

Welcome to Bitburner’s documentation!

Bitburner is a programming-based incremental game [https://en.wikipedia.org/wiki/Incremental_game]
that revolves around hacking and cyberpunk themes. The game is currently in the
early beta stage of development. It can be played here [https://danielyxie.github.io/bitburner/].

What is Bitburner?

Bitburner is a cyberpunk-themed incremental RPG where you, the player, take the role of an unknown hacker in a dark, dystopian world.
When a mysterious hacker called jump3R messages you, he/she confirms your suspicions that there is something wrong with the world around you.
Now, aided by jump3R, you embark on a quest to gain money and power by any means necessary, in the hopes that this will lead to to uncover the
secrets that you’ve been searching for.

Contents:

	 Full documentation [https://github.com/danielyxie/bitburner/blob/dev/markdown/bitburner.ns.md]

	 Basic documentation
	 Full documentation [https://github.com/danielyxie/bitburner/blob/dev/markdown/bitburner.ns.md]

	 Learn to Program
	For Beginner Programmers

	For Experienced Programmers

	Netscript 1.0 vs Netscript 2.0

	 Netscript 1.0
	Which ES6+ features are supported?

	 NetscriptJS (Netscript 2.0)
	Browser compatibility

	How to use ns2

	Example

	What’s with the weird comment

	 Script Arguments

	 Basic Functions
	hack()

	grow()

	weaken()

	sleep()

	print()

	tprint()

	disableLog()

	enableLog()

	isLogEnabled()

	scan()

	nuke()

	brutessh()

	ftpcrack()

	relaysmtp()

	httpworm()

	sqlinject()

	run()

	exec()

	spawn()

	kill()

	killall()

	scp()

	ls()

	ps()

	hasRootAccess()

	getHackingLevel()

	getHackingMultipliers()

	getHacknetMultipliers()

	getServerMoneyAvailable()

	getServerMaxMoney()

	getServerSecurityLevel()

	getServerMinSecurityLevel()

	getServerRequiredHackingLevel()

	getServerNumPortsRequired()

	getServerMaxRam()

	getServerUsedRam()

	serverExists()

	fileExists()

	isRunning()

	getPurchasedServerCost()

	purchaseServer()

	deleteServer()

	getPurchasedServers()

	getPurchasedServerLimit()

	getPurchasedServerMaxRam()

	scriptRunning()

	scriptKill()

	getScriptRam()

	 Advanced Functions
	autocomplete()

	Injecting HTML

	 Hacknet Node API
	numNodes()

	purchaseNode()

	getPurchaseNodeCost()

	getNodeStats()

	upgradeLevel()

	upgradeRam()

	upgradeCore()

	getLevelUpgradeCost()

	getRamUpgradeCost()

	getCoreUpgradeCost()

	Referencing a Hacknet Node

	RAM Cost

	Utilities

	Example(s)

	 Miscellaneous
	Netscript Ports

	Comments

	Importing Functions

	Standard, Built-In JavaScript Objects

	 Basic Gameplay
	Stats
	Hacking

	Strength

	Defense

	Dexterity

	Agility

	Charisma

	Terminal
	Filesystem (Directories)
	Directories

	Absolute vs Relative Paths

	Netscript

	Missing Features

	Commands
	alias

	analyze

	backdoor

	buy

	cat

	cd

	check

	clear/cls

	connect

	download

	expr

	free

	hack

	help

	home

	hostname

	ifconfig

	kill

	killall

	ls

	lscpu

	mem

	mv

	nano

	ps

	rm

	run

	scan

	scan-analyze

	scp

	sudov

	tail

	top

	unalias

	wget

	Argument Parsing

	Chaining Commands

	Servers
	Server RAM

	Identifying Servers

	Player-owned Servers

	Hackable Servers

	Hacking
	Gaining Root Access

	General Hacking Mechanics

	Server Security

	Backdoors

	Scripts
	Script Arguments

	Identifying a Script

	Multithreading scripts

	Working with Scripts in Terminal

	Working with Scripts in Netscript

	Notes about how Scripts Work Offline

	World

	Factions
	List of Factions and their Requirements

	Augmentations
	How to acquire Augmentations

	Installing Augmentations

	Purchasing Multiple Augmentations

	Companies

	Crimes
	Basic Mechanics

	Crime details

	Infiltration
	Overview

	Stock Market
	Fundamentals
	Positions: Long vs Short

	Forecast & Second-Order Forecast

	Spread (Bid Price & Ask Price)

	Transactions Influencing Stock Forecast

	Order Types

	Player Actions Influencing Stocks

	Automating the Stock Market

	Under the Hood

	Offline Progression

	Coding Contracts
	Running in Terminal

	Interacting through Scripts

	Submitting Solutions

	Rewards

	Notes

	List of all Problem Types

	 Advanced Gameplay
	BitNodes
	What is a BitNode

	How to destroy a BitNode

	Source-Files
	List of all Source-Files

	Intelligence

	Sleeves
	Duplicate Sleeves
	Obtaining Duplicate Sleeves

	Synchronization

	Sleeve Shock

	Augmentations

	Memory

	Grafting

	Hacking algorithms
	Self-contained algorithms

	Loop algorithms

	Hacking managers (proto-batchers)

	Batch algorithms (HGW, HWGW, or Cycles)

	 Remote API
	Methods
	pushFile

	getFile

	deleteFile

	getFileNames

	getAllFiles

	calculateRam

	getDefinitionFile

	 Keyboard Shortcuts
	Game Navigation

	Terminal Shortcuts

	Terminal Bash Shortcuts

	Popup/Dialog Box Shortcuts

	 Game Frozen or Stuck?
	Infinite Loop in NetscriptJS

	Blackscreen

	Bug

	 Guides & Tips
	 Getting Started Guide for Beginner Programmers
	Introduction

	First Steps

	Creating our First Script

	Running our Scripts

	Increasing Hacking Level

	Editing our Hacking Script

	Creating a New Script to Purchase New Servers

	Additional Sources of Income
	Hacknet Nodes

	Crime

	Work for a Company

	After you Purchase your New Servers

	Reaching a Hacking Level of 50
	Creating your first program: BruteSSH.exe

	Optional: Create AutoLink.exe

	Joining your first faction: CyberSec

	Using Additional Servers to Hack Joesguns
	Copying our Scripts

	Profiting from Scripts & Gaining Reputation with CyberSec

	Purchasing Upgrades and Augmentations
	Upgrading RAM on Home computer

	Purchasing your First Augmentations

	Next Steps
	Installing Augmentations (and Resetting)

	Automating the Script Startup Process

	Random Tips

	 What BitNode should I do?
	Overview of each BitNode
	BitNode-1: Source Genesis

	BitNode-2: Rise of the Underworld

	BitNode-3: Corporatocracy

	BitNode-4: The Singularity

	BitNode-5: Artificial Intelligence

	BitNode-6: Bladeburners

	BitNode-7: Bladeburners 2079

	BitNode-8: Ghost of Wall Street

	BitNode-9: Hacktocracy

	BitNode-10: Digital Carbon

	BitNode-11: The Big Crash

	BitNode-12: The Recursion

	BitNode-13: They’re lunatics

	Recommended BitNodes
	For fast progression

	For the strongest Source-Files

	For more scripting/hacking

	For new mechanics

	For a Challenge

	 Tools & Resources
	Official Script Repository

	Visual Studio Code Extension

	 Changelog
	v2.1.0 - 2022-09-23 Remote File API

	v2.0.0 - 2022-07-19 Work rework

	v1.6.3 - 2022-04-01 Few stanek fixes

	v1.6.0 - 2022-03-29 Grafting

	v1.5.0 - Steam Cloud integration

	v1.4.0 - 2022-01-18 Sharing is caring

	v1.3.0 - 2022-01-04 Cleaning up

	v1.1.0 - 2021-12-18 You guys are awesome (community because they’re god damn awesome)

	v1.1.0 - 2021-12-03 BN13: They’re Lunatics (hydroflame & community)

	v1.0.2 - 2021-11-17 It’s the little things (hydroflame)

	v1.0.1 - 2021-11-17 New documentation (hydroflame)

	v1.0.0 - 2021-11-10 Breaking the API :((blame hydroflame)

