command line arguments. By default, parsed options and argu-
ments are turned into strings. However, one useful feature argparse provides is the ability to specify what datatype
any given argument or option should be interpreted as.

bitmath.integrations.BitmathType(bmstring)
The BitmathType() factory creates objects that can be passed to the type argument of Argument-
Parser.add_argument(). Arguments that have BitmathType() objects as their type will automatically parse
the command line argument into a matching bitmath object.

Parameters bmstring (str) – The command-line option to parse into a bitmath object

Returns A bitmath object representing bmstring

Raises

• ValueError – on any input that bitmath.parse_string() already rejects

• ValueError – on unquoted inputs with whitespace separating the value from the unit
(e.g., --some-option 10 MiB is bad, but --some-option '10 MiB' is good)

Let’s take a look at a more in-depth example.

A feature found in many command-line utilities is the ability to specify some kind of file size using a string
which roughly describes some kind of parameter. For example, let’s look at the du (disk usage) command.
Invoking it as du -B allows one to specify a desired block-size scaling factor in printed results.

Let’s say we wanted to implement a similar mechanism in an application of our own. Except, instead of abbre-
viating down to ambiguous capital letters, we accept scaling factors as properly written values with associated
units. Such as 10 MiB, or 1 MB.

To accomplish this, we’ll use argparse to create an argument parser and add one option to it,
--block-size. This option will have a type of BitmathType() set.

1 >>> import argparse, bitmath
2 >>> parser = argparse.ArgumentParser()
3 >>> parser.add_argument('--block-size', type=bitmath.BitmathType)
4 >>> args = "--block-size 1MiB"
5 >>> results = parser.parse_args(args.split())
6 >>> print type(results.block_size)
7 <class 'bitmath.MiB'>

On line 3 we add the --block-size option to the parser, explicitly defining it’s type as BitmathType().
In lines 6 and 7 when we parse the provided arguments we find that argparse has automatically created a
bitmath object for us.

If an invalid scaling factor is provided by the user, such as one which does not represent a recognizable unit, the
bitmath library will automatically detect this for us and signal to the argument parser that an error has occurred.

progressbar

New in version 1.2.1.

The progressbar module is typically used to display the progress of a long running task, such as a file transfer operation.
The module provides widgets for custom formatting how exactly the ‘progress’ is displayed. Some examples include:
overall percentage complete, estimated time until completion, and an ASCII progress bar which fills as the operation
continues.

2.1. The bitmath Module 17

https://docs.python.org/2/library/argparse.html
https://docs.python.org/2/library/argparse.html#type
https://docs.python.org/2/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/2/library/argparse.html#argparse.ArgumentParser.add_argument
https://github.com/niltonvolpato/python-progressbar

bitmath Documentation, Release 1.3.3

While progressbar already includes a widget suitable for displaying file transfer rates, this widget does not support
customizing its presentation, and is limited to only prefix units from the SI system.

class bitmath.integrations.BitmathFileTransferSpeed([system=bitmath.NIST[, for-
mat="{value:.2f} {unit}/s"]
])

The BitmathFileTransferSpeed class is a more functional replacement for the upstream FileTransfer-
Speed widget.

While both widgets are able to calculate average transfer rates over a period of time, the
BitmathFileTransferSpeed widget adds new support for NIST prefix units (the upstream widget only
supports SI prefix units).

In addition to NIST unit support, BitmathFileTransferSpeed enables the user to have full control over
the look and feel of the displayed rates.

Parameters

• system (One of bitmath.NIST or bitmath.SI) – Default: bitmath.NIST. The
preferred system of units for the printed rate.

• format (string) – a formatting mini-language compat formatting string. Default
{value:.2f} {unit}/s (e.g., 13.37 GiB/s)

Note: See instance attributes for a list of available formatting items. See the section on formatting bitmath
instances for more information on this topic.

Use BitmathFileTransferSpeed exactly like the upstream FileTransferSpeed widget (example
copied and modified from the progressbar project page):

1 >>> from progressbar import ProgressBar, Percentage, Bar, ETA, RotatingMarker
2 >>> from bitmath.integrations import BitmathFileTransferSpeed
3 >>> widgets = ['Something: ', Percentage(), ' ', Bar(marker=RotatingMarker()),
4 ... ' ', ETA(), ' ', BitmathFileTransferSpeed()]
5 >>> pbar = ProgressBar(widgets=widgets, maxval=10000000).start()
6 >>> for i in range(1000000):
7 ... # do something
8 ... pbar.update(10*i+1)
9 >>> pbar.finish()

If this was ran from a script we would see output similar to the following:

Something: 100% ||||||||||||||||||||||||||||||||||| Time: 0:00:01 9.27 MiB/s

If we wanted behavior identical to FileTransferSpeedwe would set the system parameter to bitmath.
SI (line 5 below):

1 >>> import bitmath
2 >>> # ...
3 >>> widgets = ['Something: ', Percentage(), ' ', Bar(marker=RotatingMarker()),
4 ... ' ', ETA(), ' ',
5 ... BitmathFileTransferSpeed(system=bitmath.SI)]
6 >>> pbar = ProgressBar(widgets=widgets, maxval=10000000).start()
7 >>> # ...

If this was ran from a script we would see output similar to the following:

18 Chapter 2. Contents

https://github.com/niltonvolpato/python-progressbar/blob/master/progressbar/widgets.py#L165
https://github.com/niltonvolpato/python-progressbar/blob/master/progressbar/widgets.py
https://github.com/niltonvolpato/python-progressbar/blob/master/progressbar/widgets.py

bitmath Documentation, Release 1.3.3

Something: 100% ||||||||||||||||||||||||||||||||||| Time: 0:00:01 9.80 MB/s

Note how the only difference is in the displayed unit. The former example produced a rate with a unit of MiB
(a NIST unit) whereas the latter examples unit is MB (an SI unit).

As noted previously, BitmathFileTransferSpeed allows for full control over the formatting of the cal-
culated rate of transfer.

For example, if we wished to see the rate printed using more verbose language and plauralized units, we could
do exactly that by constructing our widget in the following way:

BitmathFileTransferSpeed(format="{value:.2f} {unit_plural} per second")

And if this were run from a script like the previous examples:

Something: 100% ||||||||||||||||||||||||||||||||||| Time: 0:00:01 9.41 MiBs per
→˓second

2.2 The bitmath command-line Tool

bitmath includes a CLI utility for easily converting units in a shell. For reference, there is also a manpage included,
bitmath (1).

2.2.1 Synopsis

bitmath [--from-stdin] [-f IN_UNIT] [-t OUT_UNIT] VALUE ...

2.2.2 Options

-f <IN_UNIT>
Specify the input unit to convert from. Defaults to bitmath.Byte.

-t <OUT_UNIT>
Specify the output unit to convert to. Defaults to the best human-readable prefix unit.

--from-stdin
Reads number from stdin rather than as a CLI argument.

VALUE
The value to convert.

2.2.3 Examples

Convert 1024 into the best human-readable unit. Without specifying any from or to values this examples defaults
to treating the input value as a bitmath.Byte:

$ bitmath 1024
1.0 KiB

Convert 1024 KiB into kBs:

2.2. The bitmath command-line Tool 19

bitmath Documentation, Release 1.3.3

$ bitmath -f KiB -t kb 1024
8388.608 kb

Convert 1073741824 bytes into the best human-readable unit:

$ bitmath -f Byte 1073741824
1.0 GiB

Use the stat command to print the size of bitmath/__init__.py in bytes, pipe the output into the bitmath
command, and print the result in MBs:

$ stat -c '%s' bitmath/__init__.py | bitmath --from-stdin -t MB
0.038374 MB

Convert several values at once from Bytes (the default behavior) into MBs:

$ bitmath -t MB 1234567 9876543 1337 42
1.234567 MB
9.876543 MB
0.001337 MB
4.2e-05 MB

2.3 Classes

• Available Classes

• Initializing

• Class Methods

– Class Method: from_other()

2.3.1 Available Classes

There are two fundamental classes available, the Bit and the Byte.

There are 24 other classes available, representing all the prefix units from k through e (kilo/kibi through exa/exbi).

Classes with ‘i’ in their names are NIST type classes. They were defined by the National Institute of Standards and
Technology (NIST) as the ‘Binary Prefix Units’. They are defined by increasing powers of 2.

Classes without the ‘i’ character are SI type classes. Though not formally defined by any standards organization, they
follow the International System of Units (SI) pattern (commonly used to abbreviate base 10 values). You may hear
these referred to as the “Decimal” or “SI” prefixes.

Classes ending with lower-case ‘b’ characters are bit based. Classes ending with upper-case ‘B’ characters are byte
based. Class inheritance is shown below in parentheses to make this more apparent:

20 Chapter 2. Contents

https://www.nist.gov/
https://www.nist.gov/
http://www.bipm.org/en/publications/si-brochure/chapter3.html

bitmath Documentation, Release 1.3.3

NIST SI
Eib(Bit) Eb(Bit)
EiB(Byte) EB(Byte)
Gib(Bit) Gb(Bit)
GiB(Byte) GB(Byte)
Kib(Bit) kb(Bit)
KiB(Byte) kB(Byte)
Mib(Bit) Mb(Bit)
MiB(Byte) MB(Byte)
Pib(Bit) Pb(Bit)
PiB(Byte) PB(Byte)
Tib(Bit) Tb(Bit)
TiB(Byte) TB(Byte)

Note: As per SI definition, the kB and kb classes begins with a lower-case k character.

The majority of the functionality of bitmath object comes from their rich implementation of standard Python opera-
tions. You can use bitmath objects in almost all of the places you would normally use an integer or a float. See the
Table of Supported Operations and Appendix: Rules for Math for more details.

2.3.2 Initializing

class bitmath.Bit([value=0[, bytes=None[, bits=None]]])
class bitmath.Byte([value=0[, bytes=None[, bits=None]]])
class bitmath.EB([value=0[, bytes=None[, bits=None]]])
class bitmath.Eb([value=0[, bytes=None[, bits=None]]])
class bitmath.EiB([value=0[, bytes=None[, bits=None]]])
class bitmath.Eib([value=0[, bytes=None[, bits=None]]])
class bitmath.GB([value=0[, bytes=None[, bits=None]]])
class bitmath.Gb([value=0[, bytes=None[, bits=None]]])
class bitmath.GiB([value=0[, bytes=None[, bits=None]]])
class bitmath.Gib([value=0[, bytes=None[, bits=None]]])
class bitmath.kB([value=0[, bytes=None[, bits=None]]])
class bitmath.kb([value=0[, bytes=None[, bits=None]]])
class bitmath.KiB([value=0[, bytes=None[, bits=None]]])
class bitmath.Kib([value=0[, bytes=None[, bits=None]]])
class bitmath.MB([value=0[, bytes=None[, bits=None]]])
class bitmath.Mb([value=0[, bytes=None[, bits=None]]])
class bitmath.MiB([value=0[, bytes=None[, bits=None]]])
class bitmath.Mib([value=0[, bytes=None[, bits=None]]])
class bitmath.PB([value=0[, bytes=None[, bits=None]]])

2.3. Classes 21

bitmath Documentation, Release 1.3.3

class bitmath.Pb([value=0[, bytes=None[, bits=None]]])
class bitmath.PiB([value=0[, bytes=None[, bits=None]]])
class bitmath.Pib([value=0[, bytes=None[, bits=None]]])
class bitmath.TB([value=0[, bytes=None[, bits=None]]])
class bitmath.Tb([value=0[, bytes=None[, bits=None]]])
class bitmath.TiB([value=0[, bytes=None[, bits=None]]])
class bitmath.Tib([value=0[, bytes=None[, bits=None]]])
class bitmath.YB([value=0[, bytes=None[, bits=None]]])
class bitmath.Yb([value=0[, bytes=None[, bits=None]]])
class bitmath.ZB([value=0[, bytes=None[, bits=None]]])
class bitmath.Zb([value=0[, bytes=None[, bits=None]]])
class bitmath.Bitmath([value=0[, bytes=None[, bits=None]]])

The value, bytes, and bits parameters are mutually exclusive. That is to say, you cannot instantiate a
bitmath class using more than one of the parameters. Omitting any keyword argument defaults to behaving as
if value was provided.

