

Welcome to Bitburner’s documentation!

Bitburner is a programming-based incremental game [https://en.wikipedia.org/wiki/Incremental_game]
that revolves around hacking and cyberpunk themes. The game is currently in the
early beta stage of development. It can be played here [https://danielyxie.github.io/bitburner/].

What is Bitburner?

Bitburner is a cyberpunk-themed incremental RPG where you, the player, take the role of an unknown hacker in a dark, dystopian world.
When a mysterious hacker called jump3R messages you, he/she confirms your suspicions that there is something wrong with the world around you.
Now, aided by jump3R, you embark on a quest to gain money and power by any means necessary, in the hopes that this will lead to to uncover the
secrets that you’ve been searching for.

Contents:

	 Netscript
	 Learn to Program
	For Beginner Programmers

	For Experienced Programmers

	Netscript 1.0 vs Netscript 2.0

	 Netscript 1.0
	Which ES6+ features are supported?

	 NetscriptJS (Netscript 2.0)
	Browser compatibility

	How to use NetscriptJS

	Warnings

	Examples

	Final Note

	 Script Arguments

	 Basic Functions
	hack()

	grow()

	weaken()

	hackAnalyzeThreads()

	hackAnalyzePercent()

	hackChance()

	growthAnalyze()

	sleep()

	print()

	tprint()

	clearLog()

	disableLog()

	enableLog()

	isLogEnabled()

	getScriptLogs()

	tail()

	scan()

	nuke()

	brutessh()

	ftpcrack()

	relaysmtp()

	httpworm()

	sqlinject()

	run()

	exec()

	spawn()

	kill()

	killall()

	exit()

	scp()

	ls()

	ps()

	hasRootAccess()

	getHostname()

	getHackingLevel()

	getHackingMultipliers()

	getHacknetMultipliers()

	getServerMoneyAvailable()

	getServerMaxMoney()

	getServerGrowth()

	getServerSecurityLevel()

	getServerBaseSecurityLevel()

	getServerMinSecurityLevel()

	getServerRequiredHackingLevel()

	getServerNumPortsRequired()

	getServerRam()

	serverExists()

	fileExists()

	isRunning()

	getPurchasedServerCost()

	purchaseServer()

	deleteServer()

	getPurchasedServers()

	getPurchasedServerLimit()

	getPurchasedServerMaxRam()

	write()

	tryWrite()

	read()

	peek()

	clear()

	getPortHandle()

	rm()

	scriptRunning()

	scriptKill()

	getScriptName()

	getScriptRam()

	getHackTime()

	getGrowTime()

	getWeakenTime()

	getScriptIncome()

	getScriptExpGain()

	getTimeSinceLastAug()

	sprintf()

	vsprintf()

	nFormat()

	prompt()

	wget()

	getFavorToDonate()

	 Advanced Functions
	getBitNodeMultipliers()

	getHackTime(), getGrowTime(), & getWeakenTime()

	 Hacknet Node API
	numNodes()

	purchaseNode()

	getPurchaseNodeCost()

	getNodeStats()

	upgradeLevel()

	upgradeRam()

	upgradeCore()

	upgradeCache()

	getLevelUpgradeCost()

	getRamUpgradeCost()

	getCoreUpgradeCost()

	getCacheUpgradeCost()

	numHashes()

	hashCost()

	spendHashes()

	Referencing a Hacknet Node

	RAM Cost

	Utilities

	Example(s)

	 Trade Information eXchange (TIX) API
	getStockSymbols()

	getStockPrice()

	getStockAskPrice()

	getStockBidPrice()

	getStockPosition()

	getStockMaxShares()

	getStockPurchaseCost()

	getStockSaleGain()

	buyStock()

	sellStock()

	shortStock()

	sellShort()

	placeOrder()

	cancelOrder()

	getOrders()

	getStockVolatility()

	getStockForecast()

	purchase4SMarketData()

	purchase4SMarketDataTixApi()

	 Singularity Functions
	universityCourse()

	gymWorkout()

	travelToCity()

	purchaseTor()

	purchaseProgram()

	getStats()

	getCharacterInformation()

	isBusy()

	stopAction()

	upgradeHomeRam()

	getUpgradeHomeRamCost()

	workForCompany()

	applyToCompany()

	getCompanyRep()

	getCompanyFavor()

	getCompanyFavorGain()

	checkFactionInvitations()

	joinFaction()

	workForFaction()

	getFactionRep()

	getFactionFavor()

	getFactionFavorGain()

	donateToFaction()

	createProgram()

	commitCrime()

	getCrimeChance()

	getOwnedAugmentations()

	getOwnedSourceFiles()

	getAugmentationsFromFaction()

	getAugmentationPrereq()

	getAugmentationCost()

	purchaseAugmentation()

	installAugmentations()

	 Bladeburner API
	getContractNames()

	getOperationNames()

	getBlackOpNames()

	getGeneralActionNames()

	getSkillNames()

	startAction()

	stopBladeburnerAction()

	getCurrentAction()

	getActionTime()

	getActionEstimatedSuccessChance()

	getActionRepGain()

	getActionCountRemaining()

	getActionMaxLevel()

	getActionCurrentLevel()

	getActionAutolevel()

	setActionAutolevel()

	setActionLevel()

	getRank()

	getBlackOpRank()

	getSkillPoints()

	getSkillLevel()

	getSkillUpgradeCost()

	upgradeSkill()

	getTeamSize()

	setTeamSize()

	getCityEstimatedPopulation()

	getCityEstimatedCommunities()

	getCityChaos()

	getCity()

	switchCity()

	getStamina()

	joinBladeburnerFaction()

	joinBladeburnerDivision()

	getBonusTime()

	Bladeburner Action Types

	Examples

	 Gang API
	getMemberNames()

	getGangInformation()

	getOtherGangInformation()

	getMemberInformation()

	canRecruitMember()

	recruitMember()

	getTaskNames()

	setMemberTask()

	getEquipmentNames()

	getEquipmentCost()

	getEquipmentType()

	purchaseEquipment()

	ascendMember()

	setTerritoryWarfare()

	getChanceToWinClash()

	getBonusTime()

	 Coding Contract API
	attempt()

	getContractType()

	getDescription()

	getData()

	getNumTriesRemaining()

	 Sleeve API
	getNumSleeves()

	getSleeveStats()

	getInformation()

	getTask()

	setToShockRecovery()

	setToSynchronize()

	setToCommitCrime()

	setToFactionWork()

	setToCompanyWork()

	setToUniversityCourse()

	setToGymWorkout()

	travel()

	getSleeveAugmentations()

	getSleevePurchasableAugs()

	purchaseSleeveAug()

	Referencing a Duplicate Sleeve

	Examples

	 Miscellaneous
	Netscript Ports

	Comments

	Importing Functions

	Standard, Built-In JavaScript Objects

	 Basic Gameplay
	Stats
	Hacking

	Strength

	Defense

	Dexterity

	Agility

	Charisma

	Terminal
	Configuration

	Filesystem (Directories)
	Directories

	Absolute vs Relative Paths

	Netscript

	Missing Features

	Commands
	alias

	analyze

	buy

	cat

	cd

	check

	clear/cls

	connect

	download

	expr

	free

	hack

	help

	home

	hostname

	ifconfig

	kill

	killall

	ls

	lscpu

	mem

	mv

	nano

	ps

	rm

	run

	scan

	scan-analyze

	scp

	sudov

	tail

	theme

	top

	unalias

	wget

	Argument Parsing

	Chaining Commands

	Servers
	Server RAM

	Identifying Servers

	Player-owned Servers

	Hackable Servers

	Hacking
	Gaining Root Access

	General Hacking Mechanics

	Server Security

	Scripts
	Script Arguments

	Identifying a Script

	Multithreading scripts

	Working with Scripts in Terminal

	Working with Scripts in Netscript

	Notes about how Scripts Work Offline

	World

	Factions
	List of Factions and their Requirements

	Augmentations
	How to acquire Augmentations

	Installing Augmentations

	Purchasing Multiple Augmentations

	Companies
	Information about all Companies

	Crimes
	Basic Mechanics

	Crime details

	Infiltration
	Overview

	Stock Market
	Fundamentals
	Positions: Long vs Short

	Forecast & Second-Order Forecast

	Spread (Bid Price & Ask Price)

	Transactions Influencing Stock Forecast

	Order Types

	Player Actions Influencing Stocks

	Automating the Stock Market

	Under the Hood

	Offline Progression

	Coding Contracts
	Running in Terminal

	Interacting through Scripts

	Submitting Solutions

	Rewards

	Notes

	List of all Problem Types

	 Advanced Gameplay
	BitNodes
	What is a BitNode

	How to destroy a BitNode

	BitNode Details

	Source-Files
	List of all Source-Files

	Intelligence

	Sleeves
	Duplicate Sleeves
	Obtaining Duplicate Sleeves

	Synchronization

	Sleeve Shock

	Augmentations

	Memory

	Re-sleeving

	 Keyboard Shortcuts
	Game Navigation

	Script Editor

	Terminal Shortcuts

	Terminal Bash Shortcuts

	Popup/Dialog Box Shortcuts

	 Script Editors
	Universal Key Bindings

	Linter

	Ace
	Settings

	Ace Key Bindings

	Vim Key Bindings

	Emacs Key Bindings

	CodeMirror
	Settings

	Default Key Bindings

	Sublime Key Bindings

	Vim Key Bindings

	Emacs Key Bindings

	 Game Frozen or Stuck?
	Infinite Loop in NetscriptJS

	Bug

	 Guides & Tips
	 Getting Started Guide for Beginner Programmers
	Introduction

	First Steps

	Creating our First Script

	Running our Scripts

	Increasing Hacking Level

	Editing our Hacking Script

	Creating a New Script to Purchase New Servers

	Additional Sources of Income
	Hacknet Nodes

	Crime

	Work for a Company

	After you Purchase your New Servers

	Reaching a Hacking Level of 50
	Creating your first program: BruteSSH.exe

	Optional: Create AutoLink.exe

	Joining your first faction: CyberSec

	Using Additional Servers to Hack Joesguns
	Copying our Scripts

	Profiting from Scripts & Gaining Reputation with CyberSec

	Purchasing Upgrades and Augmentations
	Upgrading RAM on Home computer

	Purchasing your First Augmentations

	Next Steps
	Installing Augmentations (and Resetting)

	Automating the Script Startup Process

	Random Tips

	 What BitNode should I do?
	Overview of each BitNode
	BitNode-1: Source Genesis

	BitNode-2: Rise of the Underworld

	BitNode-3: Corporatocracy

	BitNode-4: The Singularity

	BitNode-5: Artificial Intelligence

	BitNode-6: Bladeburners

	BitNode-7: Bladeburners 2079

	BitNode-8: Ghost of Wall Street

	BitNode-9: Hacktocracy

	BitNode-10: Digital Carbon

	BitNode-11: The Big Crash

	BitNode-12: The Recursion

	Recommended BitNodes
	For fast progression

	For the strongest Source-Files

	For more scripting/hacking

	For new mechanics

	For a Challenge

	 Tools & Resources
	Official Script Repository

	Visual Studio Code Extension

	 Changelog
	v0.47.1 - 6/27/2019

	v0.47.0 - 5/17/2019

	v0.46.3 - 4/20/2019

	v0.46.2 - 4/14/2019

	v0.46.1 - 4/12/2019

	v0.46.0 - 4/3/2019

	v0.45.1 - 3/23/2019

	v0.45.0 - 3/22/2019

	v0.44.1 - 3/4/2019

	v0.44.0 - 2/26/2019

	v0.43.1 - 2/11/2019

	v0.43.0 - 2/4/2019

	v0.42.0 - 1/8/2019

	v0.41.2 - 11/23/2018

	v0.41.1 - 11/5/2018

	v0.41.0 - 10/29/2018

	v0.40.5 - 10/09/2018

	v0.40.4 - 9/29/2018

	v0.40.3 - 9/15/2018

	v0.40.2 - 8/27/2018

	v0.40.1 - 8/5/2018 - Community Update

	v0.40.0 - 7/28/2018

	v0.39.1 - 7/4/2018

	v0.39.0 - 6/25/2018

	v0.38.1 - 6/15/2018

	v0.38.0 - 6/12/2018

	v0.37.2 - 6/2/2018

	v0.37.1 - 5/22/2018

	v0.37.0 - 5/20/2018

	v0.36.1 - 5/11/2018

	v0.36.0 - 5/2/2018

	v0.35.2 - 3/26/2018

	v0.35.1 - 3/12/2018

	v0.35.0 - 3/3/2018

	v0.34.5 - 2/24/2018

	v0.34.4 - 2/14/2018

	v0.34.3 - 1/31/2018

	v0.34.2 - 1/27/2018

	v0.34.1 - 1/19/2018

	v0.34.0 - 12/6/2017

	v0.33.0 - 12/1/2017

	v0.32.1 - 11/2/2017

	v0.32.0 - 10/25/2017

	v0.31.0 - 10/15/2017

	v0.30.0 - 10/9/2017

	v0.29.3 - 10/3/2017

	v0.29.2 - 10/1/2017

	v0.29.1 - 9/27/2017

	v0.29.0 - 9/19/2017

	v0.28.6 - 9/15/2017

	v0.28.5 - 9/13/2017

	v0.28.4 - 9/11/2017

	v0.28.3 - 9/7/2017

	v0.28.2 - 9/4/2017

	v0.28.1 - 9/1/2017

	v0.28.0 - 8/30/2017

	v0.27.3 - 8/19/2017

	v0.27.2 - 8/18/2017

	v0.27.1 - 8/15/2017

	v0.27.0 - 8/13/2017

	v0.26.4 - 8/1/2017

	v0.26.3

	v0.26.2

	v0.26.1

	v0.26.0

	v0.25.0

	v0.24.1

	v0.24.0

	v0.23.1

	v0.23.0

	v0.22.1

	v0.22.0 - Major rebalancing, optimization, and favor system

	v0.21.1

	v0.21.0

	v0.20.2

	v0.20.1

	v0.20.0

	v0.19.7

	v0.19.6

	v0.19.0

	v0.18.0

	v0.17.1

	v0.17.0

	v0.16.0

	v0.15.0

	 Donate [https://paypal.me/danielyxie]

Indices and tables

	Index

	Module Index

	Search Page

Netscript

Netscript is the programming language used in the world of Bitburner.

When you write scripts in Bitburner, they are written in the Netscript language.
Netscript is simply a subset of JavaScript [https://developer.mozilla.org/en-US/docs/Web/JavaScript].
This means that Netscript’s syntax is
identical to that of JavaScript, but it does not implement some of the features
that JavaScript has.

If you have any requests or suggestions to improve the Netscript language, feel free
to reach out to the developer!

Sections:

	 Learn to Program
	For Beginner Programmers

	For Experienced Programmers

	Netscript 1.0 vs Netscript 2.0

	 Netscript 1.0
	Which ES6+ features are supported?

	 NetscriptJS (Netscript 2.0)
	Browser compatibility

	How to use NetscriptJS

	Warnings

	Examples

	Final Note

	 Script Arguments

	 Basic Functions
	hack()

	grow()

	weaken()

	hackAnalyzeThreads()

	hackAnalyzePercent()

	hackChance()

	growthAnalyze()

	sleep()

	print()

	tprint()

	clearLog()

	disableLog()

	enableLog()

	isLogEnabled()

	getScriptLogs()

	tail()

	scan()

	nuke()

	brutessh()

	ftpcrack()

	relaysmtp()

	httpworm()

	sqlinject()

	run()

	exec()

	spawn()

	kill()

	killall()

	exit()

	scp()

	ls()

	ps()

	hasRootAccess()

	getHostname()

	getHackingLevel()

	getHackingMultipliers()

	getHacknetMultipliers()

	getServerMoneyAvailable()

	getServerMaxMoney()

	getServerGrowth()

	getServerSecurityLevel()

	getServerBaseSecurityLevel()

	getServerMinSecurityLevel()

	getServerRequiredHackingLevel()

	getServerNumPortsRequired()

	getServerRam()

	serverExists()

	fileExists()

	isRunning()

	getPurchasedServerCost()

	purchaseServer()

	deleteServer()

	getPurchasedServers()

	getPurchasedServerLimit()

	getPurchasedServerMaxRam()

	write()

	tryWrite()

	read()

	peek()

	clear()

	getPortHandle()

	rm()

	scriptRunning()

	scriptKill()

	getScriptName()

	getScriptRam()

	getHackTime()

	getGrowTime()

	getWeakenTime()

	getScriptIncome()

	getScriptExpGain()

	getTimeSinceLastAug()

	sprintf()

	vsprintf()

	nFormat()

	prompt()

	wget()

	getFavorToDonate()

	 Advanced Functions
	getBitNodeMultipliers()

	getHackTime(), getGrowTime(), & getWeakenTime()

	 Hacknet Node API
	numNodes()

	purchaseNode()

	getPurchaseNodeCost()

	getNodeStats()

	upgradeLevel()

	upgradeRam()

	upgradeCore()

	upgradeCache()

	getLevelUpgradeCost()

	getRamUpgradeCost()

	getCoreUpgradeCost()

	getCacheUpgradeCost()

	numHashes()

	hashCost()

	spendHashes()

	Referencing a Hacknet Node

	RAM Cost

	Utilities

	Example(s)

	 Trade Information eXchange (TIX) API
	getStockSymbols()

	getStockPrice()

	getStockAskPrice()

	getStockBidPrice()

	getStockPosition()

	getStockMaxShares()

	getStockPurchaseCost()

	getStockSaleGain()

	buyStock()

	sellStock()

	shortStock()

	sellShort()

	placeOrder()

	cancelOrder()

	getOrders()

	getStockVolatility()

	getStockForecast()

	purchase4SMarketData()

	purchase4SMarketDataTixApi()

	 Singularity Functions
	universityCourse()

	gymWorkout()

	travelToCity()

	purchaseTor()

	purchaseProgram()

	getStats()

	getCharacterInformation()

	isBusy()

	stopAction()

	upgradeHomeRam()

	getUpgradeHomeRamCost()

	workForCompany()

	applyToCompany()

	getCompanyRep()

	getCompanyFavor()

	getCompanyFavorGain()

	checkFactionInvitations()

	joinFaction()

	workForFaction()

	getFactionRep()

	getFactionFavor()

	getFactionFavorGain()

	donateToFaction()

	createProgram()

	commitCrime()

	getCrimeChance()

	getOwnedAugmentations()

	getOwnedSourceFiles()

	getAugmentationsFromFaction()

	getAugmentationPrereq()

	getAugmentationCost()

	purchaseAugmentation()

	installAugmentations()

	 Bladeburner API
	getContractNames()

	getOperationNames()

	getBlackOpNames()

	getGeneralActionNames()

	getSkillNames()

	startAction()

	stopBladeburnerAction()

	getCurrentAction()

	getActionTime()

	getActionEstimatedSuccessChance()

	getActionRepGain()

	getActionCountRemaining()

	getActionMaxLevel()

	getActionCurrentLevel()

	getActionAutolevel()

	setActionAutolevel()

	setActionLevel()

	getRank()

	getBlackOpRank()

	getSkillPoints()

	getSkillLevel()

	getSkillUpgradeCost()

	upgradeSkill()

	getTeamSize()

	setTeamSize()

	getCityEstimatedPopulation()

	getCityEstimatedCommunities()

	getCityChaos()

	getCity()

	switchCity()

	getStamina()

	joinBladeburnerFaction()

	joinBladeburnerDivision()

	getBonusTime()

	Bladeburner Action Types

	Examples

	 Gang API
	getMemberNames()

	getGangInformation()

	getOtherGangInformation()

	getMemberInformation()

	canRecruitMember()

	recruitMember()

	getTaskNames()

	setMemberTask()

	getEquipmentNames()

	getEquipmentCost()

	getEquipmentType()

	purchaseEquipment()

	ascendMember()

	setTerritoryWarfare()

	getChanceToWinClash()

	getBonusTime()

	 Coding Contract API
	attempt()

	getContractType()

	getDescription()

	getData()

	getNumTriesRemaining()

	 Sleeve API
	getNumSleeves()

	getSleeveStats()

	getInformation()

	getTask()

	setToShockRecovery()

	setToSynchronize()

	setToCommitCrime()

	setToFactionWork()

	setToCompanyWork()

	setToUniversityCourse()

	setToGymWorkout()

	travel()

	getSleeveAugmentations()

	getSleevePurchasableAugs()

	purchaseSleeveAug()

	Referencing a Duplicate Sleeve

	Examples

	 Miscellaneous
	Netscript Ports

	Comments

	Importing Functions

	Standard, Built-In JavaScript Objects

Learn to Program in Netscript

Netscript is simply a subset of
JavaScript [https://developer.mozilla.org/en-US/docs/Web/JavaScript],
with some additional functions added in to allow interaction with the game.

For Beginner Programmers

If you have little to no programming experience, that’s okay! You don’t need to be
a great programmer in order to enjoy or play this game. In fact, this game could
help you learn some basic programming concepts.

Here are some good tutorials for learning programming/JavaScript as a beginner:

	Learn-JS [http://www.learn-js.org/en/Welcome]

	
	Speaking JavaScript [http://speakingjs.com/es5/index.html]

	This is a bit on the longer side. You can skip all of the historical
background stuff. Recommended chapters: 1, 7-18

For Experienced Programmers

The following section lists several good tutorials/resources for those who have experience
programming but who have not worked extensively with JavaScript before.

Before that, however, it’s important to clarify some terminology about the different
versions of JavaScript. These are summarized in this article:

WTF is ES6, ES8, ES2017, ECMAScript… [https://codeburst.io/javascript-wtf-is-es6-es8-es-2017-ecmascript-dca859e4821c]

An important takeaway from this article is that ES6, also known as ES2015, introduced
many major features that are commonly seen in modern JavaScript programming. However, this
means that ES5 engines and interpreters will fail if they encounters these ES6 features. You’ll see why this
is important further down.

	MDN Introduction to JS [https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript]

	
	Eloquent JavaScript (ES6+) [http://eloquentjavascript.net/]

	Recommended Chapters: Introduction, 1-6

	
	Modern Javascript Tutorial (ES6+) [https://javascript.info/]

	Recommended Chapters: 2, 4-6

Netscript 1.0 vs Netscript 2.0

There are two versions of Netscript:

	Netscript 1.0

	NetscriptJS (Netscript 2.0)

Visit the pages above to get more details about each version. If you are new
to programming or unfamiliar with JavaScript, I would recommend starting out
with Netscript 1.0. Experienced web developers can use NetscriptJS (Netscript 2.0)
to take advantage of faster speeds and additional features.

Here is a short summary of the differences between Netscript 1.0 and Netscript 2.0:

Netscript 1.0

	ES5

	Some ES6 features implemented with polyfills

	Slow compared to NetscriptJS (interpreter runs at the “Netscript Exec Time” speed configured in options)

	Compatible with all browsers

Netscript JS (Netscript 2.0)

	Supports (almost) all features of modern JavaScript

	Extremely fast - code is executed as an Async Function

	Currently only works with Google Chrome browser

	Each script becomes a module and therefore all instances of that script can easily
share data between each other (essentially global/static variables)

Netscript 1.0

Netscript 1.0 is implemented using a modified version of Neil Fraser’s
JS-Interpreter [https://github.com/NeilFraser/JS-Interpreter].

This is an ES5 JavaScript interpreter. This means that (almost) any JavaScript feature
that is available in ES5 is also available in Netscript 1.0. However, this also means
that the interpreter does not natively support any JavaScript features introduced in versions
ES6 or after.

If you are confused by the ES5/ES6/etc. terminology, consider reading this:
WTF is ES6, ES8, ES2017, ECMAScript… [https://codeburst.io/javascript-wtf-is-es6-es8-es-2017-ecmascript-dca859e4821c]

Netscript 1.0 scripts end with the “.script” extension in their filenames.

Which ES6+ features are supported?

Netscript 1.0 is a ES5 interpreter, but the following features from versions ES6 and
above are supported as well.

If there is an additional ES6+ feature you would like to see implemented with a polyfill,
feel free to open an issue [https://github.com/danielyxie/bitburner/issues] (and provide
the polyfill if possible).

	import - See Importing Functions

	
	Array [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array]

	
	find() [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find]

	findIndex() [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/findIndex]

	includes() [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/includes]

	
	String [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String]

	
	endsWith() [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith]

	includes() [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes]

	startsWith() [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith]

NetscriptJS (Netscript 2.0)

Netscript 2.0, or Netscript JS, is the new and improved version of Netscript that
allows users to write (almost) full-fledged Javascript code in their scripts, while
still being able to access the Netscript functions.

NetscriptJS was developed primarily by Github user jaguilar [https://github.com/jaguilar]

On top of having almost all of the features and capabilities of JavaScript, NetscriptJS is also
significantly faster than Netscript 1.0.

This documentation will not go over any of the additional features of NetscriptJS, since
there is plenty of documentation on Javascript available on the web.

Browser compatibility

As of the time of writing this, a few browsers do not support dynamic import [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import] functionality and therefore cannot run NetscriptJS scripts. These browsers will thus only be capable of using Netscript 1.0.

How to use NetscriptJS

Working with NetscriptJS scripts is the same as Netscript 1.0 scripts. The only difference
is that NetscriptJS scripts use the “.ns” or “.js” extension rather than “.script”. E.g.:

$ nano foo.ns
$ run foo.ns -t 100 arg1 arg2 arg3
exec("foo.ns", "purchasedServer1", "100", "randomArg");

The caveat when using NetscriptJS to write scripts is that your code must be
asynchronous. Furthermore, instead of using the global scope and executing your code
sequentially, NetscriptJS uses a main() function as an entry point.

Furthermore, the “Netscript environment” must be passed into a NetscriptJS script through
the main function. This environment includes all of the pre-defined Netscript functions
(hack(), exec, etc.) as well as the arguments you pass to the script.

Therefore, the signature of the main() function must be:

export async function main(ns) {
 ns.print("Starting script here");
 await ns.hack("foodnstuff"); //Use Netscript hack function
 ns.print(ns.args); //The script arguments must be prefaced with ns as well
}

Here is a summary of all rules you need to follow when writing Netscript JS code:

	Write await before any call to the following Netscript functions:

	hack

	grow

	weaken

	sleep

	prompt

	wget

	Any function that contains await must be declared as async

	Always await any function that is marked as async

	Any functions that you want to be visible from other scripts must be marked with export.

	Do not write any infinite loops without using a sleep or one of the timed Netscript functions like hack. Doing so will crash your game.

	Any global variable declared in a NetscriptJS script is shared between all instances of that
script. For example, assume you write a script foo.ns and declared a global variable like so:

//foo.ns
let globalVariable;

export async function main(ns) {
 globalVariable = ns.args.length;
 while(true) {
 ns.tprint(globalVariable);
 await ns.sleep(3000);
 }
}

Then, you ran multiple instances of foo.ns:

$ run foo.ns 1
$ run foo.ns 1 2 3
$ run foo.ns 1 2 3 4 5

Then all three instances of foo.ns will share the same instance of globalVariable.
(In this example, the value of globalVariable will be set to 5 because the
last instance of foo.ns to run has 5 arguments. This means that all three instances of
the script will repeatedly print the value 5).

These global variables can be thought of as C++ static class members [https://www.tutorialspoint.com/cplusplus/cpp_static_members.htm],
where a NetscriptJS script is a class and a global variable is a static member within that class.

Warnings

The NetscriptJS evaluation engine works by converting your code into a blob URL and then
using a dynamic import to load your code as a module. Every unique NetscriptJS script
is loaded as its own module. This means that
making a small edit to a NetscriptJS script results in a new module being generated.

At this point, we have been unable to find a method for deleting modules from browsers so that
they get garbage collected.

The result is that these modules from NetscriptJS scripts accumulate in your browser,
using memory that never gets released. Over time, this results in a memory-leak type
situation that can slow down your computer.

Therefore, there are two recommendations for those who decide to use NetscriptJS:

1. Every now and then, close and re-open the game. This will clear all of the modules.
To be safe, I recommend completely closing the game’s tab and then re-opening it.
Depending on your browser, a refresh or page reload does not always clear the modules.

2. Only use NetscriptJS scripts when needed. It is very unlikely that NetscriptJS
is needed for very simple scripts. By doing this, you will reduce the number of modules
that are loaded.

Examples

DOM Manipulation (tprintColored.ns)

Directly alter the game’s terminal and print colored text:

export function tprintColored(txt, color) {
 let terminalInput = document.getElementById("terminal-input");
 let rowElement = document.createElement("tr");
 let cellElement = document.createElement("td");

 rowElement.classList.add("posted");
 cellElement.classList.add("terminal-line");
 cellElement.style.color = color;
 cellElement.innerText = txt;

 rowElement.appendChild(cellElement);
 terminalInput.before(rowElement);
}

export async function main(ns) {
 tprintColored("Red Text!", "red");
 tprintColored("Blue Text!", "blue");
 tprintColored("Use Hex Codes!", "#3087E3");
}

Script Scheduler (scriptScheduler.ns)

This script shows some of the new functionality that is available in NetscriptJS,
including objects and object constructors, changing an object’s prototype, and
importing other NetscriptJS scripts:

import {tprintColored} from "tprintColored.ns"; //Importing from other NetscriptJS scripts works!

function ScriptJob(params) {
 if (params.fn == null) {
 throw new Error("No Filename (fn) passed into ScriptJob ctor");
 }

 this.fn = params.fn;
 this.threads = params.threads ? params.threads : 1;
 this.args = params.args ? params.args : [];
}

ScriptJob.prototype.run = async function(ns) {
 let runArgs = [this.fn, this.threads].concat(this.args);
 await ns.run.apply(this, runArgs);
 tprintColored("Running " + this.fn + " on " + ns.getHostname(), "blue");
}

ScriptJob.prototype.exec = async function(ns, target) {
 ns.scp(this.fn, target);

 let execArgs = [this.fn, target, this.threads].concat(this.args);
 await ns.exec.apply(this, execArgs);

 tprintColored("Executing " + this.fn + " on " + target, "blue");
}

export async function main(ns) {
 tprintColored("Starting scriptScheduler.ns", "red");
 try {
 let job = new ScriptJob({
 fn: "test.js",
 threads: 1,
 args: ["foodnstuff"]
 });
 await job.run(ns);
 await job.exec(ns, "foodnstuff");
 } catch (e) {
 ns.tprint("Exception thrown in scriptScheduler.ns: " + e);
 }
}

Final Note

NetscriptJS opens up a lot of possibilities when scripting. I look forward to seeing
the scripts that people come up with. Just remember that the power and capabilities of
NetscriptJS come with risks. Please backup your save if you’re going to experiment with
NetscriptJS and report any serious exploits.

With great power comes great responsibility

Happy hacking

Netscript Script Arguments

Arguments passed into a script can be accessed in Netscript using a
special array called args. The arguments can be
accessed using a normal array using the [] operator
(args[0], args[1], etc…).

For example, let’s say we want to make a generic script
‘generic-run.script’ and we plan to pass two arguments into that script.
The first argument will be the name of another script, and the second
argument will be a number. This generic script will run the
script specified in the first argument with the amount of threads
specified in the second element. The code would look like:

run(args[0], args[1]);

It is also possible to get the number of arguments that was passed
into a script using:

args.length

WARNING: Do not try to modify the args array. This will break the game.
I will do my best to prevent players from doing this.

Netscript Basic Functions

This page contains the complete documentation for all functions that are available in Netscript.
This includes information such as function signatures, what they do, and their return values.

Functions:

	hack()

	grow()

	weaken()

	hackAnalyzeThreads()

	hackAnalyzePercent()

	hackChance()

	growthAnalyze()

	sleep()

	print()

	tprint()

	clearLog()

	disableLog()

	enableLog()

	isLogEnabled()

	getScriptLogs()

	tail()

	scan()

	nuke()

	brutessh()

	ftpcrack()

	relaysmtp()

	httpworm()

	sqlinject()

	run()

	exec()

	spawn()

	kill()

	killall()

	exit()

	scp()

	ls()

	ps()

	hasRootAccess()

	getHostname()

	getHackingLevel()

	getHackingMultipliers()

	getHacknetMultipliers()

	getServerMoneyAvailable()

	getServerMaxMoney()

	getServerGrowth()

	getServerSecurityLevel()

	getServerBaseSecurityLevel()

	getServerMinSecurityLevel()

	getServerRequiredHackingLevel()

	getServerNumPortsRequired()

	getServerRam()

	serverExists()

	fileExists()

	isRunning()

	getPurchasedServerCost()

	purchaseServer()

	deleteServer()

	getPurchasedServers()

	getPurchasedServerLimit()

	getPurchasedServerMaxRam()

	write()

	tryWrite()

	read()

	peek()

	clear()

	getPortHandle()

	rm()

	scriptRunning()

	scriptKill()

	getScriptName()

	getScriptRam()

	getHackTime()

	getGrowTime()

	getWeakenTime()

	getScriptIncome()

	getScriptExpGain()

	getTimeSinceLastAug()

	sprintf()

	vsprintf()

	nFormat()

	prompt()

	wget()

	getFavorToDonate()

hack() Netscript Function

	
hack(hostname/ip[, opts={}])

	
	Arguments

	
	hostname/ip (string) – IP or hostname of the target server to hack

	opts (object) – Optional parameters for configuring function behavior. Properties:

	threads (number) - Number of threads to use for this function.
Must be less than or equal to the number of threads the script is running with.

	stock (boolean) - If true, the function can affect the stock market. See
Player Actions Influencing Stocks

	Returns

	The amount of money stolen if the hack is successful, and zero otherwise

	RAM cost

	0.1 GB

Function that is used to try and hack servers to steal money and gain hacking experience. The runtime for this command depends
on your hacking level and the target server’s security level. In order to hack a server you must first gain root access
to that server and also have the required hacking level.

A script can hack a server from anywhere. It does not need to be running on the same server to hack that server. For example,
you can create a script that hacks the ‘foodnstuff’ server and run that script on any server in the game.

A successful hack() on a server will raise that server’s security level by 0.002.

Example:

hack("foodnstuff");
hack("10.1.2.3");
hack("foodnstuff", { threads: 5 }); // Only use 5 threads to hack

grow() Netscript Function

	
grow(hostname/ip[, opts={}])

	
	Arguments

	
	hostname/ip (string) – IP or hostname of the target server to grow

	opts (object) – Optional parameters for configuring function behavior. Properties:

	threads (number) - Number of threads to use for this function.
Must be less than or equal to the number of threads the script is running with.

	stock (boolean) - If true, the function can affect the stock market. See
Player Actions Influencing Stocks

	Returns

	The number by which the money on the server was multiplied for the growth

	RAM cost

	0.15 GB

Use your hacking skills to increase the amount of money available on a server. The runtime for this command depends on your hacking
level and the target server’s security level. When grow() completes, the money available on a target server will be increased by a
certain, fixed percentage. This percentage is determined by the target server’s growth rate (which varies between servers) and security level.
Generally, higher-level servers have higher growth rates. The getServerGrowth() function can be used to obtain a server’s growth rate.

Like hack(), grow() can be called on any server, regardless of where the script is running. The grow() command requires
root access to the target server, but there is no required hacking level to run the command. It also raises the security level
of the target server by 0.004.

Example:

grow("foodnstuff");
grow("foodnstuff", { threads: 5 }); // Only use 5 threads to grow

weaken() Netscript Function

	
weaken(hostname/ip[, opts={}])

	
	Arguments

	
	hostname/ip (string) – IP or hostname of the target server to weaken

	opts (object) – Optional parameters for configuring function behavior. Properties:

	threads (number) - Number of threads to use for this function.
Must be less than or equal to the number of threads the script is running with.

	Returns

	The amount by which the target server’s security level was decreased. This is equivalent to 0.05 multiplied
by the number of script threads

	RAM cost

	0.15 GB

Use your hacking skills to attack a server’s security, lowering the server’s security level. The runtime for this command
depends on your hacking level and the target server’s security level. This function lowers the security level of the target
server by 0.05.

Like hack() and grow(), weaken() can be called on any server, regardless of where the script is running. This command requires
root access to the target server, but there is no required hacking level to run the command.

Example:

weaken("foodnstuff");
weaken("foodnstuff", { threads: 5 }); // Only use 5 threads to weaken

hackAnalyzeThreads() Netscript Function

	
hackAnalyzeThreads(hostname/ip, hackAmount)

	
	Arguments

	
	hostname/ip (string) – IP or hostname of server to analyze

	hackAmount (number) – Amount of money you want to hack from the server

	Returns

	The number of threads needed to hack() the server for hackAmount money

	RAM cost

	1 GB

This function returns the number of script threads you need when running
the hack() command to steal the specified amount of money from the target server.

If hackAmount is less than zero or greater than the amount of money available
on the server, then this function returns -1.

For example, let’s say the foodnstuff server has $10m and you run:

hackAnalyzeThreads("foodnstuff", 1e6);

If this function returns 50, this means that if your next hack() call
is run on a script with 50 threads, it will steal $1m from the foodnstuff server.

Warning

The value returned by this function isn’t necessarily a whole number.

Warning

It is possible for this function to return Infinity or NaN in
certain uncommon scenarios. This is because in JavaScript:

	0 / 0 = NaN

	N / 0 = Infinity for 0 < N < Infinity.

For example, if a server has no money available and you want to hack some positive
amount from it, then the function would return Infinity because
this would be impossible.

hackAnalyzePercent() Netscript Function

	
hackAnalyzePercent(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – IP or hostname of target server

	Returns

	The percentage of money you will steal from the target server with a single hack

	RAM cost

	1 GB

Returns the percentage of the specified server’s money you will steal with a
single hack. This value is returned in percentage form, not decimal (Netscript
functions typically return in decimal form, but not this one).

For example, assume the following returns 1:

hackAnalyzePercent("foodnstuff");

This means that if hack the foodnstuff server, then you will steal 1% of its
total money. If you hack() using N threads, then you will steal N% of its total
money.

hackChance() Netscript Function

	
hackChance(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – IP or hostname of target server

	Returns

	The chance you have of successfully hacking the target server

	RAM cost

	1 GB

Returns the chance you have of successfully hacking the specified server. This
returned value is in decimal form, not percentage.

growthAnalyze() Netscript Function

	
growthAnalyze(hostname/ip, growthAmount)

	
	Arguments

	
	hostname/ip (string) – IP or hostname of server to analyze

	growthAmount (number) – Multiplicative factor by which the server is grown. Decimal form. Must be >= 1.

	Returns

	The amount of grow() calls needed to grow the specified server by the specified amount

	RAM cost

	1 GB

This function returns the number of “growths” needed in order to increase the amount
of money available on the specified server by the specified amount.

The specified amount is multiplicative and is in decimal form, not percentage.

For example, if you want to determine how many grow() calls you need
to double the amount of money on foodnstuff, you would use:

growthAnalyze("foodnstuff", 2);

If this returns 100, then this means you need to call grow() 100 times
in order to double the money (or once with 100 threads).