	v0.58.0 - 2021-10-27 Road to Steam (hydroflame & community)

	v0.57.0 - 2021-10-16 It was too cheap! (hydroflame & community)

	v0.56.0 - 2021-10-11 Trimming the backlog (hydroflame & community)

	v0.55.0 - 2021-09-20 Material UI (hydroflame & community)

	v0.54.0 - 2021-09-20 One big react node (hydroflame & community)

	v0.53.0 - 2021-09-09 Way too many things. (hydroflame & community)

	v0.52.9 - 2021-08-27 Less lag! (hydroflame & community)

	v0.52.8 - 2021-08-23 Fixing the previous patch tbh ROUND 2 (hydroflame)

	v0.52.7 - 2021-08-21 Fixing the previous patch tbh (hydroflame)

	v0.52.6 - 2021-08-21 Logboxes and VS-code (hydroflame)

	v0.52.5 - 2021-08-19 CPU cores are useful!? (hydroflame)

	v0.52.4 - 2021-08-19 Bladeburner in React (hydroflame)

	v0.52.3 - 2021-08-15 Gangs were OP (hydroflame)

	v0.52.2 - 2021-08-15 Oh yeah, BN11 is a thing (drunk hydroflame tbh)

	v0.52.1 - 2021-08-10 bugfixing (hydroflame & community)

	v0.52.0 - 2021-06-13 Infiltration 2.0 (hydroflame & community)

	v0.51.10 - 2021-05-31 Focus Mark, Focus! (hydroflame)

	v0.51.9 - 2021-05-17 offline progress and exports! (hydroflame & community)

	v0.51.8 - 2021-05-07 It was there all along (hydroflame & community)

	v0.51.7 - 2021-04-28 n00dles (hydroflame & community)

	v0.51.6 - 2021-04-28 Backdoor! (hydroflame & community)

	v0.51.5 - 2021-04-20 Flags! (hydroflame)

	v0.51.4 - 2021-04-19 Manual hacking is fun (hydroflame)

	v0.51.3 - 2021-04-16 Y’all broke it on the first day (hydroflame)

	v0.51.2 - 2021-04-09 Vegas, Baby! (hydroflame)

	v0.51.1 - 2021-04-06 Bugfixes because the author of the last patch sucks (it’s hydroflame)

	v0.51.0 - 2021-03-31 Formulas (hydroflame)

	v0.50.2 - 2021-03-25 Everyone asked for this one. (hydroflame)

	v0.50.1 - 2021-03-22 (hydroflame)

	v0.50.0 - 2021-03-20 Intelligence (hydroflame)

	v0.49.2 - 2021-03-13 (hydroflame)

	v0.49.0 - 2021-03-11 Source-File -1 (hydroflame)

	v0.48.0 - ASCII - 2021-03-07 (hydroflame)

	v0.47.2 - 7/15/2019

	v0.47.1 - 6/27/2019

	v0.47.0 - 5/17/2019

	v0.46.3 - 4/20/2019

	v0.46.2 - 4/14/2019

	v0.46.1 - 4/12/2019

	v0.46.0 - 4/3/2019

	v0.45.1 - 3/23/2019

	v0.45.0 - 3/22/2019

	v0.44.1 - 3/4/2019

	v0.44.0 - 2/26/2019

	v0.43.1 - 2/11/2019

	v0.43.0 - 2/4/2019

	v0.42.0 - 1/8/2019

	v0.41.2 - 11/23/2018

	v0.41.1 - 11/5/2018

	v0.41.0 - 10/29/2018

	v0.40.5 - 10/09/2018

	v0.40.4 - 9/29/2018

	v0.40.3 - 9/15/2018

	v0.40.2 - 8/27/2018

	v0.40.1 - 8/5/2018 - Community Update

	v0.40.0 - 7/28/2018

	v0.39.1 - 7/4/2018

	v0.39.0 - 6/25/2018

	v0.38.1 - 6/15/2018

	v0.38.0 - 6/12/2018

	v0.37.2 - 6/2/2018

	v0.37.1 - 5/22/2018

	v0.37.0 - 5/20/2018

	v0.36.1 - 5/11/2018

	v0.36.0 - 5/2/2018

	v0.35.2 - 3/26/2018

	v0.35.1 - 3/12/2018

	v0.35.0 - 3/3/2018

	v0.34.5 - 2/24/2018

	v0.34.4 - 2/14/2018

	v0.34.3 - 1/31/2018

	v0.34.2 - 1/27/2018

	v0.34.1 - 1/19/2018

	v0.34.0 - 12/6/2017

	v0.33.0 - 12/1/2017

	v0.32.1 - 11/2/2017

	v0.32.0 - 10/25/2017

	v0.31.0 - 10/15/2017

	v0.30.0 - 10/9/2017

	v0.29.3 - 10/3/2017

	v0.29.2 - 10/1/2017

	v0.29.1 - 9/27/2017

	v0.29.0 - 9/19/2017

	v0.28.6 - 9/15/2017

	v0.28.5 - 9/13/2017

	v0.28.4 - 9/11/2017

	v0.28.3 - 9/7/2017

	v0.28.2 - 9/4/2017

	v0.28.1 - 9/1/2017

	v0.28.0 - 8/30/2017

	v0.27.3 - 8/19/2017

	v0.27.2 - 8/18/2017

	v0.27.1 - 8/15/2017

	v0.27.0 - 8/13/2017

	v0.26.4 - 8/1/2017

	v0.26.3

	v0.26.2

	v0.26.1

	v0.26.0

	v0.25.0

	v0.24.1

	v0.24.0

	v0.23.1

	v0.23.0

	v0.22.1

	v0.22.0 - Major rebalancing, optimization, and favor system

	v0.21.1

	v0.21.0

	v0.20.2

	v0.20.1

	v0.20.0

	v0.19.7

	v0.19.6

	v0.19.0

	v0.18.0

	v0.17.1

	v0.17.0

	v0.16.0

	v0.15.0

	 v1.0.0 script migration guide

	 v2.0.0 script migration guide
	Working

	commitCrime

	getPlayer

	workForCompany

	getScriptIncome & getScriptExpGain

	scp

	Singularity

	stock.buy, stock.sell, stock.short

	corporation.bribe

	 404

	 Donate [https://paypal.me/danielyxie]

Indices and tables

	Index

	Module Index

	Search Page

Netscript

Netscript is the programming language used in the world of Bitburner.

When you write scripts in Bitburner, they are written in the Netscript language.
Netscript is simply a subset of JavaScript [https://developer.mozilla.org/en-US/docs/Web/JavaScript].
This means that Netscript’s syntax is
identical to that of JavaScript, but it does not implement some of the features
that JavaScript has.

Sections:

	 Full documentation [https://github.com/danielyxie/bitburner/blob/dev/markdown/bitburner.ns.md]

	 Learn to Program
	For Beginner Programmers

	For Experienced Programmers

	Netscript 1.0 vs Netscript 2.0

	 Netscript 1.0
	Which ES6+ features are supported?

	 NetscriptJS (Netscript 2.0)
	Browser compatibility

	How to use ns2

	Example

	What’s with the weird comment

	 Script Arguments

	 Basic Functions
	hack()

	grow()

	weaken()

	sleep()

	print()

	tprint()

	disableLog()

	enableLog()

	isLogEnabled()

	scan()

	nuke()

	brutessh()

	ftpcrack()

	relaysmtp()

	httpworm()

	sqlinject()

	run()

	exec()

	spawn()

	kill()

	killall()

	scp()

	ls()

	ps()

	hasRootAccess()

	getHackingLevel()

	getHackingMultipliers()

	getHacknetMultipliers()

	getServerMoneyAvailable()

	getServerMaxMoney()

	getServerSecurityLevel()

	getServerMinSecurityLevel()

	getServerRequiredHackingLevel()

	getServerNumPortsRequired()

	getServerMaxRam()

	getServerUsedRam()

	serverExists()

	fileExists()

	isRunning()

	getPurchasedServerCost()

	purchaseServer()

	deleteServer()

	getPurchasedServers()

	getPurchasedServerLimit()

	getPurchasedServerMaxRam()

	scriptRunning()

	scriptKill()

	getScriptRam()

	 Advanced Functions
	autocomplete()

	Injecting HTML

	 Hacknet Node API
	numNodes()

	purchaseNode()

	getPurchaseNodeCost()

	getNodeStats()

	upgradeLevel()

	upgradeRam()

	upgradeCore()

	getLevelUpgradeCost()

	getRamUpgradeCost()

	getCoreUpgradeCost()

	Referencing a Hacknet Node

	RAM Cost

	Utilities

	Example(s)

	 Miscellaneous
	Netscript Ports

	Comments

	Importing Functions

	Standard, Built-In JavaScript Objects

Learn to Program in Netscript

Netscript is simply a subset of
JavaScript [https://developer.mozilla.org/en-US/docs/Web/JavaScript],
with some additional functions added in to allow interaction with the game.