Parameters

• value (int) – Default: 0. The value of the instance in prefix units. For example, if we
were instantiating a bitmath.KiB object to represent 13.37 KiB, the value parameter
would be 13.37. For instance, k = bitmath.KiB(13.37).

• bytes (int) – The value of the instance as measured in bytes.

• bits (int) – The value of the instance as measured in bits.

Raises ValueError – if more than one parameter is provided.

The following code block demonstrates the 4 acceptable ways to instantiate a bitmath class.

1 >>> import bitmath
2

3 # Omitting all keyword arguments defaults to 'value' behavior.
4 >>> a = bitmath.KiB(1)
5

6 # This is equivalent to the previous statement
7 >>> b = bitmath.KiB(value=1)
8

9 # We can also specify the initial value in bytes.
10 # Recall, 1KiB = 1024 bytes
11 >>> c = bitmath.KiB(bytes=1024)
12

13 # Finally, we can specify exact number of bits in the
14 # instance. Recall, 1024B = 8192b
15 >>> d = bitmath.KiB(bits=8192)
16

17 >>> a == b == c == d
18 True

2.3.3 Class Methods

22 Chapter 2. Contents

bitmath Documentation, Release 1.3.3

Class Method: from_other()

bitmath class objects have one public class method, BitMathClass.from_other() which provides an alterna-
tive way to initialize a bitmath class.

This method may be called on bitmath class objects directly. That is to say: you do not need to call this method on an
instance of a bitmath class, however that is a valid use case.

classmethod Byte.from_other(item)
Instantiate any BitMathClass using another instance as reference for it’s initial value.

The from_other() class method has one required parameter: an instance of a bitmath class.

Parameters item (BitMathInstance) – An instance of a bitmath class.

Returns a bitmath instance of type BitMathClass equivalent in value to item

Return type BitMathClass

Raises TypeError – if item is not a valid bitmath class

In pure Python, this could also be written as:

1 >>> import bitmath
2

3 >>> a_mebibyte = bitmath.MiB(1)
4

5 >>> a_mebibyte_sized_kibibyte = bitmath.KiB(bytes=a_mebibyte.bytes)
6

7 >>> a_mebibyte == a_mebibyte_sized_kibibyte
8 True
9

10 >>> print a_mebibyte, a_mebibyte_sized_kibibyte
11 1.0 MiB 1024.0 KiB

Or, using the BitMathClass.from_other() class method:

1 >>> a_mebibyte = bitmath.MiB(1)
2

3 >>> a_big_kibibyte = bitmath.KiB.from_other(a_mebibyte)
4

5 >>> a_mebibyte == a_big_kibibyte
6 True
7

8 >>> print a_mebibyte, a_big_kibibyte
9 1.0 MiB 1024.0 KiB

2.4 Instances

• Instance Attributes

• Instance Methods

– to_THING()

– best_prefix()

– format()

2.4. Instances 23

bitmath Documentation, Release 1.3.3

* Setting Decimal Precision

* Format All the Instance Attributes

• Instance Properties

– THING Properties

• The Formatting Mini-Language

2.4.1 Instance Attributes

bitmath objects have several instance attributes:

BitMathInstance.base
The mathematical base of the unit of the instance (this will be 2 or 10)

>>> b = bitmath.Byte(1337)
>>> print b.base
2

BitMathInstance.binary
The Python binary representation of the instance’s value (in bits)

>>> b = bitmath.Byte(1337)
>>> print b.binary
0b10100111001000

BitMathInstance.bin
This is an alias for binary

BitMathInstance.bits
The number of bits in the object

>>> b = bitmath.Byte(1337)
>>> print b.bits
10696.0

BitMathInstance.bytes
The number of bytes in the object

>>> b = bitmath.Byte(1337)
>>> print b.bytes
1337

BitMathInstance.power
The mathematical power the base of the unit of the instance is raised to

>>> b = bitmath.Byte(1337)
>>> print b.power
0

BitMathInstance.system
The system of units used to measure this instance (NIST or SI)

24 Chapter 2. Contents

https://docs.python.org/2/library/functions.html#bin

bitmath Documentation, Release 1.3.3

>>> b = bitmath.Byte(1337)
>>> print b.system
NIST

BitMathInstance.value
The value of the instance in prefix units1

>>> b = bitmath.Byte(1337)
>>> print b.value
1337.0

BitMathInstance.unit
The string representation of this prefix unit (such as MiB or kb)

>>> b = bitmath.Byte(1337)
>>> print b.unit
Byte

BitMathInstance.unit_plural
The pluralized string representation of this prefix unit.

>>> b = bitmath.Byte(1337)
>>> print b.unit_plural
Bytes

BitMathInstance.unit_singular
The singular string representation of this prefix unit (such as MiB or kb)

>>> b = bitmath.Byte(1337)
>>> print b.unit_singular
Byte

Notes:

1. Given an instance k, where k = KiB(1.3), then k.value is 1.3

The following is an example of how to access some of these attributes and what you can expect their printed represen-
tation to look like:

1 >>> dvd_capacity = GB(4.7)
2 >>> print "Capacity in bits: %s\nbytes: %s\n" % \
3 (dvd_capacity.bits, dvd_capacity.bytes)
4

5 Capacity in bits: 37600000000.0
6 bytes: 4700000000.0
7

8 >>> dvd_capacity.value
9 4.7

10

11 >>> dvd_capacity.bin
12 '0b100011000001001000100111100000000000'
13

14 >>> dvd_capacity.binary
15 '0b100011000001001000100111100000000000'

2.4. Instances 25

bitmath Documentation, Release 1.3.3

2.4.2 Instance Methods

bitmath objects come with a few basic methods: to_THING(), format(), and best_prefix().

to_THING()

Like the available classes, there are 24 to_THING() methods available. THING is any of the bitmath classes. You
can even to_THING() an instance into itself again:

1 >>> from bitmath import *
2 >>> one_mib = MiB(1)
3 >>> one_mib_in_kb = one_mib.to_kb()
4 >>> one_mib == one_mib_in_kb
5 True
6

7 >>> another_mib = one_mib.to_MiB()
8 >>> print one_mib, one_mib_in_kb, another_mib
9 1.0 MiB 8388.608 kb 1.0 MiB

10

11 >>> six_TB = TB(6)
12 >>> six_TB_in_bits = six_TB.to_Bit()
13 >>> print six_TB, six_TB_in_bits
14 6.0 TB 4.8e+13 Bit
15

16 >>> six_TB == six_TB_in_bits
17 True

best_prefix()

best_prefix([system=None])
Return an equivalent instance which uses the best human-readable prefix-unit to represent it.

Parameters system (int) – one of bitmath.NIST or bitmath.SI

Returns An equivalent bitmath instance

Return type bitmath

Raises ValueError – if an invalid unit system is given for system

The best_prefix() method returns the result of converting a bitmath instance into an equivalent instance using
a prefix unit that better represents the original value. Another way to think of this is automatic discovery of the most
sane, or human readable, unit to represent a given size. This functionality is especially important in the domain of
interactive applications which need to report file sizes or transfer rates to users.

As an analog, consider you have 923,874,434¢ in your bank account. You probably wouldn’t want to read your bank
statement and find your balance in pennies. Most likely, your bank statement would read a balance of $9,238,744.34.
In this example, the input prefix is the cent: ¢. The best prefix for this is the dollar: $.

Let’s, for example, say we are reporting a transfer rate in an interactive application. It’s important to present this
information in an easily consumable format. The library we’re using to calculate the rate of transfer reports the rate in
bytes per second from a tx_rate() function.

We’ll use this example twice. In the first occurrence, we will print out the transfer rate in a more easily digestible
format than pure bytes/second. In the second occurrence we’ll take it a step further, and use the format method to
make the output even easier to read.

26 Chapter 2. Contents

bitmath Documentation, Release 1.3.3

>>> for _rate in tx_rate():
... print "Rate: %s/second" % Bit(_rate)
... time.sleep(1)

Rate: 100.0 Bit/sec
Rate: 24000.0 Bit/sec
Rate: 1024.0 Bit/sec
Rate: 60151.0 Bit/sec
Rate: 33.0 Bit/sec
Rate: 9999.0 Bit/sec
Rate: 9238742.0 Bit/sec
Rate: 2.09895849555e+13 Bit/sec
Rate: 934098021.0 Bit/sec
Rate: 934894.0 Bit/sec

And now using a custom formatting definition:

>>> for _rate in tx_rate():
... print Bit(_rate).best_prefix().format("Rate: {value:.3f} {unit}/sec")
... time.sleep(1)

Rate: 12.500 Byte/sec
Rate: 2.930 KiB/sec
Rate: 128.000 Byte/sec
Rate: 7.343 KiB/sec
Rate: 4.125 Byte/sec
Rate: 1.221 KiB/sec
Rate: 1.101 MiB/sec
Rate: 2.386 TiB/sec
Rate: 111.353 MiB/sec
Rate: 114.123 KiB/sec

format()

BitMathInstance.format(fmt_spec)
Return a custom-formatted string to represent this instance.

Parameters fmt_spec (str) – A valid formatting mini-language string

Returns The custom formatted representation

Return type string

bitmath instances come with a verbose built-in string representation:

>>> leet_bits = Bit(1337)
>>> print leet_bits
1337.0 Bit

However, for instances which aren’t whole numbers (as in MiB(1/3.0) == 0.333333333333 MiB, etc), their
representation can be undesirable.

The format() method gives you complete control over the instance’s representation. All of the instances attributes
are available to use when choosing a representation.

The following sections describe some common use cases of the format() method as well as provide a brief tutorial
of the greater Python formatting meta-language.

2.4. Instances 27

bitmath Documentation, Release 1.3.3

Setting Decimal Precision

By default, bitmath instances will print to a fairly long precision for values which are not whole multiples of their
prefix unit. In most use cases, simply printing out the first 2 or 3 digits of precision is acceptable.

The following examples will show us how to print out a bitmath instance in a more human readable way, by limiting
the decimal precision to 2 digits.

First, for reference, the default formatting:

>>> ugly_number = MB(50).to_MiB() / 8.0
>>> print ugly_number
5.96046447754 MiB

Now, let’s use the format() method to limit that to two digits of precision:

>>> print ugly_number.format("{value:.2f}{unit}")
5.96 MiB

By changing the 2 character, you increase or decrease the precision. Set it to 0 ({value:.0f}) and you have what
effectively looks like an integer.

Format All the Instance Attributes

The following example prints out every instance attribute. Take note of how an attribute may be referenced multiple
times.

1 >>> longer_format = """Formatting attributes for %s
2 ...: This instances prefix unit is {unit}, which is a {system} type unit
3 ...: The unit value is {value}
4 ...: This value can be truncated to just 1 digit of precision: {value:.1f}
5 ...: In binary this looks like: {binary}
6 ...: The prefix unit is derived from a base of {base}
7 ...: Which is raised to the power {power}
8 ...: There are {bytes} bytes in this instance
9 ...: The instance is {bits} bits large

10 ...: bytes/bits without trailing decimals: {bytes:.0f}/{bits:.0f}""" % str(ugly_
→˓number)

11

12 >>> print ugly_number.format(longer_format)
13 Formatting attributes for 5.96046447754 MiB
14 This instances prefix unit is MiB, which is a NIST type unit
15 The unit value is 5.96046447754
16 This value can be truncated to just 1 digit of precision: 6.0
17 In binary this looks like: 0b10111110101111000010000000
18 The prefix unit is derived from a base of 2
19 Which is raised to the power 20
20 There are 6250000.0 bytes in this instance
21 The instance is 50000000.0 bits large
22 bytes/bits without trailing decimals: 6250000/50000000

Note: On line 4 we print with 1 digit of precision, on line 16 we see the value has been rounded to 6.0

28 Chapter 2. Contents

bitmath Documentation, Release 1.3.3

2.4.3 Instance Properties

THING Properties

Like the available classes, there are 24 THING properties available. THING is any of the bitmath classes. Under the
covers these properties call to_THING.