Warning: The value returned by this function isn’t necessarily a whole number.

sleep() Netscript Function

	
sleep(n)

	
	Arguments

	
	n (number) – Number of milliseconds to sleep

	RAM cost

	0 GB

Suspends the script for n milliseconds.

print() Netscript Function

	
print(x)

	
	Arguments

	
	x – Value to be printed

	RAM cost

	0 GB

Prints a value or a variable to the script’s logs.

tprint() Netscript Function

	
tprint(x)

	
	Arguments

	
	x – Value to be printed

	RAM cost

	0 GB

Prints a value or a variable to the Terminal

clearLog() Netscript Function

	
clearLog()

	
	RAM cost

	0 GB

Clears the script’s logs

disableLog() Netscript Function

	
disableLog(fn)

	
	Arguments

	
	fn (string) – Name of function for which to disable logging

	RAM cost

	0 GB

Disables logging for the given function. Logging can be disabled for
all functions by passing ‘ALL’ as the argument.

Note that this does not completely remove all logging functionality.
This only stops a function from logging
when the function is successful. If the function fails, it will still log the reason for failure.

Notable functions that cannot have their logs disabled: run, exec, exit

enableLog() Netscript Function

	
enableLog(fn)

	
	Arguments

	
	fn (string) – Name of function for which to enable logging

	RAM cost

	0 GB

Re-enables logging for the given function. If ‘ALL’ is passed into this function
as an argument, then it will revert the effects of disableLog(‘ALL’)

isLogEnabled() Netscript Function

	
isLogEnabled(fn)

	
	Arguments

	
	fn (string) – Name of function to check

	RAM cost

	0 GB

Returns a boolean indicating whether or not logging is enabled for that
function (or ‘ALL’)

getScriptLogs() Netscript Function

	
getScriptLogs([fn][, hostname/ip=current ip][, args...])

	
	Arguments

	
	fn (string) – Optional. Filename of script to get logs from.

	ip (string) – Optional. IP or hostname of the server that the script is on

	args... – Arguments to identify which scripts to get logs for

	RAM cost

	0 GB

Returns a script’s logs. The logs are returned as an array, where each
line is an element in the array. The most recently logged line is at the
end of the array.

Note that there is a maximum number of lines that a script stores in its logs.
This is configurable in the game’s options.

If the function is called with no arguments, it will return the current script’s logs.

Otherwise, the fn, hostname/ip, and args… arguments can be used to get the logs
from another script. Remember that scripts are uniquely identified by both
their names and arguments.

Examples:

// Get logs from foo.script on the current server that was run with no args
getScriptLogs("foo.script");

// Get logs from foo.script on the foodnstuff server that was run with no args
getScriptLogs("foo.script", "foodnstuff");

// Get logs from foo.script on the foodnstuff server that was run with the arguments [1, "test"]
getScriptLogs("foo.script", "foodnstuff", 1, "test");

tail() Netscript Function

	
tail([fn][, hostname/ip=current ip][, ...args])

	
	Arguments

	
	fn (string) – Optional. Filename of script to get logs from.

	ip (string) – Optional. IP or hostname of the server that the script is on

	args... – Arguments to identify which scripts to get logs for

	RAM cost

	0 GB

Opens a script’s logs. This is functionally the same as the
tail Terminal command.

If the function is called with no arguments, it will open the current script’s logs.

Otherwise, the fn, hostname/ip, and args… arguments can be used to get the logs
from another script. Remember that scripts are uniquely identified by both
their names and arguments.

Examples:

// Open logs from foo.script on the current server that was run with no args
tail("foo.script");

// Open logs from foo.script on the foodnstuff server that was run with no args
tail("foo.script", "foodnstuff");

// Open logs from foo.script on the foodnstuff server that was run with the arguments [1, "test"]
tail("foo.script", "foodnstuff", 1, "test");

scan() Netscript Function

	
scan(hostname/ip=current ip[, hostnames=true])

	
	Arguments

	
	hostname/ip (string) – IP or hostname of the server to scan

	boolean – Optional boolean specifying whether the function should output hostnames (if true) or IP addresses (if false)

	RAM cost

	0.2 GB

Returns an array containing the hostnames or IPs of all servers that are one node way from the specified target server. The
hostnames/IPs in the returned array are strings.

nuke() Netscript Function

	
nuke(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – IP or hostname of the target server

	RAM cost

	0 GB

Runs the NUKE.exe program on the target server. NUKE.exe must exist on your home computer.

Example:

nuke("foodnstuff");

brutessh() Netscript Function

	
brutessh(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – IP or hostname of the target server

	RAM cost

	0 GB

Runs the BruteSSH.exe program on the target server. BruteSSH.exe must exist on your home computer.

Example:

brutessh("foodnstuff");

ftpcrack() Netscript Function

	
ftpcrack(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – IP or hostname of the target server

	RAM cost

	0 GB

Runs the FTPCrack.exe program on the target server. FTPCrack.exe must exist on your home computer.

Example:

ftpcrack("foodnstuff");

relaysmtp() Netscript Function

	
relaysmtp(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – IP or hostname of the target server

	RAM cost

	0 GB

Runs the relaySMTP.exe program on the target server. relaySMTP.exe must exist on your home computer.

Example:

relaysmtp("foodnstuff");

httpworm() Netscript Function

	
httpworm(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – IP or hostname of the target server

	RAM cost

	0 GB

Runs the HTTPWorm.exe program on the target server. HTTPWorm.exe must exist on your home computer.

Example:

httpworm("foodnstuff");

sqlinject() Netscript Function

	
sqlinject(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – IP or hostname of the target server

	RAM cost

	0 GB

Runs the SQLInject.exe program on the target server. SQLInject.exe must exist on your home computer.

Example:

sqlinject("foodnstuff");

run() Netscript Function

	
run(script[, numThreads=1][, args...])

	
	Arguments

	
	script (string) – Filename of script to run

	numThreads (number) – Optional thread count for new script. Set to 1 by default. Will be rounded to nearest integer

	args... – Additional arguments to pass into the new script that is being run. Note that if any arguments are being
passed into the new script, then the second argument numThreads must be filled in with a value.

	RAM cost

	1 GB

Run a script as a separate process. This function can only be used to run scripts located on the current server (the server
running the script that calls this function).

If the script was successfully started, then this functions returns the PID
of that script. Otherwise, it returns 0.

Note

PID stands for Process ID. The PID is a unique identifier for each script.
The PID will always be a positive integer.

Warning

Running this function with a numThreads argument of 0 will return 0 without
running the script. However, running this function with a negative numThreads
argument will cause a runtime error.

The simplest way to use the run command is to call it with just the script name. The following example will run
‘foo.script’ single-threaded with no arguments:

run("foo.script");

The following example will run ‘foo.script’ but with 5 threads instead of single-threaded:

run("foo.script", 5);

This next example will run ‘foo.script’ single-threaded, and will pass the string ‘foodnstuff’ into the script
as an argument:

run("foo.script", 1, 'foodnstuff');

exec() Netscript Function

	
exec(script, hostname/ip[, numThreads=1][, args...])

	
	Arguments

	
	script (string) – Filename of script to execute

	hostname/ip (string) – IP or hostname of the ‘target server’ on which to execute the script

	numThreads (number) – Optional thread count for new script. Set to 1 by default. Will be rounded to nearest integer

	args... – Additional arguments to pass into the new script that is being run. Note that if any arguments are being
passed into the new script, then the third argument numThreads must be filled in with a value.

	RAM cost

	1.3 GB

Run a script as a separate process on a specified server. This is similar to the run function except
that it can be used to run a script on any server, instead of just the current server.

If the script was successfully started, then this functions returns the PID
of that script. Otherwise, it returns 0.

Note

PID stands for Process ID. The PID is a unique identifier for each script.
The PID will always be a positive integer.

Warning

Running this function with a numThreads argument of 0 will return 0 without
running the script. However, running this function with a negative numThreads
argument will cause a runtime error.

The simplest way to use the exec command is to call it with just the script name and the target server.
The following example will try to run generic-hack.script on the foodnstuff server:

exec("generic-hack.script", "foodnstuff");

The following example will try to run the script generic-hack.script on the joesguns server with 10 threads:

exec("generic-hack.script", "joesguns", 10);

This last example will try to run the script foo.script on the foodnstuff server with 5 threads. It will also pass
the number 1 and the string “test” in as arguments to the script:

exec("foo.script", "foodnstuff", 5, 1, "test");

spawn() Netscript Function

	
spawn(script, numThreads[, args...])

	
	Arguments

	
	script (string) – Filename of script to execute

	numThreads (number) – Number of threads to spawn new script with. Will be rounded to nearest integer

	args... – Additional arguments to pass into the new script that is being run.

	RAM cost

	2 GB

Terminates the current script, and then after a delay of about 20 seconds it will execute the newly-specified script.
The purpose of this function is to execute a new script without being constrained by the RAM usage of the current one.
This function can only be used to run scripts on the local server.

Because this function immediately terminates the script, it does not have a return value.

The following example will execute the script ‘foo.script’ with 10 threads and the arguments ‘foodnstuff’ and 90:

spawn('foo.script', 10, 'foodnstuff', 90);

kill() Netscript Function

	
kill(script, hostname/ip[, args...])

	
	Arguments

	
	script (string) – Filename of the script to kill

	hostname/ip (string) – IP or hostname of the server on which to kill the script

	args... – Arguments to identify which script to kill

	RAM cost

	0.5 GB

Kills the script on the target server specified by the script’s name and arguments. Remember that scripts
are uniquely identified by both their name and arguments. For example, if foo.script is run with the argument 1, then this
is not the same as foo.script run with the argument 2, even though they have the same code.

If this function successfully kills the specified script, then it will return true. Otherwise, it will return false.

Examples:

The following example will try to kill a script named foo.script on the foodnstuff server that was ran with no arguments:

kill("foo.script", "foodnstuff");

The following will try to kill a script named foo.script on the current server that was ran with no arguments:

kill("foo.script", getHostname());

The following will try to kill a script named foo.script on the current server that was ran with the arguments 1 and “foodnstuff”:

kill("foo.script", getHostname(), 1, "foodnstuff");

	
kill(scriptPid)

	
	Arguments

	
	scriptPid (number) – PID of the script to kill

	RAM cost

	0.5 GB

Kills the script with the specified PID. Killing a script by its PID will typically
have better performance, especially if you have many scripts running.

If this function successfully kills the specified script, then it will return true.
Otherwise, it will return false.

Examples:

The following example will try to kill the script with the PID 10:

if (kill(10)) {
 print("Killed script with PID 10!");
}

killall() Netscript Function

	
killall(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – IP or hostname of the server on which to kill all scripts

	RAM cost

	0.5 GB

Kills all running scripts on the specified server. This function returns true if any scripts were killed, and
false otherwise. In other words, it will return true if there are any scripts running on the target server.

exit() Netscript Function

	
exit()

	
	RAM cost

	0 GB

Terminates the current script immediately

scp() Netscript Function

	
scp(files, [source,]destination)

	
	Arguments

	
	files (string/array) – Filename or an array of filenames of script/literature files to copy

	source (string) – Hostname or IP of the source server, which is the server from which the file will be copied.
This argument is optional and if it’s omitted the source will be the current server.

	destination (string) – Hostname or IP of the destination server, which is the server to which the file will be copied.

	RAM cost

	0.6 GB

Copies a script or literature (.lit) file(s) to another server. The files argument can be either a string specifying a
single file to copy, or an array of strings specifying multiple files to copy.

Returns true if the script/literature file is successfully copied over and false otherwise. If the files argument is an array
then this function will return true if at least one of the files in the array is successfully copied.

Examples:

//Copies hack-template.script from the current server to foodnstuff
scp("hack-template.script", "foodnstuff");

//Copies foo.lit from the helios server to the home computer
scp("foo.lit", "helios", "home");

//Tries to copy three files from rothman-uni to home computer
files = ["foo1.lit", "foo2.script", "foo3.script"];
scp(files, "rothman-uni", "home");

ls() Netscript Function

	
ls(hostname/ip[, grep])

	
	Arguments

	
	hostname/ip (string) – Hostname or IP of the target server

	grep (string) – a substring to search for in the filename

	RAM cost

	0 GB

Returns an array with the filenames of all files on the specified server (as strings). The returned array
is sorted in alphabetic order

ps() Netscript Function

	
ps(hostname/ip=current ip)

	
	Arguments

	
	ip (string) – Hostname or IP address of the target server.
If not specified, it will be the current server’s IP by default

	RAM cost

	0.2 GB

Returns an array with general information about all scripts running on the specified
target server. The information for each server is given in an object with
the following structure:

{
 filename: Script name,
 threads: Number of threads script is running with,
 args: Script's arguments
}

Example usage (using NetscriptJS (Netscript 2.0)):

export async function main(ns) {
 const ps = ns.ps("home");
 for (let i = 0; i < ps.length; ++i) {
 ns.tprint(ps[i].filename + ' ' + ps[i].threads);
 ns.tprint(ps[i].args);
 }
}

hasRootAccess() Netscript Function

	
hasRootAccess(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – Hostname or IP of the target server

	RAM cost

	0.05 GB

Returns a boolean indicating whether or not the player has root access to the specified target server.

Example:

if (hasRootAccess("foodnstuff") == false) {
 nuke("foodnstuff");
}

getHostname() Netscript Function

	
getHostname()

	
	RAM cost

	0.05 GB

Returns a string with the hostname of the server that the script is running on

getHackingLevel() Netscript Function

	
getHackingLevel()

	
	RAM cost

	0.05 GB

Returns the player’s current hacking level

getHackingMultipliers() Netscript Function

	
getHackingMultipliers()

	
	RAM cost

	4 GB

Returns an object containing the Player’s hacking related multipliers. These multipliers are
returned in decimal forms, not percentages (e.g. 1.5 instead of 150%). The object has the following structure:

{
 chance: Player's hacking chance multiplier,
 speed: Player's hacking speed multiplier,
 money: Player's hacking money stolen multiplier,
 growth: Player's hacking growth multiplier
}

Example of how this can be used:

mults = getHackingMultipliers();
print(mults.chance);
print(mults.growth);

getHacknetMultipliers() Netscript Function

	
getHacknetMultipliers()

	
	RAM cost

	4 GB

Returns an object containing the Player’s hacknet related multipliers. These multipliers are
returned in decimal forms, not percentages (e.g. 1.5 instead of 150%). The object has the following structure:

{
 production: Player's hacknet production multiplier,
 purchaseCost: Player's hacknet purchase cost multiplier,
 ramCost: Player's hacknet ram cost multiplier,
 coreCost: Player's hacknet core cost multiplier,
 levelCost: Player's hacknet level cost multiplier
}

Example of how this can be used:

mults = getHacknetMultipliers();
print(mults.production);
print(mults.purchaseCost);

getServerMoneyAvailable() Netscript Function

	
getServerMoneyAvailable(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – Hostname or IP of target server

	RAM cost

	0.1 GB

Returns the amount of money available on a server. Running this function on the home computer will return
the player’s money.

Example:

getServerMoneyAvailable("foodnstuff");
getServerMoneyAvailable("home"); //Returns player's money

getServerMaxMoney() Netscript Function

	
getServerMaxMoney(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – Hostname or IP of target server

	RAM cost

	0.1 GB

Returns the maximum amount of money that can be available on a server

getServerGrowth() Netscript Function

	
getServerGrowth(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – Hostname or IP of target server

	RAM cost

	0.1 GB

Returns the server’s instrinsic “growth parameter”. This growth parameter is a number
between 1 and 100 that represents how quickly the server’s money grows. This parameter affects the
percentage by which the server’s money is increased when using the grow() function. A higher
growth parameter will result in a higher percentage increase from grow().

getServerSecurityLevel() Netscript Function

	
getServerSecurityLevel(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – Hostname or IP of target server

	RAM cost

	0.1 GB

Returns the security level of the target server. A server’s security level is denoted by a number, typically
between 1 and 100 (but it can go above 100).

getServerBaseSecurityLevel() Netscript Function

	
getServerBaseSecurityLevel(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – Hostname or IP of target server

	RAM cost

	0.1 GB

Returns the base security level of the target server. This is the security level that the server starts out with.
This is different than getServerSecurityLevel() because getServerSecurityLevel() returns the current
security level of a server, which can constantly change due to hack(), grow(), and weaken(), calls on that
server. The base security level will stay the same until you reset by installing an Augmentation(s).

getServerMinSecurityLevel() Netscript Function

	
getServerMinSecurityLevel(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – Hostname or IP of target server

	RAM cost

	0.1 GB

Returns the minimum security level of the target server

getServerRequiredHackingLevel() Netscript Function

	
getServerRequiredHackingLevel(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – Hostname or IP of target server

	RAM cost

	0.1 GB

Returns the required hacking level of the target server

getServerNumPortsRequired() Netscript Function

	
getServerNumPortsRequired(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – Hostname or IP of target server

	RAM cost

	0.1 GB

Returns the number of open ports required to successfully run NUKE.exe on the specified server.

getServerRam() Netscript Function

	
getServerRam(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – Hostname or IP of target server

	RAM cost

	0.1 GB

Returns an array with two elements that gives information about a server’s memory (RAM). The first
element in the array is the amount of RAM that the server has total (in GB). The second element in
the array is the amount of RAM that is currently being used on the server (in GB).

Example:

res = getServerRam("helios");
totalRam = res[0];
ramUsed = res[1];

serverExists() Netscript Function

	
serverExists(hostname/ip)

	
	Arguments

	
	hostname/ip (string) – Hostname or IP of target server

	RAM cost

	0.1 GB

Returns a boolean denoting whether or not the specified server exists

fileExists() Netscript Function

	
fileExists(filename[, hostname/ip])

	
	Arguments

	
	filename (string) – Filename of file to check

	hostname/ip (string) – Hostname or IP of target server. This is optional. If it is not specified then the
function will use the current server as the target server

	RAM cost

	0.1 GB

Returns a boolean indicating whether the specified file exists on the target server. The filename
for scripts is case-sensitive, but for other types of files it is not. For example, fileExists(“brutessh.exe”)
will work fine, even though the actual program is named “BruteSSH.exe”.

If the hostname/ip argument is omitted, then the function will search through the current server (the server
running the script that calls this function) for the file.

Examples:

fileExists("foo.script", "foodnstuff");
fileExists("ftpcrack.exe");

The first example above will return true if the script named foo.script exists on the foodnstuff server, and false otherwise.
The second example above will return true if the current server contains the FTPCrack.exe program, and false otherwise.

isRunning() Netscript Function

	
isRunning(filename, hostname/ip[, args...])

	
	Arguments

	
	filename (string) – Filename of script to check. This is case-sensitive.

	hostname/ip (string) – Hostname or IP of target server

	args... – Arguments to specify/identify which scripts to search for

	RAM cost

	0.1 GB

Returns a boolean indicating whether the specified script is running on the target server. Remember that a script is
uniquely identified by both its name and its arguments.

Examples:

In this first example below, the function call will return true if there is a script named foo.script with no arguments
running on the foodnstuff server, and false otherwise:

isRunning("foo.script", "foodnstuff");

In this second example below, the function call will return true if there is a script named foo.script with no arguments
running on the current server, and false otherwise:

isRunning("foo.script", getHostname());

In this next example below, the function call will return true if there is a script named foo.script running with the arguments
1, 5, and “test” (in that order) on the joesguns server, and false otherwise:

isRunning("foo.script", "joesguns", 1, 5, "test");

getPurchasedServerCost() Netscript Function

	
getPurchasedServerCost(ram)

	
	RAM cost

	0.25 GB

	Arguments

	
	ram (number) – Amount of RAM of a potential purchased server. Must be a power of 2 (2, 4, 8, 16, etc.). Maximum value of 1048576 (2^20)

Returns the cost to purchase a server with the specified amount of ram.

Examples:

for (i = 1; i <= 20; i++) {
 tprint(i + " -- " + getPurchasedServerCost(Math.pow(2, i)));
}

purchaseServer() Netscript Function

	
purchaseServer(hostname, ram)

	
	Arguments

	
	hostname (string) – Hostname of the purchased server

	ram (number) – Amount of RAM of the purchased server. Must be a power of 2. Maximum value of getPurchasedServerMaxRam()

	RAM cost

	2.25 GB

Purchased a server with the specified hostname and amount of RAM.

The hostname argument can be any data type, but it will be converted to a string and have whitespace removed. Anything that resolves to an empty string will
cause the function to fail. If there is already a server with the specified hostname, then the function will automatically append
a number at the end of the hostname argument value until it finds a unique hostname. For example, if the script calls
purchaseServer(“foo”, 4) but a server named “foo” already exists, the it will automatically change the hostname to “foo-0”. If there is already
a server with the hostname “foo-0”, then it will change the hostname to “foo-1”, and so on.

Note that there is a maximum limit to the amount of servers you can purchase.

Returns the hostname of the newly purchased server as a string. If the function fails to purchase a server, then it will return an
empty string. The function will fail if the arguments passed in are invalid, if the player does not have enough money to purchase
the specified server, or if the player has exceeded the maximum amount of servers.

Example:

ram = 64;
hn = "pserv-";
for (i = 0; i < 5; ++i) {
 purchaseServer(hn + i, ram);
}

deleteServer() Netscript Function

	
deleteServer(hostname)

	
	Arguments

	
	hostname (string) – Hostname of the server to delete

	RAM cost

	2.25 GB

Deletes one of your purchased servers, which is specified by its hostname.

The hostname argument can be any data type, but it will be converted to a string. Whitespace is automatically removed from
the string. This function will not delete a server that still has scripts running on it.

Returns true if successful, and false otherwise.

getPurchasedServers() Netscript Function

	
getPurchasedServers([hostname=true])

	
	Arguments

	
	hostname (boolean) – Specifies whether hostnames or IP addresses should be returned. If it’s true then hostnames will be returned, and if false
then IPs will be returned. If this argument is omitted then it is true by default

	RAM cost

	2.25 GB

Returns an array with either the hostnames or IPs of all of the servers you have purchased.

getPurchasedServerLimit() Netscript Function

	
getPurchasedServerLimit()

	
	RAM cost

	0.05 GB

Returns the maximum number of servers you can purchase

getPurchasedServerMaxRam() Netscript Function

	
getPurchasedServerMaxRam()

	
	RAM cost

	0.05 GB

Returns the maximum RAM that a purchased server can have

write() Netscript Function

	
write(port/fn, data="", mode="a")

	
	Arguments

	
	port/fn (string/number) – Port or text file/script that will be written to

	data (string) – Data to write

	mode (string) – Defines the write mode. Only valid when writing to text files or scripts.

	RAM cost

	1 GB

This function can be used to either write data to a port, a text file (.txt), or a script (.script, .js, .ns)

If the first argument is a number between 1 and 20, then it specifies a port and this function will write data to that port. Read
about how Netscript Ports work here. The third argument, mode, is not used
when writing to a port.

If the first argument is a string, then it specifies the name of a text file or script and this function will write data to that text file/script. If the
specified text file/script does not exist, then it will be created. The third argument mode, defines how the data will be written. If mode
is set to “w”, then the data is written in “write” mode which means that it will overwrite all existing data on the text file/script. If mode is set to
any other value then the data will be written in “append” mode which means that the data will be added at the end of the file.

tryWrite() Netscript Function

	
tryWrite(port, data="")

	
	Arguments

	
	port (number) – Port to be written to

	data (string) – Data to try to write

	Returns

	True if the data is successfully written to the port, and false otherwise

	RAM cost

	1 GB

Attempts to write data to the specified Netscript Port. If the port is full, the data will
not be written. Otherwise, the data will be written normally

read() Netscript Function

	
read(port/fn)

	
	Arguments

	
	port/fn (string/number) – Port or text file to read from

	RAM cost

	1 GB

This function is used to read data from a port, a text file (.txt), or a script (.script, .js, .ns)

If the argument port/fn is a number between 1 and 20, then it specifies a port and it will read data from that port. Read
about how Netscript Ports work here. A port is a serialized queue. This function
will remove the first element from that queue and return it. If the queue is empty, then the string “NULL PORT DATA” will be returned.

If the argument port/fn is a string, then it specifies the name of a text file or script and this function will return the data in the specified text file/script. If
the text file does not exist, an empty string will be returned.

peek() Netscript Function

	
peek(port)

	
	Arguments

	
	port (number) – Port to peek. Must be an integer between 1 and 20

	RAM cost

	1 GB

This function is used to peek at the data from a port. It returns the first element in the specified port
without removing that element. If the port is empty, the string “NULL PORT DATA” will be returned.

Read about how Netscript Ports work here

clear() Netscript Function

	
clear(port/fn)

	
	Arguments

	
	port/fn (string/number) – Port or text file to clear

	RAM cost

	1 GB

This function is used to clear data in a Netscript Port or a text file.

If the port/fn argument is a number between 1 and 20, then it specifies a port and will clear it (deleting all data from the underlying queue).

If the port/fn argument is a string, then it specifies the name of a text file (.txt) and will delete all data from that text file.

getPortHandle() Netscript Function

	
getPortHandle(port)

	
	Arguments

	
	port (number) – Port number

	RAM cost

	10 GB

Get a handle to a Netscript Port. See more details here: Netscript Ports

WARNING: Port Handles only work in NetscriptJS (Netscript 2.0). They will not work in Netscript 1.0.

rm() Netscript Function

	
rm(fn[, hostname/ip=current server])

	
	Arguments

	
	fn (string) – Filename of file to remove. Must include the extension

	hostname/ip (string) – Hostname or IP Address of the server on which to delete the file. Optional. Defaults to current server

	Returns

	True if it successfully deletes the file, and false otherwise

	RAM cost

	1 GB

Removes the specified file from the current server. This function works for every file type except message (.msg) files.

scriptRunning() Netscript Function

	
scriptRunning(scriptname, hostname/ip)

	
	Arguments

	
	scriptname (string) – Filename of script to check. This is case-sensitive.

	hostname/ip (string) – Hostname or IP of target server

	RAM cost

	1 GB

Returns a boolean indicating whether any instance of the specified script is running on the target server, regardless of
its arguments.

This is different than the isRunning() function because it does not try to identify a specific instance of a running script
by its arguments.

Examples:

The example below will return true if there is any script named foo.script running on the foodnstuff server, and false otherwise:

scriptRunning("foo.script", "foodnstuff");

The example below will return true if there is any script named “foo.script” running on the current server, and false otherwise:

scriptRunning("foo.script", getHostname());

scriptKill() Netscript Function

	
scriptKill(scriptname, hostname/ip)

	
	Arguments

	
	scriptname (string) – Filename of script to kill. This is case-sensitive.

	hostname/ip (string) – Hostname or IP of target server

	RAM cost

	1 GB

Kills all scripts with the specified filename on the target server specified by hostname/ip, regardless of arguments. Returns
true if one or more scripts were successfully killed, and false if none were.

getScriptName() Netscript Function

	
getScriptName()

	
	RAM cost

	0 GB

Returns the current script name

getScriptRam() Netscript Function

	
getScriptRam(scriptname[, hostname/ip])

	
	Arguments

	
	scriptname (string) – Filename of script. This is case-sensitive.

	hostname/ip (string) – Hostname or IP of target server the script is located on. This is optional, If it is not specified then the function will set the current server as the target server.

	RAM cost

	0.1 GB

Returns the amount of RAM required to run the specified script on the target server. Returns
0 if the script does not exist.

getHackTime() Netscript Function

	
getHackTime(hostname/ip[, hackLvl=current level])

	
	Arguments

	
	hostname/ip (string) – Hostname or IP of target server

	hackLvl (number) – Optional hacking level for the calculation. Defaults to player’s current hacking level

	RAM cost

	0.05 GB

Returns the amount of time in seconds it takes to execute the hack() Netscript function on the target server.

The function takes in an optional hackLvl parameter that can be specified
to see what the hack time would be at different hacking levels.

Note

For Hacknet Servers (the upgraded version of a Hacknet Node), this function will
return Infinity.

getGrowTime() Netscript Function

	
getGrowTime(hostname/ip[, hackLvl=current level])

	
	Arguments

	
	hostname/ip (string) – Hostname or IP of target server

	hackLvl (number) – Optional hacking level for the calculation. Defaults to player’s current hacking level

	RAM cost

	0.05 GB

Returns the amount of time in seconds it takes to execute the grow() Netscript function on the target server.

The function takes in an optional hackLvl parameter that can be specified
to see what the grow time would be at different hacking levels.

Note

For Hacknet Servers (the upgraded version of a Hacknet Node), this function will
return Infinity.

getWeakenTime() Netscript Function

	
getWeakenTime(hostname/ip[, hackLvl=current level])

	
	Arguments

	
	hostname/ip (string) – Hostname or IP of target server

	hackLvl (number) – Optional hacking level for the calculation. Defaults to player’s current hacking level

	RAM cost

	0.05 GB

Returns the amount of time in seconds it takes to execute the weaken() Netscript function on the target server.

The function takes in an optional hackLvl parameter that can be specified
to see what the weaken time would be at different hacking levels.

Note

For Hacknet Servers (the upgraded version of a Hacknet Node), this function will
return Infinity.

getScriptIncome() Netscript Function

	
getScriptIncome([scriptname][, hostname/ip][, args...])

	
	Arguments

	
	scriptname (string) – Filename of script

	hostname/ip (string) – Server on which script is running

	args... – Arguments that the script is running with

	RAM cost

	0.1 GB

Returns the amount of income the specified script generates while online (when the game is open, does not apply for offline income).
Remember that a script is uniquely identified by both its name and its arguments. So for example if you ran a script with the arguments
“foodnstuff” and “5” then in order to use this function to get that script’s income you must specify those same arguments in the same order
in this function call.

This function can also be called with no arguments. If called with no arguments, then this function will return an array of two values. The
first value is the total income ($ / second) of all of your active scripts (scripts that are currently running on any server). The second value
is the total income ($ / second) that you’ve earned from scripts since you last installed Augmentations.

getScriptExpGain() Netscript Function

	
getScriptExpGain([scriptname][, hostname/ip][, args...])

	
	Arguments

	
	scriptname (string) – Filename of script

	hostname/ip (string) – Server on which script is running

	args... – Arguments that the script is running with

	RAM cost

	0.1 GB

Returns the amount of hacking experience the specified script generates while online (when the game is open, does not apply for offline experience gains).
Remember that a script is uniquely identified by both its name and its arguments.

This function can also return the total experience gain rate of all of your active scripts by running the function with no arguments.

getTimeSinceLastAug() Netscript Function

	
getTimeSinceLastAug()

	
	RAM cost

	0.05 GB

Returns the amount of time in milliseconds that have passed since you last installed Augmentations

sprintf() Netscript Function

	
sprintf()

	
	RAM cost

	0 GB

See this link [https://github.com/alexei/sprintf.js] for details.

vsprintf() Netscript Function

	
vsprintf()

	
	RAM cost

	0 GB

See this link [https://github.com/alexei/sprintf.js] for details.

nFormat() Netscript Function

	
nFormat(n, format)

	
	Arguments

	
	n (number) – Number to format

	format (string) – Formatter

Converts a number into a string with the specified formatter. This uses the
numeraljs [http://numeraljs.com/] library, so the formatters must be compatible
with that.

This is the same function that the game itself uses to display numbers.

Examples:

nFormat(1.23e9, "$0.000a"); // Returns "$1.230b"
nFormat(12345.678, "0,0"); // Returns "12,346"
nFormat(0.84, "0.0%"); // Returns "84.0%

prompt() Netscript Function

	
prompt(txt)

	
	Arguments

	
	txt (string) – Text to appear in the prompt dialog box

	RAM cost

	0 GB

Prompts the player with a dialog box with two options: “Yes” and “No”. This function will return true if the player click “Yes” and
false if the player clicks “No”. The script’s execution is halted until the player selects one of the options.

wget() Netscript Function

	
wget(url, target[, hostname/ip=current ip])

	
	Arguments

	
	url (string) – URL to pull data from

	target (string) – Filename to write data to. Must be script or text file

	ip (string) – Optional hostname/ip of server for target file.

	RAM cost

	0 GB

Retrieves data from a URL and downloads it to a file on the specified server. The data can only
be downloaded to a script (.script, .ns, .js) or a text file (.txt). If the file already exists,
it will be overwritten by this command.

Note that it will not be possible to download data from many websites because they do not allow
cross-origin resource sharing (CORS). Example:

wget("https://raw.githubusercontent.com/danielyxie/bitburner/master/README.md", "game_readme.txt");

IMPORTANT: This is an asynchronous function that returns a Promise. The Promise’s resolved
value will be a boolean indicating whether or not the data was successfully
retrieved from the URL. Because the function is async and returns a Promise,
it is recommended you use wget in NetscriptJS (Netscript 2.0).

In NetscriptJS, you must preface any call to
wget with the await keyword (like you would hack or sleep).

wget will still work in Netscript 1.0, but the functions execution will not
be synchronous (i.e. it may not execute when you expect/want it to). Furthermore, since Promises are not
supported in ES5, you will not be able to process the returned value of wget in
Netscript 1.0.

getFavorToDonate() Netscript Function

	
getFavorToDonate()

	
	RAM cost

	0.1 GB

Returns the amount of Faction favor required to be able to donate to a faction.

Netscript Advanced Functions

These Netscript functions become relevant later on in the game. They are put on a separate page because
they contain spoilers for the game.

Warning

This page contains spoilers for the game

	getBitNodeMultipliers()

	getHackTime(), getGrowTime(), & getWeakenTime()

getBitNodeMultipliers() Netscript Function

	
getBitNodeMultipliers()

	Returns an object containing the current BitNode multipliers. This function requires Source-File 5 in order
to run. The multipliers are returned in decimal forms (e.g. 1.5 instead of 150%). The multipliers represent
the difference between the current BitNode and the original BitNode (BitNode-1). For example, if the
CrimeMoney multiplier has a value of 0.1, then that means that committing crimes in the current BitNode
will only give 10% of the money you would have received in BitNode-1.

The structure of the returned object is subject to change as BitNode multipliers get added to the game.
Refer to the source code here [https://github.com/danielyxie/bitburner/blob/master/src/BitNode/BitNodeMultipliers.ts]
to see the name of the BitNode multipliers.

Example:

mults = getBitNodeMultipliers();
print(mults.ServerMaxMoney);
print(mults.HackExpGain);

getHackTime(), getGrowTime(), & getWeakenTime()

The getHackTime(), getGrowTime(), and getWeakenTime()
all take an additional third optional parameter for specifying a specific intelligence
level to see how that would affect the hack/grow/weaken times. This parameter
defaults to your current intelligence level.

(Intelligence is unlocked after obtaining Source-File 5).

The function signatures are then:

getHackTime(hostname/ip[, hackLvl=current level, intLvl=current level])
getGrowTime(hostname/ip[, hackLvl=current level, intLvl=current level])
getWeakenTime(hostname/ip[, hackLvl=current level, intLvl=current level])

Netscript Hacknet Node API

Warning

Not all functions in the Hacknet Node API are immediately available.
For this reason, the documentation for this API may contains spoilers
for the game.

Netscript provides the following API for accessing and upgrading your Hacknet Nodes
through scripts.

Note that none of these functions will write to the script’s logs. If you want
to see what your script is doing you will have to print to the logs yourself.

Hacknet Node API functions must be accessed through the hacknet namespace

In Netscript 1.0:

hacknet.purchaseNode();
hacknet.getNodeStats(3).level;

In NetscriptJS (Netscript 2.0):

ns.hacknet.purchaseNode();
ns.hacknet.getNodeStats(3).level;

API Functions:

	numNodes()

	purchaseNode()

	getPurchaseNodeCost()

	getNodeStats()

	upgradeLevel()

	upgradeRam()

	upgradeCore()

	upgradeCache()

	getLevelUpgradeCost()

	getRamUpgradeCost()

	getCoreUpgradeCost()

	getCacheUpgradeCost()

	numHashes()

	hashCost()

	spendHashes()

Referencing a Hacknet Node

Most of the functions in the Hacknet Node API perform an operation on a single
Node. Therefore, a numeric index is used to identify and specify which Hacknet
Node a function should act on. This index number corresponds to the number
at the end of the name of the Hacknet Node. For example, the first Hacknet Node you
purchase will have the name “hacknet-node-0” and is referenced using index 0.
The fifth Hacknet Node you purchase will have the name “hacknet-node-4” and is
referenced using index 4.

RAM Cost

Accessing the hacknet namespace incurs a one time cost of 4 GB of RAM.
In other words, using multiple Hacknet Node API functions in a script will not cost
more than 4 GB of RAM.

Utilities

The following functions are not officially part of the Hacknet Node API, but they
can be useful when writing Hacknet Node-related scripts. Since they are not part
of the API, they do not need to be accessed using the hacknet namespace.

	getHacknetMultipliers()

Example(s)

The following is an example of one way a script can be used to automate the
purchasing and upgrading of Hacknet Nodes.

This script attempts to purchase Hacknet Nodes until the player has a total of 8. Then
it gradually upgrades those Node’s to a minimum of level 140, 64 GB RAM, and 8 cores

function myMoney() {
 return getServerMoneyAvailable("home");
}

disableLog("getServerMoneyAvailable");
disableLog("sleep");

var cnt = 8;

while(hacknet.numNodes() < cnt) {
 res = hacknet.purchaseNode();
 print("Purchased hacknet Node with index " + res);
};

for (var i = 0; i < cnt; i++) {
 while (hacknet.getNodeStats(i).level <= 80) {
 var cost = hacknet.getLevelUpgradeCost(i, 10);
 while (myMoney() < cost) {
 print("Need $" + cost + " . Have $" + myMoney());
 sleep(3000);
 }
 res = hacknet.upgradeLevel(i, 10);
 };
};

print("All nodes upgraded to level 80");

for (var i = 0; i < cnt; i++) {
 while (hacknet.getNodeStats(i).ram < 16) {
 var cost = hacknet.getRamUpgradeCost(i, 2);
 while (myMoney() < cost) {
 print("Need $" + cost + " . Have $" + myMoney());
 sleep(3000);
 }
 res = hacknet.upgradeRam(i, 2);
 };
};

print("All nodes upgraded to 16GB RAM");

numNodes() Netscript Function

	
numNodes()

	Returns the number of Hacknet Nodes you own.

purchaseNode() Netscript Function

	
purchaseNode()

	Purchases a new Hacknet Node. Returns a number with the index of the Hacknet Node.
This index is equivalent to the number at the end of the Hacknet Node’s name
(e.g The Hacknet Node named ‘hacknet-node-4’ will have an index of 4).

If the player cannot afford to purchase a new Hacknet Node then the function
will return -1.

getPurchaseNodeCost() Netscript Function

	
getPurchaseNodeCost()

	Returns the cost of purchasing a new Hacknet Node

getNodeStats() Netscript Function

Warning

This page contains spoilers for the game

	
getNodeStats(i)

	
	Arguments

	
	i (number) – Index/Identifier of Hacknet Node. See here for details

Returns an object containing a variety of stats about the specified Hacknet Node:

{
 name: Node's name ("hacknet-node-5"),
 level: Node's level,
 ram: Node's RAM,
 cores: Node's number of cores,
 cache: Cache level. Only applicable for Hacknet Servers
 hashCapacity: Hash Capacity provided by this Node. Only applicable for Hacknet Servers
 production: Node's production per second
 timeOnline: Number of seconds since Node has been purchased,
 totalProduction: Total amount that the Node has produced
}

Note

Note that for Hacknet Nodes, production refers to the amount of money the node generates.
For Hacknet Servers (the upgraded version of Hacknet Nodes), production refers to the amount
of hashes the node generates.

upgradeLevel() Netscript Function

	
upgradeLevel(i, n)

	
	Arguments

	
	i (number) – Index/Identifier of Hacknet Node. See here for details

	n (number) – Number of levels to purchase. Must be positive. Rounded to nearest integer

Tries to upgrade the level of the specified Hacknet Node by n.