For Beginner Programmers

If you have little to no programming experience, that’s okay! You don’t need to be
a great programmer in order to enjoy or play this game. In fact, this game could
help you learn some basic programming concepts.

Here are some good tutorials for learning programming/JavaScript as a beginner:

	Learn-JS [http://www.learn-js.org/en/Welcome]

	programiz [https://www.programiz.com/javascript/get-started]

	
	Speaking JavaScript [http://speakingjs.com/es5/index.html]

	This is a bit on the longer side. You can skip all of the historical
background stuff. Recommended chapters: 1, 7-18

For Experienced Programmers

The following section lists several good tutorials/resources for those who have experience
programming but who have not worked extensively with JavaScript before.

Before that, however, it’s important to clarify some terminology about the different
versions of JavaScript. These are summarized in this article:

WTF is ES6, ES8, ES2017, ECMAScript… [https://codeburst.io/javascript-wtf-is-es6-es8-es-2017-ecmascript-dca859e4821c]

An important takeaway from this article is that ES6, also known as ES2015, introduced
many major features that are commonly seen in modern JavaScript programming. However, this
means that ES5 engines and interpreters will fail if they encounters these ES6 features. You’ll see why this
is important further down.

	MDN Introduction to JS [https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript]

	
	Eloquent JavaScript (ES6+) [http://eloquentjavascript.net/]

	Recommended Chapters: Introduction, 1-6

	
	Modern Javascript Tutorial (ES6+) [https://javascript.info/]

	Recommended Chapters: 2, 4-6

Netscript 1.0 vs Netscript 2.0

There are two versions of Netscript:

	Netscript 1.0

	NS2

Visit the pages above to get more details about each version. If you are new
to programming or unfamiliar with JavaScript, I would recommend starting out
with Netscript 1.0. Experienced web developers can use NS2
to take advantage of faster speeds and additional features.

Here is a short summary of the differences between Netscript 1.0 and Netscript 2.0:

Netscript 1.0

	ES5

	Some ES6 features implemented with polyfills

	Slow compared to NetscriptJS (interpreter runs at the “Netscript Exec Time” speed configured in options)

	Compatible with all browsers

Netscript JS (Netscript 2.0)

	Supports (almost) all features of modern JavaScript

	Extremely fast - code is executed as an Async Function

	Works on most modern browsers.

	Each script becomes a module and therefore all instances of that script can easily
share data between each other (essentially global/static variables)

Netscript 1.0

Netscript 1.0 is implemented using a modified version of Neil Fraser’s
JS-Interpreter [https://github.com/NeilFraser/JS-Interpreter].

This is an ES5 JavaScript interpreter. This means that (almost) any JavaScript feature
that is available in ES5 is also available in Netscript 1.0. However, this also means
that the interpreter does not natively support any JavaScript features introduced in versions
ES6 or after.

If you are confused by the ES5/ES6/etc. terminology, consider reading this:
WTF is ES6, ES8, ES2017, ECMAScript… [https://codeburst.io/javascript-wtf-is-es6-es8-es-2017-ecmascript-dca859e4821c]

Netscript 1.0 scripts end with the “.script” extension in their filenames.

Which ES6+ features are supported?

Netscript 1.0 is a ES5 interpreter, but the following features from versions ES6 and
above are supported as well.

	import - See Importing Functions

	Array [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array]

	Array find() [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find]

	Array findIndex() [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/findIndex]

	Array includes() [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/includes]

	String [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String]

	String endsWith() [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith]

	String includes() [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes]

	String startsWith() [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith]

NS2

The improved version of Netscript that
allows users to write full-fledged Javascript code in their scripts, while
still being able to access the Netscript functions.

ns2 was developed primarily by Github user jaguilar [https://github.com/jaguilar]

On top of having almost all of the features and capabilities of JavaScript, ns2 is also
significantly faster than ns1.

This documentation will not go over any of the additional features of ns2, since
there is plenty of documentation on Javascript available on the web.

Browser compatibility

As of the time of writing this, a few browsers do not support dynamic import [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import] functionality and therefore cannot run ns2 scripts. These browsers will thus only be capable of using ns1.

How to use ns2

Working with ns2 scripts is the same as ns1 scripts. The only difference
is that ns2 scripts use the “.js” extension rather than “.script”. E.g.:

$ nano foo.js
$ run foo.js -t 100 arg1 arg2 arg3
exec("foo.js", "purchasedServer1", "100", "randomArg");

The caveat when using ns2 to write scripts is that your code must be
asynchronous. Furthermore, instead of using the global scope and executing your code
sequentially, ns2 uses a main() function as an entry point.

Furthermore, the “Netscript environment” must be passed into a ns2 script through
the main function. This environment includes all of the pre-defined Netscript functions
(hack(), exec, etc.) as well as the arguments you pass to the script.

Therefore, the signature of the main() function must be:

export async function main(ns) {
 ns.print("Starting script here");
 await ns.hack("foodnstuff"); //Use Netscript hack function
 ns.print(ns.args); //The script arguments must be prefaced with ns as well
}

Here is a summary of all rules you need to follow when writing Netscript JS code:

	Write await before any call to the following Netscript functions:

	hack

	grow

	weaken

	sleep

	prompt

	wget

	scp

	write

	writePort

	Any function that contains await must be declared as async

	Always await any function that is marked as async

	Any functions that you want to be visible from other scripts must be marked with export.

	Do not write any infinite loops without using a sleep or one of the timed Netscript functions like hack. Doing so will freeze your game.

	Any global variable declared in a ns2 script is shared between all instances of that
script. For example, assume you write a script foo.js and declared a global variable like so:

//foo.js
let globalVariable;

export async function main(ns) {
 globalVariable = ns.args.length;
 while(true) {
 ns.tprint(globalVariable);
 await ns.sleep(3000);
 }
}

Then, you ran multiple instances of foo.js:

$ run foo.js 1
$ run foo.js 1 2 3
$ run foo.js 1 2 3 4 5

Then all three instances of foo.js will share the same instance of globalVariable.
(In this example, the value of globalVariable will be set to 5 because the
last instance of foo.js to run has 5 arguments. This means that all three instances of
the script will repeatedly print the value 5).

These global variables can be thought of as C++ static class members [https://www.tutorialspoint.com/cplusplus/cpp_static_members.htm],
where a ns2 script is a class and a global variable is a static member within that class.

Example

early-hack-template.script

var target = args[0];
var moneyThresh = getServerMaxMoney(target) * 0.75;
var securityThresh = getServerMinSecurityLevel(target) + 5;
if (fileExists("BruteSSH.exe", "home")) {
 brutessh(target);
}
nuke(target);
while(true) {
 if (getServerSecurityLevel(target) > securityThresh) {
 weaken(target);
 } else if (getServerMoneyAvailable(target) < moneyThresh) {
 grow(target);
 } else {
 hack(target);
 }
}

early-hack-template.js

export async function main(ns) {
 var target = ns.args[0];
 var moneyThresh = ns.getServerMaxMoney(target) * 0.75;
 var securityThresh = ns.getServerMinSecurityLevel(target) + 5;
 if (ns.fileExists("BruteSSH.exe", "home")) {
 ns.brutessh(target);
 }
 ns.nuke(target);
 while(true) {
 if (ns.getServerSecurityLevel(target) > securityThresh) {
 await ns.weaken(target);
 } else if (ns.getServerMoneyAvailable(target) < moneyThresh) {
 await ns.grow(target);
 } else {
 await ns.hack(target);
 }
 }
}

What’s with the weird comment

You may have noticed that every new ns2 file will contains the following comment.