1 >>> from bitmath import *
2 >>> one_mib = MiB(1)
3 >>> one_mib == one_mib.kb
4 True
5

6 >>> print one_mib, one_mib.kb, one_mib.MiB
7 1.0 MiB 8388.608 kb 1.0 MiB
8

9 >>> six_TB = TB(6)
10 >>> print six_TB, six_TB.Bit
11 6.0 TB 4.8e+13 Bit
12

13 >>> six_TB == six_TB.Bit
14 True

2.4.4 The Formatting Mini-Language

That is all you begin printing numbers with custom precision. If you want to learn a little bit more about using the
formatting mini-language, read on.

You may be asking yourself where these {value:.2f} and {unit} strings came from. These are part of the
Format Specification Mini-Language which is part of the Python standard library. To be explicitly clear about what’s
going on here, let’s break the first specifier ({value:.2f}) down into it’s component parts:

{value:.2f}
| |||
| |||\---- The "f" says to format this as a floating point type
| ||\----- The 2 indicates we want 2 digits of precision (default is 6)
| |\------ The '.' character must precede the precision specifier for floats
| \------- The : separates the attribute name from the formatting specification
\---------- The name of the attribute to print

The second specifier ({unit}) says to format the unit attribute as a string (string is the default type when no type
is given).

See also:

Python String Format Cookbook Marcus Kazmierczak’s excellent introduction to string formatting

2.5 Getting Started

In this section we will take a high-level look at the basic things you can do with bitmath. We’ll include the following
topics:

• Tables of Supported Operations

2.5. Getting Started 29

https://docs.python.org/2/library/string.html#format-specification-mini-language
https://mkaz.blog/code/python-string-format-cookbook/
https://mkaz.com/

bitmath Documentation, Release 1.3.3

– Arithmetic

– Bitwise Operations

• Basic Math

• Unit Conversion

• Rich Comparison

• Sorting

2.5.1 Tables of Supported Operations

The following legend describes the two operands used in the tables below.

Operand Description
bm A bitmath object is required
num An integer or decimal value is required

Arithmetic

Math works mostly like you expect it to, except for a few edge-cases:

• Mixing bitmath types with Number types (the result varies per-operation)

• Operations where two bitmath types would cancel out (such as dividing two bitmath types)

• Multiplying two bitmath instances together is supported, but the results may not make much sense.

See also:

Appendix: Rules for Math For a discussion of the behavior of bitmath and number types.

Operation Parameters Result Type Example
Addition bm1 + bm2 type(bm1) KiB(1) + MiB(2) = 2049.0KiB
Addition bm + num type(num) KiB(1) + 1 = 2.0
Addition num + bm type(num) 1 + KiB(1) = 2.0
Subtraction bm1 - bm2 type(bm1) KiB(1) - Byte(2048) = -1.0KiB
Subtraction bm - num type(num) KiB(4) - 1 = 3.0
Subtraction num - bm type(num) 10 - KiB(1) = 9.0
Multiplication bm1 * bm2 type(bm1) KiB(1) * KiB(2) = 2048.0KiB
Multiplication bm * num type(bm) KiB(2) * 3 = 6.0KiB
Multiplication num * bm type(bm) 2 * KiB(3) = 6.0KiB
Division bm1 / bm2 type(num) KiB(1) / KiB(2) = 0.5
Division bm / num type(bm) KiB(1) / 3 = 0.3330078125KiB
Division num / bm type(num) 3 / KiB(2) = 1.5

Bitwise Operations

See also:

Bitwise Calculator A free online calculator for checking your math

30 Chapter 2. Contents

http://www.miniwebtool.com/bitwise-calculator/

bitmath Documentation, Release 1.3.3

Bitwise operations are also supported. Bitwise operations work directly on the bits attribute of a bitmath instance,
not the number you see in an instances printed representation (value), to maintain accuracy.

Operation Parameters Result Type Example1

Left Shift bm << num type(bm) MiB(1) << 2 = MiB(4.0)
Right Shift bm >> num type(bm) MiB(1) >> 2 = MiB(0.25)
AND bm & num type(bm) MiB(13.37) & 1337 = MiB(0.000126...)
OR bm | num type(bm) MiB(13.37) | 1337 = MiB(13.3700...)
XOR bm ^ num type(bm) MiB(13.37) ^ 1337 = MiB(13.369...)

1. Give me a break here, it’s not easy coming up with compelling examples for bitwise operations. . .

2.5.2 Basic Math

bitmath supports all arithmetic operations

1 >>> eighty_four_mib = fourty_two_mib + fourty_two_mib_in_kib
2 >>> eighty_four_mib
3 MiB(84.0)
4 >>> eighty_four_mib == fourty_two_mib * 2
5 True

2.5.3 Unit Conversion

1 >>> from bitmath import *
2 >>> fourty_two_mib = MiB(42)
3 >>> fourty_two_mib_in_kib = fourty_two_mib.to_KiB()
4 >>> fourty_two_mib_in_kib
5 KiB(43008.0)
6

7 >>> fourty_two_mib
8 MiB(42.0)
9

10 >>> fourty_two_mib.KiB
11 KiB(43008.0)

2.5.4 Rich Comparison

Rich Comparison (as per the Python Basic Customization magic methods) <, <=, ==, !=, >, >= is fully supported:

1 >>> GB(1) < GiB(1)
2 True
3 >>> GB(1.073741824) == GiB(1)
4 True
5 >>> GB(1.073741824) <= GiB(1)
6 True
7 >>> Bit(1) == TiB(bits=1)
8 True
9 >>> kB(100) > EiB(bytes=1024)

10 True
11 >>> kB(100) >= EiB.from_other(kB(100))
12 True

(continues on next page)

2.5. Getting Started 31

https://docs.python.org/2.7/reference/datamodel.html#basic-customization

bitmath Documentation, Release 1.3.3

(continued from previous page)

13 >>> kB(100) >= EiB.from_other(kB(99))
14 True
15 >>> kB(100) >= EiB.from_other(kB(9999))
16 False
17 >>> KiB(100) != Byte(1)
18 True

2.5.5 Sorting

bitmath natively supports sorting.

Let’s make a list of the size (in bytes) of all the files in the present working directory (lines 4 and 5) and then print
them out sorted by increasing magnitude (lines 10 and 11, and 13 → 15):

1 >>> from bitmath import *
2 >>> import os
3 >>> sizes = []
4 >>> for f in os.listdir('./tests/'):
5 ... sizes.append(KiB(os.path.getsize('./tests/' + f)))
6

7 >>> print sizes
8 [KiB(7337.0), KiB(1441.0), KiB(2126.0), KiB(2178.0), KiB(2326.0), KiB(4003.0), KiB(48.

→˓0), KiB(1770.0), KiB(7892.0), KiB(4190.0)]
9

10 >>> print sorted(sizes)
11 [KiB(48.0), KiB(1441.0), KiB(1770.0), KiB(2126.0), KiB(2178.0), KiB(2326.0), KiB(4003.

→˓0), KiB(4190.0), KiB(7337.0), KiB(7892.0)]
12

13 >>> human_sizes = [s.best_prefix() for s in sizes]
14 >>> print sorted(human_sizes)
15 [KiB(48.0), MiB(1.4072265625), MiB(1.728515625), MiB(2.076171875), MiB(2.126953125),

→˓MiB(2.271484375), MiB(3.9091796875), MiB(4.091796875), MiB(7.1650390625), MiB(7.
→˓70703125)]

Now print them out in descending magnitude

>>> print sorted(human_sizes, reverse=True)
[KiB(7892.0), KiB(7337.0), KiB(4190.0), KiB(4003.0), KiB(2326.0), KiB(2178.0),
→˓KiB(2126.0), KiB(1770.0), KiB(1441.0), KiB(48.0)]

2.6 Real Life Examples

• Download Speeds

• Calculating how many files fit on a device

• Printing Human-Readable File Sizes in Python

• Calculating Linux BDP and TCP Window Scaling

– The Hard Way

– The bitmath way

32 Chapter 2. Contents

bitmath Documentation, Release 1.3.3

• Creating Download Progress Bars

• Reading a Devices Storage Capacity

2.6.1 Download Speeds

Let’s pretend that your Internet service provider (ISP) advertises your maximum downstream as 50Mbps (50 Megabits
per second)1 and you want to know how fast that is in Megabytes per second? bitmath can do that for you easily.
We can calculate this as such:

1 >>> import bitmath
2 >>> downstream = bitmath.Mib(50)
3 >>> print downstream.to_MB()
4 MB(6.25)

This tells us that if our ISP advertises 50Mbps we can expect to see download rates of over 6MB/sec.

1. Assuming your ISP follows the common industry practice of using SI (base-10) units to describe file sizes/rates

2.6.2 Calculating how many files fit on a device

In 2001 Apple® announced the iPod™. Their headline statement boasting:

“. . . iPod stores up to 1,000 CD-quality songs on its super-thin 5 GB hard drive, . . . ”

OK. That’s pretty simple to work backwards: capacity of disk drive divided by number of songs equals the average
size of a song. Which in this case is:

1 >>> song_size = GB(5) / 1000
2 >>> print song_size
3 0.005GB

Or, using best_prefix, (line 2) to generate a more human-readable form:

1 >>> song_size = GB(5) / 1000
2 >>> print song_size.best_prefix()
3 5.0MB

That’s great, if you have normal radio-length songs. But how many of our favorite jam-band’s 15-30+ minute-long
songs could we fit on this iPod? Let’s pretend we did the math and the average audio file worked out to be 18.6 MiB
(19.5 MB) large.

1 >>> ipod_capacity = GB(5)
2 >>> bootleg_size = MB(19.5)
3 >>> print ipod_capacity / bootleg_size
4 256.41025641

The result on line 4 tells tells us that we could fit 256 average-quality songs on our iPod.

2.6.3 Printing Human-Readable File Sizes in Python

In a Python script or interpreter we may wish to print out file sizes in something other than bytes (which is what
os.path.getsize returns). We can use bitmath to do that too:

2.6. Real Life Examples 33

http://www.apple.com/pr/library/2001/10/23Apple-Presents-iPod.html
https://archive.org/details/moe

bitmath Documentation, Release 1.3.3

1 >>> import os
2 >>> from bitmath import *
3 >>> these_files = os.listdir('.')
4 >>> for f in these_files:
5 ... f_size = Byte(os.path.getsize(f))
6 ... print "%s - %s" % (f, f_size.to_KiB())
7

8 test_basic_math.py - 3.048828125 KiB
9 __init__.py - 0.1181640625 KiB

10 test_representation.py - 0.744140625 KiB
11 test_to_Type_conversion.py - 2.2119140625 KiB

Alternatively, we could simplify things and use bitmath.getsize() to read the file size directly into a bitmath object:

1 >>> import os
2 >>> import bitmath
3 >>> these_files = os.listdir('.')
4 >>> for f in these_files:
5 ... print "%s - %s" % (f, bitmath.getsize(f))
6

7 test_basic_math.py - 3.048828125 KiB
8 __init__.py - 0.1181640625 KiB
9 test_representation.py - 0.744140625 KiB

10 test_to_Type_conversion.py - 2.2119140625 KiB

See also:

Instance Formatting How to print results in a prettier format

2.6.4 Calculating Linux BDP and TCP Window Scaling

Say we’re doing some Linux Kernel TCP performance tuning. For optimum speeds we need to calculate our BDP, or
Bandwidth Delay Product. For this we need to calculate certain values to set some kernel tuning parameters to. The
point of this tuning is to send the most data we can during a measured round-trip-time without sending more than can
be processed. To accomplish this we are resizing our kernel read/write networking/socket buffers.

We will see two ways of doing this. The tedious manual way, and the way with bitmath.

The Hard Way

Core Networking Values

• net.core.rmem_max - Bytes - Single Value - Default receive buffer size

• net.core.wmem_max - Bytes - Single Value - Default write buffer size

System-Wide Memory Limits

• net.ipv4.tcp_mem - Pages - Three Value Vector - The max field of the parameter is the number of memory
pages allowed for queueing by all TCP sockets.

Per-Socket Buffers

Per-socket buffer sizes must not exceed the core networking buffer sizes.