Returns true if the Hacknet Node’s level is successfully upgraded by n or
if it is upgraded by some positive amount and the Node reaches its max level.

Returns false otherwise.

upgradeRam() Netscript Function

	
upgradeRam(i, n)

	
	Arguments

	
	i (number) – Index/Identifier of Hacknet Node. See here for details

	n (number) – Number of times to upgrade RAM. Must be positive. Rounded to nearest integer

Tries to upgrade the specified Hacknet Node’s RAM n times. Note that each upgrade
doubles the Node’s RAM. So this is equivalent to multiplying the Node’s RAM by
2 n.

Returns true if the Hacknet Node’s RAM is successfully upgraded n times or if
it is upgraded some positive number of times and the Node reaches it max RAM.

Returns false otherwise.

upgradeCore() Netscript Function

	
upgradeCore(i, n)

	
	Arguments

	
	i (number) – Index/Identifier of Hacknet Node. See here for details

	n (number) – Number of cores to purchase. Must be positive. Rounded to nearest integer

Tries to purchase n cores for the specified Hacknet Node.

Returns true if it successfully purchases n cores for the Hacknet Node or if
it purchases some positive amount and the Node reaches its max number of cores.

Returns false otherwise.

upgradeCache() Netscript Function

Warning

This page contains spoilers for the game

	
upgradeCache(i, n)

	
	Arguments

	
	i (number) – Index/Identifier of Hacknet Node. See here for details

	n (number) – Number of cache levels to purchase. Must be positive. Rounded to nearest integer

Note

This function is only applicable for Hacknet Servers (the upgraded version of
a Hacknet Node).

Tries to upgrade the specified Hacknet Server’s cache n times.

Returns true if it successfully upgrades the Server’s cache n times, or if
it purchases some positive amount and the Server reaches its max cache level.

Returns false otherwise.

getLevelUpgradeCost() Netscript Function

	
getLevelUpgradeCost(i, n)

	
	Arguments

	
	i (number) – Index/Identifier of Hacknet Node. See here for details

	n (number) – Number of levels to upgrade. Must be positive. Rounded to nearest integer

Returns the cost of upgrading the specified Hacknet Node by n levels.

If an invalid value for n is provided, then this function returns 0. If the
specified Hacknet Node is already at max level, then Infinity is returned.

getRamUpgradeCost() Netscript Function

	
getRamUpgradeCost(i, n)

	
	Arguments

	
	i (number) – Index/Identifier of Hacknet Node. See here for details

	n (number) – Number of times to upgrade RAM. Must be positive. Rounded to nearest integer

Returns the cost of upgrading the RAM of the specified Hacknet Node n times.

If an invalid value for n is provided, then this function returns 0. If the
specified Hacknet Node is already at max RAM, then Infinity is returned.

getCoreUpgradeCost() Netscript Function

	
getCoreUpgradeCost(i, n)

	
	Arguments

	
	i (number) – Index/Identifier of Hacknet Node. See here for details

	n (number) – Number of times to upgrade cores. Must be positive. Rounded to nearest integer

Returns the cost of upgrading the number of cores of the specified Hacknet Node by n.

If an invalid value for n is provided, then this function returns 0. If the
specified Hacknet Node is already at the max number of cores, then Infinity is returned.

getCacheUpgradeCost() Netscript Function

Warning

This page contains spoilers for the game

	
getCacheUpgradeCost(i, n)

	
	Arguments

	
	i (number) – Index/Identifier of Hacknet Node. See here for details

	n (number) – Number of times to upgrade cache. Must be positive. Rounded to nearest integer

Note

This function is only applicable for Hacknet Servers (the upgraded version of
a Hacknet Node).

Returns the cost of upgrading the cache level of the specified Hacknet Server by n.

If an invalid value for n is provided, then this function returns 0. If the
specified Hacknet Server is already at the max cache level, then Infinity is returned.

numHashes() Netscript Function

Warning

This page contains spoilers for the game

	
numHashes()

	
Note

This function is only applicable for Hacknet Servers (the upgraded version
of a Hacknet Node).

Returns the number of hashes you have

hashCost() Netscript Function

Warning

This page contains spoilers for the game

	
hashCost(upgName)

	
	Arguments

	
	upgName (string) – Name of upgrade to get the cost of. Must be an exact match

Note

This function is only applicable for Hacknet Servers (the upgraded version
of a Hacknet Node).

Returns the number of hashes required for the specified upgrade. The name of the
upgrade must be an exact match.

Example:

var upgradeName = "Sell for Corporation Funds";
if (hacknet.numHashes() > hacknet.hashCost(upgradeName)) {
 hacknet.spendHashes(upgName);
}

spendHashes() Netscript Function

Warning

This page contains spoilers for the game

	
spendHashes(upgName, upgTarget)

	
	Arguments

	
	upgName (string) – Name of upgrade to spend hashes on. Must be an exact match

	upgTarget (string) – Object to which upgrade applies. Required for certain upgrades

Note

This function is only applicable for Hacknet Servers (the upgraded version
of a Hacknet Node).

Spend the hashes generated by your Hacknet Servers on an upgrade. Returns a boolean value -
true if the upgrade is successfully purchased, and false otherwise.

The name of the upgrade must be an exact match. The upgTarget argument is used
for upgrades such as Reduce Minimum Security, which applies to a specific server.
In this case, the upgTarget argument must be the hostname of the server.

Example:

hacknet.spendHashes("Sell for Corporation Funds");
hacknet.spendHashes("Increase Maximum Money", "foodnstuff");

Netscript Trade Information eXchange (TIX) API

The Trade Information eXchange (TIX) is the communications protocol supported by the World Stock Exchange (WSE).
The WSE provides an API that allows you to automatically communicate with the
Stock Market.
This API lets you write code using Netscript
to build automated trading systems and create your own algorithmic trading strategies. Access to this
TIX API can be purchased by visiting the World Stock Exchange in-game.

Access to the TIX API currently costs $5 billion. After you purchase it, you will retain this
access even after you ‘reset’ by installing Augmentations

API Functions:

	getStockSymbols()

	getStockPrice()

	getStockAskPrice()

	getStockBidPrice()

	getStockPosition()

	getStockMaxShares()

	getStockPurchaseCost()

	getStockSaleGain()

	buyStock()

	sellStock()

	shortStock()

	sellShort()

	placeOrder()

	cancelOrder()

	getOrders()

	getStockVolatility()

	getStockForecast()

	purchase4SMarketData()

	purchase4SMarketDataTixApi()

getStockSymbols() Netscript Function()

	
getStockSymbols()

	
	RAM cost

	2 GB

Returns an array of the symbols of the tradable stocks

getStockPrice() Netscript Function

	
getStockPrice(sym)

	
	Arguments

	
	sym (string) – Stock symbol

	RAM cost

	2 GB

Given a stock’s symbol, returns the price of that stock (the symbol is a sequence
of two to four capital letters, not the name of the company to which that stock belongs).

Note

The stock’s price is the average of its bid and ask price.
See Spread (Bid Price & Ask Price) for details on what this means.

Example:

getStockPrice("FSIG");

getStockAskPrice() Netscript Function

	
getStockAskPrice(sym)

	
	Arguments

	
	sym (string) – Stock symbol

	RAM cost

	2 GB

Given a stock’s symbol, returns the ask price of that stock (the symbol is a sequence
of two to four capital letters, not the name of the company to which that stock belongs).

See Spread (Bid Price & Ask Price) for details on what the ask price is.

getStockBidPrice() Netscript Function

	
getStockBidPrice(sym)

	
	Arguments

	
	sym (string) – Stock symbol

	RAM cost

	2 GB

Given a stock’s symbol, returns the bid price of that stock (the symbol is a sequence
of two to four capital letters, not the name of the company to which that stock belongs).

See Spread (Bid Price & Ask Price) for details on what the bid price is.

getStockPosition() Netscript Function

	
getStockPosition(sym)

	
	Arguments

	
	sym (string) – Stock symbol

	RAM cost

	2 GB

Returns an array of four elements that represents the player’s position in a stock.

The first element is the returned array is the number of shares the player owns of the stock in the
Long position [http://bitburner.wikia.com/wiki/Stock_Market#Positions:_Long_vs_Short]. The second
element in the array is the average price of the player’s shares in the Long position.

The third element in the array is the number of shares the player owns of the stock in the
Short position [http://bitburner.wikia.com/wiki/Stock_Market#Positions:_Long_vs_Short]. The fourth
element in the array is the average price of the player’s Short position.

All elements in the returned array are numeric.

Example:

pos = getStockPosition("ECP");
shares = pos[0];
avgPx = pos[1];
sharesShort = pos[2];
avgPxShort = pos[3];

getStockMaxShares() Netscript Function

	
getStockMaxShares(sym)

	
	Arguments

	
	sym (string) – Stock symbol

	RAM cost

	2 GB

Returns the maximum number of shares that the stock has. This is the maximum
amount of the stock that can be purchased in both the Long and Short
positions combined

getStockPurchaseCost() Netscript Function

	
getStockPurchaseCost(sym, shares, posType)

	
	Arguments

	
	sym (string) – Stock symbol

	shares (number) – Number of shares to purchase

	posType (string) – Specifies whether the order is a “Long” or “Short” position.
The values “L” or “S” can also be used.

	RAM cost

	2 GB

Calculates and returns how much it would cost to buy a given number of
shares of a stock. This takes into account spread
and commission fees.

getStockSaleGain() Netscript Function

	
getStockSaleGain(sym, shares, posType)

	
	Arguments

	
	sym (string) – Stock symbol

	shares (number) – Number of shares to sell

	posType (string) – Specifies whether the order is a “Long” or “Short” position.
The values “L” or “S” can also be used.

	RAM cost

	2 GB

Calculates and returns how much you would gain from selling a given number of
shares of a stock. This takes into account spread
and commission fees.

buyStock() Netscript Function

	
buyStock(sym, shares)

	
	Arguments

	
	sym (string) – Symbol of stock to purchase

	shares (number) – Number of shares to purchased. Must be positive. Will be rounded to nearest integer

	RAM cost

	2.5 GB

Attempts to purchase shares of a stock using a Market Order [http://bitburner.wikia.com/wiki/Stock_Market#Order_Types].

If the player does not have enough money to purchase the specified number of shares, then no shares will be purchased. Remember
that every transaction on the stock exchange costs a certain commission fee.

If this function successfully purchases the shares, it will return the stock price at which each share was purchased. Otherwise,
it will return 0.

sellStock() Netscript Function

	
sellStock(sym, shares)

	
	Arguments

	
	sym (string) – Symbol of stock to sell

	shares (number) – Number of shares to sell. Must be positive. Will be rounded to nearest integer

	RAM cost

	2.5 GB

Attempts to sell shares of a stock using a Market Order [http://bitburner.wikia.com/wiki/Stock_Market#Order_Types].

If the specified number of shares in the function exceeds the amount that the player actually owns, then this function will
sell all owned shares. Remember that every transaction on the stock exchange costs a certain commission fee.

The net profit made from selling stocks with this function is reflected in the script’s statistics.
This net profit is calculated as:

shares * (sell price - average price of purchased shares)

If the sale is successful, this function will return the stock price at which each share was sold. Otherwise, it will return 0.

shortStock() Netscript Function

	
shortStock(sym, shares)

	
	Arguments

	
	sym (string) – Symbol of stock to short

	shares (number) – Number of shares to short. Must be positive. Will be rounded to nearest integer

	RAM cost

	2.5 GB

Attempts to purchase a short [http://bitburner.wikia.com/wiki/Stock_Market#Positions:_Long_vs_Short] position of a stock
using a Market Order [http://bitburner.wikia.com/wiki/Stock_Market#Order_Types].

The ability to short a stock is not immediately available to the player and must be unlocked later on in the game.

If the player does not have enough money to purchase the specified number of shares, then no shares will be purchased.
Remember that every transaction on the stock exchange costs a certain commission fee.

If the purchase is successful, this function will return the stock price at which each share was purchased. Otherwise, it will return 0.

sellShort() Netscript Function

	
sellShort(sym, shares)

	
	Arguments

	
	sym (string) – Symbol of stock to sell

	shares (number) – Number of shares to sell. Must be positive. Will be rounded to nearest integer

	RAM cost

	2.5 GB

Attempts to sell a short [http://bitburner.wikia.com/wiki/Stock_Market#Positions:_Long_vs_Short] position of a stock
using a Market Order [http://bitburner.wikia.com/wiki/Stock_Market#Order_Types].

The ability to short a stock is not immediately available to the player and must be unlocked later on in the game.

If the specified number of shares exceeds the amount that the player actually owns, then this function will sell all owned
shares. Remember that every transaction on the stock exchange costs a certain commission fee.

If the sale is successful, this function will return the stock price at which each share was sold. Otherwise it will return 0.

placeOrder() Netscript Function

	
placeOrder(sym, shares, price, type, pos)

	
	Arguments

	
	sym (string) – Symbol of stock to player order for

	shares (number) – Number of shares for order. Must be positive. Will be rounded to nearest integer

	price (number) – Execution price for the order

	type (string) – Type of order. It must specify “limit” or “stop”, and must also specify “buy” or “sell”. This is NOT
case-sensitive. Here are four examples that will work:

	limitbuy

	limitsell

	stopbuy

	stopsell

	pos (string) – Specifies whether the order is a “Long” or “Short” position. The Values “L” or “S” can also be used. This is
NOT case-sensitive.

	RAM cost

	2.5 GB

Places an order on the stock market. This function only works
for Limit and Stop Orders.

Returns true if the order is successfully placed, and false otherwise.

Note

The ability to place limit and stop orders is not immediately available to
the player and must be unlocked later on in the game.

cancelOrder() Netscript Function

	
cancelOrder(sym, shares, price, type, pos)

	
	Arguments

	
	sym (string) – Symbol of stock to player order for

	shares (number) – Number of shares for order. Must be positive. Will be rounded to nearest integer

	price (number) – Execution price for the order

	type (string) – Type of order. It must specify “limit” or “stop”, and must also specify “buy” or “sell”. This is NOT
case-sensitive. Here are four examples that will work:

	limitbuy

	limitsell

	stopbuy

	stopsell

	pos (string) – Specifies whether the order is a “Long” or “Short” position. The Values “L” or “S” can also be used. This is
NOT case-sensitive.

	RAM cost

	2.5 GB

Cancels an oustanding Limit or Stop order on the stock market.

The ability to use limit and stop orders is not immediately available to the player and must be unlocked later on in the game.

getOrders() Netscript Function

	
getOrders()

	
	RAM cost

	2.5 GB

Returns your order book for the stock market. This is an object containing information
for all the Limit and Stop Orders
you have in the stock market.

Note

This function isn’t accessible until you have unlocked the ability to use
Limit and Stop Orders.

The object has the following structure:

{
 StockSymbol1: [// Array of orders for this stock
 {
 shares: Order quantity
 price: Order price
 type: Order type
 position: Either "L" or "S" for Long or Short position
 },
 {
 ...
 },
 ...
],
 StockSymbol2: [// Array of orders for this stock
 ...
],
 ...
}

The “Order type” property can have one of the following four values:

	“Limit Buy Order”

	“Limit Sell Order”

	“Stop Buy Order”

	“Stop Sell Order”

Note that the order book will only contain information for stocks that you actually
have orders in. For example, if you do not have orders in Nova Medical (NVMD), then the returned
object will not have a “NVMD” property.

Example:

{
 ECP: [
 {
 shares: 5,
 price: 100,000
 type: "Stop Buy Order",
 position: "S",
 },
 {
 shares: 25,
 price: 125,000
 type: "Limit Sell Order",
 position: "L",
 },
],
 SYSC: [
 {
 shares: 100,
 price: 10,000
 type: "Limit Buy Order",
 position: "L",
 },
],
}

getStockVolatility() Netscript Function

	
getStockVolatility(sym)

	
	Arguments

	
	sym (string) – Symbol of stock

	RAM cost

	2.5 GB

Returns the volatility of the specified stock.

Volatility represents the maximum percentage by which a stock’s price can
change every tick. The volatility is returned as a decimal value, NOT
a percentage (e.g. if a stock has a volatility of 3%, then this function will
return 0.03, NOT 3).

In order to use this function, you must first purchase access to the Four Sigma (4S)
Market Data TIX API.

getStockForecast() Netscript Function

	
getStockForecast(sym)

	
	Arguments

	
	sym (string) – Symbol of stock

	RAM cost

	2.5 GB

Returns the probability that the specified stock’s price will increase
(as opposed to decrease) during the next tick.

The probability is returned as a decimal value, NOT a percentage (e.g. if a
stock has a 60% chance of increasing, then this function will return 0.6,
NOT 60).

In other words, if this function returned 0.30 for a stock, then this means
that the stock’s price has a 30% chance of increasing and a 70% chance of
decreasing during the next tick.

In order to use this function, you must first purchase access to the Four Sigma (4S)
Market Data TIX API.

purchase4SMarketData() Netscript Function

	
purchase4SMarketData()

	
	RAM cost

	2.5 GB

Purchase 4S Market Data Access.

Returns true if you successfully purchased it or if you already have access.
Returns false otherwise.

purchase4SMarketDataTixApi() Netscript Function

	
purchase4SMarketDataTixApi()

	
	RAM cost

	2.5 GB

Purchase 4S Market Data TIX API Access.

Returns true if you successfully purchased it or if you already have access.
Returns false otherwise.

Netscript Singularity Functions

The Singularity Functions are a special set of Netscript functions. These functions allow you to control
many additional aspects of the game through scripts, such as working for factions/companies, purchasing/installing Augmentations,
and creating programs.

The Singularity Functions are not immediately available to the player and must be unlocked later in the game.

Warning

This page contains spoilers for the game

The Singularity Functions are unlocked in BitNode-4. If you are in BitNode-4, then you will automatically have access to all of these functions.
You can use the Singularity Functions in other BitNodes if and only if you have the Source-File for BitNode-4 (aka Source-File 4). Each level of
Source-File 4 will open up additional Singularity Functions that you can use in other BitNodes. If your Source-File 4 is upgraded all the way to
level 3, then you will be able to access all of the Singularity Functions.

Functions:

	universityCourse()

	gymWorkout()

	travelToCity()

	purchaseTor()

	purchaseProgram()

	getStats()

	getCharacterInformation()

	isBusy()

	stopAction()

	upgradeHomeRam()

	getUpgradeHomeRamCost()

	workForCompany()

	applyToCompany()

	getCompanyRep()

	getCompanyFavor()

	getCompanyFavorGain()

	checkFactionInvitations()

	joinFaction()

	workForFaction()

	getFactionRep()

	getFactionFavor()

	getFactionFavorGain()

	donateToFaction()

	createProgram()

	commitCrime()

	getCrimeChance()

	getOwnedAugmentations()

	getOwnedSourceFiles()

	getAugmentationsFromFaction()

	getAugmentationPrereq()

	getAugmentationCost()

	purchaseAugmentation()

	installAugmentations()

universityCourse() Netscript Function

	
universityCourse(universityName, courseName)

	
	Arguments

	
	universityName (string) – Name of university. Not case-sensitive. You must be in the correct city for whatever university you specify.

	Summit University

	Rothman University

	ZB Institute Of Technology

	courseName (string) – Name of course. Not case-sensitive.

	Study Computer Science

	Data Strucures

	Networks

	Algorithms

	Management

	Leadership

If you are not in BitNode-4, then you must have Level 1 of Source-File 4 in order to use this function.

This function will automatically set you to start taking a course at a university. If you are already in the middle of some
“working” action (such as working at a company, for a faction, or on a program), then running this function will automatically
cancel that action and give you your earnings.

The cost and experience gains for all of these universities and classes are the same as if you were to manually visit and take these classes.

This function will return true if you successfully start taking the course, and false otherwise.

gymWorkout() Netscript Function

	
gymWorkout(gymName, stat)

	
	Arguments

	
	gymName (string) – Name of gym. Not case-sensitive. You must be in the correct city for whatever gym you specify.

	Crush Fitness Gym

	Snap Fitness Gym

	Iron Gym

	Powerhouse Gym

	Millenium Fitness Gym

	stat (string) – The stat you want to train. Not case-sensitive.

	strength OR str

	defense OR def

	dexterity OR dex

	agility OR agi

If you are not in BitNode-4, then you must have Level 1 of Source-File 4 in order to use this function.

This function will automatically set you to start working out at a gym to train a particular stat. If you are
already in the middle of some “working” action (such as working at a company, for a faction, or on a program),
then running this function will automatically cancel that action and give you your earnings.

The cost and experience gains for all of these gyms are the same as if you were to manually visit these gyms and train

This function will return true if you successfully start working out at the gym, and false otherwise.

travelToCity() Netscript Function

	
travelToCity(cityName)

	
	Arguments

	
	cityName (string) – City to travel to. CASE-SENSITIVE.

	Aevum

	Chongqing

	Sector-12

	New Tokyo

	Ishima

	Volhaven

If you are not in BitNode-4, then you must have Level 1 of Source-File 4 in order to use this function.

This function allows the player to travel to any city. The cost for using this function is the same as the cost for traveling through the Travel Agency.

This function will return true if you successfully travel to the specified city and false otherwise.

purchaseTor() Netscript Function

	
purchaseTor()

	If you are not in BitNode-4, then you must have Level 1 of Source-File 4 in order to use this function.

This function allows you to automatically purchase a TOR router. The cost for purchasing a TOR router using this
function is the same as if you were to manually purchase one.

This function will return true if it successfully purchase a TOR router and false otherwise.

purchaseProgram() Netscript Function

	
purchaseProgram(programName)

	
	Arguments

	
	programName (string) – Name of program to purchase. Must include ‘.exe’ extension. Not case-sensitive.

If you are not in BitNode-4, then you must have Level 1 of Source-File 4 in order to use this function.

This function allows you to automatically purchase programs. You MUST have a TOR router in order to use this function.
The cost of purchasing programs using this function is the same as if you were purchasing them through the Dark Web using the
Terminal buy command.

Example:

purchaseProgram("brutessh.exe");

This function will return true if the specified program is purchased, and false otherwise.

getStats() Netscript Function

	
getStats()

	If you are not in BitNode-4, then you must have Level 1 of Source-File 4 in order to run this function.

Returns an object with the Player’s stats. The object has the following properties:

{
 hacking
 strength
 defense
 dexterity
 agility
 charisma
 intelligence
}

Example:

res = getStats();
print('My charisma level is: ' + res.charisma);

getCharacterInformation() Netscript Function

	
getCharacterInformation()

	If you are not in BitNode-4, then you must have Level 1 of Source-File 4 in order to run this function.

Returns an object with various information about your character. The object has the following properties:

{
 bitnode: Current BitNode number
 city: Name of city you are currently in
 factions: Array of factions you are currently a member of
 hp: Current health points
 jobs: Array of all companies at which you have jobs
 jobTitle: Array of job positions for all companies you are employed at. Same order as 'jobs'
 maxHp: Maximum health points
 tor: Boolean indicating whether or not you have a tor router

 // The following is an object with many of the player's multipliers from Augmentations/Source Files
 mult: {
 agility: Agility stat
 agilityExp: Agility exp
 companyRep: Company reputation
 crimeMoney: Money earned from crimes
 crimeSuccess: Crime success chance
 defense: Defense stat
 defenseExp: Defense exp
 dexterity: Dexterity stat
 dexterityExp: Dexterity exp
 factionRep: Faction reputation
 hacking: Hacking stat
 hackingExp: Hacking exp
 strength: Strength stat
 strengthExp: Strength exp
 workMoney: Money earned from jobs
 },

 // The following apply only to when the character is performing
 // some type of working action, such as working for a company/faction
 timeWorked: Timed worked in ms
 workHackExpGain: Hacking experience earned so far from work
 workStrExpGain: Str experience earned so far from work
 workDefExpGain: Def experience earned so far from work
 workDexExpGain: Dex experience earned so far from work
 workAgiExpGain: Agi experience earned so far from work
 workChaExpGain: Cha experience earned so far from work
 workRepGain: Reputation earned so far from work, if applicable
 workMoneyGain: Money earned so far from work, if applicable
}

isBusy() Netscript Function

	
isBusy()

	If you are not in BitNode-4, then you must have Level 1 of Source-File 4 in order to run this function.

Returns a boolean indicating whether or not the player is currently performing an ‘action’.
These actions include:

	Working for a company/faction

	Studying at a univeristy

	Working out at a gym

	Creating a program

	Committing a crime

	Carrying out a Hacking Mission

stopAction() Netscript Function

	
stopAction()

	If you are not in BitNode-4, then you must have Level 1 of Source-File 4 in order to run this function.
This function is used to end whatever ‘action’ the player is currently performing. The player
will receive whatever money/experience/etc. he has earned from that action.

The actions that can be stopped with this function are:

	Studying at a university

	Working for a company/faction

	Creating a program

	Committing a Crime

This function will return true if the player’s action was ended. It will return false if the player was not
performing an action when this function was called.

upgradeHomeRam() Netscript Function

	
upgradeHomeRam()

	If you are not in BitNode-4, then you must have Level 2 of Source-File 4 in order to use this function.

This function will upgrade amount of RAM on the player’s home computer. The cost is the same as if you were to do it manually.

This function will return true if the player’s home computer RAM is successfully upgraded, and false otherwise.

getUpgradeHomeRamCost() Netscript Function

	
getUpgradeHomeRamCost()

	If you are not in BitNode-4, then you must have Level 2 of Source-File 4 in order to use this function.

Returns the cost of upgrading the player’s home computer RAM.

workForCompany() Netscript Function

	
workForCompany(companyName=lastCompany)

	
	Arguments

	
	companyName (string) – Name of company to work for. Must be an exact match.
Optional. If not specified, this argument defaults to
the last job that you worked

If you are not in BitNode-4, then you must have Level 2 of Source-File 4 in order to use this function.

This function will automatically set you to start working at the company at which you are employed.
If you are already in the middle of some “working” action (such as working for a faction, training at
a gym, or creating a program), then running this function will automatically cancel that action and give you your earnings.

This function will return true if the player starts working, and false otherwise.

Note that when you are working for a company, you will not actually receive your earnings
(reputation, money, experience) until you FINISH the action. This can be an issue if, for example,
you only want to work until you get 100,000 company reputation. One small hack to get around this is to
continuously restart the action to receive your earnings:

while (getCompanyRep(COMPANY HERE) < VALUE) {
 workForCompany();
 sleep(60000);
}

This way, your company reputation will be updated every minute.

applyToCompany() Netscript Function

	
applyToCompany(companyName, field)

	
	Arguments

	
	companyName (string) – Name of company to apply to. CASE-SENSITIVE.

	field (string) – Field to which you want to apply. Not case-sensitive

	software

	software consultant

	it

	security engineer

	network engineer

	business

	business consultant

	security

	agent

	employee

	part-time employee

	waiter

	part-time waiter

If you are not in BitNode-4, then you must have Level 2 of Source-File 4 in order to use this function.

This function will automatically try to apply to the specified company for a position in the specified
field. This function can also be used to apply for promotions by specifying the company and field you
are already employed at.

This function will return true if you successfully get a job/promotion, and false otherwise. Note that
if you are trying to use this function to apply for a promotion and you don’t get one, it will return false.

getCompanyRep() Netscript Function

	
getCompanyRep(companyName)

	
	Arguments

	
	companyName (string) – Name of the company. CASE-SENSITIVE

If you are not in BitNode-4, then you must have Level 2 of Source-File 4 in order to use this function.

This function will return the amount of reputation you have at the specified company.
If the company passed in as an argument is invalid, -1 will be returned.

getCompanyFavor() Netscript Function

	
getCompanyFavor(companyName)

	
	Arguments

	
	companyName (string) – Name of the company. CASE-SENSITIVE

If you are not in BitNode-4, then you must have Level 2 of Source-File 4 in order to use this function.

This function will return the amount of favor you have at the specified company.
If the company passed in as an argument is invalid, -1 will be returned.

getCompanyFavorGain() Netscript Function

	
getCompanyFavorGain(companyName)

	
	Arguments

	
	companyName (string) – Name of the company. CASE-SENSITIVE

If you are not in BitNode-4, then you must have Level 2 of Source-File 4 in order to use this function.

This function will return the amount of favor you will gain for the specified company
when you reset by installing Augmentations.

checkFactionInvitations() Netscript Function

	
checkFactionInvitations()

	If you are not in BitNode-4, then you must have Level 2 of Source-File 4 in order to use this function.

Returns an array with the name of all Factions you currently have oustanding invitations from.

joinFaction() Netscript Function

	
joinFaction(name)

	
	Arguments

	
	name (string) – Name of faction to join. CASE-SENSITIVE

If you are not in BitNode-4, then you must have Level 2 of Source-File 4 in order to use this function.

This function will automatically accept an invitation from a faction and join it.

workForFaction() Netscript Function

	
workForFaction(factionName, workType)

	
	Arguments

	
	factionName (string) – Name of faction to work for. CASE-SENSITIVE

	workType (string) – Type of work to perform for the faction:

	hacking/hacking contracts/hackingcontracts

	field/fieldwork/field work

	security/securitywork/security work

If you are not in BitNode-4, then you must have Level 2 of Source-File 4 in order to use this function.

This function will automatically set you to start working for the specified faction.
Obviously, you must be a member of the faction or else this function will fail. If you are already in
the middle of some “working” action (such as working for a company, training at a gym, or creating a program),
then running this function will automatically cancel that action and give you your earnings.

This function will return true if you successfully start working for the specified faction, and false otherwise.

Note that when you are working for a faction, you will not actually receive your earnings (reputation, experience)
until you FINISH the action. This can be an issue if, for example, you only want to work until you get 100,000 faction
reputation. One small hack to get around this is to continuously restart the action to receive your earnings:

while (getFactionRep(FACTION NAME) < VALUE) {
 workForFaction(FACNAME, WORKTYPE);
 sleep(60000);
}

This way, your faction reputation will be updated every minute.

getFactionRep() Netscript Function

	
getFactionRep(factionName)

	
	Arguments

	
	factionName (string) – Name of faction. CASE-SENSITIVE

If you are not in BitNode-4, then you must have Level 2 of Source-File 4 in order to use this function.

This function returns the amount of reputation you have for the specified faction.

getFactionFavor() Netscript Function

	
getFactionFavor(factionName)

	
	Arguments

	
	factionName (string) – Name of faction. CASE-SENSITIVE

If you are not in BitNode-4, then you must have Level 2 of Source-File 4 in order to use this function.

This function returns the amount of favor you have for the specified faction.

getFactionFavorGain() Netscript Function

	
getFactionFavorGain(factionName)

	
	Arguments

	
	factionName (string) – Name of faction. CASE-SENSITIVE

If you are not in BitNode-4, then you must have Level 2 of Source-File 4 in order to use this function.

This function returns the amount of favor you will gain for the specified faction when you reset by installing Augmentations.

donateToFaction() Netscript Function

	
donateToFaction(factionName, donateAmt)

	
	Arguments

	
	factionName (string) – Name of faction to donate to. CASE-SENSITIVE

	donateAmt (number) – Amount of money to donate

If you are not in BitNode-4, then you must have Level 3 of Source-File 4 in order to use this function.

Attempts to donate money to the specified faction in exchange for reputation.
Returns true if you successfully donate the money, and false otherwise.

createProgram() Netscript Function

	
createProgram(programName)

	
	Arguments

	
	programName (string) – Name of program to create. Not case-sensitive

If you are not in BitNode-4, then you must have Level 3 of Source-File 4 in order to use this function.

This function will automatically set you to start working on creating the specified program. If you are
already in the middle of some “working” action (such as working for a company, training at a gym, or taking a course),
then running this function will automatically cancel that action and give you your earnings.

Example:

createProgram(“relaysmtp.exe”);

Note that creating a program using this function has the same hacking level requirements as it normally would. These level requirements are:

	BruteSSH.exe: 50

	FTPCrack.exe: 100

	relaySMTP.exe: 250

	HTTPWorm.exe: 500

	SQLInject.exe: 750

	DeepscanV1.exe: 75

	DeepscanV2.exe: 400

	ServerProfiler.exe: 75

	AutoLink.exe: 25

This function returns true if you successfully start working on the specified program, and false otherwise.

commitCrime() Netscript Function

	
commitCrime(crime)

	
	Arguments

	
	crime (string) – Name of crime to attempt. Not case-sensitive. This argument is fairly lenient in terms of what inputs it accepts.
Here is a list of valid inputs for all of the crimes:

	shoplift

	rob store

	mug

	larceny

	deal drugs

	bond forgery

	traffick arms

	homicide

	grand theft auto

	kidnap

	assassinate

	heist

If you are not in BitNode-4, then you must have Level 3 of Source-File 4 in order to use this function.

This function is used to automatically attempt to commit crimes. If you are already in the middle of some ‘working’ action
(such as working for a company or training at a gym), then running this function will automatically cancel that action and give you your earnings.

This function returns the number of seconds it takes to attempt the specified crime (e.g It takes 60 seconds to attempt the ‘Rob Store’ crime,
so running commitCrime(‘rob store’) will return 60).

Warning: I do not recommend using the time returned from this function to try and schedule your crime attempts.
Instead, I would use the isBusy() Singularity function to check whether you have finished attempting a crime.
This is because although the game sets a certain crime to be X amount of seconds, there is no guarantee that your
browser will follow that time limit.

getCrimeChance() Netscript Function

	
getCrimeChance(crime)

	
	Arguments

	
	crime (string) – Name of crime. Not case-sensitive. This argument is fairlyn lenient in terms of what inputs it accepts.
Check the documentation for the commitCrime() function for a list of example inputs.

If you are not in BitNode-4, then you must have Level 3 of Source-File 4 in order to use this function.

This function returns your chance of success at commiting the specified crime. The chance is returned as a decimal (i.e. 60% would be returned as 0.6).

getOwnedAugmentations() Netscript Function

	
getOwnedAugmentations(purchased=false)

	
	Arguments

	
	purchase (boolean) – Specifies whether the returned array should include Augmentations you have purchased but not yet installed.
By default, this argument is false which means that the return value will NOT have the purchased Augmentations.

If you are not in BitNode-4, then you must have Level 3 of Source-File 4 in order to use this function.

This function returns an array containing the names (as strings) of all Augmentations you have.

getOwnedSourceFiles() Netscript Function

	
getOwnedSourceFiles()

	If you are not in BitNode-4, then you must have Level 3 of Source-File 4 in order to use this function.

Returns an array of source files
[{n: 1, lvl: 3}, {n: 4, lvl: 3}]

getAugmentationsFromFaction() Netscript Function

	
getAugmentationsFromFaction(facName)

	
	Arguments

	
	facName (string) – Name of faction. CASE-SENSITIVE

If you are not in BitNode-4, then you must have Level 3 of Source-File 4 in order to use this function.

Returns an array containing the names (as strings) of all Augmentations that are available from the specified faction.

getAugmentationPrereq() Netscript Function

	
getAugmentationPrereq(augName)

	
	Arguments

	
	augName (string) – Name of Augmentation. CASE-SENSITIVE

If you are not in BitNode-4, then you must have Level 3 of Source-File 4 in order to use this function.

This function returns an array with the names of the prerequisite Augmentation(s) for the specified Augmentation.
If there are no prerequisites, a blank array is returned.

If an invalid Augmentation name is passed in for the augName argument, this function will return a blank array.

getAugmentationCost() Netscript Function

	
getAugmentationCost(augName)

	
	Arguments

	
	augName (string) – Name of Augmentation. CASE-SENSITIVE

If you are not in BitNode-4, then you must have Level 3 of Source-File 4 in order to use this function.

This function returns an array with two elements that gives the cost for the specified Augmentation.
The first element in the returned array is the reputation requirement of the Augmentation, and the second element is the money cost.

If an invalid Augmentation name is passed in for the augName argument, this function will return the array [-1, -1].

purchaseAugmentation() Netscript Function

	
purchaseAugmentation(factionName, augName)

	
	Arguments

	
	factionName (string) – Name of faction to purchase Augmentation from. CASE-SENSITIVE

	augName (string) – Name of Augmentation to purchase. CASE-SENSITIVE

If you are not in BitNode-4, then you must have Level 3 of Source-File 4 in order to use this function.

This function will try to purchase the specified Augmentation through the given Faction.

This function will return true if the Augmentation is successfully purchased, and false otherwise.

installAugmentations() Netscript Function

	
installAugmentations(cbScript)

	
	Arguments

	
	cbScript (string) – Optional callback script. This is a script that will automatically be run after Augmentations are installed (after the reset).
This script will be run with no arguments and 1 thread. It must be located on your home computer.

If you are not in BitNode-4, then you must have Level 3 of Source-File 4 in order to use this function.

This function will automatically install your Augmentations, resetting the game as usual.

This function will return false if it was not able to install Augmentations.

If this function successfully installs Augmentations, then it has no return value because
all scripts are immediately terminated.

Netscript Bladeburner API

Netscript provides the following API for interacting with the game’s Bladeburner mechanic.