/**
* @param {NS} ns
**/

This comment is used to help the text editor autocomplete functions in the Netscript API. You can enable it by pressing ctrl+space after ns.

[image: ../_images/autocomplete.png]
The comment can be safely removed but it is recommended to keep it as it will help you.

Netscript Script Arguments

Arguments passed into a script can be accessed in Netscript using a
special array called args. The arguments can be
accessed using a normal array using the [] operator
(args[0], args[1], etc…).

For example, let’s say we want to make a generic script
‘generic-run.script’ and we plan to pass two arguments into that script.
The first argument will be the name of another script, and the second
argument will be a number. This generic script will run the
script specified in the first argument with the amount of threads
specified in the second element. The code would look like:

run(args[0], args[1]);

It is also possible to get the number of arguments that was passed
into a script using:

args.length

WARNING: Do not try to modify the args array. This will break the game.

example for accessing arguments in ns2 from terminal execution:
terminal command:
run name_of_script.js -t 10 –tail argument1 argument2

ns2 script:

const args_obj = arguments[0]
const argument1 = (args_obj.server.args[0])
const argument2 = (args_obj.server.args[1])

Netscript Basic Functions

This page contains a subset of functions that are available in Bitburner.
For the complete list see https://github.com/danielyxie/bitburner/tree/dev/markdown
This includes information such as function signatures, what they do, and their return values.

Functions:

	hack()

	grow()

	weaken()

	sleep()

	print()

	tprint()

	disableLog()

	enableLog()

	isLogEnabled()

	scan()

	nuke()

	brutessh()

	ftpcrack()

	relaysmtp()

	httpworm()

	sqlinject()

	run()

	exec()

	spawn()

	kill()

	killall()

	scp()

	ls()

	ps()

	hasRootAccess()

	getHackingLevel()

	getHackingMultipliers()

	getHacknetMultipliers()

	getServerMoneyAvailable()

	getServerMaxMoney()

	getServerSecurityLevel()

	getServerMinSecurityLevel()

	getServerRequiredHackingLevel()

	getServerNumPortsRequired()

	getServerMaxRam()

	getServerUsedRam()

	serverExists()

	fileExists()

	isRunning()

	getPurchasedServerCost()

	purchaseServer()

	deleteServer()

	getPurchasedServers()

	getPurchasedServerLimit()

	getPurchasedServerMaxRam()

	scriptRunning()

	scriptKill()

	getScriptRam()

hack() Netscript Function

	
hack(hostname[, opts={}])

	
	RAM cost:

	0.1 GB

	Arguments:

	
	hostname (string) – Hostname of the target server.

	opts (object) – Optional parameters for configuring function behavior. Properties:

	threads (number) - Number of threads to use for this function.
Must be less than or equal to the number of threads the script is running with.

	stock (boolean) - If true, the function can affect the stock market. See
Player Actions Influencing Stocks

	Returns:

	The amount of money stolen if the hack is successful, and zero otherwise

Function that is used to try and hack servers to steal money and gain
hacking experience. The runtime for this command depends on your hacking
level and the target server’s security level. In order to hack a server you
must first gain root access to that server and also have the required
hacking level.

A script can hack a server from anywhere. It does not need to be running on
the same server to hack that server. For example, you can create a script
that hacks the ‘foodnstuff’ server and run that script on any server in the
game.

A successful hack on a server will raise that server’s security
level by 0.002.

Action time is calculated at the start, effect is calculated at the end.

Example:

hack("foodnstuff");
hack("10.1.2.3");
hack("foodnstuff", { threads: 5 }); // Only use 5 threads to hack

grow() Netscript Function

	
grow(hostname[, opts={}])

	
	RAM cost:

	0.15 GB

	Arguments:

	
	hostname (string) – Hostname of the target server.

	opts (object) – Optional parameters for configuring function behavior. Properties:

	threads (number) - Number of threads to use for this function.
Must be less than or equal to the number of threads the script is running with.

	stock (boolean) - If true, the function can affect the stock market. See
Player Actions Influencing Stocks

	Returns:

	The number by which the money on the server was multiplied for the growth

Increase the amount of money available on a server. The time it takes to
execute depends on your hacking level and the target server’s security
level. When grow completes, the money available on a target
server will be increased by a certain, fixed percentage. This percentage is
determined by the target server’s growth rate (which varies between servers)
and security level. Generally, higher-level servers have higher growth
rates.

Like hack, grow can be called on any server, from
any server. The grow command requires root access to the target
server, but there is no required hacking level to run the command. It also
raises the security level of the target server by 0.004 per thread.

Action time is calculated at the start, effect is calculated at the end.

Example:

while(true) {
 grow("foodnstuff");
}

weaken() Netscript Function

	
weaken(hostname[, opts={}])

	
	RAM cost:

	0.15 GB

	Arguments:

	
	hostname (string) – Hostname of the target server to weaken.

	opts (object) – Optional parameters for configuring function behavior. Properties:

	threads (number) - Number of threads to use for this function.
Must be less than or equal to the number of threads the script is running with.

	Returns:

	The amount by which the target server’s security level was
decreased. This is equivalent to 0.05 multiplied by the number of script
threads.

Use your hacking skills to attack a server’s security, lowering the server’s
security level. The runtime for this command depends on your hacking level
and the target server’s security level. This function lowers the security
level of the target server by 0.05.

Like hack and grow, weaken can be
called on any server, regardless of where the script is running. This
command requires root access to the target server, but there is no required
hacking level to run the command.

Example:

weaken("foodnstuff");
weaken("foodnstuff", { threads: 5 }); // Only use 5 threads to weaken

sleep() Netscript Function

	
sleep(n)

	
	RAM cost:

	0 GB

	Arguments:

	
	n (number) – Number of milliseconds to sleep

Suspends the script for n milliseconds.

Example:

sleep(3000); // Will wait 3 seconds.

print() Netscript Function

	
print(args...)

	
	RAM cost:

	0 GB

	Arguments:

	
	args – Values to be printed.

Prints any number of values to the script’s logs.

Example:

print("Hello world!"); // Prints "Hello world!" in the logs.
print({a:5}); // Prints '{"a":5}' in the logs.

tprint() Netscript Function

	
tprint(args...)

	
	RAM cost:

	0 GB

	Arguments:

	
	args – Values to be printed

Prints any number of values to the Terminal.

Example:

tprint("Hello world!"); // Prints "Hello world!" to the terminal.
tprint({a:5}); // Prints '{"a":5}' to the terminal.

disableLog() Netscript Function

	
disableLog(functionName)

	
	RAM cost:

	0 GB

	Arguments:

	
	functionName (string) – Name of function for which to disable logging.

Disables logging for the given function. Logging can be disabled for
all functions by passing ‘ALL’ as the argument.

enableLog() Netscript Function

	
enableLog(functionName)

	
	RAM cost:

	0 GB

	Arguments:

	
	functionName (string) – Name of function for which to enable logging.

Re-enables logging for the given function. If ‘ALL’ is passed into this
function as an argument, then it will revert the effects of
disableLog('ALL')

isLogEnabled() Netscript Function

	
isLogEnabled(functionName)

	
	RAM cost:

	0 GB

	Arguments:

	
	functionName (string) – Name of function to check.

	Returns:

	true is logs are enabled for this function or for ‘ALL’

Example:

isLogEnabled('hack'); // returns: true

scan() Netscript Function

	
scan(hostname=current hostname)

	
	RAM cost:

	0.2 GB

	Arguments:

	
	hostname (string) – Hostname of the server to scan.

	Returns:

	array of strings of all the host directly connected to the target
server.

Example:

scan("home"); // returns: ["foodnstuff", "sigma-cosmetics", "joesguns", "hong-fang-tea", "harakiri-sushi", "iron-gym"]

nuke() Netscript Function

	
nuke(hostname)

	
	RAM cost:

	0.05 GB

	Arguments:

	
	hostname (string) – Hostname of the target server.

Runs the NUKE.exe program on the target server. NUKE.exe must exist
on your home computer.