• net.ipv4.tcp_rmem - Bytes - Three Field Vector - The max field sets the size of the TCP receive buffer

• net.ipv4.tcp_wmem - Bytes - Three Field Vector - As above, but for the write buffer

34 Chapter 2. Contents

bitmath Documentation, Release 1.3.3

We would normally calculate the optimal BDP and related values following this approach:

1. Measure the latency, or round trip time (RTT, measured in milliseconds), between the host we’re tuning and our
target remote host

2. Measure/identify our network transfer rate

3. Calculate the BDP (multiply transfer rate by rtt)

4. Obtain our current kernel settings

5. Adjust settings as necessary

But for the sake brevity we’ll be working out of an example scenario with a pre-defined RTT and transfer rate.

Scenario

• We have an average network transfer rate of 1Gb/sec (where Gb is the SI unit for Gigabits, not Gibibytes: GiB)

• Our latency (RTT) is 0.199ms (milliseconds)

Calculate Manually

Lets calculate the BDP now. Because the kernel parameters expect values in units of bytes and pages we’ll have to
convert our transfer rate of 1Gb/sec into B/s (Gigabits/second to Bytes/second):

• Convert 1Gb into an equivalent byte based unit

Remember 1 Byte = 8 Bits:

tx_rate_GB = 1/8 = 0.125

Our equivalent transfer rate is 0.125GB/sec.

• Convert our RTT from milliseconds into seconds

Remember 1ms = 10-3s:

window_seconds = 0.199 * 10^-3 = 0.000199

Our equivalent RTT window is 0.000199s

• Next we multiply the transfer rate by the length of our RTT window (in seconds)

(The unit analysis for this is GB/s * s leaving us with GB)

BDP = rx_rate_GB * window_seconds = 0.125 * 0.000199 = 0.000024875

Our BDP is 0.000024875GB.

• Convert 0.000024875GB to bytes:

Remember 1GB = 109B

BDP_bytes = 0.000024875 * 10^9 = 24875.0

Our BDP is 24875 bytes (or about 24.3KiB)

The bitmath way

All of this math can be done much quicker (and with greater accuracy) using the bitmath library. Let’s see how:

2.6. Real Life Examples 35

bitmath Documentation, Release 1.3.3

1 >>> from bitmath import GB
2

3 >>> tx = 1/8.0
4

5 >>> rtt = 0.199 * 10**-3
6

7 >>> bdp = (GB(tx * rtt)).to_Byte()
8

9 >>> print bdp.to_KiB()
10

11 KiB(24.2919921875)

Note: To avoid integer rounding during division, don’t forget to divide by 8.0 rather than 8

We could shorten that even further:

>>> print (GB((1/8.0) * (0.199 * 10**-3))).to_Byte()
24875.0Byte

Get the current kernel parameters

Important to note is that the per-socket buffer sizes must not exceed the core network buffer sizes. Lets fetch our
current core buffer sizes:

$ sysctl net.core.rmem_max net.core.wmem_max
net.core.rmem_max = 212992
net.core.wmem_max = 212992

Recall, these values are in bytes. What are they in KiB?

>>> print Byte(212992).to_KiB()
KiB(208.0)

This means our core networking buffer sizes are set to 208KiB each. Now let’s check our current per-socket buffer
sizes:

$ sysctl net.ipv4.tcp_rmem net.ipv4.tcp_wmem
net.ipv4.tcp_rmem = 4096 87380 6291456
net.ipv4.tcp_wmem = 4096 16384 4194304

Let’s double-check that our buffer sizes aren’t already out of wack (per-socket should be <= networking core)

>>> net_core_max = KiB(bytes=212992)

>>> ipv4_tcp_rmem_max = KiB(bytes=6291456)

>>> ipv4_tcp_rmem_max > net_core_max

True

It appears that my buffers aren’t sized appropriately. We’ll fix that when we set the tunable parameters.

Finally, how large is the entire system TCP buffer?

$ sysctl net.ipv4.tcp_mem
net.ipv4.tcp_mem = 280632 374176 561264

36 Chapter 2. Contents

bitmath Documentation, Release 1.3.3

Our max system TCP buffer size is set to 561264. Recall that this parameter is measured in memory pages. Most of
the time your page size is 4096 bytes, but you can check by running the command: getconf PAGESIZE. To
convert the system TCP buffer size (561264) into a byte-based unit, we’ll multiply it by our pagesize (4096):

>>> sys_pages = 561264

>>> page_size = 4096

>>> sys_buffer = Byte(sys_pages * page_size)

>>> print sys_buffer.to_MiB()

2192.4375MiB

>>> print sys_buffer.to_GiB()

2.14105224609GiB

The system max TCP buffer size is about 2.14GiB.

In review, we discovered the following:

• Our core network buffer size is insufficient (212992), we’ll set it higher

• Our current per-socket buffer sizes are 6291456 and 4194304

And we calculated the following:

• Our ideal max per-socket buffer size is 24875 bytes

• Our ideal default per-socket buffer size (half the max): 12437

Finally: Set the new kernel parameters

Set the core-network buffer sizes:

$ sudo sysctl net.core.rmem_max=24875 net.core.wmem_max=24875
net.core.rmem_max = 4235
net.core.wmem_max = 4235

Set the per-socket buffer sizes:

$ sudo sysctl net.ipv4.tcp_rmem="4096 12437 24875" net.ipv4.tcp_wmem="4096 12437 24875
→˓"
net.ipv4.tcp_rmem = 4096 12437 24875
net.ipv4.tcp_wmem = 4096 12437 24875

And it’s done! Testing this is left as an exercise for the reader. Note that in my experience this is less useful on wireless
connections.

2.6.5 Creating Download Progress Bars

#!/usr/bin/env python
from __future__ import print_function
import logging
import time
import bitmath
from bitmath.integrations.bmargparse import BitmathType
from bitmath.integrations.bmprogressbar import BitmathFileTransferSpeed

(continues on next page)

2.6. Real Life Examples 37

bitmath Documentation, Release 1.3.3

(continued from previous page)

import argparse
import requests
import progressbar
import os
import tempfile
import atexit
import random
from functools import reduce

Files of various sizes to use in the demo.
#
Moar here: https://www.kernel.org/pub/linux/kernel/v3.0/?C=S;O=D
REMOTES = [

patch-3.0.70.gz 20-Mar-2013 20:02 1.0M
'https://www.kernel.org/pub/linux/kernel/v3.0/patch-3.4.92.xz',

patch-3.16.gz 03-Aug-2014 22:39 8.0M
'https://www.kernel.org/pub/linux/kernel/v3.0/patch-3.16.gz',

patch-3.2.gz 05-Jan-2012 00:43 22M
'https://www.kernel.org/pub/linux/kernel/v3.0/patch-3.2.gz',

]

##
p = argparse.ArgumentParser(description='bitmath demo suite')
p.add_argument('-d', '--down', help="Download Rate",

type=BitmathType,
default=bitmath.MiB(4))

p.add_argument('-s', '--slowdown',
help='Randomly pause to slow down the transfer rate',
action='store_true', default=False)

args = p.parse_args()

##
Save our example files somewhere. And then clean up every trace that
anything every happened there. shhhhhhhhhhhhhhhh
DESTDIR = tempfile.mkdtemp('demosuite', 'bitmath')
@atexit.register
def cleanup():

for f in os.listdir(DESTDIR):
os.remove(os.path.join(DESTDIR, f))

os.rmdir(DESTDIR)

##
for f in REMOTES:

print("""
##""")

fname = os.path.basename(f)
An array of widgets to design our progress bar. Note how we use
BitmathFileTransferSpeed
widgets = ['Bitmath Demo Suite (%s): ' % fname,

progressbar.Percentage(), ' ',
progressbar.Bar(marker=progressbar.RotatingMarker()), ' ',
progressbar.ETA(), ' ',
BitmathFileTransferSpeed()]

(continues on next page)

38 Chapter 2. Contents

bitmath Documentation, Release 1.3.3

(continued from previous page)

The 'stream' keyword lets us http GET files in
chunks. http://docs.python-requests.org/en/latest/user/quickstart/#raw-response-

→˓content
r = requests.get(f, stream=True)
We haven't began receiving the payload content yet, we have only
just received the response headers. Of interest is the
'content-length' header which describes our payload in bytes
#
http://bitmath.readthedocs.org/en/latest/classes.html#bitmath.Byte
size = bitmath.Byte(int(r.headers['Content-Length']))

Demonstrate 'with' context handler, allowing us to customize all
bitmath string printing within the indented block. We don't need
all that precision anyway, just two points should do.
#
http://bitmath.readthedocs.org/en/latest/module.html#bitmath-format
with bitmath.format("{value:.2f} {unit}"):

print("Downloading %s (%s) in %s chunks" % (f,
size.best_prefix(),
args.down.best_prefix()))

We have to save these files somewhere
save_path = os.path.join(DESTDIR, fname)
print("Saving to: %s" % save_path)
print("")

OK. Let's create our actual progress bar now. See the 'maxval'
keyword? That's the size of our payload in bytes.
pbar = progressbar.ProgressBar(

widgets=widgets,
maxval=int(size)).start()

##
Open a new file for binary writing and write 'args.down' size
chunks into it until we've received the entire payload
with open(save_path, 'wb') as fd:

The 'iter_content' method accepts integer values of
bytes. Lucky for us, 'args.down' is a bitmath instance and
has a 'bytes' attribute we can feed into the method call.
for chunk in r.iter_content(int(args.down.bytes)):

fd.write(chunk)
The progressbar will end the entire cosmos as we know it
if we try to .update() it beyond it's MAXVAL
parameter.
#
That's something I'd like to avoid taking the
responsibility for.
if (pbar.currval + args.down.bytes) < pbar.maxval:

pbar.update(pbar.currval + int(args.down.bytes))

We can add an pause to artificially speed up/slowdown
the transfer rate. Allows us to see different units.
if args.slowdown:

randomly slow down 1/5 of the time
if random.randrange(0, 100) % 5 == 0:

time.sleep(random.randrange(0, 500) * 0.01)
(continues on next page)

2.6. Real Life Examples 39

bitmath Documentation, Release 1.3.3

(continued from previous page)

Nothing to see here. Go home.
pbar.finish()

##
print("""
##
List downloaded contents

* Filter for .xz files only
""")

for p,bm in bitmath.listdir(DESTDIR,
filter='*.xz'):

print(p, bm)

##
print("""
##
List downloaded contents

* Filter for .gz files only

* Print using best human readable prefix
""")

for p,bm in bitmath.listdir(DESTDIR,
filter='*.gz',
bestprefix=True):

print(p, bm)

##
print("""
##
List downloaded contents

* No filter set, to display all files

* Limit precision of printed file size to 3 digits

* Print using best human readable prefix
""")

for p,bm in bitmath.listdir(DESTDIR,
bestprefix=True):

with bitmath.format("{value:.3f} {unit}"):
print(p, bm)

##
print("""
##
Sum the size of all downloaded files together

* Print with best prefix and 3 digits of precision
""")

discovered_files = [f[1] for f in bitmath.listdir(DESTDIR)]
total_size = reduce(lambda x,y: x+y, discovered_files).best_prefix().format("{value:.
→˓3f} {unit}")
print("Total size of %s downloaded items: %s" % (len(discovered_files), total_size))

• View the the source for the demo suite on GitHub

40 Chapter 2. Contents

https://raw.githubusercontent.com/tbielawa/bitmath/master/full_demo.py

bitmath Documentation, Release 1.3.3

2.6.6 Reading a Devices Storage Capacity

Important: Superuser (root/admin) privileges are required to allow bitmath.query_device_capacity()
to make system calls to read a devices capacity. Use of this function on a device the user does not have access to will
result in run-time errors.

Using bitmath.query_device_capacity()we can read the size of a storage device or a partition on a device.

Examples of supported devices include:

• Standard Hard Drives/External Drives

• Filesystem Partitions

• Loop Devices

• LVM Logical Volumes

• Encrypted LUKS Volumes

• iSCSI Devices

Usage is fairly straight-forward. Create an open file handle of the device you want to read the capacity of and then cre-
ate a bitmath object with the query_device_capacity function. Here’s an example where we read the capacity
of device sda, the first device on the example system.

>>> import bitmath
>>> fh = open('/dev/sda', 'r')
>>> sda_capacity = bitmath.query_device_capacity(fh)
>>> fh.close()
>>> print sda_capacity.best_prefix()
238.474937439 GiB

We can simplify this so that the file handle is automatically closed for us by using the with context manager.