The Bladeburner API is not immediately available to the player and must be unlocked
later in the game

Warning

This page contains spoilers for the game

The Bladeburner API is unlocked in BitNode-7. If you are in BitNode-7, you will
automatically gain access to this API. Otherwise, you must have Source-File 7 in
order to use this API in other BitNodes

Bladeburner API functions must be accessed through the ‘bladeburner’ namespace

In Netscript 1.0:

bladeburner.getContractNames();
bladeburner.startAction("general", "Training");

In NetscriptJS (Netscript 2.0):

ns.bladeburner.getContractNames();
ns.bladeburner.startAction("general", "Training");

Functions:

	getContractNames()

	getOperationNames()

	getBlackOpNames()

	getGeneralActionNames()

	getSkillNames()

	startAction()

	stopBladeburnerAction()

	getCurrentAction()

	getActionTime()

	getActionEstimatedSuccessChance()

	getActionRepGain()

	getActionCountRemaining()

	getActionMaxLevel()

	getActionCurrentLevel()

	getActionAutolevel()

	setActionAutolevel()

	setActionLevel()

	getRank()

	getBlackOpRank()

	getSkillPoints()

	getSkillLevel()

	getSkillUpgradeCost()

	upgradeSkill()

	getTeamSize()

	setTeamSize()

	getCityEstimatedPopulation()

	getCityEstimatedCommunities()

	getCityChaos()

	getCity()

	switchCity()

	getStamina()

	joinBladeburnerFaction()

	joinBladeburnerDivision()

	getBonusTime()

Bladeburner Action Types

Several functions in the Bladeburner API require you to specify an action using
its type and name. The following are valid values when specifying the action’s type:

	Contracts

	
	contract

	contracts

	contr

	Operations

	
	operation

	operations

	op

	ops

	Black Ops

	
	blackoperation

	black operation

	black operations

	black op

	black ops

	blackop

	blackops

	General Actions (Training, Field Analysis, Recruitment)

	
	general

	general action

	gen

Examples

Basic example usage:

tprint(bladeburner.getContractNames());
tprint(bladeburner.getOperationNames());
tprint(bladeburner.getBlackOpNames());
tprint(bladeburner.getGeneralActionNames());
tprint(bladeburner.getSkillNames());
tprint(bladeburner.getActionTime("contract", "Tracking"));
tprint("Rank: " + bladeburner.getRank());
tprint("Skill Points: " + bladeburner.getSkillPoints());
tprint("Cloak Skill Level: " + bladeburner.getSkillLevel("Cloak"));
tprint("Trying to upgradeSkill: " + bladeburner.upgradeSkill("Cloak"));
tprint("Skill Points remaining: " + bladeburner.getSkillPoints());

tprint("Trying to switch to a nonexistent city: " + bladeburner.switchCity("lskgns"));

var chongqing = "Chongqing";
tprint("Trying to switch to Chongqing: " + bladeburner.switchCity(chongqing));
tprint("Chongqing chaos: " + bladeburner.getCityChaos(chongqing));
tprint("Chongqing estimated pop: " + bladeburner.getCityEstimatedPopulation(chongqing));
tprint("Chonqging estimated communities: " + bladeburner.getCityEstimatedCommunities(chongqing));

Bladeburner handler example. Note that this avoids the need of using the bladeburner namespace
identifier by attaching the Bladeburner API functions to an object:

const FIELD_ANALYSIS_INTERVAL = 10; //Number of minutes between field analysis states
const FIELD_ANALYSIS_DURATION = 5; //Duration in minutes

function BladeburnerHandler(ns, params) {
 //Netscript environment becomes part of the instance
 this.ns = ns;

 //Netscript bladeburner API becomes part of this instance
 for (var bladeburnerFn in ns.bladeburner) {
 this[bladeburnerFn] = ns.bladeburner[bladeburnerFn];
 }

 this.fieldAnalysis = {
 inProgress: params.startFieldAnalysis ? true : false,
 cyclesRemaining: params.startFieldAnalysis ? FIELD_ANALYSIS_DURATION : 0,
 cyclesSince: params.startFieldAnalysis ? FIELD_ANALYSIS_INTERVAL : 0,
 }
}

BladeburnerHandler.prototype.getStaminaPercentage = function() {
 var res = this.getStamina();
 return 100 * (res[0] / res[1]);
}

BladeburnerHandler.prototype.hasSimulacrum = function() {
 var augs = this.ns.getOwnedAugmentations();
 return augs.includes("The Blade's Simulacrum");
}

BladeburnerHandler.prototype.handle = function() {
 //If we're doing something else manually (without Simlacrum),
 //it overrides Bladeburner stuff
 if (!this.hasSimulacrum() && this.ns.isBusy()) {
 this.ns.print("Idling bc player is busy with some other action");
 return;
 }

 if (this.fieldAnalysis.inProgress) {
 --(this.fieldAnalysis.cyclesRemaining);
 if (this.fieldAnalysis.cyclesRemaining < 0) {
 this.fieldAnalysis.inProgress = false;
 this.fieldAnalysis.cyclesSince = 0;
 return this.handle();
 } else {
 this.startAction("general", "Field Analysis");
 this.ns.print("handler is doing field analyis for " +
 (this.fieldAnalysis.cyclesRemaining+1) + " more mins");
 return 31; //Field Analysis Time + 1
 }
 } else {
 ++(this.fieldAnalysis.cyclesSince);
 if (this.fieldAnalysis.cyclesSince > FIELD_ANALYSIS_INTERVAL) {
 this.fieldAnalysis.inProgress = true;
 this.fieldAnalysis.cyclesRemaining = FIELD_ANALYSIS_DURATION;
 return this.handle();
 }
 }

 this.stopBladeburnerAction();

 var staminaPerc = this.getStaminaPercentage();
 if (staminaPerc < 55) {
 this.ns.print("handler is starting training due to low stamina percentage");
 this.startAction("general", "Training");
 return 31; //Training time + 1
 } else {
 var action = this.chooseAction();
 this.ns.print("handler chose " + action.name + " " + action.type + " through chooseAction()");
 this.startAction(action.type, action.name);
 return (this.getActionTime(action.type, action.name) + 1);
 }
}

BladeburnerHandler.prototype.chooseAction = function() {
 //Array of all Operations
 var ops = this.getOperationNames();

 //Sort Operations in order of increasing success chance
 ops.sort((a, b)=>{
 return this.getActionEstimatedSuccessChance("operation", a) -
 this.getActionEstimatedSuccessChance("operation", b);
 });

 //Loop through until you find one with 99+% success chance
 for (let i = 0; i < ops.length; ++i) {
 let successChance = this.getActionEstimatedSuccessChance("operation", ops[i]);
 let count = this.getActionCountRemaining("operation", ops[i]);
 if (successChance >= 0.99 && count > 10) {
 return {type: "operation", name: ops[i]};
 }
 }

 //Repeat for Contracts
 var contracts = this.getContractNames();
 contracts.sort((a, b)=>{
 return this.getActionEstimatedSuccessChance("contract", a) -
 this.getActionEstimatedSuccessChance("contract", b);
 });

 for (let i = 0; i < contracts.length; ++i) {
 let successChance = this.getActionEstimatedSuccessChance("contract", contracts[i]);
 let count = this.getActionCountRemaining("contract", contracts[i]);
 if (successChance >= 0.80 && count > 10) {
 return {type: "contract", name: contracts[i]};
 }
 }

 return {type:"general", name:"Training"};
}

BladeburnerHandler.prototype.process = async function() {
 await this.ns.sleep(this.handle() * 1000);
}

export async function main(ns) {
 //Check if Bladeburner is available. This'll throw a runtime error if it's not
 ns.bladeburner.getContractNames();

 var startFieldAnalysis = true;
 if (ns.args.length >= 1 && ns.args[0] == "false") {
 startFieldAnalysis = false;
 }

 var handler = new BladeburnerHandler(ns, {
 startFieldAnalysis: startFieldAnalysis
 });
 while(true) {
 await handler.process();
 }
}

getContractNames() Netscript Function

	
getContractNames()

	Returns an array of strings containing the names of all Bladeburner contracts

getOperationNames() Netscript Function

	
getOperationNames()

	Returns an array of strings containing the names of all Bladeburner operations

getBlackOpNames() Netscript Function

	
getBlackOpNames()

	Returns an array of strings containing the names of all Bladeburner Black Ops

getGeneralActionNames() Netscript Function

	
getGeneralActionNames()

	Returns an array of strings containing the names of all general Bladeburner actions

getSkillNames() Netscript Function

	
getSkillNames()

	Returns an array of strings containing the names of all Bladeburner skills

startAction() Netscript Function

	
startAction(type, name)

	
	Arguments

	
	type (string) – Type of action. See Bladeburner Action Types

	name (string) – Name of action. Must be an exact match

Attempts to start the specified Bladeburner action. Returns true if the action
was started successfully, and false otherwise.

stopBladeburnerAction() Netscript Function

	
stopBladeburnerAction()

	Stops the current Bladeburner action

getCurrentAction() Netscript Function

	
getCurrentAction()

	Returns an object that represents the player’s current Bladeburner action:

{
 type: Type of Action
 name: Name of Action
}

If the player is not performing an action, the function will return an object
with the ‘type’ property set to “Idle”.

getActionTime() Netscript Function

	
getActionTime(type, name)

	
	Arguments

	
	type (string) – Type of action. See Bladeburner Action Types

	name (string) – Name of action. Must be an exact match

Returns the number of seconds it takes to complete the specified action

getActionEstimatedSuccessChance() Netscript Function

	
getActionEstimatedSuccessChance(type, name)

	
	Arguments

	
	type (string) – Type of action. See Bladeburner Action Types

	name (string) – Name of action. Must be an exact match

Returns the estimated success chance for the specified action. This chance
is returned as a decimal value, NOT a percentage (e.g. if you have an estimated
success chance of 80%, then this function will return 0.80, NOT 80).

getActionRepGain() Netscript Function

	
getActionRepGain(type, name[, level=current level])

	
	Arguments

	
	type (string) – Type of action. See Bladeburner Action Types

	name (string) – Name of action. Must be an exact match

	level (number) – Optional action level at which to calculate the gain

Returns the average Bladeburner reputation gain for successfully completing
the specified action. Note that this value is an ‘average’ and the real
reputation gain may vary slightly from this value.

getActionCountRemaining() Netscript Function

	
getActionCountRemaining(type, name)

	
	Arguments

	
	type (string) – Type of action. See Bladeburner Action Types

	name (string) – Name of action. Must be an exact match

Returns the remaining count of the specified action.

Note that this is meant to be used for Contracts and Operations.
This function will return ‘Infinity’ for actions such as Training and Field Analysis.
This function will return 1 for BlackOps not yet completed regardless of wether the player has the required rank to attempt the mission or not.

getActionMaxLevel() Netscript Function

	
getActionMaxLevel(type, name)

	
	Arguments

	
	type (string) – Type of action. See Bladeburner Action Types

	name (string) – Name of action. Must be an exact match

Returns the maximum level for this action.

Returns -1 if an invalid action is specified.

getActionCurrentLevel() Netscript Function

	
getActionCurrentLevel(type, name)

	
	Arguments

	
	type (string) – Type of action. See Bladeburner Action Types

	name (string) – Name of action. Must be an exact match

Returns the current level of this action.

Returns -1 if an invalid action is specified.

getActionAutolevel() Netscript Function

	
getActionAutolevel(type, name)

	
	Arguments

	
	type (string) – Type of action. See Bladeburner Action Types

	name (string) – Name of action. Must be an exact match

Return a boolean indicating whether or not this action is currently set to autolevel.

Returns false if an invalid action is specified.

setActionAutolevel() Netscript Function

	
setActionAutolevel(type, name, autoLevel)

	
	Arguments

	
	type (string) – Type of action. See Bladeburner Action Types

	name (string) – Name of action. Must be an exact match

	autoLevel (boolean) – Whether or not to autolevel this action

Enable/disable autoleveling for the specified action.

setActionLevel() Netscript Function

	
setActionLevel(type, name, level)

	
	Arguments

	
	type (string) – Type of action. See Bladeburner Action Types

	name (string) – Name of action. Must be an exact match

	int (level) – Level to set this action to

Set the level for the specified action.

getRank() Netscript Function

	
getRank()

	Returns the player’s Bladeburner Rank

getBlackOpRank() Netscript Function

	
getBlackOpRank(name)

	
	Arguments

	
	name (string) – name of the BlackOp. Must be an exact match.

Returns the rank required to complete this BlackOp.

Returns -1 if an invalid action is specified.

getSkillPoints() Netscript Function

	
getSkillPoints()

	Returns the number of Bladeburner skill points you have

getSkillLevel() Netscript Function

	
getSkillLevel(skillName="")

	
	Arguments

	
	skillName (string) – Name of skill. Case-sensitive and must be an exact match

This function returns your level in the specified skill.

The function returns -1 if an invalid skill name is passed in

getSkillUpgradeCost() Netscript Function

	
getSkillUpgradeCost(skillName="")

	
	Arguments

	
	skillName (string) – Name of skill. Case-sensitive and must be an exact match

This function returns the number of skill points needed to upgrade the
specified skill.

The function returns -1 if an invalid skill name is passed in.

upgradeSkill() Netscript Function

	
upgradeSkill(skillName)

	
	Arguments

	
	skillName (string) – Name of Skill to be upgraded. Case-sensitive and must be an exact match

Attempts to upgrade the specified Bladeburner skill. Returns true if the
skill is successfully upgraded, and false otherwise

getTeamSize() Netscript Function

	
getTeamSize(type, name)

	
	Arguments

	
	type (string) – Type of action. See Bladeburner Action Types

	name (string) – Name of action. Must be an exact match

Returns the number of Bladeburner team members you have assigned to the
specified action.

Setting a team is only applicable for Operations and BlackOps. This function
will return 0 for other action types.

setTeamSize() Netscript Function

	
setTeamSize(type, name, size)

	
	Arguments

	
	type (string) – Type of action. See Bladeburner Action Types

	name (string) – Name of action. Must be an exact match

	size (int) – Number of team members to set. Will be converted using Math.round()

Set the team size for the specified Bladeburner action.

Returns the team size that was set, or -1 if the function failed.

getCityEstimatedPopulation() Netscript Function

	
getCityEstimatedPopulation(cityName)

	
	Arguments

	
	cityName (string) – Name of city. Case-sensitive

Returns the estimated number of Synthoids in the specified city, or -1
if an invalid city was specified.

getCityEstimatedCommunities() Netscript Function

	
getCityEstimatedCommunities(cityName)

	
	Arguments

	
	cityName (string) – Name of city. Case-sensitive

Returns the estimated number of Synthoid communities in the specified city,
or -1 if an invalid city was specified.

getCityChaos() Netscript Function

	
getCityChaos(cityName)

	
	Arguments

	
	cityName (string) – Name of city. Case-sensitive

Returns the chaos in the specified city, or -1 if an invalid city was specified

getCity() Netscript Function

	
getCity()

	Returns the city that the player is currently in (for Bladeburner).

switchCity() Netscript Function

	
switchCity(cityName)

	
	Arguments

	
	cityName (string) – Name of city

Attempts to switch to the specified city (for Bladeburner only).

Returns true if successful, and false otherwise

getStamina() Netscript Function

	
getStamina()

	Returns an array with two elements:

[Current stamina, Max stamina]

Example usage:

function getStaminaPercentage() {
 let res = bladeburner.getStamina();
 return res[0] / res[1];
}

joinBladeburnerFaction() Netscript Function

	
joinBladeburnerFaction()

	Attempts to join the Bladeburner faction.

Returns true if you successfully join the Bladeburner faction, or if
you are already a member.

Returns false otherwise.

joinBladeburnerDivision() Netscript Function

	
joinBladeburnerDivision()

	Attempts to join the Bladeburner division.

Returns true if you successfully join the Bladeburner division, or if you
are already a member.

Returns false otherwise

getBonusTime() Netscript Function

	
getBonusTime()

	Returns the amount of accumulated “bonus time” (seconds) for the Bladeburner mechanic.

“Bonus time” is accumulated when the game is offline or if the game is
inactive in the browser.

“Bonus time” makes the game progress faster, up to 5x the normal speed.
For example, if an action takes 30 seconds to complete but you’ve accumulated
over 30 seconds in bonus time, then the action will only take 6 seconds
in real life to complete.

Netscript Gang API

Netscript provides the following API for interacting with the game’s Gang mechanic.

The Gang API is not immediately available to the player and must be unlocked
later in the game

Warning

This page contains spoilers for the game

The Gang mechanic and the Gang API are unlocked in BitNode-2.

Gang API functions must be accessed through the ‘gang’ namespace

In Netscript 1.0:

gang.getMemberNames();
gang.recruitMember("Fry");

In NetscriptJS (Netscript 2.0):

ns.gang.getMemberNames();
ns.gang.recruitMember("Fry");

API Functions:

	getMemberNames()

	getGangInformation()

	getOtherGangInformation()

	getMemberInformation()

	canRecruitMember()

	recruitMember()

	getTaskNames()

	setMemberTask()

	getEquipmentNames()

	getEquipmentCost()

	getEquipmentType()

	purchaseEquipment()

	ascendMember()

	setTerritoryWarfare()

	getChanceToWinClash()

	getBonusTime()

getMemberNames() Netscript Function

	
getMemberNames()

	Get the names of all Gang members

	Returns

	An array of the names of all Gang members as strings

getGangInformation() Netscript Function

	
getGangInformation()

	Get general information about the gang

	Returns

	An object with the gang information.

The object has the following structure:

{
 faction: Name of faction that the gang belongs to ("Slum Snakes", etc.)
 isHacking: Boolean indicating whether or not its a hacking gang
 moneyGainRate: Money earned per second
 power: Gang's power for territory warfare
 respect: Gang's respect
 respectGainRate: Respect earned per second
 territory: Amount of territory held. Returned in decimal form, not percentage
 territoryClashChance: Clash chance. Returned in decimal form, not percentage
 wantedLevel: Gang's wanted level
 wantedLevelGainRate: Wanted level gained/lost per second (negative for losses)
}

getOtherGangInformation() Netscript Function

	
getOtherGangInformation()

	Get territory and power information about all gangs

	Returns

	An object with information about all gangs

The object has the following structure:

{
 "Slum Snakes" : {
 power: Slum Snakes' power
 territory: Slum Snakes' territory, in decimal form
 },
 "Tetrads" : {
 power: ...
 territory: ...
 },
 "The Syndicate" : {
 power: ...
 territory: ...
 },
 ... (for all six gangs)
}

getMemberInformation() Netscript Function

	
getMemberInformation(name)

	
	Arguments

	
	name (string) – Name of member

Get stat and equipment-related information about a Gang Member

	Returns

	An object with the gang member information.

The object has the following structure:

{
 agility: Agility stat
 agilityEquipMult: Agility multiplier from equipment. Decimal form
 agilityAscensionMult: Agility multiplier from ascension. Decimal form
 augmentations: Array of names of all owned Augmentations
 charisma: Charisma stat
 charismaEquipMult: Charisma multiplier from equipment. Decimal form
 charismaAscensionMult: Charisma multiplier from ascension. Decimal form
 defense: Defense stat
 defenseEquipMult: Defense multiplier from equipment. Decimal form
 defenseAscensionMult: Defense multiplier from ascension. Decimal form
 dexterity: Dexterity stat
 dexterityEquipMult: Dexterity multiplier from equipment. Decimal form
 dexterityAscensionMult: Dexterity multiplier from ascension. Decimal form
 equipment: Array of names of all owned Non-Augmentation Equipment
 hacking: Hacking stat
 hackingEquipMult: Hacking multiplier from equipment. Decimal form
 hackingAscensionMult: Hacking multiplier from ascension. Decimal form
 strength: Strength stat
 strengthEquipMult: Strength multiplier from equipment. Decimal form
 strengthAscensionMult: Strength multiplier from ascension. Decimal form
 task: Name of currently assigned task
}

canRecruitMember() Netscript Function

	
canRecruitMember()

	
	Returns

	Boolean indicating whether a member can currently be recruited

recruitMember() Netscript Function

	
recruitMember(name)

	
	Arguments

	
	name (string) – Name of member to recruit

Attempt to recruit a new gang member.

Possible reasons for failure:

	Cannot currently recruit a new member

	There already exists a member with the specified name

	Returns

	True if the member was successfully recruited. False otherwise

getTaskNames() Netscript Function

	
getTaskNames()

	Get the name of all valid tasks that Gang members can be assigned to

	Returns

	Array of strings of all task names

setMemberTask() Netscript Function

	
setMemberTask(memberName, taskName)

	
	Arguments

	
	memberName (string) – Name of Gang member to assign

	taskName (string) – Task to assign

Attempts to assign the specified Gang Member to the specified task.
If an invalid task is specified, the Gang member will be set to idle (“Unassigned”)

	Returns

	True if the Gang Member was successfully assigned to the task. False otherwise

getEquipmentNames() Netscript Function

	
getEquipmentNames()

	Get the name of all possible equipment/upgrades you can purchase for your
Gang Members. This includes Augmentations.

	Returns

	Array of strings of the names of all Equpiment/Augmentations

getEquipmentCost() Netscript Function

	
getEquipmentCost(equipName)

	
	Arguments

	
	equipName (string) – Name of equipment

Get the amount of money it takes to purchase a piece of Equipment or an Augmentation.
If an invalid Equipment/Augmentation is specified, this function will return Infinity.

	Returns

	Cost to purchase the specified Equipment/Augmentation (number). Infinity
for invalid arguments

getEquipmentType() Netscript Function

	
getEquipmentType(equipName)

	
	Arguments

	
	equipName (string) – Name of equipment

Get the specified equipment type, which can be one of the following:

	Weapon

	Armor

	Vehicle

	Rootkit

	Augmentation

	Returns

	A string stating the type of the equipment

purchaseEquipment() Netscript Function

	
purchaseEquipment(memberName, equipName)

	
	Arguments

	
	memberName (string) – Name of Gang member to purchase the equipment for

	equipName (string) – Name of Equipment/Augmentation to purchase

Attempt to purchase the specified Equipment/Augmentation for the specified
Gang member.

	Returns

	True if the equipment was successfully purchased. False otherwise

ascendMember() Netscript Function

	
ascendMember(name)

	
	Arguments

	
	name (string) – Name of member to ascend

Ascend the specified Gang Member.

	Returns

	An object with info about the ascension results.

The object has the following structure:

{
 respect: Amount of respect lost from ascending
 hack: Hacking multiplier gained from ascending. Decimal form
 str: Strength multiplier gained from ascending. Decimal form
 def: Defense multiplier gained from ascending. Decimal form
 dex: Dexterity multiplier gained from ascending. Decimal form
 agi: Agility multiplier gained from ascending. Decimal form
 cha: Charisma multiplier gained from ascending. Decimal form
}

setTerritoryWarfare() Netscript Function

	
setTerritoryWarfare(engage)

	
	Arguments

	
	engage (bool) – Whether or not to engage in territory warfare

Set whether or not the gang should engage in territory warfare

getChanceToWinClash() Netscript Function

	
getChanceToWinClash(gangName)

	
	Arguments

	
	gangName (string) – Target gang

Returns the chance you have to win a clash with the specified gang. The chance
is returned in decimal form, not percentage

getBonusTime() Netscript Function

	
getBonusTime()

	Returns the amount of accumulated “bonus time” (seconds) for the Gang mechanic.

“Bonus time” is accumulated when the game is offline or if the game is
inactive in the browser.

“Bonus time” makes the game progress faster, up to 10x the normal speed.

	Returns

	Bonus time for the Gang mechanic in seconds

Netscript Coding Contract API

Netscript provides the following API for interacting with
Coding Contracts.

The Coding Contract API must be accessed through the ‘codingcontract’ namespace

In Netscript 1.0:

codingcontract.getDescription("foo.cct", "home");
codingcontract.attempt(1, "foo.cct", "foodnstuff");

In NetscriptJS (Netscript 2.0):

ns.codingcontract.getDescription("foo.cct", "home");
ns.codingcontract.attempt(1, "foo.cct", "foodnstuff");

	attempt()

	getContractType()

	getDescription()

	getData()

	getNumTriesRemaining()

attempt() Netscript Function

	
attempt(answer, fn[, hostname/ip=current ip, opts={}])

	
	Arguments

	
	answer – Solution for the contract

	fn (string) – Filename of the contract

	hostname/ip (string) – Hostname or IP of the server containing the contract.
Optional. Defaults to current server if not provided

	opts (object) – Optional parameters for configuring function behavior. Properties:

	returnReward (boolean) If truthy, then the function will return a string
that states the contract’s reward when it is successfully solved.

Attempts to solve the Coding Contract with the provided solution.

	Returns

	Boolean indicating whether the solution was correct. If the returnReward
option is configured, then the function will instead return a string. If the
contract is successfully solved, the string will contain a description of the
contract’s reward. Otherwise, it will be an empty string.

getContractType() Netscript Function

	
getContractType(fn[, hostname/ip=current ip])

	
	Arguments

	
	fn (string) – Filename of the contract

	hostname/ip (string) – Hostname or IP of the server containing the contract.
Optional. Defaults to current server if not provided

Returns a name describing the type of problem posed by the Coding Contract.
(e.g. Find Largest Prime Factor, Total Ways to Sum, etc.)

	Returns

	A string with the contract’s problem type

getDescription() Netscript Function

	
getDescription(fn[, hostname/ip=current ip])

	
	Arguments

	
	fn (string) – Filename of the contract

	hostname/ip (string) – Hostname or IP of the server containing the contract.
Optional. Defaults to current server if not provided

Get the full text description for the problem posed by the Coding Contract

	Returns

	A string with the contract’s text description

getData() Netscript Function

	
getData(fn[, hostname/ip=current ip])

	
	Arguments

	
	fn (string) – Filename of the contract

	hostname/ip (string) – Hostname or IP of the server containing the contract.
Optional. Defaults to current server if not provided

Get the data associated with the specific Coding Contract. Note that this is
not the same as the contract’s description. This is just the data that
the contract wants you to act on in order to solve

	Returns

	The specified contract’s data

getNumTriesRemaining() Netscript Function

	
getNumTriesRemaining(fn[, hostname/ip=current ip])

	
	Arguments

	
	fn (string) – Filename of the contract

	hostname/ip (string) – Hostname or IP of the server containing the contract.
Optional. Defaults to current server if not provided

Get the number of tries remaining on the contract before it
self-destructs.

	Returns

	Number indicating how many attempts are remaining

Netscript Sleeve API

Netscript provides the following API for interacting with the game’s
Duplicate Sleeve mechanic.

The Sleeve API is not immediately available to the player and must be unlocked
later in the game.

Warning

This page contains spoilers for the game

The Sleeve API is unlocked in BitNode-10. If you are in BitNode-10, you will
automatically gain access to this API. Otherwise, you must have Source-File 10 in
order to use this API in other BitNodes

Sleeve API functions must be accessed through the ‘sleeve’ namespace

In Netscript 1.0:

sleeve.synchronize(0);
sleeve.commitCrime(0, "shoplift");

In NetscriptJS (Netscript 2.0):

ns.sleeve.synchronize(0);
ns.sleeve.commitCrime(0, "shoplift");

API Functions:

	getNumSleeves()

	getSleeveStats()

	getInformation()

	getTask()

	setToShockRecovery()

	setToSynchronize()

	setToCommitCrime()

	setToFactionWork()

	setToCompanyWork()

	setToUniversityCourse()

	setToGymWorkout()

	travel()

	getSleeveAugmentations()

	getSleevePurchasableAugs()

	purchaseSleeveAug()

Referencing a Duplicate Sleeve

Most of the functions in the Sleeve API perform an operation on a single Duplicate
Sleeve. In order to specify which Sleeve the operation should be performed on,
a numeric index is used as an identifier. The index should follow array-notation, such
that the first Duplicate Sleeve has an index of 0, the second Duplicate Sleeve has
an index of 1, and so on.

The order of the Duplicate Sleeves matches the order on the UI page.

Examples

Basic example usage:

for (var i = 0; i < sleeve.getNumSleeves(); i++) {
 sleeve.setToShockRecovery(i);
}

sleep(10 * 60 * 60); // wait 10h

for (var i = 0; i < sleeve.getNumSleeves(); i++) {
 sleeve.setToSynchronize(i);
}

sleep(10*60*60); // wait 10h

for (var i = 0; i < sleeve.getNumSleeves(); i++) {
 sleeve.setToCommitCrime(i, 'shoplift');
}

getNumSleeves() Netscript Function

	
getNumSleeves()

	Return the number of duplicate sleeves the player has.

getSleeveStats() Netscript Function

	
getSleeveStats(sleeveNumber)

	
	Arguments

	
	sleeveNumber (int) – Index of the sleeve to get stats of. See here

Return a structure containing the stats of the sleeve

{
 shock: current shock of the sleeve [0-100],
 sync: current sync of the sleeve [0-100],
 hacking_skill: current hacking skill of the sleeve,
 strength: current strength of the sleeve,
 defense: current defense of the sleeve,
 dexterity: current dexterity of the sleeve,
 agility: current agility of the sleeve,
 charisma: current charisma of the sleeve,
}

getInformation() Netscript Function

	
getInformation(sleeveNumber)

	
	Arguments

	
	sleeveNumber (int) – Index of the sleeve to retrieve information. See here

Return a struct containing tons of information about this sleeve

{
 city: location of the sleeve,
 hp: current hp of the sleeve,
 maxHp: max hp of the sleeve,
 jobs: jobs available to the sleeve,
 jobTitle: job titles available to the sleeve,
 tor: does this sleeve have access to the tor router,
 mult: {
 agility: agility multiplier,
 agilityExp: agility exp multiplier,
 companyRep: company reputation multiplier,
 crimeMoney: crime money multiplier,
 crimeSuccess: crime success chance multiplier,
 defense: defense multiplier,
 defenseExp: defense exp multiplier,
 dexterity: dexterity multiplier,
 dexterityExp: dexterity exp multiplier,
 factionRep: faction reputation multiplier,
 hacking: hacking skill multiplier,
 hackingExp: hacking exp multiplier,
 strength: strength multiplier,
 strengthExp: strength exp multiplier,
 workMoney: work money multiplier,
 },
 timeWorked: time spent on the current task in milliseconds,
 earningsForSleeves : { earnings synchronized to other sleeves
 workHackExpGain: hacking exp gained from work,
 workStrExpGain: strength exp gained from work,
 workDefExpGain: defense exp gained from work,
 workDexExpGain: dexterity exp gained from work,
 workAgiExpGain: agility exp gained from work,
 workChaExpGain: charisma exp gained from work,
 workMoneyGain: money gained from work,
 },
 earningsForPlayer : { earnings synchronized to the player
 workHackExpGain: hacking exp gained from work,
 workStrExpGain: strength exp gained from work,
 workDefExpGain: defense exp gained from work,
 workDexExpGain: dexterity exp gained from work,
 workAgiExpGain: agility exp gained from work,
 workChaExpGain: charisma exp gained from work,
 workMoneyGain: money gained from work,
 },
 earningsForTask : { earnings for this sleeve
 workHackExpGain: hacking exp gained from work,
 workStrExpGain: strength exp gained from work,
 workDefExpGain: defense exp gained from work,
 workDexExpGain: dexterity exp gained from work,
 workAgiExpGain: agility exp gained from work,
 workChaExpGain: charisma exp gained from work,
 workMoneyGain: money gained from work,
 },
 workRepGain: Reputation gain rate when working for factions or companies
}

getTask() Netscript Function

	
getTask(sleeveNumber)

	
	Arguments

	
	sleeveNumber (int) – Index of the sleeve to retrieve task from. See here

Return the current task that the sleeve is performing. type is set to “Idle” if the sleeve isn’t doing anything

{
 task: string, // task type
 crime: string, // crime currently attempting, if any
 location: string, // location of the task, if any
 gymStatType: string, // stat being trained at the gym, if any
 factionWorkType: string, // faction work type being performed, if any
}

setToShockRecovery() Netscript Function

	
setToShockRecovery(sleeveNumber)

	
	Arguments

	
	sleeveNumber (int) – Index of the sleeve to start recovery. See here

Return a boolean indicating whether or not this action was set successfully.

setToSynchronize() Netscript Function

	
setToSynchronize(sleeveNumber)

	
	Arguments

	
	sleeveNumber (int) – Index of the sleeve to start synchronizing. See here

Return a boolean indicating whether or not this action was set successfully.

setToCommitCrime() Netscript Function

	
setToCommitCrime(sleeveNumber, name)

	
	Arguments

	
	sleeveNumber (int) – Index of the sleeve to start commiting crime. See here

	name (string) – Name of the crime. Must be an exact match.

Return a boolean indicating whether or not this action was set successfully.

Returns false if an invalid action is specified.

setToFactionWork() Netscript Function

	
setToFactionWork(sleeveNumber, factionName, factionWorkType)

	
	Arguments

	
	sleeveNumber (int) – Index of the sleeve to work for the faction. See here

	factionName (string) – Name of the faction to work for.

	factionWorkType (string) – Name of the action to perform for this faction.

Return a boolean indicating whether or not the sleeve started working or this faction.

setToCompanyWork() Netscript Function

	
setToCompanyWork(sleeveNumber, companyName)

	
	Arguments

	
	sleeveNumber (int) – Index of the sleeve to work for the company. See here

	companyName (string) – Name of the company to work for.

Return a boolean indicating whether or not the sleeve started working or this company.

setToUniversityCourse() Netscript Function

	
setToUniversityCourse(sleeveNumber, university, className)

	
	Arguments

	
	sleeveNumber (int) – Index of the sleeve to start taking class. See here

	university (string) – Name of the university to attend.

	className (string) – Name of the class to follow.

Return a boolean indicating whether or not this action was set successfully.

setToGymWorkout() Netscript Function

	
setToGymWorkout(sleeveNumber, gymName, stat)

	
	Arguments

	
	sleeveNumber (int) – Index of the sleeve to workout at the gym. See here

	gymName (string) – Name of the gym.

	stat (string) – Name of the stat to train.

Return a boolean indicating whether or not the sleeve started working out.

travel() Netscript Function

	
travel(sleeveNumber, cityName)

	
	Arguments

	
	sleeveNumber (int) – Index of the sleeve to travel. See here

	cityName (string) – Name of the destination city.

Return a boolean indicating whether or not the sleeve reached destination.

getSleeveAugmentations() Netscript Function

	
getSleeveAugmentations(sleeveNumber)

	
	Arguments

	
	sleeveNumber (int) – Index of the sleeve to retrieve augmentations from. See here

Return a list of augmentation names that this sleeve has installed.

getSleevePurchasableAugs() Netscript Function

	
getSleevePurchasableAugs(sleeveNumber)

	
	Arguments

	
	sleeveNumber (int) – Index of the sleeve to retrieve purchasable augmentations from. See here

Return a list of augmentations that the player can buy for this sleeve.

[
 {
 name: string, // augmentation name
 cost: number, // augmentation cost
 }
]

purchaseSleeveAug() Netscript Function

	
purchaseSleeveAug(sleeveNumber, augName)

	
	Arguments

	
	sleeveNumber (int) – Index of the sleeve to buy an aug for. See here

	augName (string) – Name of the aug to buy. Must be an exact match

Return true if the aug was purchased and installed on the sleeve.

Netscript Miscellaneous

Netscript Ports

Netscript Ports are endpoints that can be used to communicate between scripts.
A port is implemented as a sort of serialized queue, where you can only write
and read one element at a time from the port. When you read data from a port,
the element that is read is removed from the port.

The read(), write(), tryWrite(), clear(), and peek()
Netscript functions can be used to interact with ports.

Right now, there are only 20 ports for Netscript, denoted by the number 1
through 20. When using the functions above, the ports are specified
by passing the number as the first argument.

IMPORTANT: The data inside ports are not saved! This means if you close and
re-open the game, or reload the page then you will lose all of the data in
the ports!

Example Usage

Here’s a brief example of how ports work. For the sake of simplicity we’ll only deal with port 1.

Let’s assume Port 1 starts out empty (no data inside). We’ll represent the port as such:

[]

Now assume we ran the following simple script:

for (i = 0; i < 10; ++i) {
 write(1, i); //Writes the value of i to port 1
}

After this script executes, our script will contain every number from 0 through 9, as so:

[0, 1, 2, 3, 4, 5, 6, 7 , 8, 9]

Then, assume we run the following script:

for (i = 0; i < 3; ++i) {
 print(read(1)); //Reads a value from port 1 and then prints it
}

This script above will read the first three values from port 1 and then print them to the script’s log. The log will end up looking like:

0
1
2

And the data in port 1 will look like:

[3, 4, 5, 6, 7, 8, 9]

Warning

In NetscriptJS (Netscript 2.0), do not trying writing base
Promises [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise]
to a port.

Port Handles

WARNING: Port Handles only work in NetscriptJS (Netscript 2.0). They do not work in Netscript 1.0

The getPortHandle() Netscript function can be used to get a handle to a Netscript Port.
This handle allows you to access several new port-related functions and the
port’s underlying data structure, which is just a JavaScript array. The functions are:

	
NetscriptPort.write(data)

	
	Arguments

	
	data – Data to write to the port

	Returns

	If the port is full, the item that is removed from the port is returned.
Otherwise, null is returned.

Writes data to the port. Works the same as the Netscript function write.

	
NetscriptPort.tryWrite(data)

	
	Arguments

	
	data – Data to try to write to the port

	Returns

	True if the data is successfully written to the port, and false otherwise.

Attempts to write data to the Netscript port. If the port is full, the data will
not be written. Otherwise, the data will be written normally.

	
NetscriptPort.full()

	
	Returns

	True if the Netscript Port is full, and false otherwise

	
NetscriptPort.empty()

	
	Returns

	True if the Netscript Port is empty, and false otherwise

	
NetscriptPort.clear()

	Clears all data from the port. Works the same as the Netscript function clear

	
NetscriptPort.data

	The Netscript port underlying data structure, which is just a Javascript array. All
valid Javascript Array methods can be called on this.

Port Handle Example:

port = getPortHandle(5);
back = port.data.pop(); //Get and remove last element in port

//Remove an element from the port
i = port.data.findIndex("foo");
if (i != -1) {
 port.data.slice(i, 1);
}

//Wait for port data before reading
while(port.empty()) {
 sleep(10000);
}
res = port.read();

//Wait for there to be room in a port before writing
while (!port.tryWrite(5)) {
 sleep(5000);
}

//Successfully wrote to port!

Comments

Netscript supports comments using the same syntax as Javascript comments [https://www.w3schools.com/js/js_comments.asp].
Comments are not evaluated as code, and can be used to document and/or explain code:

//This is a comment and will not get executed even though its in the code
/* Multi
 * line
 * comment */
print("This code will actually get executed");

Importing Functions

In Netscript you can import functions that are declared in other scripts.
The script will incur the RAM usage of all imported functions.
There are two ways of doing this:

import * as namespace from "script filename"; //Import all functions from script
import {fn1, fn2, ...} from "script filename"; //Import specific functions from script

Suppose you have a library script called testlibrary.script:

function foo1(args) {
 //function definition...
}

function foo2(args) {
 //function definition...
}

function foo3(args) {
 //function definition...
}

function foo4(args) {
 //function definition...
}

Then, if you wanted to use these functions in another script, you can import them like so:

import * as testlib from "testlibrary.script";

values = [1,2,3];

//The imported functions must be specified using the namespace
someVal1 = testlib.foo3(values);
someVal2 = testlib.foo1(values);
if (someVal1 > someVal2) {
 //...
} else {
 //...
}

If you only wanted to import certain functions, you can do so without needing
to specify a namespace for the import:

import {foo1, foo3} from "testlibrary.script"; //Saves RAM since not all functions are imported!

values = [1,2,3];

//No namespace needed
someVal1 = foo3(values);
someVal2 = foo1(values);
if (someVal1 > someVal2) {
 //...
} else {
 //...
}

Warning

For those who are experienced with JavaScript, note that the export
keyword should NOT be used in Netscript 1.0, as this will break the script.
It can, however, be used in NetscriptJS (Netscript 2.0) (but it’s not required).

Standard, Built-In JavaScript Objects

Standard built-in JavaScript objects such as
Math [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math],
Date [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date],
Number [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number],
and others are supported as expected based on which version
of Netscript you use (i.e. Netscript 1.0 will support built-in objects that are
defined in ES5, and NetscriptJS (Netscript 2.0) will support whatever your browser supports).

Basic Gameplay

This section documents Bitburner gameplay elements that are immediately
available and/or accessible to the player.