Example:

nuke("foodnstuff");

brutessh() Netscript Function

	
brutessh(hostname)

	
	RAM cost:

	0.05 GB

	Arguments:

	
	hostname (string) – Hostname of the target server.

Runs the BruteSSH.exe program on the target server. BruteSSH.exe
must exist on your home computer.

Examples:

brutessh("foodnstuff");

ftpcrack() Netscript Function

	
ftpcrack(hostname)

	
	RAM cost:

	0.05 GB

	Arguments:

	
	hostname (string) – Hostname of the target server.

Runs the FTPCrack.exe program on the target server. FTPCrack.exe
must exist on your home computer.

Examples:

ftpcrack("foodnstuff");

relaysmtp() Netscript Function

	
relaysmtp(hostname)

	
	RAM cost:

	0.05 GB

	Arguments:

	
	hostname (string) – Hostname of the target server.

Runs the relaySMTP.exe program on the target server. relaySMTP.exe
must exist on your home computer.

Example:

relaysmtp("foodnstuff");

httpworm() Netscript Function

	
httpworm(hostname)

	
	RAM cost:

	0.05 GB

	Arguments:

	
	hostname (string) – Hostname of the target server.

Runs the HTTPWorm.exe program on the target server. HTTPWorm.exe
must exist on your home computer.

Example:

httpworm("foodnstuff");

sqlinject() Netscript Function

	
sqlinject(hostname)

	
	RAM cost:

	0.05 GB

	Arguments:

	
	hostname (string) – Hostname of the target server.

Runs the SQLInject.exe program on the target server. SQLInject.exe
must exist on your home computer.

Example:

sqlinject("foodnstuff");

run() Netscript Function

	
run(script[, numThreads=1[, args...]])

	
	RAM cost:

	1 GB

	Arguments:

	
	script (string) – Filename of script to run

	numThreads (number) – Optional thread count for new script. Set to 1 by
default. Will be rounded to nearest integer.

	args... – Additional arguments to pass into the new script that is being run. Note
that if any arguments are being passed into the new script, then the
second argument numThreads must be filled in with a value.

	Returns:

	The process id of the new process or 0 on failure.

Run a script as a separate process. This function can only be used to run
scripts located on the current server (the server running the script that
calls this function).

Warning

Running this function with a numThreads argument of 0 or
less will cause a runtime error.

 exec() Netscript Function

exec() Netscript Function

	
exec(script, hostname[, numThreads=1[, args...]])

	
	RAM cost:

	1.3 GB

	Arguments:

	
	script (string) – Filename of script to execute.

	hostname (string) – Hostname of the target server on which to execute the script.

	numThreads (number) – Optional thread count for new script. Set to 1 by
default. Will be rounded to nearest integer

	args... – Additional arguments to pass into the new script that is
being run. Note that if any arguments are being
passed into the new script, then the third argument numThreads must
be filled in with a value.

	Returns:

	Newly created process id on success, 0 on failure.

Run a script as a separate process on a specified server. This is similar to
the run function except that it can be used to run a script on any
server, instead of just the current server.

Warning

Running this function with a numThreads argument of 0 or
less will cause a runtime error.

 spawn() Netscript Function

spawn() Netscript Function

	
spawn(script, numThreads[, args...])

	
	RAM cost:

	2 GB

	Arguments:

	
	script (string) – Filename of script to execute

	numThreads (number) – Number of threads to spawn new script with. Will
be rounded to nearest integer.

	args... – Additional arguments to pass into the new script that is being run.

Terminates the current script, and then after a delay of about 10 seconds it
will execute the newly-specified script. The purpose of this function is to
execute a new script without being constrained by the RAM usage of the
current one. This function can only be used to run scripts on the local
server.

Warning

Running this function with a numThreads argument of 0 or
less will cause a runtime error.

 kill() Netscript Function

kill() Netscript Function

	
kill(script, hostname[, args...])

	
	RAM cost:

	0.5 GB

	Arguments:

	
	script (string) – Filename of the script to kill.

	hostname (string) – Hostname of the server on which to kill the script.

	args... – Arguments to identify which script to kill.

	Returns:

	true is that script was killed.

Kills the script on the target server specified by the script’s name and
arguments. Remember that scripts are uniquely identified by both their name
and arguments. For example, if foo.script is run with the argument 1,
then this is not the same as foo.script run with the argument 2, even
though they have the same code.

Examples:

The following example will try to kill a script named foo.script on the
foodnstuff server that was ran with no arguments:

kill("foo.script", "foodnstuff");

The following will try to kill a script named foo.script on the current
server that was ran with no arguments:

kill("foo.script", getHostname());

The following will try to kill a script named foo.script on the current
server that was ran with the arguments 1 and “foodnstuff”:

kill("foo.script", getHostname(), 1, "foodnstuff");

	
kill(scriptPid)

	
	RAM cost:

	0.5 GB

	Arguments:

	
	scriptPid (number) – PID of the script to kill

	Returns:

	true that script was killed.

Kills the script with the specified PID. Killing a script by its PID will
typically have better performance, especially if you have many scripts
running.

Example:

if (kill(10)) {
 print("Killed script with PID 10!");
}

 killall() Netscript Function

killall() Netscript Function

	
killall(hostname)

	
	RAM cost:

	0.5 GB

	Arguments:

	
	hostname (string) – Hostname of the server on which to kill all scripts.

	Returns:

	true if scripts were killed on target server.

Kills all running scripts on the specified server.

Example:

killall('foodnstuff'); // returns: true

 scp() Netscript Function

scp() Netscript Function

	
scp(files, destination[, source])

	
	RAM cost:

	0.6 GB

	Arguments:

	
	files (string/array) – Filename or an array of filenames of script/literature files to copy

	destination (string) – Hostname of the destination server, which is the server to which the file will be copied.

	source (string) – Hostname of the source server, which is the server from which the file will be copied.
This argument is optional and if it’s omitted the source will be the current server.

	Returns:

	true if the copy was a success.

Copies a script or literature (.lit) file(s) to another server. The
files argument can be either a string specifying a single file to copy,
or an array of strings specifying multiple files to copy.

If the files argument is an array then this function will return true if
at least one of the files in the array is successfully copied.

Example:

//Copies "hack-template.script" from the current server to "foodnstuff"
scp("hack-template.script", "foodnstuff"); // returns: true

//Copies "foo.lit" from the helios server to the "home" computer
scp("foo.lit", "home", "helios"); // returns: true

//Tries to copy three files from "rothman-uni" to "home" computer
files = ["foo1.lit", "foo2.script", "foo3.script"];
scp(files, "home", "rothman-uni"); // returns: true

 ls() Netscript Function

ls() Netscript Function

	
ls(hostname[, grep])

	
	RAM cost:

	0.2 GB

	Arguments:

	
	hostname (string) – Hostname of the target server.

	grep (string) – a substring to search for in the filename.

	Returns:

	String array of all files in alphabetical order.

Example:

ls("home"); // returns: ["demo.script", "msg1.txt"]

 ps() Netscript Function

ps() Netscript Function

	
ps([hostname=current hostname])

	
	RAM cost:

	0.2 GB

	Arguments:

	
	hostname (string) – Hostname address of the target server.
If not specified, it will be the current server’s IP by default.

	Returns:

	array of object

Returns an array with general information about all scripts running on the
specified target server. The information for each server is given in an
object with the following structure:

{
 filename: Script name,
 threads: Number of threads script is running with,
 args: Script's arguments,
 pid: Script's pid
}

Example:

processes = ps("home");
for (let i = 0; i < processes.length; ++i) {
 tprint(processes[i].filename + ' ' + processes[i].threads);
 tprint(processes[i].args);
 tprint(processes[i].pid);
}

 hasRootAccess() Netscript Function

hasRootAccess() Netscript Function

	
hasRootAccess(hostname)

	
	RAM cost:

	0.05 GB

	Arguments:

	
	hostname (string) – Hostname of the target server.

	Returns:

	true if you have root access on the target server.

Example:

if (hasRootAccess("foodnstuff") == false) {
 nuke("foodnstuff");
}

 getHackingLevel() Netscript Function

getHackingLevel() Netscript Function

	
getHackingLevel()

	
	RAM cost:

	0.05 GB

	Returns:

	The player’s current hacking level.