>>> with open('/dev/sda', 'r') as fh:
... sda_capacity = bitmath.query_device_capacity(fh)
>>> print sda_capacity.best_prefix()
238.474937439 GiB

2.7 Contributing to bitmath

This section describes the guidelines for contributing to bitmath.

• Issue Reporting

• Code Style/Formatting

• Commit Messages

• Pull Requests

– What Happens If The Build Breaks

• Automated Tests

– Components

2.7. Contributing to bitmath 41

bitmath Documentation, Release 1.3.3

– Targets

– Running the Tests

– Troubleshooting

2.7.1 Issue Reporting

If you are encounter an issue with the bitmath library, please use the provided template.

• Open a new issue

• View open issues

2.7.2 Code Style/Formatting

Please conform to PEP 0008 for code formatting. This specification outlines the style that is required for patches.

Your code must follow this (or note why it can’t) before patches will be accepted. There is one consistent exception to
this rule:

E501 Line too long

The pycodestyle tests for bitmath include a --ignore option to automatically exclude E501 errors from the
tests.

2.7.3 Commit Messages

Please write intelligent commit messages.

For example:

Capitalized, short (50 chars or less) summary

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as
the subject of an email and the rest of the text as the body. The
blank line separating the summary from the body is critical (unless
you omit the body entirely); tools like rebase can get confused if
you run the two together.

Write your commit message in the imperative: "Fix bug" and not
"Fixed bug" or "Fixes bug." This convention matches up with commit
messages generated by commands like git merge and git revert.

Further paragraphs come after blank lines.

- Bullet points are okay, too

- Typically a hyphen or asterisk is used for the bullet, followed
by a single space, with blank lines in between, but conventions
vary here

- Use a hanging indent

42 Chapter 2. Contents

https://github.com/tbielawa/bitmath/issues/new
https://github.com/tbielawa/bitmath/issues
https://www.python.org/dev/peps/pep-0008
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

bitmath Documentation, Release 1.3.3

2.7.4 Pull Requests

After a pull request is submitted on GitHub two automatic processes are started:

1. Travis-CI clones the new pull request and runs the automated test suite.

2. Coveralls clones the new pull request and determines if the request would increase or decrease the overall code
test coverage.

Please check back shortly after submitting a pull request to verify that the Travis-CI process passes.

What Happens If The Build Breaks

Pull requests which break the build will be looked at closely and you may be asked to fix the tests.

The bitmath project welcomes all contributors so it’s OK if you’re unable to fix the tests yourself. Just leave a
comment in the pull request explaining so if that is the case.

Likewise, if Coveralls indicates the pull request would decrease the overall test-coverage, and you aren’t able to fix it
yourself, just leave a comment in the pull request.

2.7.5 Automated Tests

Write unittests for any new functionality, if you are up to the task. This is not a requirement, but it does get you a lot
of karma.

All bitmath code includes unit tests to verify expected functionality. In the rest of this section we’ll learn how the unit
tests are put together and how to interact with them.

Components

bitmath unit tests are integrated with/depend on the following items:

• Travis CI - Free online service providing continuous integration functionality for open source projects. Tests
are ran automatically on every git commit. Integrates with GitHub to notify you if a pull request passes or fails
all unitests.

• Coveralls - Free online service providing code test coverage reporting. Integrates with GitHub to notify you if a
pull-request would improve/decrease overall code test coverage.

• unittest - Python unit testing framework. All bitmath tests are written using this framework.

• nose - Per the nose website: “extends unittest to make testing easier”. nose is used to run our unit tests.

• coverage - A tool for measuring code coverage of Python programs. For bitmath we require a minimum test
coverage of 90%. This is invoked by nose automatically.

• pycodestyle - A tool to check Python code against some of the style conventions in PEP 0008.

• pyflakes - A simple program which checks Python source files for errors.

• virtualenv - A tool to create isolated Python environments. Allows us to install additional package dependencies
without requiring access to the system site-packages directory.

• Makefiles - Utility scripts used for project building and testing. How bitmath uses Makefiles is described later
in this section.

2.7. Contributing to bitmath 43

https://github.com/tbielawa/bitmath/pulls
https://travis-ci.org/tbielawa/bitmath
https://coveralls.io/github/tbielawa/bitmath
https://docs.python.org/2/library/unittest.html
https://travis-ci.org/
https://coveralls.io/github/tbielawa/bitmath
https://docs.python.org/2/library/unittest.html
https://nose.readthedocs.io/en/latest/
http://coverage.readthedocs.io/en/latest/
https://pypi.python.org/pypi/pycodestyle
https://www.python.org/dev/peps/pep-0008
https://pypi.python.org/pypi/pyflakes
https://virtualenv.pypa.io/en/latest/
http://www.gnu.org/software/make/

bitmath Documentation, Release 1.3.3

Targets

In the scope of this document, we use the term target in the context of makefile targets. For the purpose of this
documentation, we can think of these targets as pre-defined commands coded in a makefile. bitmath testing targets
include:

• ci - Run the tests exactly how they are ran in Travis-CI. The ci target automatically calls the pycodestyle,
pyflakes, uniquetestnames, and unittests targets.

• ci3 - Is the same as the ci target, except it runs using the Python 3.x interpreter.

• unittests - Run the functional test suite.

• pycodestyle - Run PEP 0008 syntax checks.

• pyflakes - Run pyflakes error checks.

• clean - Remove temporary files and build artifacts from the checked-out repository.

• uniquetestnames - Ensures no unit tests have the same name.

• tests - A quicker version of ci. Different from ci in that tests uses libraries installed on the local devel-
opment workstation. tests runs the unittests, pycodestyle, uniquetestnames, and pyflakes
tests automatically.

To ensure the highest degree of confidence in test results you should always use the ci and ci3 targets.

When Travis-CI runs an integration test, it calls the ci and ci3 targets.

Running the Tests

The bitmath test suite is invoked via the Makefile. The following is an example of how to run the ci test target
manually:

1 [~/Projects/bitmath] 17:22:21 (master)
2 $ make ci
3 ###
4 # Running Unique TestCase checker
5 ###
6 ./tests/test_unique_testcase_names.sh
7 ###
8 # Creating a virtualenv
9 ###

10 virtualenv bitmathenv
11 New python executable in bitmathenv/bin/python
12 Installing setuptools, pip...done.
13 . bitmathenv/bin/activate && pip install -r requirements.txt
14 Downloading/unpacking python-coveralls (from -r requirements.txt (line 1))
15 Downloading python_coveralls-2.4.3-py2.py3-none-any.whl
16 Downloading/unpacking nose (from -r requirements.txt (line 2))
17

18 ... snip ...
19

20 Convert a bitmath GiB into a Tb ... ok
21 Convert a bitmath PiB into a TiB ... ok
22 Convert a bitmath GiB into a Tib ... ok
23 Convert to kb ... ok
24 Convert a bitmath Bit into a MiB ... ok
25 bitmath type converted to the same unit is properly converted ... ok
26 float(bitmath) returns a float ... ok

(continues on next page)

44 Chapter 2. Contents

https://www.python.org/dev/peps/pep-0008

bitmath Documentation, Release 1.3.3

(continued from previous page)

27 int(bitmath) returns an int ... ok
28 long(bitmath) returns a long ... ok
29

30 Name Stmts Miss Cover Missing
31 ---------------------------------------
32 bitmath 440 1 99% 1152
33 --
34 Ran 163 tests in 0.035s
35

36 OK
37 :

On line 2 we see how to call a makefile target. In this case it’s quite straightforward: make ci. Other targets are
called in the same way. For example, to run the clean target, you run the command make clean. To run the
Python 3.x test suite, you would run the command make ci3.

Troubleshooting

If you find yourself unable to run the unit tests:

1. Search for relevant error messages

2. Read the error message closely. The solution could be hidden in the error message output. The problem could
be as simple as a missing dependency

3. If you are unable to figure out all the necessary dependencies to run the tests, file an issue on that specific
projects GitHub issue tracker. Include the full error message.

2.8 Appendices

• Rules for Math

– Terminology

– Two bitmath operands

– Mixed Types: Addition and Subtraction

– Mixed Types: Multiplication and Division

– Footnotes

• On Units

• Who uses Bitmath

• Related Projects

– Magnitude

– hurry.filesize

– SymPy - Units

– Unum

2.8. Appendices 45

https://www.google.com

bitmath Documentation, Release 1.3.3

2.8.1 Rules for Math

This section describes what we need to know to effectively use bitmath for arithmetic. Because bitmath allows the use
of instances as operands on either side of the operator it is especially important to understand their behavior. Just as
in normal every-day math, not all operations yield the same result if the operands are switched. E.g., 1 - 2 = -1
whereas 2 - 1 = 1.

This section includes discussions of the results for each supported mixed math operation. For mixed math operations
(i.e., an operation with a bitmath instance and a number type), implicit coercion may happen. That is to say, a bitmath
instance will be converted to a number type.

When coercion happens is determined by the following conditions and rules:

1. Precedence and Associativity of Operators in Python1

2. Situational semantics – some operations, though mathematically valid, do not make logical sense when applied
to context.

Terminology

The definitions describes some of the terminology used throughout this section.

Coercion The act of converting operands into a common type to support arithmetic operations. Somewhat similar to
how adding two fractions requires coercing each operand into having a common denominator.

Specific to the bitmath domain, this concept means using an instance’s prefix value for mixed-math.

Operand The object(s) of a mathematical operation. That is to say, given 1 + 2, the operands would be 1 and 2.

Operator The mathematical operation to evaluate. Given 1 + 2, the operation would be addition, +.

LHS Left-hand side. In discussion this specifically refers to the operand on the left-hand side of the operator.

RHS Right-hand side. In discussion this specifically refers to the operand on the right-hand side of the operator.

Two bitmath operands

This section describes what happens when two bitmath instances are used as operands. There are three possible results
from this type of operation.

Addition and subtraction The result will be of the type of the LHS.

Multiplication Supported, but yields strange results.

1 In [10]: first = MiB(5)
2

3 In [11]: second = kB(2)
4

5 In [12]: first * second
6 Out[12]: MiB(10000.0)
7

8 In [13]: (first * second).best_prefix()
9 Out[13]: GiB(9.765625)

As we can see on lines 6 and 9, multiplying even two relatively small quantities together (MiB(5) and kB(2)) yields
quite large results.

1 For a less technical review of precedence and associativity, see Programiz: Precedence and Associativity of Operators in Python

46 Chapter 2. Contents

https://docs.python.org/2/reference/expressions.html#operator-precedence
https://www.programiz.com/python-programming/precedence-associativity

bitmath Documentation, Release 1.3.3

Internally, this is implemented as:

(5 · 220) · (2 · 103) = 10, 485, 760, 000𝐵

10, 485, 760, 000𝐵 · 1𝑀𝑖𝐵

1, 048, 576𝐵
= 10, 000𝑀𝑖𝐵

Division The result will be a number type due to unit cancellation.

Mixed Types: Addition and Subtraction

This describes the behavior of addition and subtraction operations where one operand is a bitmath type and the other
is a number type.

Mixed-math addition and subtraction always return a type from the numbers family (integer, float, long, etc. . .).
This rule is true regardless of the placement of the operands, with respect to the operator.

Discussion: Why do 100 - KiB(90) and KiB(100) - 90 both yield a result of 10.0 and not another bitmath
instance, such as KiB(10.0)?

When implementing the math part of the object datamodel customizations2 there were two choices available:

1. Offer no support at all. Instead raise a NotImplemented exception.

2. Consistently apply coercion to the bitmath operand to produce a useful result (useful if you know the rules of
the library).

In the end it became a philosophical decision guided by scientific precedence.

Put simply, bitmath uses the significance of the least significant operand, specifically the number-type operand
because it lacks semantic significance. In application this means that we drop the semantic significance of the bitmath
operand. That is to say, given an input like GiB(13.37) (equivalent to == 13.37 * 230), the only property used in
calculations is the prefix value, 13.37.

Numbers carry mathematical significance, in the form of precision, but what they lack is semantic (contextual) sig-
nificance. A number by itself is just a measurement of an arbitrary quantity of stuff. In mixed-type math, bitmath
effectively treats numbers as mathematical constants.