Elements:

	Stats
	Hacking

	Strength

	Defense

	Dexterity

	Agility

	Charisma

	Terminal
	Configuration

	Filesystem (Directories)
	Directories

	Absolute vs Relative Paths

	Netscript

	Missing Features

	Commands
	alias

	analyze

	buy

	cat

	cd

	check

	clear/cls

	connect

	download

	expr

	free

	hack

	help

	home

	hostname

	ifconfig

	kill

	killall

	ls

	lscpu

	mem

	mv

	nano

	ps

	rm

	run

	scan

	scan-analyze

	scp

	sudov

	tail

	theme

	top

	unalias

	wget

	Argument Parsing

	Chaining Commands

	Servers
	Server RAM

	Identifying Servers

	Player-owned Servers

	Hackable Servers

	Hacking
	Gaining Root Access

	General Hacking Mechanics

	Server Security

	Scripts
	Script Arguments

	Identifying a Script

	Multithreading scripts

	Working with Scripts in Terminal

	Working with Scripts in Netscript

	Notes about how Scripts Work Offline

	World

	Factions
	List of Factions and their Requirements

	Augmentations
	How to acquire Augmentations

	Installing Augmentations

	Purchasing Multiple Augmentations

	Companies
	Information about all Companies

	Crimes
	Basic Mechanics

	Crime details

	Infiltration
	Overview

	Stock Market
	Fundamentals
	Positions: Long vs Short

	Forecast & Second-Order Forecast

	Spread (Bid Price & Ask Price)

	Transactions Influencing Stock Forecast

	Order Types

	Player Actions Influencing Stocks

	Automating the Stock Market

	Under the Hood

	Offline Progression

	Coding Contracts
	Running in Terminal

	Interacting through Scripts

	Submitting Solutions

	Rewards

	Notes

	List of all Problem Types

Stats

The player has several stats that can be increased in order to progress
in the game.

Hacking

Represents the player’s ability to code and hack.

Affects:

	Time it takes to hack a server

	Time it takes to execute the grow() and weaken() Netscript function

	Chance to successfully hack a server

	Percent money stolen when hacking a server

	Success rate of certain crimes

	Success rate of Hacking option during Infiltration

	Time it takes to create a program

	Faction reputation gain when carrying out Hacking Contracts or Field Work

	Company reputation gain for certain jobs

Gain experience by:

	Manually hacking servers through Terminal

	Executing hack(), grow(), or weaken() through a script

	Committing certain crimes

	Infiltration

	Carrying out Hacking Contracts or doing Field work for Factions

	Working certain jobs at a company

	Studying at a university

Strength

Represents the player’s physical offensive power

Affects:

	Success rate of certain crimes

	Success rate of Combat options during Infiltration

	Faction reputation gain for Security and Field Work

	Company reputation gain for certain jobs

Gain experience by:

	Committing certain crimes

	Infiltration

	Working out at a gym

	Doing Security/Field Work for a faction

	Working certain jobs at a company

Defense

Represents the player’s ability to withstand damage

Affects:

	Success rate of certain crimes

	The player’s HP

	Success rate of Combat options during Infiltration

	How much damage the player takes during Infiltration

	Faction reputation gain for Security and Field Work

	Company reputation gain for certain jobs

Gain experience by:

	Committing certain crimes

	Infiltration

	Working out at a gym

	Doing Security/Field Work for a faction

	Working certain jobs at a company

Dexterity

Represents the player’s skill and adeptness in performing certain tasks

Affects:

	Success rate of certain crimes

	Success rate of Combat, Lockpick, and Escape options during Infiltration

	Faction reputation gain for Security and Field Work

	Company reputation gain for certain jobs

Gain experience by:

	Committing certain crimes

	Infiltration

	Working out at a gym

	Doing Security/Field Work for a faction

	Working certain jobs at a company

Agility

Represents the player’s speed and ability to move

Affects:

	Success rate of certain crimes

	Success rate of Combat, Sneak, and Escape options during Infiltration

	Faction reputation gain for Security and Field Work

	Company reputation gain for certain jobs

Gain experience by:

	Committing certain crimes

	Infiltration

	Working out at a gym

	Doing Security/Field Work for a faction

	Working certain jobs at a company

Charisma

Represents the player’s social abilities

Affects:

	Success rate of certain crimes

	Success rate of Bribe option during Infiltration

	Faction reputation gain for Field Work

	Company reputation gain for most jobs

Gain experience by:

	Committing certain crimes

	Infiltration

	Working out at a gym

	Working a relevant job at a company

	Doing Field work for a Faction

Terminal

The Terminal is a console emulator program that lets you interface with all of the
Servers in the game. The Terminal can be accessed by clicking the ‘Terminal’ tab
on the navigation menu on the left-hand side of the game (you may need to expand
the ‘Hacking’ header in order to see the ‘Terminal’ tab). Alternatively, the keyboard
shortcut Alt + t can be used to open the Terminal.

Configuration

The terminal has a configuration file called .fconf. To edit this file, go to
the terminal and enter:

nano .fconf

Filesystem (Directories)

The Terminal contains a very basic filesystem that allows you to store and
organize your files into different directories. Note that this is not a true
filesystem implementation. Instead, it is done almost entirely using string manipulation.
For this reason, many of the nice & useful features you’d find in a real
filesystem do not exist.

Here are the Terminal commands you’ll commonly use when dealing with the filesystem.

	ls

	cd

	mv

Directories

In order to create a directory, simply name a file using a full absolute Linux-style path:

/scripts/myScript.js

This will automatically create a “directory” called scripts. This will also work
for subdirectories:

/scripts/hacking/helpers/myHelperScripts.script

Files in the root directory do not need to begin with a forward slash:

thisIsAFileInTheRootDirectory.txt

Note that there is no way to manually create or remove directories. The creation and
deletion of directories is automatically handled as you name/rename/delete
files.

Absolute vs Relative Paths

Many Terminal commands accept absolute both absolute and relative paths for specifying a
file.

An absolute path specifies the location of the file from the root directory (/).
Any path that begins with the forward slash is an absolute path:

$ nano /scripts/myScript.js
$ cat /serverList.txt

A relative path specifies the location of the file relative to the current working directory.
Any path that does not begin with a forward slash is a relative path. Note that the
Linux-style dot symbols will work for relative paths:

. (a single dot) - represents the current directory
.. (two dots) - represents the parent directory

$ cd ..
$ nano ../scripts/myScript.js
$ nano ../../helper.js

Netscript

Note that in order to reference a file, Netscript functions require the
full absolute file path. For example

run("/scripts/hacking/helpers.myHelperScripts.script");
rm("/logs/myHackingLogs.txt");
rm("thisIsAFileInTheRootDirectory.txt");

Note

A full file path must begin with a forward slash (/) if that file
is not in the root directory.

Missing Features

These features that are typically in Linux filesystems have not yet been added to the game:

	Tab autocompletion does not work with relative paths

	mv only accepts full filepaths for the destination argument. It does not accept directories

Commands

alias

$ alias [-g] [name=”value”]

Create or display aliases. An alias enables a replacement of a word with another
string. It can be used to abbreviate a commonly used command, or commonly used
parts of a command. The NAME of an alias defines the word that will be
replaced, while the VALUE defines what it will be replaced by. For example,
you could create the alias ‘nuke’ for the Terminal command ‘run NUKE.exe’
using the following:

$ alias nuke="run NUKE.exe"

Then, to run the NUKE.exe program you would just have to enter ‘nuke’ in
Terminal rather than the full command. It is important to note that ‘default’
aliases will only be substituted for the first word of a Terminal command. For
example, if the following alias was set:

$ alias worm="HTTPWorm.exe"

and then you tried to run the following terminal command:

$ run worm

This would fail because the worm alias is not the first word of a Terminal
command. To allow an alias to be substituted anywhere in a Terminal command,
rather than just the first word, you must set it to be a global alias using the -g flag:

$ alias -g worm="HTTPWorm.exe"

Now, the ‘worm’ alias will be substituted anytime it shows up as an individual word in
a Terminal command.

Entering just the command ‘alias’ without any arguments prints the list of all
defined aliases in the reusable form ‘alias NAME=VALUE’ on the Terminal.

The unalias Terminal command can be used to remove aliases.

analyze

Prints details and statistics about the current server. The information that is
printed includes basic server details such as the hostname, whether the player
has root access, what ports are opened/closed, and also hacking-related information
such as an estimated chance to successfully hack, an estimate of how much money is
available on the server, etc.

buy

$ buy [-l/program]

Purchase a program through the Dark Web. Requires a TOR Router to use.

If this command is ran with the ‘-l’ flag, it will display a list of all programs
that can be purchased through the Dark Web, as well as their costs.

Otherwise, the name of the program must be passed in as a parameter. This name
is NOT case-sensitive:

$ buy brutessh.exe

Note that you do not need to be connected to the actual dark web server in order
to run this command. You can use this command at any time on the Terminal.

cat

$ cat [filename]

Display a message (.msg), literature (.lit), or text (.txt) file:

$ cat j1.msg
$ cat foo.lit
$ cat servers.txt

cd

$ cd [dir]

Change to the specified directory.

See Filesystem (Directories) for details on directories.

Note that this command works even for directories that don’t exist. If you change
to a directory that doesn’t exist, it will not be created. A directory is only created
once there is a file in it:

$ cd scripts/hacking
$ cd /logs
$ cd ..

check

$ check [script name] [args…]

Print the logs of the script specified by the script name and arguments to the Terminal.
Each argument must be separated by a space.
Remember that a running script is uniquely identified both by its name and the arguments that are used to start it. So,
if a script was ran with the following arguments:

$ run foo.script 1 2 foodnstuff

Then to run the ‘check’ command on this script you would have to pass the same arguments in:

$ check foo.script 1 2 foodnstuff

clear/cls

Clear the Terminal screen, deleting all of the text. Note that this does not
delete the user’s command history, so using the up and down arrow keys is
still valid. Also note that this is permanent and there is no way to undo this.
Both ‘clear’ and ‘cls’ do the same thing:

$ clear
$ cls

connect

$ connect [hostname/ip]

Connect to a remote server. The hostname or IP address of the remote server must
be given as the argument to this command. Note that only servers that are immediately
adjacent to the current server in the network can be connected to. To see which
servers can be connected to, use the ‘scan’ command.

download

Downloads a script or text file to your computer (your real-life computer):

$ download masterScript.script
$ download importantInfo.txt

You can also download all of your scripts/text files as a zip file using the following
Terminal commands:

$ download *
$ download *.script
$ download *.txt

expr

$ expr [math expression]

Evaluate a mathematical expression. The expression is evaluated in JavaScript,
and therefore all JavaScript operators should be supported.

Examples:

$ expr 5.6 * 10 - 123
$ expr 3 ** 3

free

Display’s the memory usage on the current machine. Print the amount of RAM that
is available on the current server as well as how much of it is being used.

hack

Attempt to hack the current server. Requires root access in order to be run.

Related: Hacking Mechanics (TODO Add link here when page gets made)

help

$ help [command]

Display Terminal help information. Without arguments, ‘help’ prints a list of all
valid Terminal commands and a brief description of their functionality. You can
also pass the name of a Terminal command as an argument to ‘help’ to print more
detailed information about the Terminal command. Examples:

$ help alias
$ help scan-analyze

home

Connect to your home computer. This will work no matter what server you are currently connected to.

hostname

Prints the hostname of the server you are currently connected to.

ifconfig

Prints the IP address of the server you are currently connected to.

kill

$ kill [script name] [args…]
$ kill [pid]

Kill the script specified by the script filename and arguments OR by its PID.

If you are killing the script using its filename and arguments, then each argument
must be separated by a space. Remember that a running script is uniquely identified
by both its name and the arguments that are used to start it. So, if a script
was ran with the following arguments:

$ run foo.script 50e3 sigma-cosmetics

Then to kill this script the same arguments would have to be used:

$ kill foo.script 50e3 sigma-cosmetics

If you are killing the script using its PID, then the PID argument must be numeric.

killall

Kills all scripts on the current server.

ls

$ ls [dir] [| grep pattern]

Prints files and directories on the current server to the Terminal screen.

If this command is run with no arguments, then it prints all files and directories on the current
server to the Terminal screen. Directories will be printed first in alphabetical order,
followed by the files (also in alphabetical order).

The dir optional parameter allows you to specify the directory for which to display
files.

The | grep pattern optional parameter allows you to only display files and directories
with a certain pattern in their names.

Examples:

// List files/directories with the '.script' extension in the current directory
$ ls | grep .script

// List files/directories with the '.js' extension in the root directory
$ ls / | grep .js

// List files/directories with the word 'purchase' in the name, in the :code:`scripts` directory
$ ls scripts | grep purchase

lscpu

Prints the number of CPU cores the current server has.

mem

$ mem [script name] [-t] [num threads]

Displays the amount of RAM needed to run the specified script with a single
thread. The command can also be used to print the amount of RAM needed to run
a script with multiple threads using the ‘-t’ flag. If the ‘-t’ flag is
specified, then an argument for the number of threads must be passed in
afterwards. Examples:

$ mem foo.script
$ mem foo.script -t 50

The first example above will print the amount of RAM needed to run ‘foo.script’
with a single thread. The second example above will print the amount of RAM needed
to run ‘foo.script’ with 50 threads.

mv

$ mv [source] [destination]

Move the source file to the specified destination in the filesystem.
See Filesystem (Directories) for more details about the Terminal’s filesystem.
This command only works for scripts and text files (.txt). It cannot, however, be used
to convert from script to text file, or vice versa.

This function can also be used to rename files.

Note

Unlike the Linux mv command, the destination argument must be the
full filepath. It cannot be a directory.

Examples:

$ mv hacking.script scripts/hacking.script
$ mv myScript.js myOldScript.js

nano

$ nano [filename]

Opens up the specified file in the Text Editor. Only scripts (.script, .ns, .js) and
text files (.txt) can be edited. If the file does not already exist, then a new
empty file will be created.

ps

Prints all scripts that are currently running on the current server.

rm

$ rm [filename]

Removes the specified file from the current server. This works for every file type
except literature files (.lit).

WARNING: This is permanent and cannot be undone

run

$ run [file name] [-t] [num threads] [args…]

Execute a program, script, or Coding Contracts.

The ‘[-t]’, ‘[num threads]’, and ‘[args…]’ arguments are only valid when
running a script. The ‘-t’ flag is used to indicate that the script should
be run with the specified number of threads. If the flag is omitted, then
the script will be run with a single thread by default. If the ‘-t’ flag is
used, then it MUST come immediately after the script name, and the
[num threads] argument MUST come immediately afterwards.

[args…] represents a variable number of arguments that will be passed into
the script. See the documentation about script arguments. Each specified
argument must be separated by a space.

Examples

Run a program:

$ run BruteSSH.exe

Run foo.script with 50 threads and the arguments [1e3, 0.5, foodnstuff]:

$ run foo.script -t 50 1e3 0.5 foodnstuff

Run a Coding Contract:

$ run foo-contract.cct

scan

Prints all immediately-available network connections. This will print a list
of all servers that you can currently connect to using the ‘connect’ Terminal command.

scan-analyze

$ scan-analyze [depth]

Prints detailed information about all servers up to [depth] nodes away on the
network. Calling ‘scan-analyze 1’ will display information for the same servers
that are shown by the ‘scan’ Terminal command. This command also shows the
relative paths to reach each server.

By default, the maximum depth that can be specified for ‘scan-analyze’ is 3.
However, once you have the DeepscanV1.exe and DeepscanV2.exe programs, you can
execute ‘scan-analyze’ with a depth up to 5 and 10, respectively.

The information ‘scan-analyze’ displays about each server includes whether or
not you have root access to it, its required hacking level, the number of open
ports required to run NUKE.exe on it, and how much RAM it has.

scp

$ scp [script name] [target server]

Copies the specified script from the current server to the target server.
The second argument passed in must be the hostname or IP of the target server.

sudov

Prints whether or not you have root access to the current server.

tail

$ tail [script name] [args…]

Displays dynamic logs for the script specified by the script name and arguments.
Each argument must be separated by a space. Remember that a running script is
uniquely identified by both its name and the arguments that were used to run
it. So, if a script was ran with the following arguments:

$ run foo.script 10 50000

Then in order to check its logs with ‘tail’ the same arguments must be used:

$ tail foo.script 10 50000

theme

$ theme [preset] | [#background #text #highlight]

Change the color of the game’s user interface

This command can be called with a preset theme. Currently, the supported presets are:

	default

	muted

	solarized

However, you can also specify your own color scheme using hex values.
To do so, you must specify three hex color values for the background
color, the text color, and the highlight color. These hex values must
be preceded by a pound sign (#) and must be either 3 or 6 digits. Example:

$ theme #ffffff #385 #235012

A color picker such as Google’s can be used to get your desired hex color values

top

Prints a list of all scripts running on the current server as well as their
thread count and how much RAM they are using in total.

unalias

$ unalias “[alias name]”

Deletes the specified alias. Note that the double quotation marks are required.

As an example, if an alias was declared using:

$ alias r="run"

Then it could be removed using:

$ unalias "r"

It is not necessary to differentiate between global and non-global aliases when using ‘unalias’

wget

$ wget [url] [target file]

Retrieves data from a url and downloads it to a file on the current server.
The data can only be downloaded to a script (.script, .ns, .js) or a text file
(.txt). If the target file already exists, it will be overwritten by this command.

Note that will not be possible to download data from many websites because they
do not allow cross-origin origin sharing (CORS). This includes websites such
as gist and pastebin. One notable site it will work on is rawgithub. Example:

$ wget https://raw.githubusercontent.com/danielyxie/bitburner/master/README.md game_readme.txt

Argument Parsing

When evaluating a terminal command, arguments are initially parsed based on whitespace (usually spaces).
Each whitespace character signifies the end of an argument, and potentially the start
of new one. For most terminal commands, this is all you need to know.

When running scripts, however, it is important to know in more detail how arguments are parsed.
There are two main points:

	Quotation marks can be used to wrap a single argument and force it to be parsed as
a string. Any whitespace inside the quotation marks will not cause a new argument
to be parsed.

	Anything that can represent a number is automatically cast to a number, unless its
surrounded by quotation marks.

Here’s an example to show how these rules work. Consider the following script argType.script:

tprint("Number of args: " + args.length);
for (var i = 0; i < args.length; ++i) {
 tprint(typeof args[i]);
}

Then if we run the following terminal command:

$ run argType.script 123 1e3 "5" "this is a single argument"

We’ll see the following in the Terminal:

Running script with 1 thread(s) and args: [123, 1000, "5", "this is a single argument"].
May take a few seconds to start up the process...
argType.script: Number of args: 4
argType.script: number
argType.script: number
argType.script: string
argType.script: string

Chaining Commands

You can run multiple Terminal commands at once by separating each command
with a semicolon (;).

Example:

$ run foo.script; tail foo.script

Servers

In this game, a server refers to a computer that can be connected to,
accessed, and manipulated through the Terminal. All servers in the
game are connected to each other to form a large, global network.
To learn about how to navigate this network and connect to other
servers, see the Terminal page.

Server RAM

Perhaps the most important property of a server to make note of is its RAM,
which refers to how much memory is available on that machine. RAM is
important because it is required to run Scripts. More RAM allows
the user to run more powerful and complicated scripts.

The free, scan-analyze, and analyze Terminal commands
can be used to check how much RAM a server has.

Identifying Servers

A server is identified by two properties: its IP address and its hostname.
An IP address is a 32-bit number represented in dot-decimal notation.
For example, “56.1.5.0” and “86.5.1.0” might be two IP addresses
you see in the game. A hostname is a label assigned to a server.
A hostname will usually give you a general idea of what the server
is. For example, the company Nova Medical might have a server with
the hostname “nova-med”.

Hostnames and IP addresses are unique. This means that if one
server has the IP address “1.1.1.1” and the hostname
“some-server”, then no other server in the game can have that
IP address or that hostname.

There are many Netscript Functions
and Terminal commands in the game
that will require you to target a specific server. This is done using
either the IP address or the hostname of the server.

Player-owned Servers

The player starts with a single server: his/her home computer.
This server will have the hostname “home.” The player’s home
computer is special for a variety of reasons:

1. The home computer’s RAM can be upgraded. This can be done by visiting
certain locations in the World.

2. The home computer persists through Augmentation Installations. This means
that you will not lose any RAM upgrades or Scripts on your
home computer when you install Augmentations (you will
however, lose programs and messages on your home computer).

The player can also purchase additional servers. This can be
done by visiting certain locations in the World, or it can be
done automatically through a script using the purchaseServer()
Netscript Function. The advantage of purchased servers is that,
in terms of RAM, they are cheaper than upgrading your home
computer. The disadvantage is that your purchased servers
are lost when you install Augmentations.

Hackable Servers

Most servers that are not owned by the player can be hacked for money
and exp. See the Hacking page for more details.

Different servers have different levels of security, but also offer
different rewards when being hacked.

Hacking

In the year 2077, currency has become digital and decentralized.
People and corporations store their money on servers. By hacking
these servers, you can steal their money and gain experience.

Gaining Root Access

The first step to hacking a server is to gain root access to that server.
This can be done using the NUKE virus (NUKE.exe). You start the
game with a copy of the NUKE virus on your home computer. The
NUKE virus attacks the target server’s open ports using buffer
overflow exploits. When successful, you are granted root
administrative access to the machine.

In order for the NUKE virus to succeed, the target server
needs to have enough open ports. Some servers have no
security and will not need any ports opened. Some will have very high
security and will need many ports opened. In order to open ports on
another server, you will need to run programs that attack the server
to open specific ports. These programs can be coded once your hacking
skill gets high enough, or they can be purchased if you can find a seller.

There are two ways to execute port-opening programs and the NUKE virus:

	Connect to the target server through the Terminal and use the
run Terminal command:

$ run [programName]

	Use a Netscript Function:

	nuke()

	brutessh()

	ftpcrack()

	relaysmtp()

	httpworm()

	sqlinject()

There are two ways to determine how many ports need to be opened
on a server in order to successfully NUKE it:

	Connect to that server through the Terminal and use the
analyze command

	Use the getServerNumPortsRequired() Netscript function

Once you have enough ports opened on a server and have ran the NUKE virus
to gain root access, you will be able to hack it.

General Hacking Mechanics

When you execute the hack command, either manually through the terminal
or automatically through a script, you attempt to hack the server.
This action takes time. The more advanced a server’s security is,
the more time it will take. Your hacking skill level also affects
the hacking time, with a higher hacking skill leading to shorter
hacking times. Also, running the hack command manually through terminal
is faster than hacking from a script.

Your attempt to hack a server will not always succeed. The chance you
have to successfully hack a server is also determined by the server’s
security and your hacking skill level. Even if your hacking attempt
is unsuccessful, you will still gain experience points.

When you successfully hack a server. You steal a certain percentage
of that server’s total money. This percentage is, once again, determined by the
server’s security and your hacking skill level. The amount of money
on a server is not limitless. So, if you constantly hack a server
and deplete its money, then you will encounter diminishing returns
in your hacking (since you are only hacking a certain percentage).
You can increase the amount of money on a server using a script and
the grow() function in Netscript.

Server Security

Each server has a security level, typically between 1 and 100.
A higher number means the server has stronger security. It is
possible for a server to have a security of level 100 or higher, in
which case hacking that server will become impossible (0% chance for
hack to succeed).

As mentioned above, a server’s security level is an important factor
to consider when hacking. You can check a server’s security level
using the analyze Terminal command. You can
also check a server’s security in
a script, using the getServerSecurityLevel() Netscript
Function. See the Netscript documentation for more details.

Whenever a server is hacked manually or through a script, its security
level increases by a small amount. Calling the grow() function in a
script will also increase security level of the target server. These
actions will make it harder for you to hack the server, and decrease
the amount of money you can steal. You can lower a server’s security
level in a script using the weaken() function in Netscript. See
the Netscript documentation for more details

A server has a minimum security level that is equal to one third of its
starting security, rounded to the nearest integer. To be more precise:

server.minSecurityLevel = Math.max(1, Math.round(server.startingSecurityLevel / 3))

This means that a server’s security level will not fall below this
value if you are trying to weaken() it.

Scripts

Scripts are programs that can be used to automate the hacking process
and almost every other part of the game. Scripts must be written
in the Netscript language.

It is highly recommended that you have a basic background in programming
to start writing scripts. You by no means need to be an expert. All you
need is some familiarity with basic programming constructs like
for/while loops, conditionals (if/else), functions, variables, etc.
If you’d like to learn a little bit about programming, see
Learn to Program in Netscript.

Script Arguments

When running a script, you can choose to pass arguments to that script.
The script’s logic can access and act on these arguments. This allows
for flexibility in your scripts. For more details, see
Netscript Script Arguments.

For information on how to run scripts with arguments, see
Working with Scripts in Terminal and
Working with Scripts in Netscript below.

Identifying a Script

Many commands and functions act on an executing script
(i.e. a script that is running). Therefore, there must
be a way to specify which script you want those commands & functions
to act on.

A script that is being executed is uniquely identified by both its
name and the arguments that it was run with.

The arguments must be an exact match. This means that both
the order and type of the arguments matter.

Multithreading scripts

A script can be run with multiple threads. This is also called multithreading.
The effect of multithreading is that every call to the
hack(), grow(), and weaken() Netscript functions
will have their results multiplied by the number of threads.
For example, if a normal single-threaded script
is able to hack $10,000, then running the same script with 5 threads would
yield $50,000.

(This is the only affect of running a script with multiple threads.
Scripts will not actually become multithreaded in the real-world
sense.)

When multithreading a script, the total RAM cost can be calculated by
simply multiplying the base RAM cost of the script with the number of
threads, where the base cost refers to the amount of RAM required to
run the script single-threaded. In the terminal, you can run the
mem Terminal command to see how much RAM a script
requires with n threads:

$ mem [scriptname] -t n

Working with Scripts in Terminal

Running a script requires RAM. The more complex a script is, the more
RAM it requires to run. Scripts can be run on any server you have root
access to.

Here are some Terminal commands that are useful when working
with scripts:

check [script] [args…]

Prints the logs of the script specified by the name and arguments to
Terminal. Arguments should be separated by a space. Remember that scripts
are uniquely identified by their arguments as well as their name. For
example, if you ran a script foo.script with the argument foodnstuff
then in order to ‘check’ it you must also add the foodnstuff argument
to the check command:

$ check foo.script foodnstuff

free

Shows the current server’s RAM usage and availability

kill [script] [args…]

Stops a script that is running with the specified script name and
arguments. Arguments should be separated by a space. Remember that
scripts are uniquely identified by their arguments as well as
their name. For example, if you ran a script foo.script with
the argument 1 and 2, then just typing “kill foo.script” will
not work. You have to use:

$ kill foo.script 1 2

mem [script] [-t] [n]

Check how much RAM a script requires to run with n threads

nano [script]

Create/Edit a script. The name of the script must end with a valid
extension: .script, .js, or .ns

ps

Displays all scripts that are actively running on the current server

rm [script]

Delete a script from the server. This is permanent

run [script] [-t] [n] [args…]

Run a script with n threads and the specified arguments. Each argument should
be separated by a space. Both the arguments and thread specification are
optional. If neither are specified, then the script will be run single-threaded
with no arguments.

Examples:

Run ‘foo.script’ single-threaded with no arguments:

$ run foo.script

Run ‘foo.script’ with 10 threads and no arguments:

$ run foo.script -t 10

Run ‘foo.script’ single-threaded with three arguments: [foodnstuff, sigma-cosmetics, 10]:

$ run foo.script foodnstuff sigma-cosmetics 10

Run ‘foo.script’ with 50 threads and a single argument: [foodnstuff]:

$ run foo.script -t 50 foodnstuff

tail [script] [args…]

Displays the logs of the script specified by the name and arguments. Note that scripts are uniquely identified by their arguments as well as their name. For example, if you ran a script ‘foo.script’ with the argument ‘foodnstuff’ then in order to ‘tail’ it you must also add the ‘foodnstuff’ argument to the tail command as so: tail foo.script foodnstuff

top

Displays all active scripts and their RAM usage

Working with Scripts in Netscript

TODO/Coming Soon…

Notes about how Scripts Work Offline

The scripts that you write and execute are interpreted in Javascript.
For this reason, it is not possible for these scripts to run while
offline (when the game is closed). It is important to note that for
this reason, conditionals such as if/else statements and certain
commands such as purchaseHacknetNode() or nuke() will not work while
the game is offline.

However, Scripts WILL continue to generate money and hacking exp
for you while the game is offline. This offline production is based
off of the scripts’ production while the game is online.

grow() and weaken() are two Netscript commands that will also be
applied when the game is offline, although at a slower rate compared
to if the game was open. This is done by having each script keep
track of the rate at which the grow() and weaken() commands are called
when the game is online. These calculated rates are used to determine
how many times these function calls would be made while the game is
offline.

Also, note that because of the way the Netscript interpreter is
implemented, whenever you reload or re-open the game all of the
scripts that you are running will start running from the BEGINNING
of the code. The game does not keep track of where exactly the
execution of a script is when it saves/loads.

World

In Bitburner, the world consists of six different cities:

	Sector-12 (this is where you start out)

	Aevum

	Ishima

	New Tokyo

	Chongqing

	Volhaven

Factions

Throughout the game you may receive invitations from factions. There are
many different factions, and each faction has different criteria for
determining its potential members. Joining a faction and furthering
its cause is crucial to progressing in the game and unlocking endgame
content.

It is possible to join multiple factions if you receive invitations from
them. However, note that joining a faction may prevent you from joining
other rival factions. (Don’t worry, this usually isn’t the case. Also,
it would only be temporary since resetting the game by installing
Augmentations will clear all your factions)

The ‘Factions’ link on the menu brings up a list of all factions that
you have joined. You can select a Faction on this list to go to that
Faction page. This page displays general information about the Faction
and also lets you perform work for the faction. Working for a Faction
is similar to working for a company except that you don’t get paid a
salary. You will only earn reputation in your Faction and train your
stats. Also, cancelling work early when working for a Faction does
not result in reduced reputation earnings.

Earning reputation for a Faction unlocks powerful Augmentations.
Purchasing and installing these Augmentations will upgrade your
abilities. The Augmentations that are available to unlock vary
from faction to faction.

List of Factions and their Requirements

	
	Early Game

	Factions

	Faction Name

	Requirements

	Joining this Faction prevents
you from joining:

	CyberSec

	
	Hack CSEC Manually

	

	Tian Di Hui

	
	$1m

	Hacking Level 50

	Be in Chongqing, New Tokyo, or Ishima

	

	Netburners

	
	Hacking Level 80

	Total Hacknet Levels of 100

	Total Hacknet RAM of 8

	Total Hacknet Cores of 4

	

	City Factions

	Sector-12

	
	Be in Sector-12

	$15m

	
	Chongqing

	New Tokyo

	Ishima

	Volhaven

	Chongqing

	
	Be in Chongqing

	$20m

	
	Sector-12

	Aevum

	Volhaven

	New Tokyo

	
	Be in New Tokyo

	$20m

	
	Sector-12

	Aevum

	Volhaven

	Ishima

	
	Be in Ishima

	$30m

	
	Sector-12

	Aevum

	Volhaven

	Aevum

	
	Be in Aevum

	$40m

	
	Chongqing

	New Tokyo

	Ishima

	Volhaven

	Volhaven

	
	Be in Volhaven

	$50m

	
	Sector-12

	Aevum

	Chongqing

	New Tokyo

	Ishima

	Hacking
Groups

	NiteSec

	
	Hack avmnite-02h manually

	Home Computer RAM of at least 32GB

	

	The Black Hand

	
	Hack I.I.I.I manually

	Home Computer RAM of at least 64GB

	

	Bitrunners

	
	Hack run4theh111z manually

	Home Computer RAM of at least 128GB

	

	Megacorporations

	ECorp

	
	Have 200k reputation with
the Corporation

	

	MegaCorp

	
	Have 200k reputation with
the Corporation

	

	KuaiGong
International

	
	Have 200k reputation with
the Corporation

	

	Four Sigma

	
	Have 200k reputation with
the Corporation

	

	NWO

	
	Have 200k reputation with
the Corporation

	

	Blade
Industries

	
	Have 200k reputation with
the Corporation

	

	OmniTek
Incorporated

	
	Have 200k reputation with
the Corporation

	

	Bachman &
Associates

	
	Have 200k reputation with
the Corporation

	

	Clarke
Incorporated

	
	Have 200k reputation with
the Corporation

	

	Fulcrum Secret
Technologies

	
	Have 250k reputation with
the Corporation

	Hack fulcrumassets manually

	

	Criminal
Organizations

	Slum Snakes

	
	All Combat Stats of 30

	-9 Karma

	$1m

	

	Tetrads

	
	Be in Chongqing, New Tokyo, or Ishima

	All Combat Stats of 75

	-18 Karma

	

	Silhouette

	
	CTO, CFO, or CEO of a company

	$15m

	-22 Karma

	

	Speakers for
the Dead

	
	Hacking Level 100

	All Combat Stats of 300

	30 People Killed

	-45 Karma

	Not working for CIA or NSA

	

	The Dark Army

	
	Hacking Level 300

	All Combat Stats of 300

	Be in Chongqing

	5 People Killed

	-45 Karma

	Not working for CIA or NSA

	

	The Syndicate

	
	Hacking Level 200

	All Combat Stats of 200

	Be in Aevum or Sector-12

	$10m

	-90 Karma

	Not working for CIA or NSA

	

	Endgame
Factions

	The Covenant

	
	20 Augmentations

	$75b

	Hacking Level of 850

	All Combat Stats of 850

	

	Daedalus

	
	30 Augmentations

	$100b

	Hacking Level of 2500 OR All Combat
Stats of 1500

	

	Illuminati

	
	30 Augmentations

	$150b

	Hacking Level of 1500

	All Combat Stats of 1200

	

Augmentations

Advances in science and medicine have lead to powerful new technologies
that allow people to augment themselves beyond normal human capabilities.
There are many different types of Augmentations, ranging from cybernetic
to genetic to biological. Acquiring these Augmentations enhances the
user’s physical and mental faculties.

Augmentations provide persistent upgrades in the form of multipliers.
These multipliers apply to a wide variety of things such as stats,
experience gain, and hacking, just to name a few. Your multipliers
can be viewed in the ‘Character’ page (keyboard shortcut Alt + c)

How to acquire Augmentations

Because of how powerful Augmentations are, the technology behind them
is kept private and secret by the corporations and organizations that
create them. Therefore, the only way for the player to obtain
Augmentations is through Factions. After joining a Faction and earning
enough reputation in it, you will be able to purchase its Augmentations.
Different Factions offer different Augmentations. Augmentations must be
purchased in order to be installed, and they are fairly expensive.

Installing Augmentations

You will not gain the benefits of your purchased Augmentations until you
actually install them. You can choose to install Augmentations through
the ‘Augmentations’ menu tab (Found under ‘Character’. Alternatively,
use the keyboard shortcut Alt + a).

Unfortunately, installing Augmentations has side effects. You will lose
most of the progress you’ve made, including your skills, stats, and
money. You will have to start over, but you will have all of the
Augmentations you have installed to help you progress. This is the
game’s “soft reset” or “prestige” mechanic.

To summarize, here is a list of everything you will LOSE when you install
an Augmentation:

	Stats/Skills

	Money

	Scripts on all servers EXCEPT your home computer

	Purchased servers

	Hacknet Nodes

	Company/faction reputation

	Jobs and Faction memberships

	Programs

	Stocks

	TOR router

Here is everything you will KEEP when you install an Augmentation:

	Every Augmentation you have installed

	Scripts on your home computer

	RAM Upgrades on your home computer

	World Stock Exchange account and TIX API Access

Purchasing Multiple Augmentations

You do not have to install an Augmentation right after you purchase it.
You can purchase as many Augmentations as you’d like before you choose to
install them. When you install your purchased Augmentations they will ALL
get installed.

There are a few drawbacks to this, however. First, obviously, you won’t
gain the benefits of your purchased Augmentations until after you install
them. Second, purchasing multiple Augmentations before installing them
will cause the Augmentations to get progressively more expensive. When
you purchase an Augmentation, the price of purchasing another Augmentation
doubles. This multiplier stacks for each Augmentation you
purchase. Once you install your purchased Augmentations, their costs
are reset back to the original prices.

Companies

When exploring the world, you can visit various companies. At
these companies, you can apply for jobs.

Working a job lets you earn money, experience, and reputation with that company.

Information about all Companies

TODO

Crimes

Commiting crimes is an active gameplay mechanic that allows the player to train
their stats and potentially earn money. The player can attempt to commit crimes
by visiting ‘The Slums’ through the ‘City’ tab (Keyboard shortcut Alt + w).
‘The Slums’ is available in every city.

Basic Mechanics

When you visit the ‘Slums’ you will see a list of buttons that show all of the
available crimes. Simply select one of the options to begin attempting that
crime. Attempting to commit a crime takes a certain amount of time. This time
varies between crimes. During this time, you cannot do anything else.

Crimes are not always successful. Your rate of success is determined by your
stats (and Augmentation multipliers) and can be seen on the crime-selection
page. If you are unsuccessful at committing a crime you will gain EXP,
but you will not earn money. If you are successful at committing the crime
you will gain extra EXP (double of what an unsuccessful attempt would give)
and earn money.

Harder crimes are typically more profitable, and also give more EXP.

Crime details

TODO

Infiltration

Infiltration is a gameplay mechanic that allows you to infiltrate a
company’s facility to try and steal the company’s classified secrets.
These secrets can be sold for money or for reputation with a faction.

Overview

Many companies have facilities that you can attempt to infiltrate.
By infiltrating, you can steal classified company secrets and then sell
these for money or for faction reputation. To try and infiltrate a company,
visit a company through the ‘World’ menu. There will be an option that
says ‘Infiltrate Company’.

When infiltrating a company, you must progress through clearance levels in
the facility. Every clearance level has some form of security that
you must get past. There are several forms of security, ranging from
high-tech security systems to armed guards. For each form of security,
there are a variety of options that you can choose to try and bypass
the security. Examples include hacking the security, engaging in combat,
assassination, or sneaking past the security. The chance to succeed for
each option is determined in part by your stats. So, for example,
trying to hack the security system relies on your hacking skill,
whereas trying to sneak past the security relies on your agility level.

The facility has a ‘security level’ that affects your chance of success
when trying to get past a clearance level. Every time you advance to the
next clearance level, the facility’s security level will increase by a
fixed percentage. Furthermore the options you choose and whether you
succeed or fail will affect the security level as well. For example,
if you try to kill a security guard and fail, the security level will
increase by a lot. If you choose to sneak past security and succeed,
the security level will not increase at all.

Every 5 clearance levels, you will steal classified company secrets that
can be sold for money or faction reputation. However, in order to sell
these secrets you must successfully escape the facility using the
‘Escape’ option. Furthermore, companies have a max clearance level.
If you reach the max clearance level you will automatically escape the
facility with all of your stolen secrets.

Stock Market

The Stock Market refers to the World Stock Exchange (WSE), through which you can
buy and sell stocks in order to make money.

The WSE can be found in the ‘City’ tab, and is accessible in every city.

Fundamentals

The Stock Market is not as simple as “buy at price X and sell at price Y”. The following
are several fundamental concepts you need to understand about the stock market.

Note

For those that have experience with finance/trading/investing, please be aware
that the game’s stock market does not function exactly like it does in the real
world. So these concepts below should seem similar, but won’t be exactly the same.

Positions: Long vs Short

When making a transaction on the stock market, there are two types of positions:
Long and Short. A Long position is the typical scenario where you buy a stock and
earn a profit if the price of that stock increases. Meanwhile, a Short position
is the exact opposite. In a Short position you purchase shares of a stock and
earn a profit if the price of that stock decreases. This is also called ‘shorting’
a stock.

Note

Shorting stocks is not available immediately, and must be unlocked later in the
game.