Example:

getHackingLevel(); // returns: 124

 getHackingMultipliers() Netscript Function

getHackingMultipliers() Netscript Function

	
getHackingMultipliers()

	
	RAM cost:

	4 GB

	Returns:

	object containing the player’s hacking multipliers. These
multipliers are returned in decimal forms, not percentages (e.g. 1.5
instead of 150%).

Structure:

{
 chance: Player's hacking chance multiplier,
 speed: Player's hacking speed multiplier,
 money: Player's hacking money stolen multiplier,
 growth: Player's hacking growth multiplier
}

Example:

mults = getHackingMultipliers();
print(mults.chance);
print(mults.growth);

 getHacknetMultipliers() Netscript Function

getHacknetMultipliers() Netscript Function

	
getHacknetMultipliers()

	
	RAM cost:

	4 GB

	Returns:

	object containing the player’s hacknet multipliers. These
multipliers are returned in decimal forms, not percentages (e.g. 1.5
instead of 150%).

Structure:

{
 production: Player's hacknet production multiplier,
 purchaseCost: Player's hacknet purchase cost multiplier,
 ramCost: Player's hacknet ram cost multiplier,
 coreCost: Player's hacknet core cost multiplier,
 levelCost: Player's hacknet level cost multiplier
}

Example:

mults = getHacknetMultipliers();
print(mults.production);
print(mults.purchaseCost);

 getServerMoneyAvailable() Netscript Function

getServerMoneyAvailable() Netscript Function

	
getServerMoneyAvailable(hostname)

	
	RAM cost:

	0.1 GB

	Arguments:

	
	hostname (string) – Hostname of target server.

	Returns:

	Money available on that server.

Note

Running this function on the home computer will return the player’s money.

 getServerMaxMoney() Netscript Function

getServerMaxMoney() Netscript Function

	
getServerMaxMoney(hostname)

	
	RAM cost:

	0.1 GB

	Arguments:

	
	hostname (string) – Hostname of target server.

	Returns:

	Maximum amount of money that can be available on a server.

Example:

getServerMaxMoney('foodnstuff'); // returns: 50000000

 getServerSecurityLevel() Netscript Function

getServerSecurityLevel() Netscript Function

	
getServerSecurityLevel(hostname)

	
	RAM cost:

	0.1 GB

	Arguments:

	
	hostname (string) – Hostname of target server.

	Returns:

	The security level of the target server.

Example:

getServerSecurityLevel("foodnstuff"); // returns: 3.45

 getServerMinSecurityLevel() Netscript Function

getServerMinSecurityLevel() Netscript Function

	
getServerMinSecurityLevel(hostname)

	
	RAM cost:

	0.1 GB

	Arguments:

	
	hostname (string) – Hostname of target server.

	Returns:

	The minimum security level of the target server.

Example:

getServerMinSecurityLevel('foodnstuff'); // returns: 3

 getServerRequiredHackingLevel() Netscript Function

getServerRequiredHackingLevel() Netscript Function

	
getServerRequiredHackingLevel(hostname)

	
	RAM cost:

	0.1 GB

	Arguments:

	
	hostname (string) – Hostname of target server.

	Returns:

	The required hacking level of target server.

Example:

getServerRequiredHackingLevel("foodnstuff"); // returns: 5

 getServerNumPortsRequired() Netscript Function

getServerNumPortsRequired() Netscript Function

	
getServerNumPortsRequired(hostname)

	
	RAM cost:

	0.1 GB

	Arguments:

	
	hostname (string) – Hostname of target server.

	Returns:

	The number of open ports required to successfully run NUKE.exe on
the specified server.

Example:

getServerNumPortsRequired("unitalife"); // returns: 4

 getServerMaxRam() Netscript Function

getServerMaxRam() Netscript Function

	
getServerMaxRam(hostname)

	
	RAM cost:

	0.05 GB

	Arguments:

	
	hostname (string) – Hostname of target server.

	Returns:

	Total ram available on that server. In GB.

Example:

maxRam = getServerMaxRam("helios"); // returns: 16
print("helios has "+maxRam + "GB");

 getServerUsedRam() Netscript Function

getServerUsedRam() Netscript Function

	
getServerUsedRam(hostname)

	
	RAM cost:

	0.05 GB

	Arguments:

	
	hostname (string) – Hostname of target server.

	Returns:

	Used ram on that server. In GB.

Example:

usedRam = getServerUsedRam("harakiri-sushi"); // returns: 5.6
print("harakiri-sushi uses "+usedRam + "GB");

 serverExists() Netscript Function

serverExists() Netscript Function

	
serverExists(hostname)

	
	RAM cost:

	0.1 GB

	Arguments:

	
	hostname (string) – Hostname of target server.

	Returns:

	true if the target server exists.

Example:

serverExists("foodnstuff"); // returns: true

 fileExists() Netscript Function

fileExists() Netscript Function

	
fileExists(filename[, hostname])

	
	RAM cost:

	0.1 GB

	Arguments:

	
	filename (string) – Filename of file to check.

	hostname (string) – Hostname of target server. This is optional. If it is not specified then
the function will use the current server as the target server.

	Returns:

	true if the file exists, false if it doesn’t.

The filename for scripts is case-sensitive, but for other types of files it
is not. For example, fileExists("brutessh.exe") will work fine, even
though the actual program is named BruteSSH.exe.

If the hostname argument is omitted, then the function will search
through the server running the script that calls this function for the file.

Examples:

fileExists("foo.script", "foodnstuff"); // returns: false
fileExists("ftpcrack.exe"); // returns: true

The first example above will return true if the script named foo.script exists on the foodnstuff server, and false otherwise.
The second example above will return true if the current server contains the FTPCrack.exe program, and false otherwise.

 isRunning() Netscript Function

isRunning() Netscript Function

	
isRunning(filename[, hostname=current hostname[, args...]])

	
	RAM cost:

	0.1 GB

	Arguments:

	
	filename (string) – Filename of script to check. case-sensitive.

	hostname (string) – Hostname of target server. Defaults to current server

	args... – Arguments to specify/identify which scripts to search for

	Returns:

	true if that script with those args is running on that server.

Note

Remember that a script is uniquely identified by both its name and its arguments.

 getPurchasedServerCost() Netscript Function

getPurchasedServerCost() Netscript Function

	
getPurchasedServerCost(ram)

	
	RAM cost:

	0.25 GB

	Arguments:

	
	ram (number) – Amount of RAM of a potential purchased server. Must be a power of 2 (2, 4, 8, 16, etc.). Maximum value of 1048576 (2^20)

	Returns:

	Cost to purchase a server with the specified amount of ram.

Example:

getPurchasedServerCost(8192); // returns: 450560000

 purchaseServer() Netscript Function

purchaseServer() Netscript Function

	
purchaseServer(hostname, ram)

	
	RAM cost:

	2.25 GB

	Arguments:

	
	hostname (string) – Hostname of the purchased server.

	ram (number) – Amount of RAM of the purchased server. Must be a power of
2. Maximum value of getPurchasedServerMaxRam

	Returns:

	The hostname of the newly purchased server. Empty string on failure.

Purchased a server with the specified hostname and amount of RAM.

The hostname argument can be any data type, but it will be converted to
a string and have whitespace removed. Anything that resolves to an empty
string will cause the function to fail. If there is already a server with
the specified hostname, then the function will automatically append a number
at the end of the hostname argument value until it finds a unique
hostname. For example, if the script calls purchaseServer("foo", 4) but
a server named “foo” already exists, the it will automatically change the
hostname to “foo-0”. If there is already a server with the hostname “foo-0”,
then it will change the hostname to “foo-1”, and so on.

Note that there is a maximum limit to the amount of servers you can purchase.

Example:

ram = 64;
hn = "pserv-";
for (i = 0; i < 5; ++i) {
 purchaseServer(hn + i, ram);
}

 deleteServer() Netscript Function

deleteServer() Netscript Function

	
deleteServer(hostname)

	
	RAM cost:

	2.25 GB

	Arguments:

	
	hostname (string) – Hostname of the server to delete.

	Returns:

	true if successful, false otherwise.

Deletes the specified purchased server.