A bitmath instance also has mathematical significance in that an instance is a measurement of a quantity (bits in this
case) and that quantity has a measurable precision. But a bitmath instance is more than just a measurement, it is a
specialized representation of a count of bits. This gives bitmath instances semantic significance as well.

And so, in deciding how to handle mixed-type (really what we should say is mixed-significance) operations, we chose
to model the behavior off of an already established set of rules. Those rules are the Rules of Significance Arithmetic3.

Let’s look at an example of this in action:

In [8]: num = 42

In [9]: bm = PiB(24)

In [10]: print num + bm
66.0

Equivalently, divorcing the bitmath instance from it’s value (this is coercion):

2 Python Datamodel Customization Methods
3 https://en.wikipedia.org/wiki/Significance_arithmetic

2.8. Appendices 47

https://docs.python.org/2.7/reference/datamodel.html#basic-customization
https://en.wikipedia.org/wiki/Significance_arithmetic

bitmath Documentation, Release 1.3.3

In [12]: bm_value = bm.value

In [13]: print num + bm_value
66.0

What it all boils down to is this: if we don’t provide a unit then bitmath won’t give us one back. There is no way for
bitmath to guess what unit the operand was intended to carry. Therefore, the behavior of bitmath is conservative. It
will meet us half way and do the math, but it will not return a unit in the result.

Mixed Types: Multiplication and Division

Multiplication has commutative properties. This means that the ordering of the operands is not significant. Because
of this fact bitmath allows arbitrary placement of the operands, treating the numeric operand as a constant. Here’s an
example demonstrating this.

In [2]: 10 * KiB(43)
Out[2]: KiB(430.0)

In [3]: KiB(43) * 10
Out[3]: KiB(430.0)

Division, however, does not have this commutative property. I.e., the placement of the operands is significant. Ad-
ditionally, there is a semantic difference in division. Dividing a quantity (e.g. MiB(100)) by a constant (10)
makes complete sense. Conceptually (in the domain of bitmath), the intention of MiB(100) / 10) is to sepa-
rate MiB(10) into 10 equal sized parts.

In [4]: KiB(43) / 10
Out[4]: KiB(4.2998046875)

The reverse operation does not maintain semantic validity. Stated differently, it does not make logical sense to divide
a constant by a measured quantity of stuff. If you’re still not clear on this, ask yourself what you would expect to get
if you did this:

100

𝑘𝐵(33)
= 𝑥

Footnotes

2.8.2 On Units

As previously stated, in this module you will find two very similar sets of classes available. These are the NIST and
SI prefixes. The NIST prefixes are all base 2 and have an ‘i’ character in the middle. The SI prefixes are base 10 and
have no ‘i’ character.

For smaller values, these two systems of unit prefixes are roughly equivalent. The round() operations below demon-
strate how close in a percent one “unit” of SI is to one “unit” of NIST.

1 In [15]: one_kilo = 1 * 10**3
2

3 In [16]: one_kibi = 1 * 2**10
4

5 In [17]: round(one_kilo / float(one_kibi), 2)
6

7 Out[17]: 0.98

(continues on next page)

48 Chapter 2. Contents

bitmath Documentation, Release 1.3.3

(continued from previous page)

8

9 In [18]: one_tera = 1 * 10**12
10

11 In [19]: one_tebi = 1 * 2**40
12

13 In [20]: round(one_tera / float(one_tebi), 2)
14

15 Out[20]: 0.91
16

17 In [21]: one_exa = 1 * 10**18
18

19 In [22]: one_exbi = 1 * 2**60
20

21 In [23]: round(one_exa / float(one_exbi), 2)
22

23 Out[23]: 0.87

They begin as roughly equivalent, however as you can see (lines: 7, 15, and 23), they diverge significantly for higher
values.

Why two unit systems? Why take the time to point this difference out? Why should you care? The Linux Documen-
tation Project comments on that:

Before these binary prefixes were introduced, it was fairly common to use k=1000 and K=1024, just like
b=bit, B=byte. Unfortunately, the M is capital already, and cannot be capitalized to indicate binary-ness.

At first that didn’t matter too much, since memory modules and disks came in sizes that were powers
of two, so everyone knew that in such contexts “kilobyte” and “megabyte” meant 1024 and 1048576
bytes, respectively. What originally was a sloppy use of the prefixes “kilo” and “mega” started to become
regarded as the “real true meaning” when computers were involved. But then disk technology changed,
and disk sizes became arbitrary numbers. After a period of uncertainty all disk manufacturers settled on
the standard, namely k=1000, M=1000k, G=1000M.

The situation was messy: in the 14k4 modems, k=1000; in the 1.44MB diskettes, M=1024000; etc. In
1998 the IEC approved the standard that defines the binary prefixes given above, enabling people to be
precise and unambiguous.

Thus, today, MB = 1000000B and MiB = 1048576B.

In the free software world programs are slowly being changed to conform. When the Linux kernel boots
and says:

hda: 120064896 sectors (61473 MB) w/2048KiB Cache

the MB are megabytes and the KiB are kibibytes.

• Source: man 7 units - http://man7.org/linux/man-pages/man7/units.7.html

Furthermore, to quote the National Institute of Standards and Technology (NIST):

“Once upon a time, computer professionals noticed that 210 was very nearly equal to 1000 and started
using the SI prefix “kilo” to mean 1024. That worked well enough for a decade or two because everybody
who talked kilobytes knew that the term implied 1024 bytes. But, almost overnight a much more numerous
“everybody” bought computers, and the trade computer professionals needed to talk to physicists and
engineers and even to ordinary people, most of whom know that a kilometer is 1000 meters and a kilogram
is 1000 grams.

“Then data storage for gigabytes, and even terabytes, became practical, and the storage devices were
not constructed on binary trees, which meant that, for many practical purposes, binary arithmetic was

2.8. Appendices 49

http://www.tldp.org/
http://www.tldp.org/
http://man7.org/linux/man-pages/man7/units.7.html
http://physics.nist.gov/cuu/Units/binary.html

bitmath Documentation, Release 1.3.3

less convenient than decimal arithmetic. The result is that today “everybody” does not “know” what a
megabyte is. When discussing computer memory, most manufacturers use megabyte to mean 220 = 1 048
576 bytes, but the manufacturers of computer storage devices usually use the term to mean 1 000 000
bytes. Some designers of local area networks have used megabit per second to mean 1 048 576 bit/s, but
all telecommunications engineers use it to mean 106 bit/s. And if two definitions of the megabyte are not
enough, a third megabyte of 1 024 000 bytes is the megabyte used to format the familiar 90 mm (3 1/2
inch), “1.44 MB” diskette. The confusion is real, as is the potential for incompatibility in standards and
in implemented systems.

“Faced with this reality, the IEEE Standards Board decided that IEEE standards will use the conventional,
internationally adopted, definitions of the SI prefixes. Mega will mean 1 000 000, except that the base-two
definition may be used (if such usage is explicitly pointed out on a case-by-case basis) until such time that
prefixes for binary multiples are adopted by an appropriate standards body.”

2.8.3 Who uses Bitmath

Shout-outs to all of the bitmath adopters out there I was able to identify:

• ClusterHQ’s “Flocker”. A data volume manager for Dockerized applications

• VMware’s vsphere flocker storage driver

• EMC’s scaleio flocker storage driver

• Dell Storage’s storage center block device flocker driver

• TravelCRM - Free CRM for travel companies - Bitbucket

• direscraw by Brian Mikolajczyk for recovering lost files

• sizer by Calle Liljeholm. Calculating useable capacity in a flocker cluster

2.8.4 Related Projects

Bitmath is not the first project to tackle a challenge of this nature, handling units in a sane OOP approach. Several
other Python libraries exist which provide similar functionality to bitmath. It only seems fair that we should point out
these other libraries in case bitmath isn’t the best fit for you.

Magnitude

Magnitude implements efficient computation with physical quantities. It allows you to do mathematical
operations with them as if they were numbers, taking care of the units behind the scenes.

Magnitide, from Juan Reyero, is a very extensible library for working with a large variety of units (e.g., mile
= one mile), as well as derived units (e.g., mile/hour). Scaling, such as indicating one mega byte (1 MB) is
also programmable with Magnitude. Juan is also kind enough to include a similar “related projects” section in his
documentation.

• Magnitude GitHub Project

• Magnitude Docs

hurry.filesize

hurry.filesize a simple Python library that can take a number of bytes and returns a human-readable string
with the size in it, in kilobytes (K), megabytes (M), etc.

50 Chapter 2. Contents

https://github.com/ClusterHQ
https://github.com/ClusterHQ/flocker/blob/master/flocker/common/__init__.py
https://github.com/vmware/vsphere-flocker-driver/blob/master/vsphere_flocker_plugin/vsphere_blockdevice.py
https://github.com/codedellemc/flocker-drivers/blob/master/scaleio/scaleio_flocker_driver/emc_sio.py
https://github.com/dellstorage/storagecenter-flocker-driver/blob/master/dell_storagecenter_driver/dell_storagecenter_blockdevice.py
http://www.travelcrm.org.ua/en/
https://bitbucket.org/mazvv/travelcrm
https://github.com/bmikolaj/direscraw/blob/master/errcalc.py
https://github.com/bmikolaj
https://github.com/Callero/Sizer/blob/master/sizecalc.py
https://github.com/Callero
http://juanreyero.com/open/magnitude/#orgheadline12
https://github.com/juanre/magnitude
http://juanreyero.com/open/magnitude/

bitmath Documentation, Release 1.3.3

hurry.filesize is very limited in functionality when compared to the other alternatives. However, it is an extremely
simple and lightweight module. If you’re looking for a library just for turning counts of bytes into human-readable
strings, then hurry.filesize will be great for you.

If you need any more functionality, such as greater control over output formatting, or arithmetic calculations, then you
will find hurry.filesize lacking. This project has not updated since 2009, so I would not expect to see updates any time
soon.

• PyPi Homepage & Download

SymPy - Units

This module provides around 200 predefined units that are commonly used in the sciences. Additionally,
it provides the ‘‘Unit‘‘ class which allows you to define your own units.

The Units module from the SymPy library is another option. Like Magnitude, the Units library is very extensible and
includes around 200 built-in units by default. While technically it supports handling quantities such as 1337 PiB,
this support must be configured by the user.

In contrast, the bitmath module includes classes representing the full spectrum of byte and bit based units, out of the
box. No conversion or derivation code required of the user.

• Units Homepage & Docs

• Download available through pip, or your distribution’s package system

Unum

Unum stands for ‘unit-numbers’. It is a Python module that allows to define and manipulate true quan-
tities, i.e. numbers with units such as 60 seconds, [. . .], 30 dollars etc. The module validates unit con-
sistency in arithmetic expressions; it provides also automatic conversion and output formatting. Unum is
designed to be reliable, easy-to-use, customizable and open to any unit definition.

Unum, by Pierre X. Denis, is another extensible library for unit manipulation. The module does not appear to have
seen any activity in quite some time. Looking over the docs gives me the impression that it also has a tendency to
pollute your namespace with objects like M and anything else it pre-defines.

• Unum Homepage and Docs

• Unum Source Download

2.9 NEWS

• bitmath-1.3.3-1

• bitmath-1.3.1-1

• bitmath-1.3.0-1

• bitmath-1.2.4-1

• bitmath-1.2.3-1

• bitmath-1.2.0-1

• bitmath-1.1.0-1

2.9. NEWS 51

https://pypi.python.org/pypi/hurry.filesize
http://www.sympy.org/
http://docs.sympy.org/dev/modules/physics/units.html
http://home.scarlet.be/be052320/Unum_tutorial.html
http://home.scarlet.be/be052320/download.html

bitmath Documentation, Release 1.3.3

• bitmath-1.0.5-1 through 1.0.8-1

• bitmath-1.0.4-1

2.9.1 bitmath-1.3.3-1

bitmath-1.3.3-1 was published on 2018-08-23.

Project

Version 1.3.3 is a minor update primarily released to synchronize versions across platforms. Additionally there are
small packaging updates to keep up with changing standards.

Minor bug fixes and documentation tweaks are included as well.