Forecast & Second-Order Forecast

A stock’s forecast is its likelihood of increasing or decreasing in value. The
forecast is typically represented by its probability of increasing in either
a decimal or percentage form. For example, a forecast of 70% means the stock
has a 70% chance of increasing and a 30% chance of decreasing.

A stock’s second-order forecast is the target value that its forecast trends towards.
For example, if a stock has a forecast of 60% and a second-order forecast of 70%,
then the stock’s forecast should slowly trend towards 70% over time. However, this is
determined by RNG so there is a chance that it may never reach 70%.

Both the forecast and the second-order forecast change over time.

A stock’s forecast can be viewed after purchasing Four Sigma (4S) Market Data
access. This lets you see the forecast info on the Stock Market UI. If you also
purchase access to the 4S Market Data TIX API, then you can view a stock’s forecast
using the getStockForecast() function.

A stock’s second-order forecast is always hidden.

Spread (Bid Price & Ask Price)

The bid price is the maximum price at which someone will buy a stock on the
stock market.

The ask price is the minimum price that a seller is willing to receive for a stock
on the stock market

The ask price will always be higher than the bid price (This is because if a seller
is willing to receive less than the bid price, that transaction is guaranteed to
happen). The difference between the bid and ask price is known as the spread.
A stock’s “price” will be the average of the bid and ask price.

The bid and ask price are important because these are the prices at which a
transaction actually occurs. If you purchase a stock in the long position, the cost
of your purchase depends on that stock’s ask price. If you then try to sell that
stock (still in the long position), the price at which you sell is the stock’s
bid price. Note that this is reversed for a short position. Purchasing a stock
in the short position will occur at the stock’s bid price, and selling a stock
in the short position will occur at the stock’s ask price.

Transactions Influencing Stock Forecast

Buying or selling a large number of shares
of a stock will influence that stock’s forecast & second-order forecast.
The forecast is the likelihood that the stock will increase or decrease in price.
The magnitude of this effect depends on the number of shares being transacted.
More shares will have a bigger effect.

The effect that transactions have on a stock’s second-order forecast is
significantly smaller than the effect on its forecast.

Order Types

There are three different types of orders you can make to buy or sell stocks on the exchange:
Market Order, Limit Order, and Stop Order.

Note

Limit Orders and Stop Orders are not available immediately, and must be unlocked
later in the game.

When you place a Market Order to buy or sell a stock, the order executes immediately at
whatever the current price of the stock is. For example if you choose to short a stock
with 5000 shares using a Market Order, you immediately purchase those 5000 shares in a
Short position at whatever the current market price is for that stock.

A Limit Order is an order that only executes under certain conditions. A Limit Order is
used to buy or sell a stock at a specified price or better. For example, lets say you
purchased a Long position of 100 shares of some stock at a price of $10 per share. You
can place a Limit Order to sell those 100 shares at $50 or better. The Limit Order will
execute when the price of the stock reaches a value of $50 or higher.

A Stop Order is the opposite of a Limit Order. It is used to buy or sell a stock at a
specified price (before the price gets ‘worse’). For example, lets say you purchased a
Short position of 100 shares of some stock at a price of $100 per share. The current
price of the stock is $80 (a profit of $20 per share). You can place a Stop Order to
sell the Short position if the stock’s price reaches $90 or higher. This can be used
to lock in your profits and limit any losses.

Here is a summary of how each order works and when they execute:

In a LONG Position:

A Limit Order to buy will execute if the stock’s price <= order’s price

A Limit Order to sell will execute if the stock’s price >= order’s price

A Stop Order to buy will execute if the stock’s price >= order’s price

A Stop Order to sell will execute if the stock’s price <= order’s price

In a SHORT Position:

A Limit Order to buy will execute if the stock’s price >= order’s price

A Limit Order to sell will execute if the stock’s price <= order’s price

A Stop Order to buy will execute if the stock’s price <= order’s price

A Stop Order to sell will execute if the stock’s price >= order’s price.

Player Actions Influencing Stocks

It is possible for your actions elsewhere in the game to influence the stock market.

	Hacking

	If a server has a corresponding stock (e.g. foodnstuff server -> FoodNStuff
stock), then hacking that server can decrease the stock’s second-order
forecast. This causes the corresponding stock’s forecast to trend downwards in value
over time.

This effect only occurs if you set the stock option to
true when calling the hack() function. The chance that hacking a
server will cause this effect is based on what percentage of the
server’s total money you steal.

A single hack will have a minor
effect, but continuously hacking a server for lots of money over time
will have a noticeable effect in making the stock’s forecast trend downwards.

	Growing

	If a server has a corresponding stock (e.g. foodnstuff server -> FoodNStuff
stock), then growing that server’s money can increase the stock’s
second-order forecast. This causes the corresponding stock’s
forecast to trend upwards in value over time.

This effect only occurs if you set the stock option to true when calling the
grow() function. The chance that growing a server will cause this
effect is based on what percentage of the server’s total money to add to it.

A single grow operation will have a minor effect, but continuously growing
a server for lots of money over time will have a noticeable effect in making
the stock’s forecast trend upwards.

	Working for a Company

	If a company has a corresponding stock, then working for that company will
increase the corresponding stock’s second-order forecast. This will
cause the stock’s forecast to (slowly) trend upwards in value
over time.

The potency of this effect is based on how “effective” you are when you work
(i.e. its based on your stats and multipliers).

Automating the Stock Market

You can write scripts to perform automatic and algorithmic trading on the Stock Market.
See Netscript Trade Information eXchange (TIX) API for more details.

Under the Hood

Stock prices are updated very ~6 seconds.

Whether a stock’s price moves up or down is determined by RNG. However,
stocks have properties that can influence the way their price moves. These properties
are hidden, although some of them can be made visible by purchasing the
Four Sigma (4S) Market Data upgrade. Some examples of these properties are:

	Volatility

	Likelihood of increasing or decreasing (i.e. the stock’s forecast)

	Likelihood of forecast increasing or decreasing (i.e. the stock’s second-order forecast)

	How easily a stock’s price/forecast is influenced by transactions

	Spread percentage

	Maximum price (not a real maximum, more of a “soft cap”)

Each stock has its own unique values for these properties.

Offline Progression

The Stock Market does not change or process anything while the game has closed.
However, it does accumulate time when offline. This accumulated time allows
the stock market to run 50% faster when the game is opened again. This means
that stock prices will update every ~4 seconds instead of 6.

Coding Contracts

Coding Contracts are a mechanic that lets players earn rewards in
exchange for solving programming problems.

Coding Contracts are files with the “.cct” extensions. They can
be accessed through the Terminal or through scripts using
the Netscript Coding Contract API

Each contract has a limited number of attempts. If you
provide the wrong answer too many times and exceed the
number of attempts, the contract will self destruct (delete itself)

Currently, Coding Contracts are randomly generated and
spawned over time. They can appear on any server (including your
home computer), except for your purchased servers.

Running in Terminal

To run a Coding Contract in the Terminal, simply use the
run command:

$ run some-contract.cct

Doing this will bring up a popup. The popup will display
the contract’s problem, the number of attempts remaining, and
an area to provide an answer.

Interacting through Scripts

See Netscript Coding Contract API.

Submitting Solutions

Different contract problem types will require different types of
solutions. Some may be numbers, others may be strings or arrays.
If a contract asks for a specific solution format, then
use that. Otherwise, follow these rules when submitting solutions:

	String-type solutions should not have quotation marks surrounding
the string (unless specifically asked for). Only quotation
marks that are part of the actual string solution should be included.

	Array-type solutions should be submitted with each element
in the array separated by commas. Brackets are optional. For example,
both of the following are valid solution formats:

1,2,3
[1,2,3]

However, if the solution is a multidimensional array, then
all arrays that are not the outer-most array DO require the brackets.
For example, an array of arrays can be submitted as one of the following:

[1,2],[3,4]
[[1,2],[3,4]]

	Numeric solutions should be submitted normally, as expected

Rewards

There are currently four possible rewards for solving a Coding Contract:

	Faction Reputation for a specific Faction

	Faction Reputation for all Factions that you are a member of

	Company reputation for a specific Company

	Money

The ‘amount’ of reward varies based on the difficulty of the problem
posed by the Coding Contract. There is no way to know what a
Coding Contract’s exact reward will be until it is solved.

Notes

	The scp Terminal command does not work on Coding Contracts

List of all Problem Types

The following is a list of all of the problem types that a Coding Contract can contain.
The list contains the name of (i.e. the value returned by
getContractType()) and a brief summary of the problem it poses.

	Name

	Problem Summary

	Find Largest Prime Factor

	
Given a number, find its largest prime factor. A prime factor

is a factor that is a prime number.

	Subarray with Maximum Sum

	
Given an array of integers, find the contiguous subarray (containing

at least one number) which has the largest sum and return that sum.

	Total Ways to Sum

	
Given a number, how many different ways can that number be written as

a sum of at least two positive integers?

	Spiralize Matrix

	
Given an array of array of numbers representing a 2D matrix, return the

elements of that matrix in clockwise spiral order.

Example: The spiral order of

[1, 2, 3, 4]

[5, 6, 7, 8]

[9, 10, 11, 12]

is [1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7]

	Array Jumping Game

	
You are given an array of integers where each element represents the

maximum possible jump distance from that position. For example, if you

are at position i and your maximum jump length is n, then you can jump

to any position from i to i+n.

Assuming you are initially positioned at the start of the array, determine

whether you are able to reach the last index of the array EXACTLY.

	Merge Overlapping Intervals

	
Given an array of intervals, merge all overlapping intervals. An interval

is an array with two numbers, where the first number is always less than

the second (e.g. [1, 5]).

The intervals must be returned in ASCENDING order.

Example:

[[1, 3], [8, 10], [2, 6], [10, 16]]

merges into [[1, 6], [8, 16]]

	Generate IP Addresses

	
Given a string containing only digits, return an array with all possible

valid IP address combinations that can be created from the string.

An octet in the IP address cannot begin with ‘0’ unless the number itself

is actually 0. For example, “192.168.010.1” is NOT a valid IP.

Examples:

25525511135 -> [255.255.11.135, 255.255.111.35]

1938718066 -> [193.87.180.66]

	Algorithmic Stock Trader I

	
You are given an array of numbers representing stock prices, where the

i-th element represents the stock price on day i.

Determine the maximum possible profit you can earn using at most one

transaction (i.e. you can buy an sell the stock once). If no profit

can be made, then the answer should be 0. Note that you must buy the stock

before you can sell it.

	Algorithmic Stock Trader II

	
You are given an array of numbers representing stock prices, where the

i-th element represents the stock price on day i.

Determine the maximum possible profit you can earn using as many transactions

as you’d like. A transaction is defined as buying and then selling one

share of the stock. Note that you cannot engage in multiple transactions at

once. In other words, you must sell the stock before you buy it again. If no

profit can be made, then the answer should be 0.

	Algorithmic Stock Trader III

	
You are given an array of numbers representing stock prices, where the

i-th element represents the stock price on day i.

Determine the maximum possible profit you can earn using at most two

transactions. A transaction is defined as buying and then selling one share

of the stock. Note that you cannot engage in multiple transactions at once.

In other words, you must sell the stock before you buy it again. If no profit

can be made, then the answer should be 0.

	Algorithmic Stock Trader IV

	
You are given an array with two elements. The first element is an integer k.

The second element is an array of numbers representing stock prices, where the

i-th element represents the stock price on day i.

Determine the maximum possible profit you can earn using at most k transactions.

A transaction is defined as buying and then selling one share of the stock.

Note that you cannot engage in multiple transactions at once. In other words,

you must sell the stock before you can buy it. If no profit can be made, then

the answer should be 0.

	Minimum Path Sum in a Triangle

	
You are given a 2D array of numbers (array of array of numbers) that represents a

triangle (the first array has one element, and each array has one more element than

the one before it, forming a triangle). Find the minimum path sum from the top to the

bottom of the triangle. In each step of the path, you may only move to adjacent

numbers in the row below.

	Unique Paths in a Grid I

	
You are given an array with two numbers: [m, n]. These numbers represent a

m x n grid. Assume you are initially positioned in the top-left corner of that

grid and that you are trying to reach the bottom-right corner. On each step,

you may only move down or to the right.

Determine how many unique paths there are from start to finish.

	Unique Paths in a Grid II

	
You are given a 2D array of numbers (array of array of numbers) representing

a grid. The 2D array contains 1’s and 0’s, where 1 represents an obstacle and

0 represents a free space.

Assume you are initially positioned in top-left corner of that grid and that you

are trying to reach the bottom-right corner. In each step, you may only move down

or to the right. Furthermore, you cannot move onto spaces which have obstacles.

Determine how many unique paths there are from start to finish.

	Sanitize Parentheses in Expression

	
Given a string with parentheses and letters, remove the minimum number of invalid

parentheses in order to validate the string. If there are multiple minimal ways

to validate the string, provide all of the possible results.

The answer should be provided as an array of strings. If it is impossible to validate

the string, the result should be an array with only an empty string.

Examples:

()())() -> [()()(), (())()]

(a)())() -> [(a)()(), (a())()]

)(-> [“”]

	Find All Valid Math Expressions

	
You are given a string which contains only digits between 0 and 9 as well as a target

number. Return all possible ways you can add the +, -, and * operators to the string

of digits such that it evaluates to the target number.

The answer should be provided as an array of strings containing the valid expressions.

NOTE: Numbers in an expression cannot have leading 0’s

Examples:

Input: digits = “123”, target = 6

Output: [1+2+3, 1*2*3]

Input: digits = “105”, target = 5

Output: [1*0+5, 10-5]

Advanced Gameplay

This section documents Bitburner gameplay elements that are not immediately
available and/or accessible to the player. These gameplay mechanics
must be unlocked.

Elements:

	BitNodes
	What is a BitNode

	How to destroy a BitNode

	BitNode Details

	Source-Files
	List of all Source-Files

	Intelligence

	Sleeves
	Duplicate Sleeves
	Obtaining Duplicate Sleeves

	Synchronization

	Sleeve Shock

	Augmentations

	Memory

	Re-sleeving

Warning

This page contains spoilers regarding the game’s story/plot-line.

BitNodes

A BitNode is an important part of the game’s storyline. In the game, you discover
what BitNodes are by following the trail of clues left by the mysterious jump3r
(essentially a minimal questline).

What is a BitNode

A BitNode is the complex simulated reality in which you reside. By following the messages
from jump3r, you discover that humanity was enslaved by an advanced alien race, called
the Enders, using virtual simulations that trapped the minds of humans.

However, the Enders didn’t just create a single virtual reality to enslave humans, but many
different simulations. In other words, there are many different BitNodes that exist.
These BitNode are very different from each other.

jump3r tells you that the only hope for humanity is to destroy all of these BitNodes.
Therefore, the end goal for the player is to enter and then destroy each BitNode at least once.

Destroying a BitNode resets most of the player’s progress but grants the player a
powerful second-tier persistent upgrade called a Source-File.
Different BitNodes grant different Source-Files.

Each BitNode has unique characteristics that are related to varying backstories. For example,
in one BitNode the world is in the middle of a financial catastrophe with a collapsing
market. In this BitNode, most forms of income such as working at a company or Hacknet
Nodes are significantly less profitable. Servers have less money on them and lowered
growth rates, but it is easier to lower their security level using the weaken() Netscript function.

Furthermore, some BitNodes introduce new content and mechanics. For example there is one
BitNode that grants access to the Netscript Singularity Functions.
There is another BitNode in which you can manage a gang to earn money and reputation.

How to destroy a BitNode

Initially, the only way to destroy a BitNode is to join the Daedalus Daedalus.
From Daedalus, the player can obtain an Augmentation called ‘The Red Pill’, which doesn’t cost any money
but does require a good amount of faction reputation.

After installing ‘The Red Pill’, the player must search for and then manually hack a
server called ‘w0r1d_d43m0n’. This server requires a hacking level of 3000 in order
to successfully hack it. This will destroy the player’s current BitNode.

There is a second method of destroying a BitNode, but it must be unlocked by first
destroying BitNode-6 or BitNode-7 (Bladeburners).

Todo

Link to Bladeburner documentation page here

When the player destroys a BitNode, most of his/her progress will be reset. This includes things
such as Augmentations and RAM upgrades on the home computer. The only things that will persist
through destroying BitNodes is:

	Source-Files

	Scripts on the home computer

BitNode Details

TODO

Warning

This page contains spoilers regarding the game’s story/plot-line.

Source-Files

Source-Files are a type of persistent upgrade that are more powerful than Augmentations.
Source-Files are received by destroying a BitNode. There are many different BitNodes
in the game and each BitNode will grant a different Source-File when it is destroyed.

A Source-File can be upgraded by destroying its corresponding BitNode a second or
third time (AKA playing through that BitNode again). It can be upgraded to a maximum
of level 3.

List of all Source-Files

	BitNode-1: Source Genesis

	
	Lets the player start with 32 GB of RAM on home computer

	Increases all of the player’s multipliers by 16%/24%/28%

	BitNode-2: Rise of the Underworld

	
	Increases the player’s crime success rate, crime money, and
charisma multipliers by 24%/36%/42%

	BitNode-3: Corporatocracy

	
	Lets the player create Corporations in other BitNodes (although some
BitNodes will disable this mechanic)

	Increases the player’s charisma and company salary multipliers by 8%/12%/14%

	BitNode-4: The Singularity

	
	Lets the player access and use Netscript Singularity Functions in other BitNodes.

	Each level of this Source-File opens up more of the Singularity Functions to use

	BitNode-5: Artificial Intelligence

	
	Unlocks Intelligence

	Unlocks getBitNodeMultipliers() Netscript function

	Increases all of the player’s hacking-related multipliers by 8%/12%/14%

	BitNode-6: Bladeburners

	
	Unlocks the Bladeburner feature in other BitNodes

	Increases all of the player’s level and experience gain rate multipliers for
combat stats by 8%/12%/14%

	BitNode-7: Bladeburners 2079

	
	Allows the player to access the Netscript Bladeburner API in other BitNodes

	Increases all of the player’s Bladeburner multipliers by 8%/12%/14%

	BitNode-8: Ghost of Wall Street

	
	Increases the player’s hacking growth multiplier by 12%/18%/21%

	Level 1 grants permanent access to WSE and
TIX API

	Level 2 grants permanent access to shorting stocks

	Level 3 grants permanent access to use limit/stop orders

	BitNode-9: Coming Soon

	

	BitNode-10: Digital Carbon

	
	Each level of this grants a Duplicate Sleeve

	Allows the player to access the Netscript Sleeve API in other BitNodes

	BitNode-11: The Big Crash

	
	Company favor increases both the player’s salary and reputation gain at that
company by 1% per favor (rather than just the reputation gain)

	Increases the player’s company salary and reputation gain multipliers by
24%/36%/42%

	BitNode-12: The Recursion

	
	There is no maximum level for this Source-File

	Each level of this Source-File increases all of the player’s multipliers by 1%.

	This affect is multiplicative with itself. This means that level N of this
Source-File will result in a multiplier of 1.01^N (or 0.99^N for multipliers
that decrease)

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

Intelligence

Intelligence is a stat that is unlocked by having
Source-File 5 (i.e. Destroying BitNode-5).

Intelligence is unique because it is permanent and persistent. It never gets reset
back to 1. However, gaining Intelligence experience is extremely slow. The methods
of gaining Intelligence exp is also hidden. You won’t know when you gain
experience and how much. It is a stat that gradually builds up as you continue
to play the game.

Intelligence will boost your production for many actions in the game, including:

	Hacking

	Infiltration

	Hacking Missions

	Crime success rate

	Bladeburner

	Reputation gain for companies & factions

Sleeves

When VitaLife unveiled their Persona Core technology that allowed people to digitize
and transfer their consciousness into other vessels, human bodies became nothing more
than ‘sleeves’ for the human consciousness. This technology thus became known as
“Sleeve technology”.

Sleeve technology unlocks two different gameplay features:

	Duplicate Sleeves

	Re-sleeving

Sleeve technology is unlocked in BitNode-10.

Duplicate Sleeves

Duplicate Sleeves are MK-V Synthoids (synthetic androids) into which your consciuosness
has been copied. In other words, these Synthoids contain a perfect duplicate of your mind.

Duplicate Sleeves are essentially clones which you can use to perform work-type actions,
such as working for a company/faction or committing a crime. When sleeves perform these tasks,
they will earn money, experience, and reputation.

Sleeves are their own individuals, which means they each have their own experience and stats.

When a sleeve earns experience, it earns experience for itself, the player’s
original consciousness, as well as all of the player’s other sleeves.

Duplicate Sleeves are not reset when installing Augmentations, but they are reset
when switching BitNodes.

Obtaining Duplicate Sleeves

There are two methods of obtaining Duplicate Sleeves:

	Destroy BitNode-10. Each completion give you one additional Duplicate Sleeve

	Purchase Duplicate Sleeves from the faction The Covenant.
This is only available in BitNodes-10 and above, and is only available after defeating
BitNode-10 at least once. Sleeves purchased this way are permanent (they persist
through BitNodes). You can purchase up to 5 Duplicate Sleeves from The Covenant.

Synchronization

Synchronization is a measure of how aligned your consciousness is with that of your
Duplicate Sleeves. It is a numeral value between 1 and 100, and it affects how much experience
is earned when the sleeve is performing a task.

Let N be the sleeve’s synchronization. When the sleeve earns experience by performing
a task, both the sleeve and the player’s original host consciousness of N% of the
amount of experience normally earned by the task. All of the player’s other sleeves
earn ((N/100)^2 * 100)% of the experience.

Synchronization can be increased by assigning sleeves to the ‘Synchronize’ task.

Sleeve Shock

Sleeve shock is a measure of how much trauma the sleeve has due to being placed in a new
body. It is a numeral value between 0 and 99, where 99 indicates full shock and 0 indicates
no shock. Shock affects the amount of experience earned by the sleeve.

Sleeve shock slowly decreases over time. You can further increase the rate at which
it decreases by assigning sleeves to the ‘Shock Recovery’ task.

Augmentations

You can purchase Augmentations for your Duplicate
Sleeves. In order to do this, the Sleeve’s Shock must be at 0. Any Augmentation
that is currently available to you through a faction is also available for your
Duplicate Sleeves. There are a few Augmentations, such as NeuroFlux Governor and
Bladeburner-specific ones, that cannot be purchased for a Duplicate Sleeve.

When you purchase an Augmentation for a Duplicate Sleeve, it is instantly installed.
When this happens, the Sleeve’s stats are instantly reset back to 0, similar to
when you normally install Augmentations.

The cost of purchasing an Augmentation for a Duplicate Sleeve is not affected
by how many Augmentations you have purchased for yourself, and vice versa.

Memory

Sleeve memory dictates what a sleeve’s synchronization will be when its reset by
switching BitNodes. For example, if a sleeve has a memory of 10, then when you
switch BitNodes its synchronization will initially be set to 10, rather than 1.

Memory can only be increased by purchasing upgrades from The Covenant. Just like
the ability to purchase additional sleeves, this is only available in BitNodes-10
and above, and is only available after defeating BitNode-10 at least once.

Memory is a persistent stat, meaning it never gets reset back to 1.
The maximum possible value for a sleeve’s memory is 100.

Re-sleeving

Re-sleeving is the process of digitizing and transferring your consciousness into a
new human body, or “sleeve”. When you re-sleeve into a new body, your stat experience
and Augmentations get replaced with those of the new body.

In order to re-sleeve, you must purchase new bodies. This can be done at VitaLife in
New Tokyo. Once you purchase a body to re-sleeve into, the effects will take
place immediately.

Note that resleeving REMOVES all of your currently-installed Augmentations,
and replaces them with the ones provided by the purchased sleeve. However,
Augmentations that are purchased but not installed will not be removed. If you have purchased
an Augmentation and then re-sleeve into a body which already has that Augmentation,
it will be removed since you cannot have duplicate Augmentations.

Keyboard Shortcuts

This page documents the various keyboard shortcuts that can be used in the game.

Game Navigation

These are used to switch between the different menus/tabs in the game.
These shortcuts are almost always available. Exceptions include:

	Working at a company or for a faction

	Creating a program

	Taking a university class

	Training at a gym

	Active Mission (aka Hacking Mission)

	Shortcut

	Action

	Alt + t

	Switch to Terminal

	Alt + c

	Switch to ‘Stats’ page

	Alt + e

	Switch to Script Editor. Will open up the last-edited file or a new file

	Alt + s

	Switch to ‘Active Scripts’ page

	Alt + h

	Switch to ‘Hacknet Nodes’ page

	Alt + w

	Switch to ‘City’ page

	Alt + j

	Go to the company where you are employed (‘Job’ page on navigation menu)

	Alt + r

	Go to Travel Agency in current City (‘Travel’ page on navigation menu)

	Alt + p

	Switch to ‘Create Program’ page

	Alt + f

	Switch to ‘Factions’ page

	Alt + a

	Switch to ‘Augmentations’ page

	Alt + u

	Switch to ‘Tutorial’ page

	Alt + o

	Switch to ‘Options’ page

Script Editor

See the Script Editor documentation for more details.

Terminal Shortcuts

These shortcuts are available only in the Terminal

	Shortcut

	Action

	Up/Down arrow

	Cycle through previous commands

	Ctrl + c

	Cancel a hack/analyze action

	Ctrl + l

	Clear screen

	Tab

	Autocomplete command

Terminal Bash Shortcuts

These shortcuts were implemented to better emulate a bash shell. They must be enabled
in your Terminal’s .fconf file. This can be done be entering the Terminal command:

nano .fconf

and then setting the ENABLE_BASH_HOTKEYS option to 1.

Note that these Bash shortcuts override any other shortcuts defined in the game (unless otherwise noted),
as well as your browser’s shortcuts

Also note that more Bash-like shortcuts will be implemented in the future

	Shortcut

	Action

	Ctrl + c

	Clears current Terminal input (does NOT override default Ctrl + c command)

	Ctrl + p

	Same as Up Arrow

	Ctrl + m

	Same as Down Arrow

	Ctrl + a

	Move cursor to beginning of line (same as ‘Home’ key)

	Ctrl + e

	Move cursor to end of line (same as ‘End’ key)

	Ctrl + b

	Move cursor to previous character

	Alt + b

	Move cursor to previous word

	Ctrl + f

	Move cursor to next character

	Alt + f

	Move cursor to next word

	Ctrl + h/d

	Delete previous character (‘Backspace’)

Popup/Dialog Box Shortcuts

The following shortcuts work if there are any popup or dialog boxes on the screen.

	Shortcut

	Action

	Esc

	Close the current popup, cancelling any prompts on a dialog box

	Enter

	Clicks the “Yes/Confirm” option for every dialog box

Script Editors

Third-party libraries are used to implement the game’s Script Editor(s). There are
currently two options for the Script Editor:

	Ace [https://ace.c9.io/]

	CodeMirror [https://codemirror.net/]

You can select which of the two editors you want to use on the Script Editor page
(‘Create Script’ on the main menu).

Ace was the game’s original Script Editor, while CodeMirror was added later in
v0.43.0. The two editors share many of the same features, so there is not a significant
difference between the two. Currently, CodeMirror is slightly more modern,
more customizable, and has a few quality-of-life improvements compared to Ace.

Universal Key Bindings

These keyboard shortcuts are available in both the Ace and CodeMirror editors, regardless
of what key binding option you are using:

	Shortcut

	Action

	Ctrl + b

	Save script and return to Terminal

	Ctrl + space

	Show Autocomplete Hints

Linter

Both script editors contain a linter, which is a tool that analyzes your
code and flags anything it thinks might be an error. You can see
warnings and errors from the linter on the left-hand side of the script editor. There
will be an icon on whatever lines the linter thinks might be problematic. Hovering
over the icon will display information on what the issue is.

Note that just because the linter shows an error/warning, this does NOT automatically mean that
your script is broken and will fail to run. This is especially true if you are using
NetscriptJS (Netscript 2.0). The linter used by the script editors isn’t necessarily perfect or
up-to-date. Furthermore, the linter does not affect anything when you actually run scripts.

Ace

The following documents what the different settings/options do for the Ace editor,
as well as the different key binding settings. Note that the
information for the key bindings may not be completely comprehensive. You’ll
have to dig into the editor source code if you want to learn more.

Settings

	Setting

	Effect

	Theme

	Switch between different color schemes

	Key Binding

	Switch between different key binding options. This changes what keyboard shortcuts are available

	Highlight Active Line

	When enabled, the line on which the cursor currently resides will be highlighted.

	Show Invisibles

	When enabled, you will be able to view hidden whitespace characters such as spaces, tabs, and newlines.

	Use Soft Tab

	When enabled, tabs will be replaced with spaces

	Max Error Count

	Specifies the (approximate) number of lines that will be linted

Ace Key Bindings

For Ace, the “Ace” Key Binding setting uses the default configuration. A list of these
can be found here [https://github.com/ajaxorg/ace/wiki/Default-Keyboard-Shortcuts].

Vim Key Bindings

For Ace, the “Vim” Key Binding setting configures the editor to use
Vim [https://en.wikipedia.org/wiki/Vim_(text_editor)] key mappings. Note that while this tries
to emulate Vim features as faithfully as possible, it is not a complete Vim implementation.

Since I’m not familiar with Vim, I’ll leave
Ace’s Vim Mode implementation here [https://github.com/ajaxorg/ace/blob/96088d0fc292daf0706b2d029cc03c3799be5974/lib/ace/keyboard/vim.js#L860],
which I believe shows most of the implemented features.

Note that the following Vim Ex commands will properly save the script and/or quit the editor in game:

	Command

	Effect

	:w

	Save the script and return to Terminal

	:q

	Return to Terminal WITHOUT saving

	:x

	Save the script and return to Terminal

	:wq

	Save the script and return to Terminal

Emacs Key Bindings

For Ace, the “Emacs” Key Binding setting configures the editor to use
Emacs [https://en.wikipedia.org/wiki/Emacs] key mappings. Note that while this tries
to emulate the Emacs key mappings as faithfully as possible, it won’t necessarily be a
complete implementation.

Since I’m not familiar with Emacs, I’ll leave
Ace’s Emacs Mode implementation here [https://github.com/ajaxorg/ace/blob/96088d0fc292daf0706b2d029cc03c3799be5974/lib/ace/keyboard/emacs.js#L343],
which I believe shows most of the implemented features.

CodeMirror

The following documents what the different settings/options do for the CodeMirror editor,
as well as the shortcuts for the different key binding settings. Note that the
information for the key bindings may not be completely comprehensive. You’ll
have to dig into the editor source code if you want to learn everything.

Settings

	Setting

	Effect

	Theme

	Switch between different color schemes

	Key Binding

	Switch between different key binding options. This changes what keyboard shortcuts are available

	Highlight Active Line

	When enabled, the line on which the cursor currently resides will be highlighted.

	Show Invisibles

	When enabled, you will be able to view hidden whitespace characters such as spaces, tabs, and newlines.

	Use Soft Tab

	When enabled, tabs will be replaced with spaces

	Auto-Close Brackets/Quotes

	When enabled, any opening brackets or quotes that are typed will be closed

	Enable Linting

	Enable/Disable the Linter

	Continue Comments

	When enabled, pressing ‘Enter’ inside a comment block will continue the comment on the next line

Default Key Bindings

Todo

Fill out

Sublime Key Bindings

Todo

Fill out

Vim Key Bindings

Todo

Fill out

Emacs Key Bindings

Todo

Fill out

Game Frozen or Stuck?

Infinite Loop in NetscriptJS

If your game is frozen or stuck in any way, then the most likely culprit is an
infinitely running loop in NetscriptJS (Netscript 2.0). To get past the freezing, run the game with
?noScripts in the URL:

https://danielyxie.github.io/bitburner/?noScripts

Then, to fix your script, make sure you have a sleep or any other timed function like hack() or
grow() in any infinite loops:

while(true) {
 // This is an infinite loop that does something
 ...
 await ns.sleep(1000); // Add a 1s sleep to prevent freezing
}

Bug

Otherwise, the game is probably frozen/stuck due to a bug. To report a bug, follow
the guidelines here [https://github.com/danielyxie/bitburner/blob/master/CONTRIBUTING.md#reporting-bugs].

Guides & Tips

Getting Started Guide for Intermediate Programmers

Beginners FAQ

	 Getting Started Guide for Beginner Programmers
	Introduction

	First Steps

	Creating our First Script

	Running our Scripts

	Increasing Hacking Level

	Editing our Hacking Script

	Creating a New Script to Purchase New Servers

	Additional Sources of Income
	Hacknet Nodes

	Crime

	Work for a Company

	After you Purchase your New Servers

	Reaching a Hacking Level of 50
	Creating your first program: BruteSSH.exe

	Optional: Create AutoLink.exe

	Joining your first faction: CyberSec

	Using Additional Servers to Hack Joesguns
	Copying our Scripts

	Profiting from Scripts & Gaining Reputation with CyberSec

	Purchasing Upgrades and Augmentations
	Upgrading RAM on Home computer

	Purchasing your First Augmentations

	Next Steps
	Installing Augmentations (and Resetting)

	Automating the Script Startup Process

	Random Tips

	 What BitNode should I do?
	Overview of each BitNode
	BitNode-1: Source Genesis

	BitNode-2: Rise of the Underworld

	BitNode-3: Corporatocracy

	BitNode-4: The Singularity

	BitNode-5: Artificial Intelligence

	BitNode-6: Bladeburners

	BitNode-7: Bladeburners 2079

	BitNode-8: Ghost of Wall Street

	BitNode-9: Hacktocracy

	BitNode-10: Digital Carbon

	BitNode-11: The Big Crash

	BitNode-12: The Recursion

	Recommended BitNodes
	For fast progression

	For the strongest Source-Files

	For more scripting/hacking

	For new mechanics

	For a Challenge

Getting Started Guide for Beginner Programmers

Note

Note that the scripts and strategies given in this guide aren’t necessarily
optimal. They’re just meant to introduce you to the game and help you get
started.

This is an introductory guide to getting started with Bitburner. It is not meant to be a
comprehensive guide for the entire game, only the early stages. If you are confused
or overwhelmed by the game, especially the programming and scripting aspects, this
guide is perfect for you!

Note that this guide is tailored towards those with minimal programming experience.

Introduction

Bitburner is a cyberpunk-themed incremental RPG. The player progresses by raising
their Stats, earning money, and climbing the corporate ladder.
Eventually, after reaching certain criteria, the player will begin receiving invitations
from Factions. Joining these factions and working for them will unlock
Augmentations. Purchasing and installing Augmentations provide persistent
upgrades and are necessary for progressing in the game.

The game has a minimal story/quest-line that can be followed to reach the end of the game.
Since this guide is only about getting started with Bitburner, it will not cover the
entire “quest-line”.

First Steps

I’m going to assume you followed the introductory tutorial when you first began the game.
In this introductory tutorial you created a script called foodnstuff.script and ran it
on the foodnstuff server. Right now, we’ll kill this script. There are two ways
to do this:

	You can go to the Terminal and enter:

$ kill foodnstuff.script

	You can go to the Active Scripts page (Keyboard shortcut Alt + s) and
press the “Kill Script” button for foodnstuff.script.

If you skipped the introductory tutorial, then ignore the part above. Instead, go to the
Hacknet Nodes page (Keyboard shortcut Alt + h) and purchase a
Hacknet Node to start generating some passive income.

Creating our First Script

Now, we’ll create a generic hacking script that can be used early on in the game (or throughout the
entire game, if you want).

Before we write the script, here are some things you’ll want to familiarize yourself with:

	General Hacking Mechanics

	Server Security

	hack()

	grow()

	weaken()

	brutessh()

	nuke()

To briefly summarize the information from the links above: Each server has a
security level that affects how difficult it is to hack. Each server also has a
certain amount of money, as well as a maximum amount of money it can hold. Hacking a
server steals a percentage of that server’s money. The hack() Netscript function
is used to hack server. The grow() Netscript function is used to increase
the amount of money available on a server. The weaken() Netscript function is
used to decrease a server’s security level.

Now let’s move on to actually creating the script.
Go to your home computer and then create a script called early-hack-template.script by
going to Terminal and entering the following two commands:

$ home
$ nano early-hack-template.script

This will take you to the script editor, which you can use to code and create
Scripts. It will be helpful to consult the Netscript documentation.
Specifically, you’ll want to take a look at Netscript Basic Functions.

Enter the following code in the script editor:

// Defines the "target server", which is the server
// that we're going to hack. In this case, it's "foodnstuff"
var target = "foodnstuff";

// Defines how much money a server should have before we hack it
// In this case, it is set to 75% of the server's max money
var moneyThresh = getServerMaxMoney(target) * 0.75;

// Defines the maximum security level the target server can
// have. If the target's security level is higher than this,
// we'll weaken it before doing anything else
var securityThresh = getServerMinSecurityLevel(target) + 5;

// If we have the BruteSSH.exe program, use it to open the SSH Port
// on the target server
if (fileExists("BruteSSH.exe", "home")) {
 brutessh(target);
}

// Get root access to target server
nuke(target);

// Infinite loop that continously hacks/grows/weakens the target server
while(true) {
 if (getServerSecurityLevel(target) > securityThresh) {
 // If the server's security level is above our threshold, weaken it
 weaken(target);
 } else if (getServerMoneyAvailable(target) < moneyThresh) {
 // If the server's money is less than our threshold, grow it
 grow(target);
 } else {
 // Otherwise, hack it
 hack(target);
 }
}

The script above contains comments that document what it does, but let’s go through it
step-by-step anyways.

var target = "foodnstuff";

This first command defines a string which contains our target server. That’s the server
that we’re going to hack. For now, it’s set to foodnstuff because that’s the only
server with a required hacking level of 1. If you want to hack a different server,
simply change this
variable to be the hostname of another server.

var moneyThresh = getServerMaxMoney(target) * 0.75;

This second command defines a numerical value representing the minimum
amount of money that must be available on the target server in order for our script
to hack it. If the money available on the target server is less than this value,
then our script will grow() the server rather than hacking it.
It is set to 75% of the maximum amount of money that can be available on the server.
The getServerMaxMoney() Netscript function is used to find this value

var securityThresh = getServerMinSecurityLevel(target) + 5;

This third command defines a numerical value representing the maximum security level
the target server can have. If the target server’s security level is higher than
this value, then our script will weaken() the script before doing anything else.

if (fileExists("BruteSSH.exe", "home")) {
 brutessh(target);
}

nuke(target);

This section of code is used to gain root access on the target server. This is
necessary for hacking. See here for more details.

while (true) {
 if (getServerSecurityLevel(target) > securityThresh) {
 // If the server's security level is above our threshold, weaken it
 weaken(target);
 } else if (getServerMoneyAvailable(target) < moneyThresh) {
 // Otherwise, if the server's money is less than our threshold, grow it
 grow(target);
 } else {
 // Otherwise, hack it
 hack(target);
 }
}

This is the main section that drives our script. It dictates the script’s logic
and carries out the hacking operations. The while (true) creates an infinite loop
that will continuously run the hacking logic until the the script is killed.

Running our Scripts

Now we want to start running our hacking script so that it can start earning us
money and experience. Our home computer only has 8GB of RAM and we’ll be using it for
something else later. So instead, we’ll take advantage of the RAM on other machines.