The hostname argument can be any data type, but it will be converted to
a string. Whitespace is automatically removed from the string. This function
will not delete a server that still has scripts running on it.

 getPurchasedServers() Netscript Function

getPurchasedServers() Netscript Function

	
getPurchasedServers()

	
	RAM cost:

	2.25 GB

	Returns:

	String array of hostnames of all of the servers you have purchased.

Example:

getPurchasedServers(); // returns: ['grow-server-0', 'grow-server-1', 'weaken-server-0']

 getPurchasedServerLimit() Netscript Function

getPurchasedServerLimit() Netscript Function

	
getPurchasedServerLimit()

	
	RAM cost:

	0.05 GB

	Returns:

	The maximum number of servers you can purchase.

Example:

getPurchasedServerLimit() // returns: 25

 getPurchasedServerMaxRam() Netscript Function

getPurchasedServerMaxRam() Netscript Function

	
getPurchasedServerMaxRam()

	
	RAM cost:

	0.05 GB

	Returns:

	The maximum RAM that a purchased server can have.

Example:

getPurchasedServerMaxRam(); // returns: 1048576

 scriptRunning() Netscript Function

scriptRunning() Netscript Function

	
scriptRunning(scriptname, hostname)

	
	RAM cost:

	1 GB

	Arguments:

	
	scriptname (string) – Filename of script to check. case-sensitive.

	hostname (string) – Hostname of target server.

	Returns:

	true if any script with that file name is running on that
server.

This is different than the isRunning function because it
does not try to identify a specific instance of a running script by its
arguments.

Examples:

The example below will return true if there is any script named
foo.script running on the foodnstuff server, and false otherwise:

scriptRunning("foo.script", "foodnstuff");

The example below will return true if there is any script named
foo.script running on the current server, and false otherwise:

scriptRunning("foo.script", getHostname());

 scriptKill() Netscript Function

scriptKill() Netscript Function

	
scriptKill(scriptname, hostname)

	
	RAM cost:

	1 GB

	Arguments:

	
	scriptname (string) – Filename of script to kill. case-sensitive.

	hostname (string) – Hostname of target server.

	Returns:

	true if any scripts were killed.

Kills all scripts with the specified filename on the target server specified
by hostname, regardless of arguments.

Example:

scriptKill("demo.script", "home"); // returns: true

 getScriptRam() Netscript Function

getScriptRam() Netscript Function

	
getScriptRam(filename[, hostname])

	
	RAM cost:

	0.1 GB

	Arguments:

	
	filename (string) – Filename of script.

	hostname (string) – Hostname of target server the script is located on.
Default to the server this script is running on.

	Returns:

	Amount of RAM required to run the script, 0 if it does not exist.

Example:

getScriptRam("grow.script"); // returns: 1.75

 Netscript Advanced Functions

Netscript Advanced Functions

These Netscript functions become relevant later on in the game. They are put on a separate page because
they contain spoilers for the game.

Warning

This page contains spoilers for the game

 autocomplete() Netscript Function

autocomplete() Netscript Function

Warning

This feature is not officially supported yet and the API might change. It is also only supported in ns2

 Injecting HTML in the game

Injecting HTML in the game

Bitburner uses React and Material-UI to render everything. Modifying the UI is possible but
not officially supported.

To automatically enter commands in the terminal (only works if looking at the terminal):

// Acquire a reference to the terminal text field
const terminalInput = document.getElementById("terminal-input");

// Set the value to the command you want to run.
terminalInput.value="home;connect n00dles;home;connect n00dles;home;";

// Get a reference to the React event handler.
const handler = Object.keys(terminalInput)[1];

// Perform an onChange event to set some internal values.
terminalInput[handler].onChange({target:terminalInput});

// Simulate an enter press
terminalInput[handler].onKeyDown({key:'Enter',preventDefault:()=>null});

To add lines to the terminal (only works if looking at the terminal):

// Acquire a reference to the terminal list of lines.
const list = document.getElementById("generic-react-container").querySelector("ul");

// Inject some HTML.
list.insertAdjacentHTML('beforeend',`<p color=lime>whatever custom html</p>`)

 Netscript Hacknet Node API

Netscript Hacknet Node API

Warning

Not all functions in the Hacknet Node API are immediately available.
For this reason, the documentation for this API may contains spoilers
for the game.

 numNodes() Netscript Function

numNodes() Netscript Function

	
numNodes()

	
	RAM cost:

	0 GB

	Returns:

	Number of Hacknet Nodes you own.

 purchaseNode() Netscript Function

purchaseNode() Netscript Function

	
purchaseNode()

	
	RAM cost:

	0 GB

	Returns:

	Index of the newly purchased node. -1 on failure.

Purchases a new Hacknet Node.
This index is equivalent to the number at the end of the Hacknet Node’s name
(e.g The Hacknet Node named ‘hacknet-node-4’ will have an index of 4).

 getPurchaseNodeCost() Netscript Function

getPurchaseNodeCost() Netscript Function

	
getPurchaseNodeCost()

	
	RAM cost:

	0 GB

	Returns:

	Cost of purchasing a new Hacknet Node.

 getNodeStats() Netscript Function

getNodeStats() Netscript Function

Warning

This page contains spoilers for the game

 upgradeLevel() Netscript Function

upgradeLevel() Netscript Function

	
upgradeLevel(i, n)

	
	RAM cost:

	0 GB

	Arguments:

	
	i (number) – Index of Hacknet Node. See here for details

	n (number) – Number of levels to purchase. Must be positive. Rounded to nearest integer

	Returns:

	true if the upgrade was successful.

Tries to upgrade the level of the specified Hacknet Node by n.

 upgradeRam() Netscript Function

upgradeRam() Netscript Function

	
upgradeRam(i, n)

	
	RAM cost:

	0 GB

	Arguments:

	
	i (number) – Index of Hacknet Node. See here for details

	n (number) – Number of times to upgrade RAM. Must be positive. Rounded to nearest integer.

	Returns:

	true if the upgrade was successful.

Tries to upgrade the specified Hacknet Node’s RAM n times. Note that
each upgrade doubles the Node’s RAM. So this is equivalent to multiplying
the Node’s RAM by 2 n.

 upgradeCore() Netscript Function

upgradeCore() Netscript Function

	
upgradeCore(i, n)

	
	RAM cost:

	0 GB

	Arguments:

	
	i (number) – Index of Hacknet Node. See here for details

	n (number) – Number of cores to purchase. Must be positive. Rounded to nearest integer

	Returns:

	true if the upgrade was successful.

Tries to purchase n cores for the specified Hacknet Node.

 getLevelUpgradeCost() Netscript Function

getLevelUpgradeCost() Netscript Function

	
getLevelUpgradeCost(i, n)

	
	RAM cost:

	0 GB

	Arguments:

	
	i (number) – Index of Hacknet Node. See here for details

	n (number) – Number of levels to upgrade. Must be positive. Rounded to nearest integer

	Returns:

	Cost of upgrading the specified Hacknet Node by n levels.

If an invalid value for n is provided, then this function returns 0. If the
specified Hacknet Node is already at max level, then Infinity is returned.

 getRamUpgradeCost() Netscript Function

getRamUpgradeCost() Netscript Function

	
getRamUpgradeCost(i, n)

	
	RAM cost:

	0 GB

	Arguments:

	
	i (number) – Index of Hacknet Node. See here for details

	n (number) – Number of times to upgrade RAM. Must be positive. Rounded to nearest integer.

	Returns:

	Cost of upgrading the RAM of the specified Hacknet Node n times.

If an invalid value for n is provided, then this function returns 0. If the
specified Hacknet Node is already at max RAM, then Infinity is returned.

 getCoreUpgradeCost() Netscript Function

getCoreUpgradeCost() Netscript Function

	
getCoreUpgradeCost(i, n)

	
	RAM cost:

	0 GB

	Arguments:

	
	i (number) – Index of Hacknet Node. See here for details

	n (number) – Number of times to upgrade cores. Must be positive. Rounded to nearest integer

	Returns:

	Cost of upgrading the number of cores of the specified Hacknet Node by n.

If an invalid value for n is provided, then this function returns 0. If the
specified Hacknet Node is already at the max number of cores, then Infinity is returned.