The project now has an official Code of Conduct, as well as issue and pull request templates.

What happened to bitmath 1.3.2? It only ever existed as an idea in source control.

Changes

Bug Fixes

Alexander Kapshuna has submitted several fixes since the last release. Thanks!

• Packaging requirements fixes

• Python 3 compatibility

• Subclassing and Type checking fixes/improvements

Marcus Kazmierczak submitted a fix for some broken documentation links.

And Dawid Gosławski make sure our documentation is accurate.

Thanks to all the bitmath contributors over the years!

2.9.2 bitmath-1.3.1-1

bitmath-1.3.1-1 was published on 2016-07-17.

Changes

Added Functionality

• New function: bitmath.parse_string_unsafe(), a less strict version of bitmath.
parse_string(). Accepts inputs using non-standard prefix units (such as single-letter, or mis-capitalized
units).

• Inspired by @darkblaze69’s request in #60 “Problems in parse_string”.

52 Chapter 2. Contents

https://github.com/tbielawa/bitmath/releases/tag/1.3.3.1
https://github.com/tbielawa/bitmath/blob/master/CODE_OF_CONDUCT.md
https://github.com/kapsh
https://github.com/tbielawa/bitmath/pulls?q=is%3Apr+author%3Akapsh
https://github.com/mkaz
https://github.com/tbielawa/bitmath/pull/75
https://github.com/alkuzad
https://github.com/tbielawa/bitmath/pull/62/files
https://github.com/tbielawa/bitmath/releases/tag/1.3.1.1
https://github.com/darkblaze69
https://github.com/tbielawa/bitmath/issues/60

bitmath Documentation, Release 1.3.3

Project

Ubuntu

• Bitmath is now available for installation via Ubuntu Xenial, Wily, Vivid, Trusty, and Precise PPAs.

• Ubuntu builds inspired by @hkraal reporting an installation issue on Ubuntu systems.

Documentation

• Cleaned up a lot of broken or re-directing links using output from the Sphinx make linkcheck command.

2.9.3 bitmath-1.3.0-1

bitmath-1.3.0-1 was published on 2016-01-08.

Changes

Bug Fixes

• Closed GitHub Issue #55 “best_prefix for negative values”. Now bitmath.best_prefix() returns correct
prefix units for negative values. Thanks mbdm!

2.9.4 bitmath-1.2.4-1

bitmath-1.2.4-1 was published on 2015-11-30.

Changes

Added Functionality

• New bitmath module function: bitmath.query_device_capacity(). Create bitmath.Byte in-
stances representing the capacity of a block device. Support is presently limited to Linux and Mac.

• The bitmath.parse_string() function now can parse ‘octet’ based units. Enhancement requested in
#53 parse french unit names by walidsa3d.

Bug Fixes

• #49 - Fix handling unicode input in the bitmath.parse_string function. Thanks drewbrew!

• #50 - Update the setup.py script to be python3.x compat. Thanks ssut!

Documentation

• The project documentation is now installed along with the bitmath library in RPM packages.

Project

Fedora/EPEL

Look for separate python3.x and python2.x packages coming soon to Fedora and EPEL. This is happening because of
the initiative to update the base Python implementation on Fedora to Python 3.x

• BZ1282560

2.9. NEWS 53

https://github.com/hkraal
https://github.com/tbielawa/bitmath/issues/57
https://github.com/tbielawa/bitmath/issues/59
https://github.com/tbielawa/bitmath/releases/tag/1.3.0.1
https://github.com/tbielawa/bitmath/issues/55
https://github.com/mbdm
https://github.com/tbielawa/bitmath/releases/tag/1.2.4-1
https://github.com/tbielawa/bitmath/issues/53
https://github.com/walidsa3d
https://github.com/tbielawa/bitmath/pull/49
https://bitmath.readthedocs.io/en/latest/module.html#bitmath-parse-string
https://github.com/drewbrew
https://github.com/tbielawa/bitmath/pull/50
https://github.com/ssut
https://getfedora.org/
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/FAD_Python_3_Porting_2015
https://bugzilla.redhat.com/show_bug.cgi?id=1282560

bitmath Documentation, Release 1.3.3

2.9.5 bitmath-1.2.3-1

bitmath-1.2.3-1 was published on 2015-01-03.

Changes

Added Functionality

• New utility: progressbar integration: bitmath.integrations.BitmathFileTransferSpeed. A more functional
file transfer speed widget.

Documentation

• The command-line bitmath tool now has online documentation

• A full demo of the argparse and progressbar integrations has been written. Additionally, it includes
a comprehensive demonstration of the full capabilities of the bitmath library. View it in the Real Life Demos
Creating Download Progress Bars example.

Project

Tests

• Travis-CI had some issues with installing dependencies for the 3.x build unittests. These were fixed and the
build status has returned back to normal.

2.9.6 bitmath-1.2.0-1

bitmath-1.2.0-1 was published on 2014-12-29.

Changes

Added Functionality

• New utility: argparse integration: bitmath.BitmathType. Allows you to specify arguments as bitmath types.

Documentation

• The command-line bitmath tool now has a proper manpage

Project

Tests

• The command-line bitmath tool is now properly unittested. Code coverage back to ~100%.

2.9.7 bitmath-1.1.0-1

bitmath-1.1.0-1 was published on 2014-12-20.

• GitHub Milestone Tracker for 1.1.0

54 Chapter 2. Contents

https://github.com/tbielawa/bitmath/releases/tag/1.2.3-1
http://bitmath.readthedocs.io/en/latest/module.html#progressbar
http://bitmath.readthedocs.io/en/latest/commandline.html
http://bitmath.readthedocs.io/en/latest/real_life_examples.html#real-life-examples-download-progress-bars
https://github.com/tbielawa/bitmath/releases/tag/1.2.0-1
https://bitmath.readthedocs.io/en/latest/module.html#argparse
https://github.com/tbielawa/bitmath/blob/master/bitmath.1.asciidoc.in
https://github.com/tbielawa/bitmath/releases/tag/1.1.0-1
https://github.com/tbielawa/bitmath/milestones/1.1.0

bitmath Documentation, Release 1.3.3

Changes

Added Functionality

• New bitmath command-line tool added. Provides CLI access to basic unit conversion functions

• New utility function bitmath.parse_string for parsing a human-readable string into a bitmath object. Patch
submitted by new contributor tonycpsu.

2.9.8 bitmath-1.0.5-1 through 1.0.8-1

bitmath-1.0.8-1 was published on 2014-08-14.

• GitHub Milestone Tracker for 1.0.8

Major Updates

• bitmath has a proper documentation website up now on Read the Docs, check it out: bitmath.readthedocs.io

• bitmath is now Python 3.x compatible

• bitmath is now included in the Extra Packages for Enterprise Linux EPEL6 and EPEL7 repositories (pkg info)

• merged 6 pull requests from 3 contributors

Bug Fixes

• fixed some math implementation bugs

– commutative multiplication

– true division

Changes

Added Functionality

• best-prefix guessing: automatic best human-readable unit selection

• support for bitwise operations

• formatting customization methods (including plural/singular selection)

• exposed many more instance attributes (all instance attributes are usable in custom formatting)

• a context manager for applying formatting to an entire block of code

• utility functions for sizing files and directories

• add instance properties equivalent to instance.to_THING() methods

Project

Tests

• Test suite is now implemented using Python virtualenv’s for consistency across across platforms

• Test suite now contains 150 unit tests. This is 110 more tests than the previous major release (1.0.4-1)

2.9. NEWS 55

https://github.com/tbielawa/bitmath/issues/35
http://bitmath.readthedocs.io/en/latest//module.html#bitmath-parse-string
https://github.com/tbielawa/bitmath/pull/42
https://github.com/tbielawa/bitmath/pull/42
https://github.com/tonycpsu
https://github.com/tbielawa/bitmath/releases/tag/1.0.8-1
https://github.com/tbielawa/bitmath/issues?q=milestone%3A1.0.8
http://bitmath.readthedocs.io/en/latest/
https://fedoraproject.org/wiki/EPEL
https://admin.fedoraproject.org/pkgdb/package/rpms/python-bitmath/
https://github.com/tbielawa/bitmath/pulls?q=is%3Apr+closed%3A%3C2014-08-28
https://github.com/tbielawa/bitmath/graphs/contributors
https://github.com/tbielawa/bitmath/issues/18
https://github.com/tbielawa/bitmath/issues/2
http://bitmath.readthedocs.io/en/latest/instances.html#best-prefix
http://bitmath.readthedocs.io/en/latest/simple_examples.html#bitwise-operations
http://bitmath.readthedocs.io/en/latest/instances.html#format
http://bitmath.readthedocs.io/en/latest/instances.html#instances-attributes
http://bitmath.readthedocs.io/en/latest/module.html#bitmath-format
http://bitmath.readthedocs.io/en/latest/module.html#bitmath-getsize
http://bitmath.readthedocs.io/en/latest/module.html#bitmath-listdir
http://bitmath.readthedocs.io/en/latest/instances.html#instance-properties
https://github.com/tbielawa/bitmath/blob/master/Makefile#L177
bitmath-1.0.4-1

bitmath Documentation, Release 1.3.3

• Test suite now runs on EPEL6 and EPEL7

• Code coverage is stable around 95-100%

2.9.9 bitmath-1.0.4-1

This is the first release of bitmath. bitmath-1.0.4-1 was published on 2014-03-20.

Project

Available via:

• PyPi

• Fedora 19

• Fedora 20

bitmath had been under development for 12 days when the 1.0.4-1 release was made available.

Debut Functionality

• Converting between SI and NIST prefix units (GiB to kB)

• Converting between units of the same type (SI to SI, or NIST to NIST)

• Basic arithmetic operations (subtracting 42KiB from 50GiB)

• Rich comparison operations (1024 Bytes == 1KiB)

• Sorting

• Useful console and print representations

2.10 Contact

Hi, I’m Tim Bielawa, the bitmath maintainer. Would you like to get in touch? Maybe you want to peek at other stuff
I’m working on? Go right ahead:

Blog I maintain a blog which mostly covers technical problems I encounter that I think are interesting and how I
solved them. Lots of rich commentary and details included!

• Technitribe

Open Source Almost every project I work on, code or not, ends up on GitHub eventually. You can see what else I’ve
been busy with on my profile.

• GitHub: tbielawa

Tweet-Tweet I have been known to tweet from time to time.

• @tbielawa

Bugs/Issues/Requests All contributions related directly to the bitmath project, i.e. bug reports or feature requests,
should be posted to the project issue tracker on GitHub. Please see the Contributing section for more informa-
tion.

• Contributing

56 Chapter 2. Contents

https://coveralls.io/github/tbielawa/bitmath
https://github.com/tbielawa/bitmath/releases/tag/1.0.4-1
https://pypi.python.org/pypi/bitmath/
https://blog.lnx.cx
https://github.com/tbielawa/
https://twitter.com/tbielawa

bitmath Documentation, Release 1.3.3

Saying hello I’m on the freenode IRC network Monday through Friday, from around 9am EST through 5pm EST.

• Issue a /who tbielawa* command to the server, a handle with the netmask ~tbielawa@redhat/
tbielawa will appear for you to /query if I’m online.

E-Mail If you want to contact me directly, clone the project and look at any of my bitmath commits to find my email
address.