Go to Terminal and enter the following command:

$ scan-analyze 2

This will show detailed information about some servers on the network. The
network is randomized so it will be different for every person.
Here’s what mine showed at the time I made this:

[home ~]> scan-analyze 2
~~~~~~~~~~ Beginning scan-analyze ~~~~~~~~~~

>foodnstuff
--Root Access: NO, Required hacking skill: 1
--Number of open ports required to NUKE: 0
--RAM: 16

>sigma-cosmetics
--Root Access: NO, Required hacking skill: 5
--Number of open ports required to NUKE: 0
--RAM: 16

>joesguns
--Root Access: NO, Required hacking skill: 10
--Number of open ports required to NUKE: 0
--RAM: 16

---->max-hardware
------Root Access: NO, Required hacking skill: 80
------Number of open ports required to NUKE: 1
------RAM: 32

>hong-fang-tea
--Root Access: NO, Required hacking skill: 30
--Number of open ports required to NUKE: 0
--RAM: 16

---->nectar-net
------Root Access: NO, Required hacking skill: 20
------Number of open ports required to NUKE: 0
------RAM: 16

>harakiri-sushi
--Root Access: NO, Required hacking skill: 40
--Number of open ports required to NUKE: 0
--RAM: 16

>iron-gym
--Root Access: NO, Required hacking skill: 100
--Number of open ports required to NUKE: 1
--RAM: 32

---->zer0
------Root Access: NO, Required hacking skill: 75
------Number of open ports required to NUKE: 1
------RAM: 32

---->CSEC
------Root Access: NO, Required hacking skill: 54
------Number of open ports required to NUKE: 1
------RAM: 8





Take note of the following servers:


	foodnstuff


	sigma-cosmetics


	joesguns


	nectar-net


	hong-fang-tea


	harakiri-sushi




All of these servers have 16GB of RAM. Furthermore, all of these servers do not require
any open ports in order to NUKE. In other words, we can gain root access to all of these
servers and then run scripts on them.

First, let’s determine how many threads of our hacking script we can run.
Read more about multithreading scripts here
The script we wrote
uses 2.6GB of RAM. You can check this using the following Terminal command:

$ mem early-hack-template.script





This means we can run 6 threads on a 16GB server. Now, to run our scripts on all of these
servers, we have to do the following:


	Use the scp Terminal command to copy our script to each server.


	Use the connect Terminal command to connect to a server.


	Use the run Terminal command to run the NUKE.exe program and
gain root access.


	Use the run Terminal command again to run our script.


	Repeat steps 2-4 for each server.




Here’s the sequence of Terminal commands I used in order to achieve this:

$ home
$ scp early-hack-template.script foodnstuff
$ scp early-hack-template.script sigma-cosmetics
$ scp early-hack-template.script joesguns
$ scp early-hack-template.script nectar-net
$ scp early-hack-template.script hong-fang-tea
$ scp early-hack-template.script harakiri-sushi
$ connect foodnstuff
$ run NUKE.exe
$ run early-hack-template.script -t 6
$ home
$ connect sigma-cosmetics
$ run NUKE.exe
$ run early-hack-template.script -t 6
$ home
$ connect joesguns
$ run NUKE.exe
$ run early-hack-template.script -t 6
$ home
$ connect hong-fang-tea
$ run NUKE.exe
$ run early-hack-template.script -t 6
$ home
$ connect harakiri-sushi
$ run NUKE.exe
$ run early-hack-template.script -t 6
$ home
$ connect hong-fang-tea
$ connect nectar-net
$ run NUKE.exe
$ run early-hack-template.script -t 6






Note

Pressing the Tab key in the middle of a Terminal command will attempt to
auto-complete the command. For example, if you type in scp ea and then
hit Tab, the rest of the script’s name should automatically be filled in.
This works for most commands in the game!



The home Terminal command is used to connect to the home
computer. When running our scripts with the run early-hack-template.script -t 6
command, the -t 6 specifies that the script should be run with 6 threads.

Note that the nectar-net server isn’t in the home computer’s immediate network.
This means you can’t directly connect to it from home. You will have to search for it
inside the network. The results of the scan-analyze 2 command we ran before
will show where it is. In my case, I could connect to it by going from
hong-fang-tea -> nectar-net. However, this will probably be different for you.

After running all of these Terminal commands, our scripts are now up and running.
These will earn money and hacking experience over time. These gains will be
really slow right now, but they will increase once our hacking skill rises and
we start running more scripts.




Increasing Hacking Level

There are many servers besides foodnstuff that can be hacked, but they have
higher required hacking levels. Therefore, we should raise our hacking level. Not only
will this let us hack more servers, but it will also increase the effectiveness of our hacking
against foodnstuff.

The easiest way to train your hacking level is to visit Rothman University. You can do this by
clicking the City tab on the left-hand navigation menu, or you can use the
keyboard shortcut Alt + w. Rothman University should be one of the buttons
near the top. Click the button to go to the location.

Once you go to Rothman University, you should see a screen with several options. These
options describe different courses you can take. You should click the first button, which
says: “Study Computer Science (free)”.

After you click the button, you will start studying and earning hacking experience. While you
are doing this, you cannot interact with any other part of the game until you click the button
that says “Stop taking course”.

Right now, we want a hacking level of 10. You need approximately 174 hacking experience to reach
level 10. You can check how much hacking experience you have by clicking the Stats tab
on the left-hand navigation menu, or by using Keyboard shortcut Alt + c.
Since studying at Rothman University earns you 1 experience per second, this will take
174 seconds, or approximately 3 minutes. Feel free to do something in the meantime!




Editing our Hacking Script

Now that we have a hacking level of 10, we can hack the joesguns server. This server
will be slightly more profitable than foodnstuff. Therefore, we want to change our hacking
script to target joesguns instead of foodnstuff.

Go to Terminal and edit the hacking script by entering:

$ home
$ nano early-hack-template.script





At the top of the script, change the target variable to be joesguns:

var target = "joesguns";





Note that this will NOT affect any instances of the script that are already running.
This will only affect instances of the script that are ran from this point forward.




Creating a New Script to Purchase New Servers

Next, we’re going to create a script that automatically purchases additional servers. These
servers will be used to run many scripts. Running this script will initially be very
expensive since purchasing a server costs money, but it will pay off in the long run.

In order to create this script, you should familiarize yourself with the following
Netscript functions:


	purchaseServer()


	getPurchasedServerCost()


	getPurchasedServerLimit()


	getServerMoneyAvailable()


	scp()


	exec()




Create the script by going to Terminal and typing:

$ home
$ nano purchase-server-8gb.script





Paste the following code into the script editor:

// How much RAM each purchased server will have. In this case, it'll
// be 8GB.
var ram = 8;

// Iterator we'll use for our loop
var i = 0;

// Continuously try to purchase servers until we've reached the maximum
// amount of servers
while (i < getPurchasedServerLimit()) {
    // Check if we have enough money to purchase a server
    if (getServerMoneyAvailable("home") > getPurchasedServerCost(ram)) {
        // If we have enough money, then:
        //  1. Purchase the server
        //  2. Copy our hacking script onto the newly-purchased server
        //  3. Run our hacking script on the newly-purchased server with 3 threads
        //  4. Increment our iterator to indicate that we've bought a new server
        var hostname = purchaseServer("pserv-" + i, ram);
        scp("early-hack-template.script", hostname);
        exec("early-hack-template.script", hostname, 3);
        ++i;
    }
}





This code uses a while loop to purchase the maximum amount of servers using the
purchaseServer() Netscript function. Each of these servers will have
8GB of RAM, as defined in the ram variable. Note that the script uses the command
getServerMoneyAvailable("home") to get the amount of money you currently have.
This is then used to check if you can afford to purchase a server.

Whenever the script purchases a new server, it uses the scp() function to copy
our script onto that new server, and then it uses the exec() function to
execute it on that server.

To run this script, go to Terminal and type:

$ run purchase-server-8gb.script





This purchase will continuously run until it has purchased the maximum number of servers.
When this happens, it’ll mean that you have a bunch of new servers that are all running
hacking scripts against the joesguns server!


Note

The reason we’re using so many scripts to hack joesguns instead of targeting other
servers is because it’s more effective. This early in the game, we don’t have enough RAM
to efficiently hack multiple targets, and trying to do so would be slow as we’d be spread
too thin. You should definitely do this later on, though!



Note that purchasing a server is fairly expensive, and purchasing the maximum amount of
servers even more so. At the time of writing this guide, the script above requires
$11 million in order to finish purchasing all of the 8GB servers.
Therefore, we need to find additional ways to make money to speed
up the process! These are covered in the next section.




Additional Sources of Income

There are other ways to gain money in this game besides scripts & hacking.


Hacknet Nodes

If you completed the introductory tutorial, you were already introduced to this method: Hacknet Nodes.
Once you have enough money, you can start upgrading your Hacknet Nodes in order to increase
your passive income stream. This is completely optional. Since each Hacknet Node upgrade
takes a certain amount of time to “pay itself off”, it may not necessarily be in your best
interest to use these.

Nonetheless, Hacknet Nodes are a good source of income early in the game, although
their effectiveness tapers off later on. If you do wind up purchasing and upgrading Hacknet Nodes,
I would suggest only upgrading their levels for now. I wouldn’t bother with RAM and Core
upgrades until later on.




Crime

The best source of income right now is from committing crimes.
This is because it not only gives you a large amount of money, but it also raises your
hacking level. To commit crimes, click on the City tab on the left-hand
navigation menu or use the Keyboard shortcut Alt + w.
Then, click on the link that says The Slums.

In the Slums, you can attempt to commit a variety of crimes, each of which gives certain
types of experience and money if successful. See Crimes for more details.


Note

You are not always successful when you attempt to commit a crime. Nothing bad happens
if you fail a crime, but you won’t earn any money and the experience gained will be
reduced. Raising your stats improves your chance of successfully committing a crime.



Right now, the best option is the Rob Store crime. This takes 60 seconds to attempt
and gives $400k if successful. I suggest this crime because you don’t have to click or check
in too often since it takes a whole minute to attempt. Furthermore, it gives hacking experience,
which is very important right now.

Alternatively, you can also use the Shoplift crime. This takes 2 seconds to attempt
and gives $15k if successful. This crime is slightly easier and is more profitable
than Rob Store, but it requires constant clicking and it doesn’t give
hacking experience.




Work for a Company

If you don’t want to constantly check in on the game to commit crimes, there’s another option
that’s much more passive: working for a company.
This will not be nearly as profitable  as crimes, but it’s completely passive.

Go to the City tab on the left-hand navigation menu and then go to
Joe's Guns. At Joe's Guns, there will be an option that says
Apply to be an Employee. Click this to get the job. Then, a new option
will appear that simply says Work. Click this to start working.
Working at Joe's Guns earns $110 per second and also grants some experience
for every stat except hacking.

Working for a company is completely passive. However, you will not be able to do anything
else in the game while you work. You can cancel working at any time. You’ll notice that
cancelling your work early causes you to lose out on some reputation gains, but
you shouldn’t worry about this. Company reputation isn’t important right now.

Once your hacking hits level 75, you can visit Carmichael Security in the city
and get a software job there. This job offers higher pay and also earns you
hacking experience.

There are many more companies in the City tab that offer more pay and also more gameplay
features. Feel free to explore!






After you Purchase your New Servers

After you’ve made a total of $11 million, your automatic server-purchasing script should
finish running. This will free up some RAM on your home computer. We don’t want this RAM
to go to waste, so we’ll make use of it. Go to Terminal and enter the following commands:

$ home
$ run early-hack-template.script -t 3








Reaching a Hacking Level of 50

Once you reach a hacking level of 50, two new important parts of the game open up.


Creating your first program: BruteSSH.exe

On the left-hand navigation menu you will notice a Create Programs tab with a
red notification icon. This indicates that there are programs available to be created.
Click on that tab (or use Keyboard shortcut Alt + p) and you’ll see a
list of all the programs you can currently create. Hovering over a program will give a
brief description of its function. Simply click on a program to start creating it.

Right now, the program we want to create is BruteSSH.exe. This program is used
to open up SSH ports on servers. This will allow you to hack more servers,
as many servers in the game require a certain number of opened ports in order for
NUKE.exe to gain root access.

When you are creating a program, you cannot interact with any other part of the game.
Feel free to cancel your work on creating a program at any time, as your progress will
be saved and can be picked back up later. BruteSSH.exe takes about
10 minutes to complete.




Optional: Create AutoLink.exe

On the Create Programs page, you will notice another program you can create
called AutoLink.exe. If you don’t mind waiting another 10-15 minutes, you should
go ahead and create this program. It makes it much less tedious to connect to other servers,
but it’s not necessary for progressing.




Joining your first faction: CyberSec

Shortly after you reached level 50 hacking, you should have received a message that
said this:

Message received from unknown sender:

We've been watching you. Your skills are very impressive. But you're wasting
your talents. If you join us, you can put your skills to good use and change
the world for the better. If you join us, we can unlock your full potential.
But first, you must pass our test. Find and hack our server using the Terminal.

-CyberSec

This message was saved as csec-test.msg onto your home computer.





If you didn’t, or if you accidentally closed it, that’s okay! Messages get saved onto
your home computer. Enter the following Terminal commands to view the message:

$ home
$ cat csec-test.msg





This message is part of the game’s main “quest-line”. It is a message from the
CyberSec faction that is asking you to pass their test.
Passing their test is simple, you just have to find their server and hack it through
the Terminal. Their server is called CSEC.
To do this, we’ll use the scan-analyze
Terminal command, just like we did before:

$ home
$ scan-analyze 2





This will show you the network for all servers that are up to 2 “nodes” away from
your home computer. Remember that the network is randomly generated so it’ll look
different for everyone. Here’s the relevant part of my scan-analyze results:

>iron-gym
--Root Access: NO, Required hacking skill: 100
--Number of open ports required to NUKE: 1
--RAM: 32

---->zer0
------Root Access: NO, Required hacking skill: 75
------Number of open ports required to NUKE: 1
------RAM: 32

---->CSEC
------Root Access: NO, Required hacking skill: 54
------Number of open ports required to NUKE: 1
------RAM: 8





This tells me that I can reach CSEC by going through iron-gym:

$ connect iron-gym
$ connect CSEC






Note

If you created the AutoLink.exe program earlier, then there is an easier
method of connecting to CSEC. You’ll notice that in the scan-analyze
results, all of the server hostnames are white and underlined. You can simply
click one of the server hostnames in order to connect to it. So, simply click
CSEC!




Note

Make sure you notice the required hacking skill for the CSEC server.
This is a random value between 51 and 60. Although you receive the message
from CSEC once you hit 50 hacking, you cannot actually pass their test
until your hacking is high enough to hack their server.



After you are connected to the CSEC server, you can hack it. Note that this
server requires one open port in order to gain root access. We can open the SSH port
using the BruteSSH.exe program we created earlier. In Terminal:

$ run BruteSSH.exe
$ run NUKE.exe
$ hack





Keep hacking the server until you are successful. After you successfully hack it, you should
receive a faction invitation from CyberSec shortly afterwards. Accept it. If you accidentally
reject the invitation, that’s okay. Just go to the Factions tab
(Keyboard shortcut Alt + f) and you should see an option that lets you
accept the invitation.

Congrats! You just joined your first faction. Don’t worry about doing anything
with this faction yet, we can come back to it later.






Using Additional Servers to Hack Joesguns

Once you have the BruteSSH.exe program, you will be able to gain root access
to several additional servers. These servers have more RAM that you can use to
run scripts. We’ll use the RAM on these servers to run more scripts that target
joesguns.


Copying our Scripts

The server’s we’ll be using to run our scripts are:


	neo-net


	zer0


	max-hardware


	iron-gym




All of these servers have 32GB of RAM. You can use the Terminal command
scan-analyze 3 to see for yourself. To copy our hacking scripts onto these servers,
go to Terminal and run:

$ home
$ scp early-hack-template.script neo-net
$ scp early-hack-template.script zer0
$ scp early-hack-template.script max-hardware
$ scp early-hack-template.script iron-gym





Since each of these servers has 32GB of RAM, we can run our hacking script with 12 threads
on each server. By now, you should know how to connect to servers. So find and connect to
each of the servers above using the scan-analyze 3 Terminal command. Then, use
following Terminal command to run our hacking
script with 12 threads:

$ run early-hack-template.script -t 12





Remember that if you have the NUKE.exe program, you can simply click on the hostname of a server
after running scan-analyze to connect to it.






Profiting from Scripts & Gaining Reputation with CyberSec

Now it’s time to play the waiting game. It will take some time for your scripts to start
earning money. Remember that most of your scripts are targeting joesguns. It will take a
bit for them to grow() and weaken() the server to the appropriate values
before they start hacking it. Once they do, however, the scripts will be very profitable.


Note

For reference, in about two hours after starting my first script, my scripts had a
production rate of $20k per second and had earned a total of $70 million.
(You can see these stats on the Active Scripts tab).

After another 15 minutes, the production rate had increased to $25k per second
and the scripts had made an additional $55 million.

Your results will vary based on how fast you earned money from crime/working/hacknet nodes,
but this will hopefully give you a good indication of how much the scripts can earn.



In the meantime, we are going to be gaining reputation with the CyberSec faction.
Go to the Factions tab on the left-hand
navigation menu, and from there select CyberSec. In the middle of
the page there should be a button for Hacking Contracts.
Click it to start earning reputation for the CyberSec faction (as well
as some hacking experience). The higher your hacking level, the more reputation you
will gain. Note that while you are working for a faction, you cannot interact with
the rest of the game in any way. You can cancel your faction work at any time
with no penalty.




Purchasing Upgrades and Augmentations

As I mentioned before, within 1-2 hours I had earned over $200 million. Now, it’s time
to spend all of this money on some persistent upgrades to help progress!


Upgrading RAM on Home computer

The most important thing to upgrade right now is the RAM on your home computer. This
will allow you to run more scripts.

To upgrade your RAM, go to the City tab and visit the company Alpha Enterprises.
There will be an option that says Purchase additional RAM for Home Computer.
Click it and follow the dialog box to upgrade your RAM.

I recommend getting your home computer’s RAM to at least 128GB. Getting it even
higher would be better.




Purchasing your First Augmentations

Once you get ~1000 reputation with the CyberSec faction, you can purchase
your first Augmentation from them.

To do this, go to the Factions tab on the left-hand navigation menu
(Keyboard shortcut Alt + f) and select CyberSec. There is an button
near the bottom that says Purchase Augmentations. This will bring up a
page that displays all of the Augmentations available from CyberSec. Some of them
may be locked right now. To unlock these, you will need to earn more
reputation with CyberSec.

Augmentations give persistent upgrades in the form of multipliers. These aren’t very
powerful early in the game because the multipliers are small. However, the effects
of Augmentations stack multiplicatively with each other, so as you continue to install
many Augmentations their effects will increase significantly.

Because of this, I would recommend investing more in RAM upgrades for your home computer rather
than Augmentations early on. Having enough RAM to run many scripts will allow you to make
much more money, and then you can come back later on and get all these Augmentations.

Right now, I suggest purchasing at the very least the Neurotrainer I Augmentation from
CyberSec. If you have the money to spare, I would also suggest getting BitWire and
several levels of the NeuroFlux Governor Augmentations. Note that each time
you purchase an Augmentation,
the price of purchasing another increases by 90%,
so make sure you buy the most expensive Augmentation first. Don’t worry, once you choose to
install Augmentations, their prices will reset back to their original values.






Next Steps

That’s the end of the walkthrough portion of this guide! You should continue to explore
what the game has to offer. There’s quite a few features that aren’t covered or mentioned
in this guide, and even more that get unlocked as you continue to play!

Also, check out the Netscript documentation to see what it has to offer. Writing
scripts to perform and automate various tasks is where most of the fun in the game comes
from (in my opinion)!

The following are a few things you may want to consider doing in the near future.


Installing Augmentations (and Resetting)

If you’ve purchased any Augmentations, you’ll need to install them before you
actually gain their effects. Installing Augmentations is the game’s “soft-reset” or “prestige”
mechanic. You can read more details about it here.

To install your Augmentations, click the Augmentations tab on the left-hand navigation
menu (Keyboard shortcut Alt + a). You will see a list of all of the Augmentations
you have purchased. Below that, you will see a button that says Install Augmentations.
Be warned, after clicking this there is no way to undo it (unless you load an earlier save).




Automating the Script Startup Process

Whenever you install Augmentations, all of your scripts are killed and you’ll have to
re-run them. Doing this every time you install Augmentations would be very tedious and annoying,
so you should write a script to automate the process. Here’s a simple example for a
startup script. Feel free to adjust it to your liking.

// Array of all servers that don't need any ports opened
// to gain root access. These have 16 GB of RAM
var servers0Port = ["foodnstuff",
                    "sigma-cosmetics",
                    "joesguns",
                    "nectar-net",
                    "hong-fang-tea",
                    "harakiri-sushi"];

// Array of all servers that only need 1 port opened
// to gain root access. These have 32 GB of RAM
var servers1Port = ["neo-net",
                    "zer0",
                    "max-hardware",
                    "iron-gym"];

// Copy our scripts onto each server that requires 0 ports
// to gain root access. Then use nuke() to gain admin access and
// run the scripts.
for (var i = 0; i < servers0Port.length; ++i) {
    var serv = servers0Port[i];

    scp("early-hack-template.script", serv);
    nuke(serv);
    exec("early-hack-template.script", serv, 6);
}

// Wait until we acquire the "BruteSSH.exe" program
while (!fileExists("BruteSSH.exe")) {
    sleep(60000);
}

// Copy our scripts onto each server that requires 1 port
// to gain root access. Then use brutessh() and nuke()
// to gain admin access and run the scripts.
for (var i = 0; i < servers1Port.length; ++i) {
    var serv = servers1Port[i];

    scp("early-hack-template.script", serv);
    brutessh(serv);
    nuke(serv);
    exec("early-hack-template.script", serv, 12);
}










Random Tips


	Early on in the game, it’s better to spend your money on upgrading RAM and purchasing
new servers rather than spending it on Augmentations


	The more money available on a server, the more effective the hack() and
grow() Netscript functions will be. This is because both of these functions
use percentages rather than flat values. hack() steals a percentage of a server’s
total available money, and grow() increases a server’s money by X%.


	There is a limit to how much money can exist on a server. This value is different for each
server. The getServerMaxMoney() function will tell you this maximum value.


	At this stage in the game, your combat stats (strength, defense, etc.) are not nearly
as useful as your hacking stat. Do not invest too much time or money into gaining combat
stat exp.










          

      

      

    

  

    
      
          
            
  
What BitNode should I do?


Warning

This page contains spoilers regarding the game’s story/plot-line.



After destroying their first BitNode, many players
wonder which BitNode they should tackle next. This guide hopefully helps answer
that question.


Overview of each BitNode


BitNode-1: Source Genesis


	Description

	The first BitNode created by the Enders to imprison the minds of humans. It became
the prototype and testing-grounds for all of the BitNodes that followed.
This is the first BitNode that you play through. It has no special
modifications or mechanics.



	Source-File

	
	Max Level

	3





This Source-File lets the player start with 32GB of RAM on his/her home computer when
entering a new BitNode, and also increases all of the player’s multipliers by:


	Level 1: 16%


	Level 2: 24%


	Level 3: 28%






	Difficulty

	The easiest BitNode








BitNode-2: Rise of the Underworld


	Description

	Organized crime groups quickly filled the void of power left behind from the collapse of
Western government in the 2050s. As society and civlization broke down, people quickly
succumbed to the innate human impulse of evil and savagery. The organized crime
factions quickly rose to the top of the modern world.

In this BitNode:


	Your hacking level is reduced by 20%


	The growth rate and maximum amount of money available on servers are significantly decreased


	The amount of money gained from crimes and Infiltration is tripled


	Certain Factions (Slum Snakes, Tetrads, The Syndicate, The Dark Army, Speakers for the Dead,
NiteSec, The Black Hand) give the player the ability to form and manage their own gangs. These gangs
will earn the player money and reputation with the corresponding Faction


	Every Augmentation in the game will be available through the Factions listed above


	For every Faction NOT listed above, reputation gains are halved


	You will no longer gain passive reputation with Factions






	Source-File

	
	Max Level

	3





This Source-File allows you to form gangs in other BitNodes once your karma decreases to a certain value.
It also increases the player’s crime success rate, crime money, and charisma multipliers by:


	Level 1: 24%


	Level 2: 36%


	Level 3: 42%






	Difficulty

	Fairly easy, as hacking is still very profitable and the costs of various purchases/upgrades
is not increased. The gang mechanic may seem strange as its very different from anything
else, but it can be very powerful once you get the hang of it.








BitNode-3: Corporatocracy


	Description

	Our greatest illusion is that a healthy society can revolve around a
single-minded pursuit of wealth.
Sometime in the early 21st century economic and political globalization turned
the world into a corporatocracy, and it never looked back. Now, the privileged
elite will happily bankrupt their own countrymen, decimate their own community,
and evict their neighbors from houses in their desperate bid to increase their wealth.
In this BitNode you can create and manage your own corporation. Running a successful corporation
has the potential of generating massive profits. All other forms of income are reduced by 75%. Furthermore:


	The price and reputation cost of all Augmentations is tripled


	The starting and maximum amount of money on servers is reduced by 75%


	Server growth rate is reduced by 80%


	You now only need 75 favour with a faction in order to donate to it, rather than 150






	Source-File

	
	Max Level

	3





This Source-File lets you create corporations on other BitNodes (although
some BitNodes will disable this mechanic). This Source-File also increases your
charisma and company salary multipliers by:


	Level 1: 8%


	Level 2: 12%


	Level 3: 14%






	Difficulty

	Somewhat-steep learning curve as you learn how to use and manage Corporations. Afterwards,
however, the BitNode is easy as Corporations can be very profitable.








BitNode-4: The Singularity


	Description

	The Singularity has arrived. The human race is gone, replaced by artificially superintelligent
beings that are more machine than man.

In this BitNode, progressing is significantly harder:


	Experience gain rates for all stats are reduced.


	Most methods of earning money will now give significantly less.




In this BitNode you will gain access to a new set of Netscript Functions known as Singularity Functions.
These functions allow you to control most aspects of the game through scripts, including
working for factions/companies, purchasing/installing Augmentations, and creating programs.



	Source-File

	
	Max Level

	3





This Source-File lets you access and use the Singularity Functions in other BitNodes.
Each level of this Source-File will open up more Singularity Functions that you can use.



	Difficulty:

	Depending on what Source-Files you have unlocked before attempting this BitNode,
it can range from easy to moderate.








BitNode-5: Artificial Intelligence


	Description

	They said it couldn’t be done. They said the human brain,
along with its consciousness and intelligence, couldn’t be replicated. They said the complexity
of the brain results from unpredictable, nonlinear interactions that couldn’t be modeled
by 1’s and 0’s. They were wrong.

In this BitNode:


	The base security level of servers is doubled


	The starting money on servers is halved, but the maximum money remains the same


	Most methods of earning money now give significantly less


	Infiltration gives 50% more reputation and money


	Corporations have 50% lower valuations and are therefore less profitable


	Augmentations are more expensive


	Hacking experience gain rates are reduced






	Source-File

	
	Max Level

	3





This Source-File grants you a special new stat called Intelligence.

Intelligence is unique because it is permanent and persistent (it never gets reset back to 1). However
gaining Intelligence experience is much slower than other stats, and it is also hidden (you won’t know
when you gain experience and how much). Higher Intelligence levels will boost your production for many actions
in the game.

In addition, this Source-File will unlock the getBitNodeMultipliers() Netscript function,
and will also raise all of your hacking-related multipliers by:


	Level 1: 8%


	Level 2: 12%


	Level 3: 14%






	Difficulty

	Depending on what Source-Files you have unlocked before attempting this BitNode, it
can range from easy to moderate.








BitNode-6: Bladeburners


	Description

	In the middle of the 21st century, OmniTek Incorporated began designing and manufacturing advanced synthetic
androids, or Synthoids for short. They achieved a major technological breakthrough in the sixth generation
of their Synthoid design, called MK-VI, by developing a hyperintelligent AI. Many argue that this was
the first sentient AI ever created. This resulted in Synthoid models that were stronger, faster, and more intelligent
than the humans that had created them.

In this BitNode you will be able to access the Bladeburner Division at the NSA, which provides
a new mechanic for progression. Furthermore:


	Hacking and Hacknet Nodes will be less profitable


	Your hacking level is reduced by 65%


	Hacking experience gain from scripts is reduced by 75%


	Corporations have 80% lower valuations and are therefore less profitable


	Working for companies is 50% less profitable


	Crimes and Infiltration are 25% less profitable






	Source-File

	
	Max Level

	3





This Source-File allows you to access the NSA’s Bladeburner Division in other
BitNodes. In addition, this Source-File will raise both the level and experience
gain rate of all your combat stats by:


	Level 1: 8%


	Level 2: 12%


	Level 3: 14%






	Difficulty

	Initially difficult due to the fact that hacking is no longer profitable and you have
to learn a new mechanic. After you get the hang of the Bladeburner mechanic, however,
it becomes moderately easy.








BitNode-7: Bladeburners 2079


	Description

	In the middle of the 21st century, you were doing cutting-edge work at OmniTek Incorporated
as part of the AI design team for advanced synthetic androids, or Synthoids for short. You helped
achieve a major technological breakthrough in the sixth generation of the company’s Synthoid
design, called MK-VI, by developing a hyperintelligent AI. Many argue that this was the first
sentient AI ever created. This resulted in Synthoid models that were stronger, faster,
and more intelligent than the humans that had created them.

In this BitNode you will be able to access the Bladeburner API, which allows you to access
Bladeburner functionality through Netscript. Furthermore:


	The rank you gain from Bladeburner contracts/operations is reduced by 40%


	Bladeburner skills cost twice as many skill points


	Augmentations are 3x more expensive


	Hacking and Hacknet Nodes will be significantly less profitable


	Your hacking level is reduced by 65%


	Hacking experience gain from scripts is reduced by 75%


	Corporations have 80% lower valuations and are therefore less profitable


	Working for companies is 50% less profitable


	Crimes and Infiltration are 25% less profitable






	Source-File

	
	Max Level

	3





This Source-File allows you to access the Bladeburner Netscript API in other
BitNodes. In addition, this Source-File will increase all of your Bladeburner multipliers by:


	Level 1: 8%


	Level 2: 12%


	Level 3: 14%






	Difficulty

	Slightly more difficult than BitNode-6. However, you will be able to automate more
aspects of the Bladeburner feature, which means it will be more passive.








BitNode-8: Ghost of Wall Street


	Description

	You are trying to make a name for yourself as an up-and-coming hedge fund manager on Wall Street.

In this BitNode:


	You start with $250 million


	The only way to earn money is by trading on the stock market


	You start with a WSE membership and access to the TIX API


	You are able to short stocks and place different types of orders (limit/stop)


	You can immediately donate to factions to gain reputation






	Source-File

	
	Max Level

	3





This Source-File grants the following benefits:


	Level 1: Permanent access to WSE and TIX API


	Level 2: Ability to short stocks in other BitNodes


	Level 3: Ability to use limit/stop orders in other BitNodes




This Source-File also increases your hacking growth multipliers by:


	Level 1: 12%


	Level 2: 18%


	Level 3: 21%






	Difficulty

	Very difficult until you unlock the Four Sigma (4S) Market Data API. After you
unlock the API however, it becomes moderately easy.








BitNode-9: Hacktocracy


	Description

	When Fulcrum Technologies released their open-source Linux distro Chapeau, it quickly
became the OS of choice for the underground hacking community. Chapeau became especially
notorious for  powering the Hacknet, a global, decentralized network used for nefarious
purposes. Fulcrum quickly abandoned the project and dissociated themselves from it.

This BitNode unlocks the Hacknet Server, an upgraded version of the Hacknet Node. Hacknet Servers generate
hashes, which can be spent on a variety of different upgrades.

In this BitNode:
* Your stats are significantly decreased
* You cannnot purchase additional servers
* Hacking is significantly less profitable



	Source-File

	
	Max Level

	3





This Source-File grants the following benefits:


	Level 1: Permanently unlocks the Hacknet Server in other BitNodes


	Level 2: You start with 128GB of RAM on your home computer when entering a new BitNode


	Level 3: Grants a highly-upgraded Hacknet Server when entering a new BitNode




(Note that the Level 3 effect of this Source-File only applies when entering a new BitNode, NOT
when installing Augmentation



	Difficulty

	Hard








BitNode-10: Digital Carbon


	Description

	In 2084, VitaLife unveiled to the world the Persona Core, a technology that allowed people
to digitize their consciousness. Their consciousness could then be transferred into Synthoids
or other bodies by trasmitting the digitized data. Human bodies became nothing more than ‘sleeves’
for the human consciousness. Mankind had finally achieved immortality - at least for those
that could afford it.

This BitNode unlocks Sleeve technology. Sleeve technology allows you to:


	Re-sleeve: Purchase and transfer your consciousness into a new body


	Duplicate Sleeves: Duplicate your consciousness into Synthoids, allowing you to perform different tasks synchronously




In this BitNode:
* Your stats are significantly decreased
* All methods of gaining money are half as profitable (except Stock Market)
* Purchased servers are more expensive, have less max RAM, and a lower maximum limit
* Augmentations are 5x as expensive and require twice as much reputation



	Source-File

	
	Max Level

	3





This Source-File unlocks Sleeve technology in other BitNodes.
Each level of this Source-File also grants you a Duplicate Sleeve



	Difficulty

	Hard








BitNode-11: The Big Crash


	Description

	The 2050s was defined by the massive amounts of violent civil unrest and anarchic rebellion that rose all around the world. It was this period
of disorder that eventually lead to the governmental reformation of many global superpowers, most notably
the USA and China. But just as the world was slowly beginning to recover from these dark times, financial catastrophe hit.
In many countries, the high cost of trying to deal with the civil disorder bankrupted the governments. In all of this chaos and confusion, hackers
were able to steal billions of dollars from the world’s largest electronic banks, prompting an international banking crisis as
governments were unable to bail out insolvent banks. Now, the world is slowly crumbling in the middle of the biggest economic crisis of all time.

In this BitNode:


	Your hacking stat and experience gain are halved


	The starting and maximum amount of money available on servers is significantly decreased


	The growth rate of servers is significantly reduced


	Weakening a server is twice as effective


	Company wages are decreased by 50%


	Corporation valuations are 99% lower and are therefore significantly less profitable


	Hacknet Node production is significantly decreased


	Crime and Infiltration are more lucrative


	Augmentations are twice as expensive






	Source-File

	
	Max Level

	3





Destroying this BitNode will give you Source-File 11, or if you already have this Source-File it will
upgrade its level up to a maximum of 3. This Source-File makes it so that company favor increases BOTH
the player’s salary and reputation gain rate at that company by 1% per favor (rather than just the reputation gain).
This Source-File also increases the player’s company salary and reputation gain multipliers by:


	Level 1: 32%


	Level 2: 48%


	Level 3: 56%






	Difficulty

	Hard








BitNode-12: The Recursion


	Description

	Every time this BitNode is destroyed, it becomes slightly harder.



	Source-File

	
	Max Level

	Infinity





Each level of Source-File 12 will increase all of your multipliers by 1%. This effect
is multiplicative with itself. In other words, level N of this Source-File will result
in a multiplier of 1.01^N (or 0.99^N for multipliers that decrease)



	Difficulty

	Initially very easy, but then it (obviously) becomes harder as you continue to do it.










Recommended BitNodes

As a player, you are not forced to tackle the BitNodes in any particular order. You are
free to choose whichever ones you want. The “best” order can vary between players,
depending on what you like to do any what kind of player you are. In general, here
are the recommended BitNodes for different things:


For fast progression


Note

This does not recommend the absolute fastest path, as I don’t know what
exactly the fastest path is. But it does recommend the BitNodes that are
commonly considered to be optimal by players.




	Repeat BitNode-1: Source Genesis until you max out its Source-File. Its Source-File
is extremely powerful, as it raises all multipliers by a significant amount.


	Repeat BitNode-12: The Recursion several times. This BitNode will be extremely easy the
first few times you tackle it, and its Source-File raises all multipliers. Furthermore,
its effect stacks multiplicatively with itself and other Source-Files/Augmentations,
which gets better as time goes on


	Do BitNode-5: Artificial Intelligence once or twice. The intelligence stat it unlocks
will gradually build up as you continue to play the game, and will be helpful
in the future. The Source-File also provides hacking multipliers, which are
strong because hacking is typically one of the best ways of earning money.


	(Optional) Consider doing BitNode-4: The Singularity. Its Source-File does not directly make you
more powerful in any way, but it does unlock Netscript Singularity Functions which
let you automate significantly more aspects of the game.


	Do BitNode-3: Corporatocracy once to unlock the Corporation mechanic. This mechanic
has high profit potential.


	Do BitNode-6: Bladeburners once to unlock the Bladeburners mechanic. The Bladeburner
mechanic is useful for some of the future BitNodes (such as 9 and 10).


	Do BitNode-9: Hacktocracy to unlock the Hacknet Server mechanic. You can
consider repeating it as well, as its Level 2 and 3 effects are pretty helpful as well.





Todo

To be continued as more BitNodes get added






For the strongest Source-Files

Note that the strongest Source-Files are typically rewarded by the hardest BitNodes.

The strongest Source-File is that from BitNode-1: Source Genesis, as it raises
all multipliers by a significant amount.

Similarly, the Source-File from BitNode-12: The Recursion is also very strong
because it raises all multipliers. Each level of Source-File 12 is fairly weak,
but its effectiveness gets better over time since the effects of Source-Files and
Augmentations are multiplicative with each other.

The Source-File from BitNode-9: Hacktocracy is good because it unlocks the Hacknet
Server mechanic. The Hacknet Server mechanic causes Hacknet Nodes to produce a new
currency called hashes, rather than money. Hashes can be spent on powerful upgrades