 Netscript Miscellaneous

Netscript Miscellaneous

Netscript Ports

Netscript Ports are endpoints that can be used to communicate between scripts.
A port is implemented as a sort of serialized queue, where you can only write
and read one element at a time from the port. When you read data from a port,
the element that is read is removed from the port.

The read(), write(), tryWrite(), clear(), and peek()
Netscript functions can be used to interact with ports.

Right now, there are only 20 ports for Netscript, denoted by the number 1
through 20. When using the functions above, the ports are specified
by passing the number as the first argument.

IMPORTANT: The data inside ports are not saved! This means if you close and
re-open the game, or reload the page then you will lose all of the data in
the ports!

Example Usage

Here’s a brief example of how ports work. For the sake of simplicity we’ll only deal with port 1.

Let’s assume Port 1 starts out empty (no data inside). We’ll represent the port as such:

[]

Now assume we ran the following simple script:

for (i = 0; i < 10; ++i) {
 writePort(1, i); //Writes the value of i to port 1
}

After this script executes, our script will contain every number from 0 through 9, as so:

[0, 1, 2, 3, 4, 5, 6, 7 , 8, 9]

Then, assume we run the following script:

for (i = 0; i < 3; ++i) {
 print(readPort(1)); //Reads a value from port 1 and then prints it
}

This script above will read the first three values from port 1 and then print them to the script’s log. The log will end up looking like:

0
1
2

And the data in port 1 will look like:

[3, 4, 5, 6, 7, 8, 9]

Warning

In NS2, do not trying writing base
Promises [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise]
to a port.

 Basic Gameplay

Basic Gameplay

This section documents Bitburner gameplay elements that are immediately
available and/or accessible to the player.

Elements:

	Stats
	Hacking

	Strength

	Defense

	Dexterity

	Agility

	Charisma

	Terminal
	Filesystem (Directories)
	Directories

	Absolute vs Relative Paths

	Netscript

	Missing Features

	Commands
	alias

	analyze

	backdoor

	buy

	cat

	cd

	check

	clear/cls

	connect

	download

	expr

	free

	hack

	help

	home

	hostname

	ifconfig

	kill

	killall

	ls

	lscpu

	mem

	mv

	nano

	ps

	rm

	run

	scan

	scan-analyze

	scp

	sudov

	tail

	top

	unalias

	wget

	Argument Parsing

	Chaining Commands

	Servers
	Server RAM

	Identifying Servers

	Player-owned Servers

	Hackable Servers

	Hacking
	Gaining Root Access

	General Hacking Mechanics

	Server Security

	Backdoors

	Scripts
	Script Arguments

	Identifying a Script

	Multithreading scripts

	Working with Scripts in Terminal

	Working with Scripts in Netscript

	Notes about how Scripts Work Offline

	World

	Factions
	List of Factions and their Requirements

	Augmentations
	How to acquire Augmentations

	Installing Augmentations

	Purchasing Multiple Augmentations

	Companies

	Crimes
	Basic Mechanics

	Crime details

	Infiltration
	Overview

	Stock Market
	Fundamentals
	Positions: Long vs Short

	Forecast & Second-Order Forecast

	Spread (Bid Price & Ask Price)

	Transactions Influencing Stock Forecast

	Order Types

	Player Actions Influencing Stocks

	Automating the Stock Market

	Under the Hood

	Offline Progression

	Coding Contracts
	Running in Terminal

	Interacting through Scripts

	Submitting Solutions

	Rewards

	Notes

	List of all Problem Types

 Stats

Stats

The player has several stats that can be increased in order to progress
in the game.

Hacking

Represents the player’s ability to code and hack.

Affects:

	Time it takes to hack a server

	Time it takes to execute the grow() and weaken() Netscript function

	Chance to successfully hack a server

	Percent money stolen when hacking a server

	Success rate of certain crimes

	Time it takes to create a program

	Faction reputation gain when carrying out Hacking Contracts or Field Work

	Company reputation gain for certain jobs

Gain experience by:

	Manually hacking servers through Terminal

	Executing hack(), grow(), or weaken() through a script

	Committing certain crimes

	Carrying out Hacking Contracts or doing Field work for Factions

	Working certain jobs at a company

	Studying at a university

Strength

Represents the player’s physical offensive power

Affects:

	Success rate of certain crimes

	Faction reputation gain for Security and Field Work

	Company reputation gain for certain jobs

Gain experience by:

	Committing certain crimes

	Working out at a gym

	Doing Security/Field Work for a faction

	Working certain jobs at a company

Defense

Represents the player’s ability to withstand damage

Affects:

	Success rate of certain crimes

	The player’s HP

	Faction reputation gain for Security and Field Work

	Company reputation gain for certain jobs

Gain experience by:

	Committing certain crimes

	Working out at a gym

	Doing Security/Field Work for a faction

	Working certain jobs at a company

Dexterity

Represents the player’s skill and adeptness in performing certain tasks

Affects:

	Success rate of certain crimes

	Faction reputation gain for Security and Field Work

	Company reputation gain for certain jobs

Gain experience by:

	Committing certain crimes

	Working out at a gym

	Doing Security/Field Work for a faction

	Working certain jobs at a company

Agility

Represents the player’s speed and ability to move

Affects:

	Success rate of certain crimes

	Faction reputation gain for Security and Field Work

	Company reputation gain for certain jobs

Gain experience by:

	Committing certain crimes

	Working out at a gym

	Doing Security/Field Work for a faction

	Working certain jobs at a company

Charisma

Represents the player’s social abilities

Affects:

	Success rate of certain crimes

	Faction reputation gain for Field Work

	Company reputation gain for most jobs

Gain experience by:

	Committing certain crimes

	Studying at a university

	Working a relevant job at a company

	Doing Field work for a Faction

 Terminal

Terminal

The Terminal is a console emulator program that lets you interface with all of the
Servers in the game. The Terminal can be accessed by clicking the ‘Terminal’ tab
on the navigation menu on the left-hand side of the game (you may need to expand
the ‘Hacking’ header in order to see the ‘Terminal’ tab). Alternatively, the keyboard
shortcut Alt + t can be used to open the Terminal.

Filesystem (Directories)

The Terminal contains a very basic filesystem that allows you to store and
organize your files into different directories. Note that this is not a true
filesystem implementation. Instead, it is done almost entirely using string manipulation.
For this reason, many of the nice & useful features you’d find in a real
filesystem do not exist.

Here are the Terminal commands you’ll commonly use when dealing with the filesystem.

	ls

	cd

	mv

Directories

In order to create a directory, simply name a file using a full absolute Linux-style path:

/scripts/myScript.js

This will automatically create a “directory” called scripts. This will also work
for subdirectories:

/scripts/hacking/helpers/myHelperScripts.script

Files in the root directory do not need to begin with a forward slash:

thisIsAFileInTheRootDirectory.txt

Note that there is no way to manually create or remove directories. The creation and
deletion of directories is automatically handled as you name/rename/delete
files.

Absolute vs Relative Paths

Many Terminal commands accept both absolute and relative paths for specifying a
file.

An absolute path specifies the location of the file from the root directory (/).
Any path that begins with the forward slash is an absolute path:

$ nano /scripts/myScript.js
$ cat /serverList.txt

A relative path specifies the location of the file relative to the current working directory.
Any path that does not begin with a forward slash is a relative path. Note that the
Linux-style dot symbols will work for relative paths:

. (a single dot) - represents the current directory
.. (two dots) - represents the parent directory

$ cd ..
$ nano ../scripts/myScript.js
$ nano ../../helper.js

Netscript

Note that in order to reference a file, Netscript functions require the
full absolute file path. For example

run("/scripts/hacking/helpers.myHelperScripts.script");
rm("/logs/myHackingLogs.txt");
rm("thisIsAFileInTheRootDirectory.txt");

Note

A full file path must begin with a forward slash (/) if that file
is not in the root directory.

 Servers

Servers

In this game, a server refers to a computer that can be connected to,
accessed, and manipulated through the Terminal. All servers in the
game are connected to each other to form a large, global network.
To learn about how to navigate this network and connect to other
servers, see the Terminal page.

Server RAM

Perhaps the most important property