2.11 Copyright

The MIT License (MIT)

Copyright © 2014-2016 Tim Bielawa <timbielawa@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

2.12 Examples

2.12.1 Arithmetic

>>> import bitmath
>>> log_size = bitmath.kB(137.4)
>>> log_zipped_size = bitmath.Byte(987)
>>> print "Compression saved %s space" % (log_size - log_zipped_size)
Compression saved 136.413kB space
>>> thumb_drive = bitmath.GiB(12)
>>> song_size = bitmath.MiB(5)
>>> songs_per_drive = thumb_drive / song_size
>>> print songs_per_drive
2457.6

2.12.2 Convert Units

File size unit conversion:

>>> from bitmath import *
>>> dvd_size = GiB(4.7)
>>> print "DVD Size in MiB: %s" % dvd_size.to_MiB()
DVD Size in MiB: 4812.8 MiB

2.11. Copyright 57

https://freenode.net/
https://github.com/tbielawa/bitmath
https://github.com/tbielawa/bitmath/commits/master?author=tbielawa
mailto:timbielawa@gmail.com

bitmath Documentation, Release 1.3.3

2.12.3 Select a human-readable unit

>>> small_number = kB(100)
>>> ugly_number = small_number.to_TiB()

>>> print ugly_number
9.09494701773e-08 TiB
>>> print ugly_number.best_prefix()
97.65625 KiB

2.12.4 Rich Comparison

>>> cd_size = MiB(700)
>>> cd_size > dvd_size
False
>>> cd_size < dvd_size
True
>>> MiB(1) == KiB(1024)
True
>>> MiB(1) <= KiB(1024)
True

2.12.5 Sorting

>>> sizes = [KiB(7337.0), KiB(1441.0), KiB(2126.0), KiB(2178.0),
KiB(2326.0), KiB(4003.0), KiB(48.0), KiB(1770.0),
KiB(7892.0), KiB(4190.0)]

>>> print sorted(sizes)
[KiB(48.0), KiB(1441.0), KiB(1770.0), KiB(2126.0), KiB(2178.0),
KiB(2326.0), KiB(4003.0), KiB(4190.0), KiB(7337.0), KiB(7892.0)]

2.12.6 Custom Formatting

• Use of the custom formatting system

• All of the available instance properties

Example:

>>> longer_format = """Formatting attributes for %s
...: This instances prefix unit is {unit}, which is a {system} type unit
...: The unit value is {value}
...: This value can be truncated to just 1 digit of precision: {value:.1f}
...: In binary this looks like: {binary}
...: The prefix unit is derived from a base of {base}
...: Which is raised to the power {power}
...: There are {bytes} bytes in this instance
...: The instance is {bits} bits large
...: bytes/bits without trailing decimals: {bytes:.0f}/{bits:.0f}""" % str(ugly_

→˓number)

(continues on next page)

58 Chapter 2. Contents

bitmath Documentation, Release 1.3.3

(continued from previous page)

>>> print ugly_number.format(longer_format)
Formatting attributes for 5.96046447754 MiB
This instances prefix unit is MiB, which is a NIST type unit
The unit value is 5.96046447754
This value can be truncated to just 1 digit of precision: 6.0
In binary this looks like: 0b10111110101111000010000000
The prefix unit is derived from a base of 2
Which is raised to the power 20
There are 6250000.0 bytes in this instance
The instance is 50000000.0 bits large
bytes/bits without trailing decimals: 6250000/50000000

2.12.7 Utility Functions

bitmath.getsize()

>>> print bitmath.getsize('python-bitmath.spec')
3.7060546875 KiB

bitmath.parse_string()

Parse a string with standard units:

>>> import bitmath
>>> a_dvd = bitmath.parse_string("4.7 GiB")
>>> print type(a_dvd)
<class 'bitmath.GiB'>
>>> print a_dvd
4.7 GiB

bitmath.parse_string_unsafe()

Parse a string with ambiguous units:

>>> import bitmath
>>> a_gig = bitmath.parse_string_unsafe("1gb")
>>> print type(a_gig)
<class 'bitmath.GB'>
>>> a_gig == bitmath.GB(1)
True
>>> bitmath.parse_string_unsafe('1gb') == bitmath.parse_string_unsafe('1g')
True

bitmath.query_device_capacity()

>>> import bitmath
>>> with open('/dev/sda') as fp:
... root_disk = bitmath.query_device_capacity(fp)
... print root_disk.best_prefix()
...
238.474937439 GiB

bitmath.listdir()

2.12. Examples 59

bitmath Documentation, Release 1.3.3

>>> for i in bitmath.listdir('./tests/', followlinks=True, relpath=True,
→˓bestprefix=True):
... print i
...
('tests/test_file_size.py', KiB(9.2900390625))
('tests/test_basic_math.py', KiB(7.1767578125))
('tests/__init__.py', KiB(1.974609375))
('tests/test_bitwise_operations.py', KiB(2.6376953125))
('tests/test_context_manager.py', KiB(3.7744140625))
('tests/test_representation.py', KiB(5.2568359375))
('tests/test_properties.py', KiB(2.03125))
('tests/test_instantiating.py', KiB(3.4580078125))
('tests/test_future_math.py', KiB(2.2001953125))
('tests/test_best_prefix_BASE.py', KiB(2.1044921875))
('tests/test_rich_comparison.py', KiB(3.9423828125))
('tests/test_best_prefix_NIST.py', KiB(5.431640625))
('tests/test_unique_testcase_names.sh', Byte(311.0))
('tests/.coverage', KiB(3.1708984375))
('tests/test_best_prefix_SI.py', KiB(5.34375))
('tests/test_to_built_in_conversion.py', KiB(1.798828125))
('tests/test_to_Type_conversion.py', KiB(8.0185546875))
('tests/test_sorting.py', KiB(4.2197265625))
('tests/listdir_symlinks/10_byte_file_link', Byte(10.0))
('tests/listdir_symlinks/depth1/depth2/10_byte_file', Byte(10.0))
('tests/listdir_nosymlinks/depth1/depth2/10_byte_file', Byte(10.0))
('tests/listdir_nosymlinks/depth1/depth2/1024_byte_file', KiB(1.0))
('tests/file_sizes/kbytes.test', KiB(1.0))
('tests/file_sizes/bytes.test', Byte(38.0))
('tests/listdir/10_byte_file', Byte(10.0))

2.12.8 Formatting

>>> with bitmath.format(fmt_str="[{value:.3f}@{unit}]"):
... for i in bitmath.listdir('./tests/', followlinks=True, relpath=True,
→˓bestprefix=True):
... print i[1]
...
[9.290@KiB]
[7.177@KiB]
[1.975@KiB]
[2.638@KiB]
[3.774@KiB]
[5.257@KiB]
[2.031@KiB]
[3.458@KiB]
[2.200@KiB]
[2.104@KiB]
[3.942@KiB]
[5.432@KiB]
[311.000@Byte]
[3.171@KiB]
[5.344@KiB]
[1.799@KiB]
[8.019@KiB]
[4.220@KiB]

(continues on next page)

60 Chapter 2. Contents

bitmath Documentation, Release 1.3.3

(continued from previous page)

[10.000@Byte]
[10.000@Byte]
[10.000@Byte]
[1.000@KiB]
[1.000@KiB]
[38.000@Byte]
[10.000@Byte]

2.12.9 argparse Integration

Example script using bitmath.integrations.bmargparse.BitmathType as an argparser argument type:

import argparse
from bitmath.integrations.bmargparse import BitmathType
parser = argparse.ArgumentParser(

description="Arg parser with a bitmath type argument")
parser.add_argument('--block-size',

type=BitmathType,
required=True)

results = parser.parse_args()
print "Parsed in: {PARSED}; Which looks like {TOKIB} as a Kibibit".format(

PARSED=results.block_size,
TOKIB=results.block_size.Kib)

If ran as a script the results would be similar to this:

$ python ./bmargparse.py --block-size 100MiB
Parsed in: 100.0 MiB; Which looks like 819200.0 Kib as a Kibibit

2.12.10 click Integration

Example script using bitmath.integrations.bmclick.BitmathType as an click parameter type:

import click
from bitmath.integrations.bmclick import BitmathType

@click.command()
@click.argument('size', type=BitmathType())
def best_prefix(size):

click.echo(size.best_prefix())

If ran as a script the results should be similar to this:

$ python ./bestprefix.py "1024 KiB"
1.0 MiB

2.12.11 progressbar Integration

Use bitmath.integrations.bmprogressbar.BitmathFileTransferSpeed as a progressbar
file transfer speed widget to monitor download speeds:

2.12. Examples 61

bitmath Documentation, Release 1.3.3

import requests
import progressbar
import bitmath
from bitmath.integrations.bmprogressbar import BitmathFileTransferSpeed

FETCH = 'https://www.kernel.org/pub/linux/kernel/v3.0/patch-3.16.gz'
widgets = ['Bitmath Progress Bar Demo: ', ' ',

progressbar.Bar(marker=progressbar.RotatingMarker()), ' ',
BitmathFileTransferSpeed()]

r = requests.get(FETCH, stream=True)
size = bitmath.Byte(int(r.headers['Content-Length']))
pbar = progressbar.ProgressBar(widgets=widgets, maxval=int(size),

term_width=80).start()
chunk_size = 2048
with open('/dev/null', 'wb') as fd:

for chunk in r.iter_content(chunk_size):
fd.write(chunk)
if (pbar.currval + chunk_size) < pbar.maxval:

pbar.update(pbar.currval + chunk_size)
pbar.finish()

If ran as a script the results would be similar to this:

$ python ./smalldl.py
Bitmath Progress Bar Demo: ||| 1.58 MiB/s

62 Chapter 2. Contents

Python Module Index

b
bitmath, 5
bitmath.integrations, 16

63

bitmath Documentation, Release 1.3.3

64 Python Module Index

Index

Symbols
-from-stdin

bitmath command line option, 19
-f <IN_UNIT>

bitmath command line option, 19
-t <OUT_UNIT>

bitmath command line option, 19

A
ALL_UNIT_TYPES (in module bitmath), 16

B
base (BitMathInstance attribute), 24
best_prefix(), 26
bin (BitMathInstance attribute), 24
binary (BitMathInstance attribute), 24
Bit (class in bitmath), 21
Bitmath (class in bitmath), 22
bitmath (module), 5
bitmath command line option

-from-stdin, 19
-f <IN_UNIT>, 19
-t <OUT_UNIT>, 19

bitmath.integrations (module), 16
BitmathFileTransferSpeed (class in bit-

math.integrations), 18
BitmathType() (in module bitmath.integrations), 17
bits (BitMathInstance attribute), 24
Byte (class in bitmath), 21
bytes (BitMathInstance attribute), 24

E
EB (class in bitmath), 21
Eb (class in bitmath), 21
EiB (class in bitmath), 21
Eib (class in bitmath), 21

F
format() (BitMathInstance method), 27

format() (in module bitmath), 13
format_plural (in module bitmath), 15
format_string (in module bitmath), 15
from_other() (bitmath.Byte class method), 23

G
GB (class in bitmath), 21
Gb (class in bitmath), 21
getsize() (in module bitmath), 6
GiB (class in bitmath), 21
Gib (class in bitmath), 21

K
kB (class in bitmath), 21
kb (class in bitmath), 21
KiB (class in bitmath), 21
Kib (class in bitmath), 21

L
listdir() (in module bitmath), 6

M
MB (class in bitmath), 21
Mb (class in bitmath), 21
MiB (class in bitmath), 21
Mib (class in bitmath), 21

N
NIST (in module bitmath), 15
NIST_PREFIXES (in module bitmath), 16
NIST_STEPS (in module bitmath), 16

P
parse_string() (in module bitmath), 8
parse_string_unsafe() (in module bitmath), 10
PB (class in bitmath), 21
Pb (class in bitmath), 21
PiB (class in bitmath), 22
Pib (class in bitmath), 22

65

bitmath Documentation, Release 1.3.3

power (BitMathInstance attribute), 24
Python Enhancement Proposals

PEP 318, 13
PEP 343, 13

Python Enhancement Proposals
PEP 0008, 42–44

Q
query_device_capacity() (in module bitmath),

11

S
SI (in module bitmath), 16
SI_PREFIXES (in module bitmath), 16
SI_STEPS (in module bitmath), 16
system (BitMathInstance attribute), 24

T
TB (class in bitmath), 22
Tb (class in bitmath), 22
TiB (class in bitmath), 22
Tib (class in bitmath), 22

U
unit (BitMathInstance attribute), 25
unit_plural (BitMathInstance attribute), 25
unit_singular (BitMathInstance attribute), 25

V
value (BitMathInstance attribute), 25

Y
YB (class in bitmath), 22
Yb (class in bitmath), 22

Z
ZB (class in bitmath), 22
Zb (class in bitmath), 22

66 Index

	Installation
	Contents
	The bitmath Module
	The bitmath command-line Tool
	Classes
	Instances
	Getting Started
	Real Life Examples
	Contributing to bitmath
	Appendices
	NEWS
	Contact
	Copyright
	Examples

	Python Module Index
	Index