that benefit your hacking, Corporation, Bladeburner, etc.

The Duplicate Sleeves granted by the Source-File from BitNode-10: Digital Carbon
are strong, but only after you have several of them and have spent some time/money upgrading
them.




For more scripting/hacking

BitNode-4: The Singularity unlocks the Netscript Singularity Functions, which
can be used to automate many different aspects of the game, including working for factions/companies,
purchasing & installing Augmentations, and creating programs

BitNode-6 and BitNode-7 unlock Bladeburner and its corresponding
Netscript API. This allows you to automate an entire
new mechanic.

BitNode-2: Rise of the Underworld also unlocks a new mechanic and Netscript API for automating
it (the Gang mechanic). However, it is not as interesting as Bladeburner (in my opinion)

BitNode-9: Hacktocracy unlocks the Hacknet Server mechanic and several new
functions in the Hacknet Node API for using it.




For new mechanics

BitNode-2: Rise of the Underworld unlocks a new mechanic in which you can
manage a gang. Gangs earn you money and can be very profitable once they get large
and powerful. The biggest benefit of gangs, however, is that they make all
Augmentations available to you through their corresponding faction.

BitNode-3: Corporatocracy unlocks a new mechanic in which you can manage a
corporation. You can earn money through Corporations by selling your stocks, or by
configuring your corporation to pay dividends to shareholders. If your Corporation
gets big enough, it can also bribe factions in exchange for faction reputation.

BitNode-6: Bladeburners unlocks a new mechanic that centers around combat rather
than hacking. The main benefit of the Bladeburner mechanic is that it offers a new
method of destroying a BitNode.

BitNode-9: Hacktocracy unlocks the Hacknet Server, which is an upgraded version of a
Hacknet Node. The Hacknet Server generates a computational unit called a hash. Hashes
can be spent on a variety of different upgrades that can benefit your hacking,
Corporation, Bladeburner progress, and more. It transforms the Hacknet Node from a
simple money-generator to a more interesting mechanic.

BitNode-10: Digital Carbon unlocks two new mechanics: Re-Sleeving and
Duplicate Sleeves.




For a Challenge

In general, the higher BitNodes are more difficult than the lower ones.
BitNode-12: The Recursion is an obvious exception as it gets progressively harder.

BitNode-8: Ghost of Wall Street provides a unique challenge as the only method
of earning money in that BitNode is through trading at the stock market.









          

      

      

    

  

    
      
          
            
  
Tools & Resources


Official Script Repository

There are plans to create an official repository of Bitburner scripts. As of right now,
this is not a priority and has not been started. However, if you’d like
to contribute scripts now, you can find the repository
here [https://github.com/bitburner-official/bitburner-scripts] and submit pull requests.




Visual Studio Code Extension

One user created a Bitburner extension for the Visual Studio Code (VSCode) editor.

This extension includes several features such as:


	Dynamic RAM calculation


	RAM Usage breakdown


	Typescript definition files with jsdoc comments


	Netscript syntax highlighting




You can find more information and download links
on this reddit post [https://www.reddit.com/r/Bitburner/comments/bh48y2/visual_studio_code_ram_calculator_extra/].







          

      

      

    

  

    
      
          
            
  
Changelog


v0.47.1 - 6/27/2019


	
	Stock Market changes:

	
	Transactions no longer influence stock prices (but they still influence forecast)


	Changed the way stocks behave, particularly with regard to how the stock forecast occasionally “flips”


	Hacking & growing a server can potentially affect the way the corresponding stock’s forecast changes


	Working for a company positively affects the way the corresponding stock’s forecast changes










	Scripts now start/stop instantly


	Improved performance when starting up many copies of a new NetscriptJS script (by Ornedan)


	Improved performance when killing scripts


	Dialog boxes can now be closed with the ESC key (by jaguilar)


	NetscriptJS scripts should now be “re-compiled” if their dependencies change (by jaguilar)


	write() function should now properly cause NetscriptJS scripts to “re-compile” (by jaguilar)







v0.47.0 - 5/17/2019


	
	Stock Market changes:

	
	Implemented spread. Stock’s now have bid and ask prices at which transactions occur


	Large transactions will now influence a stock’s price and forecast


	This “influencing” can take effect in the middle of a transaction


	See documentation for more details on these changes


	Added getStockAskPrice(), getStockBidPrice() Netscript functions to the TIX API


	Added getStockPurchaseCost(), getStockSaleGain() Netscript functions to the TIX API










	
	Re-sleeves can no longer have the NeuroFlux Governor augmentation

	
	This is just a temporary patch until the mechanic gets re-worked










	hack(), grow(), and weaken() functions now take optional arguments for number of threads to use (by MasonD)


	codingcontract.attempt() now takes an optional argument that allows you to configure the function to return a contract’s reward


	Adjusted RAM costs of Netscript Singularity functions (mostly increased)


	Adjusted RAM cost of codingcontract.getNumTriesRemaining() Netscript function


	Netscript Singularity functions no longer cost extra RAM outside of BitNode-4


	Corporation employees no longer have an “age” stat


	Gang Wanted level gain rate capped at 100 (per employee)


	Script startup/kill is now processed every 3 seconds, instead of 6 seconds


	getHackTime(), getGrowTime(), and getWeakenTime() now return Infinity if called on a Hacknet Server


	Money/Income tracker now displays money lost from hospitalizations


	Exported saves now have a unique filename based on current BitNode and timestamp


	Maximum number of Hacknet Servers decreased from 25 to 20


	Bug Fix: Corporation employees stats should no longer become negative


	Bug Fix: Fixed sleeve.getInformation() throwing error in certain scenarios


	Bug Fix: Coding contracts should no longer generate on the w0r1d_d43m0n server


	Bug Fix: Duplicate Sleeves now properly have access to all Augmentations if you have a gang


	Bug Fix: getAugmentationsFromFaction() & purchaseAugmentation() functions should now work properly if you have a gang


	Bug Fix: Fixed issue that caused messages (.msg) to be sent when refreshing/reloading the game


	Bug Fix: Purchasing hash upgrades for Bladeburner/Corporation when you don’t actually have access to those mechanics no longer gives hashes


	Bug Fix: run(), exec(), and spawn() Netscript functions now throw if called with 0 threads


	Bug Fix: Faction UI should now automatically update reputation


	Bug Fix: Fixed purchase4SMarketData()


	Bug Fix: Netscript1.0 now works properly for multiple ‘namespace’ imports (import * as namespace from “script”)


	Bug Fix: Terminal ‘wget’ command now correctly evaluates directory paths


	Bug Fix: wget(), write(), and scp() Netscript functions now fail if an invalid filepath is passed in


	Bug Fix: Having Corporation warehouses at full capacity should no longer freeze game in certain conditions


	Bug Fix: Prevented an exploit that allows you to buy multiple copies of an Augmentation by holding the ‘Enter’ button


	Bug Fix: gang.getOtherGangInformation() now properly returns a deep copy


	Bug Fix: Fixed getScriptIncome() returning an undefined value


	Bug Fix: Fixed an issue with Hacknet Server hash rate not always updating







v0.46.3 - 4/20/2019


	Added a new Augmentation: The Shadow’s Simulacrum


	Improved tab autocompletion feature in Terminal so that it works better with directories


	Bug Fix: Tech vendor location UI now properly refreshed when purchasing a TOR router


	Bug Fix: Fixed UI issue with faction donations


	Bug Fix: The money statistics & breakdown should now properly track money earned from Hacknet Server (hashes -> money)


	Bug Fix: Fixed issue with changing input in ‘Minimum Path Sum in a Triangle’ coding contract problem


	Fixed several typos in various places







v0.46.2 - 4/14/2019


	
	Source-File 2 now allows you to form gangs in other BitNodes when your karma reaches a very large negative value

	
	(Karma is a hidden stat and is lowered by committing crimes)










	
	Gang changes:

	
	Bug Fix: Gangs can no longer clash with themselve


	Bug Fix: Winning against another gang should properly reduce their power










	Bug Fix: Terminal ‘wget’ command now works properly


	Bug Fix: Hacknet Server Hash upgrades now properly reset upon installing Augs/switching BitNodes


	Bug Fix: Fixed button for creating Corporations







v0.46.1 - 4/12/2019


	
	Added a very rudimentary directory system to the Terminal

	
	Details here: https://bitburner.readthedocs.io/en/latest/basicgameplay/terminal.html#filesystem-directories










	Added numHashes(), hashCost(), and spendHashes() functions to the Netscript Hacknet Node API


	‘Generate Coding Contract’ hash upgrade is now more expensive


	‘Generate Coding Contract’ hash upgrade now generates the contract randomly on the server, rather than on home computer


	The cost of selling hashes for money no longer increases each time


	Selling hashes for money now costs 4 hashes (in exchange for $1m)


	Bug Fix: Hacknet Node earnings should work properly when game is inactive/offline


	Bug Fix: Duplicate Sleeve augmentations are now properly reset when switching to a new BitNode







v0.46.0 - 4/3/2019


	Added BitNode-9: Hacktocracy


	Changed BitNode-11’s multipliers to make it slightly harder overall


	Source-File 11 is now slightly stronger


	Added several functions to Netscript Sleeve API for buying Sleeve augmentations (by hydroflame)


	Added a new stat for Duplicate Sleeves: Memory


	Increase baseline experience earned from Infiltration, but it now gives diminishing returns (on exp) as you get to higher difficulties/levels


	In Bladeburner, stamina gained from Hyperbolic Regeneration Chamber is now a percentage of your max stamina


	
	Corporation Changes:

	
	‘Demand’ value of products decreases more slowly


	Bug Fix: Fixed a Corporation issue that broke the Market-TA2 Research


	Bug Fix: Issuing New Shares now works properly










	Bug Fix: Money Statistics tracker was incorrectly recording profits when selling stocks manually


	Bug Fix: Fixed an issue with the job requirement tooltip for security jobs







v0.45.1 - 3/23/2019


	Added two new Corporation Researches


	General UI improvements (by hydroflame and koriar)


	Bug Fix: Sleeve Netscript API should no longer cause Dynamic RAM errors


	Bug Fix: sleeve.getSleeveStats() should now work properly







v0.45.0 - 3/22/2019


	
	Corporation changes:

	
	Decreased the time of a full market cycle from 15 seconds to 10 seconds.


	This means that each Corporation ‘state’ will now only take 2 seconds, rather than 3


	Increased initial salaries for newly-hired employees


	Increased the cost multiplier for upgrading office size (the cost will increase faster)


	The stats of your employees now has a slightly larger effect on production & sales


	Added several new Research upgrades


	Market-TA research now allows you to automatically set sale price at optimal values


	Market-TA research now works for Products (not just Materials)


	Reduced the amount of Scientific Research needed to unlock the Hi-Tech R&D Laboratory from 10k to 5k


	Energy Material requirement of the Software industry reduced from 1 to 0.5


	It is now slightly easier to increase the Software industry’s production multiplier


	Industries now have a maximum number of allowed products, starting at 3. This can be increased through research.


	You can now see an approximation of how each material affects an industry’s production multiplier by clicking the “?” help tip next to it


	Significantly changed the effects of the different employee positions. See updated descriptions


	Reduced the amount of money you gain from private investors


	Training employees is now 3x more effective


	Bug Fix: An industry’s products are now properly separated between different cities










	The QLink Augemntation is now significantly stronger, but also significantly more expensive (by hydroflame)


	Added a Netscript API for Duplicate Sleeves (by hydroflame)


	Modified the multipliers of BitNode-3 and BitNode-8 to make them slightly harder


	After installing Augmentations, Duplicate Sleeves will now default to Synchronize if their Shock is 0


	Bug Fix: Bladeburner’s Hyperbolic Regeneration Chamber should no longer instantly refill all stamina


	Bug Fix: growthAnalyze() function now properly accounts for BitNode multipliers


	Bug Fix: The cost of purchasing Augmentations for Duplicate Sleeves no longer scales with how many Augs you’ve purchased for yourself







v0.44.1 - 3/4/2019


	
	Duplicate Sleeve changes:

	
	You can now purchase Augmentations for your Duplicate Sleeves


	Sleeves are now assigned to Shock Recovery task by default


	Shock Recovery and Synchronize tasks are now twice as effective










	Changed documentation so that Netscript functions are own their own pages. Sorry if this is annoying, it was necessary for properly cross-referencing


	Officially deprecated the Wiki (the fandom site). Use the ‘readthedocs’ Documentation instead


	Bug Fix: ‘rm’ Terminal and Netscript commands now work on non-program files that have ‘.exe’ in the name (by Github user MasonD)


	Bug Fix: The ‘Find All Valid Math Expressions’ Coding Contract should now properly ignore whitespace in answers


	Bug Fix: The ‘Merge Overlapping Intervals’ Coding Contract should now properly accept 2D arrays when being attempted through Netscript







v0.44.0 - 2/26/2019


	
	Bladeburner Changes:

	
	Reduced the amount of rank needed to earn a skill point


	Reduced the effects of the “Reaper” and “Evasive System” skills


	Increased the effect of the “Hyperdrive” and “Hands of Midas” skills


	Slightly increased the rate which the skill point cost rises for almost all skills


	The “Overlock” Skill now has a maximum level of 90 instead of 95


	Money earned from Contracts increased by 400%


	Changed the way population affects success rate. Extreme populations now have less dramatic effects


	Added two new General Actions: Diplomacy and Hyperbolic Regeneration Chamber


	Lowered the rep and money cost of the “Blade’s Simulacrum” augmentation


	Significantly decreased the initial  amount of Contracts/Operations (the “Contracts/Operations remaining” value)


	Decreased the rate at which the amount of Contracts/Operations increases over time


	Decreased the number of successes you need to increase the max level of a Contract/Operation


	Increased the average number of Synthoid communities each city has


	Reduced the amount by which a successful raid will decrease the population of a city


	The “riots” event will now increase the chaos of a city by a greater amount


	Significantly increased the effect that Agility and Dexterity have on action time










	
	Added new BitNode multipliers:

	
	HomeComputerRamCost - Affects how much it costs to upgrade home computer’s RAM


	DaedalusAugsRequirement - Affects how many Augmentations you need in order to get invited to Daedalus


	FourSigmaMarketDataCost - Affects how much it costs to unlock the stock market’s 4S Market Data


	FourSigmaMarketDataApiCost - Affects how much it costs to unlock the stock market’s 4S Market Data API










	A few minor changes to BitNode multipliers across the board (mostly for the new multipliers)


	‘The Covenant’ now requires 20 total Augmentations to get invited, rather than 30


	You can now purchase permanent Duplicate Sleeves from ‘The Covenant’. This requires Source-File 10, and you must be in BN-10 or after


	You can now track where all of your money comes from in the ‘Stats’ page


	Increased the money gained from Coding Contracts by 50%


	getCharacterInformation() function now returns the player’s HP and max HP


	Bug Fix: You can no longer disconnect the enemy’s connections in Hacking Missions


	Bug Fix: Duplicate Sleeve faction reputation gain is now properly affected by faction favor


	Bug Fix: After installing Augmentations, the Terminal display will now correctly show the current server as “home”


	Bug Fix: Fixed an exploit where you could change the duration of timed functions (e.g. hack, weaken) in NetscriptJS


	Bug Fix: You should now properly be able to use the ServerProfile.exe program


	Bug Fix: Prevented exploit that allowed you to accept faction invites programmatically through NetscriptJS


	Bug Fix: Faction invitations for megacorporations should now work properly







v0.43.1 - 2/11/2019


	
	Terminal changes:

	
	Quoted arguments are now properly parsed. (e.g. ‘run f.script “this is one argument”’ will be correctly parsed)


	Errors are now shown in red text


	‘unalias’ command now has a different format and no longer needs the quotations


	Bug Fix: Fixed several edge cases where autocomplete wasn’t working properly










	Added two new Bladeburner skills for increasing money and experience gain


	Made some minor adjustments to Bladeburner UI


	Corporation “Smart Factories” and “Smart Storage” upgrades have slightly lower price multipliers


	Added nFormat Netscript function


	Added 6 new Coding Contract problems


	Updated documentation with list of all Coding Contract problems


	Minor improvements for ‘Active Scripts’ UI


	Implemented several optimizations for active scripts. The game should now use less memory and the savefile should be slightly smaller when there are many scripts running


	Bug Fix: A Stock Forecast should no longer go above 1 (i.e. 100%)


	Bug Fix: The cost of Resleeves should no longer be affected by buying Augs


	Bug Fix: Duplicate Sleeves now use their own stats to determine crime success rate, instead of the host consciousness’ stats


	Bug Fix: You can now call the prompt() Netscript function from multiple scripts simultaneously







v0.43.0 - 2/4/2019


	Added BitNode-10: Digital Carbon


	
	Stock Market Changes:

	
	Each stock now has a maximum number of shares you can purchase (both Long and Short positions combined)


	Added getStockMaxShares() Netscript function to the TIX API


	The cost of 4S Market Data TIX API Access increased from $20b to $25b










	
	Job Changes:

	
	You can now hold multiple jobs at once. This means you no longer lose reputation when leaving a company


	Because of this change, the getCharacterInformation() Netscript function returns a slightly different value










	
	Script Editor Changes:

	
	Added new script editor: CodeMirror. You can choose between the old editor (Ace) or CodeMirror


	Navigation keyboard shortcuts no longer work if the script editor is focused










	Trying to programmatically run a script (run(), exec()) with a ‘threads’ argument of 0 will now cause the function to return false without running the script


	Home Computer RAM is now capped at 2 ^ 30 GB (1073741824 GB)


	The maximum amount, maximum RAM, and cost of purchasing servers can now vary between different BitNodes (new BitNode multipliers)


	Pop-up dialog boxes are a little bit bigger


	Bug Fix: When importing scripts, “./” will now be properly ignored (e.g. import { foo } from “./lib.script” )







v0.42.0 - 1/8/2019


	
	Corporation Changes:

	
	Corporation can now be self-funded with $150b or using seed money in exchange for 500m newly-issued shares


	In BitNode-3, you no longer start with $150b


	Changed initial market prices for many materials


	Changed the way a material’s demand, competition, and market price change over time


	The sale price of materials can no longer be marked-up as high


	Added a Research Tree mechanic. Spend Scientific Research on permanent upgrades for each industry


	You can now redistribute earnings to shareholders (including yourself) as dividends


	Cost of “Smart Supply” upgraded reduced from $50b to $25b


	Now has offline progress, which works similarly to the Gang/Bladeburner mechanics


	Slightly reduced the amount of money offered to you by investment firms


	Employee salaries now slowly increase over time


	Slightly reduced the effect “Real Estate” has on the Production Multiplier for the Agriculture industry


	Changed the way your Corporation’s value is calculated (this is what determines stock price)


	After taking your corporation public, it is now possible to issue new shares to raise capital


	Issuing new shares can only be done once every 12 hours


	Buying back shares must now be done at a premium


	Selling shares can now only be done once per hour


	Selling large amounts of shares now immediately impacts stock price (during the transaction)


	Reduced the initial cost of the DreamSense upgrade from $8b to $4b, but increased its price multiplier


	Reduced the price multiplier for ABC SalesBots upgrade










	Added getOrders() Netscript function to the TIX API


	Added getAugmentationPrereq() Singularity function (by havocmayhem)


	Added hackAnalyzePercent() and hackAnalyzeThreads() Netscript functions


	Stock Market, Travel, and Corporation main menu links are now properly styled


	Many pop-up/dialog boxes now support the ‘Enter’ and ‘Esc’ hotkeys. If you find a pop-up/dialog box that doesnt support this, let me know specifically which one (‘Enter’ for the default option, ‘Esc’ for cancelling and closing the pop-up box)


	Added “brace_style = preserve_inline” configuration to Script Editor Beautifier


	ServerProfiler.exe can now be purchased from the Dark Web


	Added an option to copy save data to clipboard


	Added total multiplier information on the “Augmentations” page


	Bug Fix: gymWorkout() Singularity function should now work properly with Millenium Fitness Gym


	Began migrating gameplay information to the ReadTheDocs documentation







v0.41.2 - 11/23/2018


	
	IMPORTANT - Netscript Changes:

	
	rm() now takes an optional parameter that lets you specify on which server to delete the file


	Added growthAnalyze() Netscript function










	
	Gang Changes:

	
	UI now displays your chance to win a clash with other gangs


	Added getChanceToWinClash() function to the Gang API


	Added getEquipmentType() function to the Gang API


	Added several new hacking-based equipment and Augmentations


	Rebalanced several equipment/upgrades to give less defense


	Wanted level gain rate is now be slightly higher for all tasks


	Rebalanced parameters for “hacking” tasks










	Added new Main Menu configuration in .fconf: “compact”


	Added the terminal command ‘expr’, which can be used to evaluate simple mathematical expressions


	Bug Fix: Can no longer purchase duplicate equipment/Augmentations through gang.purchaseEquipment()


	Bug Fix: scp() should no longer throw errors when used with 2-arguments and an array of files


	Bug Fix: Coding Contracts no longer give money in BitNode-8


	Bug Fix: In Bladeburner, you can no longer start a BlackOp through the Netscript API if it has already been completed


	Bug Fix: In Bladeburner, fixed a bug which caused the configured ‘automate’ actions to occasionally be switched to other actions


	Bug Fix: ‘Return to World’ button at locations no longer accumulates event listeners


	Bug Fix: Working & taking classes now continuously add/subtract money during the action, instead of doing it at completion


	Bug Fix: Top-right overview panel now displays negative money using ‘-‘ instead of ‘()’


	Bug Fix: Stock Market UI should no longer show ‘NaN’ profit immediately after buying a stock







v0.41.1 - 11/5/2018


	
	IMPORTANT - Netscript Changes:

	
	purchaseTor() now returns true if you already have a TOR router (it used to return false)


	getPurchasedServerCost() now returns Infinity if the specified RAM is an invalid amount or is greater than the max amount of RAM (2 ^ 20 GB)


	Added purchase4SMarketData() and purchase4SMarketDataTixApi() functions


	getScriptLogs() now takes in optional arguments that let you get the logs of another script










	
	Stock Market changes:

	
	Stocks now have “maximum prices”. These are hidden from the player


	If a stock reaches its “maximum price”, it will most likely drop in value (although it might still rise)


	Each stock has its own, unique maximum price


	Maximum price for each stock are randomly generated and change during each ‘reset’


	Stock Market cycles are now accumulated/stored, much like it is for Gangs and Bladeburners


	
	Accumulated/stored cycles cause stock prices to update up to 50% faster (from every 6 seconds to 4 seconds)

	
	This means that after coming back from being offline, stock prices will update faster to make up for offline time


















	Decreased the Hacking Level multiplier for BitNodes 6 and 7 to 0.4 (from 0.5)


	Bladeburner console history is now saved and persists when switching screens or closing/reopening the game


	In Bladeburner, if your stamina reaches 0 your current action will be cancelled


	b1t_flum3.exe is no longer removed from your home computer upon reset


	Added main menu link for the Stock Market (once you’ve purchased an account)


	Job main menu link only appears if you actually have a job


	Bug Fix: Netscript Gang API functions purchaseEquipment() and ascendMember() should now work properly


	Bug Fix: After installing Augs, the “Portfolio Mode” button on the Stock Market page should be properly reset


	Bug Fix: bladeburner.getActionCountRemaining()’s return value is now rounded down (by Kline-)







v0.41.0 - 10/29/2018


	WARNING: In NetscriptJS, defining a function called print() is no longer possible


	
	Gang Mechanic Changes (BitNode-2):

	
	Added a Gang Netscript API


	Added new ‘ascension’ mechanic for Gang Members


	The first three gang members are now ‘free’ (can be recruited instantly)


	Maximum number of increased Gang Members increased from 20 to 30


	Changed the formula for calculating respect needed to recruit the next gang member


	Added a new category of upgrades for Gang Members: Augmentations


	Non-Augmentation Gang member upgrades are now significantly weaker


	Reputation for your Gang faction can no longer be gained through Infiltration


	Re-worked the territory ‘warfare’ mechanic so that player can choose when to engage in it


	Gang Members can now be killed during territory ‘warfare’


	Changed BitNode-2 Multipliers to make hacking slightly less profitable


	Gang Member Equipment + Upgrades now get cheaper as your gang grows in power and respect


	The effects of Source-File 2 are now slightly more powerful










	RAM Cost of accessing the global document object lowered from 100 GB to 25 GB


	RAM Cost to use Singularity Functions outside of BitNode-4 lowered by 75%. They now only cost twice as much as they do in BitNode-4


	b1t_flum3.exe now takes significantly less time to create


	Crimes commited through Singularity function no longer give half money/exp (there is now no penalty)


	Improved number formatting for Player ‘work’ actions (including crimes, etc.). These numbers should also adhere to locale settings now (by Kline-)


	The order that Augmentations are listed in (when purchasing from Faction and viewing your Augmentations) is now saved and persists when choosing different orders


	getCharacterInformation() Singularity function now returns multiplier information (from Augmentations/Source Files)


	Bug Fix: Calling print() in NetscriptJS no longer brings up the print dialog


	Bug Fix: Fixed a bug that sometimes caused a blank black screen when destroying/resetting/switching BitNodes


	Bug Fix: Netscript calls that throw errors will now no longer cause the ‘concurrent calls’ error if they are caught in the script. i.e. try/catch should now work properly in scripts


	Bug Fix: Fixed a bug where sometimes the NeuroFlux Governor Augmentation level would be incorrectly calculated when the game was loaded


	Bug Fix: Fixed a bug where calling the scp() Netscript function with invalid hostname/ips would throw an unclear error message


	Bug Fix: Bladeburner API function getActionCountRemaining() should now work properly for BlackOps


	Bug Fix: Black Ops can no longer be attempted out-of-order or without the required rank via Bladeburner API


	Bug Fix: Dynamic RAM Calculation now properly accounts for number of threads


	RAM cost for basic Netscript functions added to documentation (by CBJamo)







v0.40.5 - 10/09/2018


	Added codingcontract.getContractType() Netscript function


	Bug Fix: codingcontract.getData() Netscript function now returns arrays by value rather than reference


	Bug Fix: Decreased highest possible data value for ‘Find Largest Prime Factor’ Coding Contract (to avoid hangs when solving it)


	Bug Fix: Fixed a bug that caused game to freeze during Coding Contract generation







v0.40.4 - 9/29/2018


	Added new Coding Contracts mechanic. Solve programming problems to earn rewards


	The write() and read() Netscript functions now work on scripts


	Added getStockSymbols() Netscript function to the TIX API (by InfraK)


	Added wget() Netscript function


	Added bladeburner.getActionRepGain() function to the Netscript Bladeburner API


	The getLevelUpgradeCost(), getRamUpgradeCost(), and getCoreUpgradeCost() functions in the Hacknet API now return Infinity if the node is at max level. See documentation


	It is now possible to use freely use angled bracket (<, >) and create DOM elements using tprint()


	The game’s theme colors can now be set through the Terminal configuration (.fconf).


	You can now switch to the old left-hand main menu bar through the Terminal configuration (.fconf)


	Bug Fix: grow() percentage is no longer reported as Infinity when a server’s money is grown from 0 to X


	Bug Fix: Infiltration popup now displays the correct amount of exp gained







v0.40.3 - 9/15/2018


	
	Bladeburner Changes:

	
	Increased the effect that agi and dexterity have on action time


	Starting number of contracts/operations available will be slightly lower


	Random events will now happen slightly more often


	Slightly increased the rate at which the Overclock skill point cost increases










	The maximum volatility of stocks is now randomized (randomly generated within a certain range every time the game resets)


	Increased the range of possible values for initial stock prices


	b1t_flum3.exe program can now be created immediately at Hacking level 1 (rather than hacking level 5)


	UI improvements for the character overview panel and the left-hand menu (by mat-jaworski)


	General UI improvements for displays and Terminal (by mat-jaworski)


	Added optional parameters to the getHackTime(), getGrowTime(), and getWeakenTime() Netscript functions


	Added isLogEnabled() and getScriptLogs() Netscript functions


	Added donateToFaction() Singularity function


	Updated documentation to reflect the fact that Netscript port handles (getPortHandle()) only works in NetscriptJS (2.0), NOT Netscript 1.0


	Added tryWrite() Netscript function


	When working (for a company/faction), experience is gained immediately/continuously rather than all at once when the work is finished


	Added a setting in .fconf for enabling line-wrap in the Terminal input


	Adding a game option for changing the locale that most numbers are displayed in (this mostly applies for whenever money is displayed)


	The randomized parameters of many high-level servers can now take on a higher range of values


	Many ‘foreign’ servers (hackable servers that you don’t own) now have a randomized amount of RAM


	Added ‘wget’ Terminal command


	Improved the introductory tutorial







v0.40.2 - 8/27/2018


	
	Bladeburner Changes:

	
	Added getBonusTime(), getSkillUpgradeCost(), and getCity() Netscript functions to the API


	Buffed the effects of many Bladeburner Augmentations


	The Blade’s Simulacrum Augmentation requires significantly less reputation but slightly more money


	Slightly increased the amount of successes needed for a Contract/Operation in order to increase its max level


	Increased the amount of money gained from Contracts by ~25%


	Increased the base amount of rank gained from Operations by 10%


	Significantly increased the ‘randomness’ in determining a Contract/Operation’s initial count and rate of count increase


	The number (count) of Operations should now increase significantly faster


	There are now, on average, more Synthoid communities in a city


	If automation is enabled (the feature in Bladeburner console), then switching to another action such as working for a company will now disable the automation










	
	Stock Market Changes:

	
	Added a watchlist filter feature to the UI that allows you to specify which stocks to show


	Added the Four Sigma (4S) Market Data feed, which provides volatility and price forecast information about stocks


	Added the 4S Market Data TIX API, which lets you access the aforementioned data through Netscript










	There is now a setting for enabling/disabling the popup that appears when you are hospitalized


	Bug Fix: Stock market should now be correctly initialized in BitNode-8 (by Kline-)


	Bug Fix: bladeburner.getCurrentAction() should now properly an ‘Idle’ object rather than null (by Kline-)


	Bug Fix: Bladeburner skill cost multiplier should now properly increase in BitNode-12 (by hydroflame)


	Bug Fix: ‘document’, ‘hacknet’, and ‘window’ keywords should no longer be counted multiple times in RAM calculations


	Bug Fix: Joining factions through Singularity functions should now prevent you from joining opposing factions


	Bug Fix: Four Sigma should no longer have two ‘Speech Enhancement’ Augmentations (by Kline-)







v0.40.1 - 8/5/2018 - Community Update


	Added getPurchasedServerCost() Netscript function (by kopelli)


	Added getFavorToDonate() Netscript function (by hydroflame)


	Added getFactionFavorGain() and getCompanyFavorGain() Singularity functions (by hydroflame)


	Accumulated ‘bonus’ time in Bladeburner is now displayed in the UI (by hydroflame)


	The Red Pill can now be purchased with negative money (since its supposed to be free) (by hydroflame)


	Cranial Signal Processor Augmentations now have the previous generation as a prerequisite. i.e. Cranial Signal Processor - Gen II requires Gen I (by Kline-)


	Terminal now supports semicolon usage (end of command). This allows chaining multiple Terminal commands (by hydroflame)


	Bladeburner Raid operations can no longer be performed if your estimate of Synthoid communities is zero (by hydroflame)


	The difficulty of BN-12 now scales faster (by hydroflame)


	Active Scripts UI now shows a RAM Usage bar for each server (by kopelli)


	Bug Fix: Corrected terminal timestamp format (by kopelli)


	Bug Fix: NetscriptJS scripts should now die properly if they don’t have a ‘main’ function (by hydroflame)


	Bug Fix: write(), read(), and tryWrite() Netscript functions should now work properly for writing Arrays/objects to Netscript Ports


	Various minor UI/QOL fixes by hydroflame, kopelli, and Kline-







v0.40.0 - 7/28/2018


	WARNING: This update makes some significant changes to Netscript and therefore you may need to make some changes to your scripts. See this post [https://www.reddit.com/r/Bitburner/comments/9252j4/psa_netscript_10_changes_in_next_version_v0400/] this post for details


	Netscript 1.0 (NS1) now uses a fully-fledged ES5 JavaScript Interpreter. This means many new features are now available in NS1, and this also fixes several bugs.
However this also means any ES6+ features are no longer supported in NS1


	When a server is hacked with a very large number of threads and left with no money, the server’s security level
now only increases by however many threads were needed to drain the server. For example, if you hack a server with
5000 threads but it only needed 2000 threads to deplete the server’s money, then the server’s security will only increase
as if you had hacked it with 2000 threads (change by hydroflame)


	Added getCurrentAction() to Bladeburner API


	Added a variety of functions to Bladeburner API that deal with action levels (change by hydroflame)


	Added getPurchasedServerLimit() and getPurchasedServerMaxRam() functions to Netscript (change by hydroflame & kopelli)


	Added getOwnedSourceFiles() Singularity function (by hydroflame)


	Completely re-designed the Hacknet Node API


	getSkillLevel() in Bladeburner API now returns an error if no argument is passed in (as opposed to an object with all skill levels). This may break scripts


	Minimum Netscript execution time reduced from 15ms to 10ms (configurable in Options)


	Company reputation needed to get invited to Megacorporation factions decreased from 250k to 200k


	HP is now reset (restored) when Augmenting


	Source-File 6 now increases both the level and experience gain of all combat stats (it was only experience gain previously)


	Reverted a previous change for Source-File 12. It’s benefits are now multiplicative rather than additive


	Starting Infiltration security level for almost every location decreased by ~10%


	Changed ‘fl1ght.exe’ message when its listed conditions are fulfilled (by hydroflame)


	The ‘Save Game’ button in the top-right overview panel now flashes red if autosave is disabled


	Bug Fix: Infiltration buttons can no longer be clicked through NetscriptJS


	Bug Fix: Bladeburner ‘Overclock’ skill can no longer be leveled above max level through the API (by hydroflame)


	Bug Fix: Healthcare division in Bladeburner should no longer cause game to crash







v0.39.1 - 7/4/2018


	Bladeburner Rank gain in BN-7 is now reduced by 40% instead of 50%


	Quadrupled the amount of money gained from Bladeburner contracts


	Added joinBladeburnerDivision() Netscript function to Bladeburner API


	Doubled the effects of Source-File 5. Now gives 8%, 12%, and 14% increase to all hacking multipliers at levels 1, 2, and 3, respectively (increased from 4%/6%, 7%)


	Increased the effect of Source-File 8. It now gives a 12%, 18% and 21% to your hacking growth multiplier at levels 1, 2, and 3, respectively (increased from 8%, 12%, 14%)


	The effect of Source-File 12 is now additive with itself, rather than multiplicative. This means that level N of Source-File 12 now increases all multipliers by N%


	The setting to suppress the confirmation box when purchasing Augmentations was moved into the main Options menu (by Github user hydroflame)


	Bug Fix: Crime Success rates were being calculated incorrectly (by Github user hydroflame)


	When an Infiltration is finished, you will now return back to the company’s page, rather than the city


	Infiltration faction reputation selector now remembers your last choice


	Significantly increased the amount of money gained from Infiltration


	Bug Fix: Copying a NetscriptJS script to another server using scp now properly takes into account the script’s changes.


	Bug Fix: Fixed an issue where game would not load in Edge due to incompatible features


	travelToCity() Singularity function no longer grants Intelligence exp”







v0.39.0 - 6/25/2018


	Added BitNode-7: Bladeburner 2079


	Infiltration base difficulty decreased by 10% for most locations


	Experience gains from Infiltration slightly increased


	Money gained from Infiltration increased by 20%


	Added ‘var’ declarations in Netscript 1.0 (only works with ‘var’, not ‘let’ or ‘const’)


	Script base RAM cost is now 1.6 GB (increased from 1.4 GB)


	While/for loops and if statements no longer cost RAM in scripts


	Made short-circuit evaluation logic more consistent in Netscript 1.0 (see https://github.com/danielyxie/bitburner/issues/308)


	Changelog button in the Options menu now links to the new Changelog URL (by Github user thePalindrome)


	Skill level calculation is now ‘smoother’ (by Github user hydroflame)


	Added a button to ‘beautify’ scripts in the text editor (by Github user hydroflame)


	Added favicon (by Github user kopelli)







v0.38.1 - 6/15/2018


	Bug Fix: Using ‘Object.prototype’ functions like toLocaleString() or toString() should no longer cause errors in NetscriptJS


	
	Implemented by Github user hydroflame:

	
	Accessing the ‘window’ and ‘document’ objects in Netscript JS now requires a large amount of RAM (100 GB)


	Added game option to suppress travel confirmation


	Text on buttons can no longer be highlighted


	Bug Fix: Fixed an issue that caused NaN values when exporting Real Estate in Corporations


	Bug Fix: Competition and Demand displays in Corporation are now correct (were reversed before)


	Added ps() Netscript function


	Bug Fix: grow() should no longer return/log a negative value when it runs on a server that’s already at max money


	Bug Fix: serverExists() Netscript function should now properly return false for non-existent hostname/ips


	Bug Fix: Sever’s security level should now properly increase when its money is grown to max value















v0.38.0 - 6/12/2018


	New BitNode: BN-12 The Recursion - Implemented by Github user hydroflame


	
	Bladeburner Changes:

	
	Bladeburner progress is no longer reset when installing Augmentations


	The number of successess needed to increase a Contract/Operation’s max level now scales with the current max level (gradually gets harder)


	All Bladeburner Augmentations are now slightly more expensive and require more reputation


	Black Operations now give higher rank rewards


	Doubled the base amount of money gained from Contracts


	Increased the amount of experience gained from Contracts/Actions


	Added a new Augmentation: The Blade’s Simulacrum


	Bladeburner faction reputation gain is now properly affected by favor










	Hacking is now slightly less profitable in BitNode-3


	Updated Hacknet Nodes UI - Implemented by Github user kopelli


	Bug Fix: Fixed an exploit that allowed calling any Netscript function without incurring any RAM Cost in NetscriptJS







v0.37.2 - 6/2/2018


	After joining the Bladeburners division, there is now a button to go to the Bladeburner content
in the ‘City’ page


	You now start with $250m in BitNode-8 (increased from $100m)


	Bug Fix: You can now no longer directly edit Hacknet Node values through NetscriptJS (hopefully)


	Bug Fix: Bladeburners is no longer accessible in BN-8


	Bug Fix: getBitNodeMultipliers() Netscript function now returns a copy rather than the original object







v0.37.1 - 5/22/2018


	You now earn money from successfully completing Bladeburner contracts. The amount you earn is based
on the difficulty of the contract.


	Completing Field Analysis in Bladeburner now grants 0.1 rank


	The maximum RAM you can get on a purchased server is now 1,048,576 GB (2^20)


	Bug Fix: Fixed Netscript syntax highlighting issues with the new NetscriptJS


	Bug Fix: Netscript Functions now properly incur RAM costs in NetscriptJS


	Bug Fix: deleteServer() now fails if its called on the server you are currently connected to


	Removed in-game Netscript documentation, since it was outdated and difficult to maintain.


	Bug Fix: Updated the gymWorkout() Singularity function with the new exp/cost values for gyms







v0.37.0 - 5/20/2018


	NetscriptJS (Netscript 2.0) released (Documentation here: http://bitburner.readthedocs.io/en/latest/netscriptjs.html)


	Running the game with the ‘?noScripts’ query will start the game without loading any of your scripts. This should be used if you accidentally write a script that crashes your game







v0.36.1 - 5/11/2018


	
	Bladeburner Changes:

	
	Bug Fix: You can no longer get Bladeburner faction reputation through Infiltration


	Initial difficulty of Tracking contracts reduced


	Datamancer skill effect increased from 4% per level to 5%


	Slightly decreased the base stamina cost of contracts/operations


	Slightly increased the effects of the Tracer, Digital Observer, Short Circuit, Cloak, and Blade’s Intuition skills


	Overclock skill capped at level 95, rather than 99


	Training gives significantly more exp/s










	Crime, Infiltration, and Hacking are now slightly more profitable in BN-6


	Gyms are now more expensive, but give slightly more exp


	Added getScriptName() and getHacknetMultipliers() Netscript functions (added by Github user hydroflame)


	getScriptRam() Netscript function now has default value for the second argument, which is hostname/ip (implemented by Github user hydroflame)


	There is now a soft-cap on stock price, which means it’s no longer possible for the price of a stock to reach insanely-high values


	The ctrl+b hotkey in the text editor should now also be triggered by command+b on OSX (I don’t have OSX so I can’t confirm if this works)


	Many servers now have additional RAM


	Added an option to disable hotkeys/keyboard shortcuts


	Refactored ‘Active Scripts’ UI page to optimize its performance


	Added a new .fconf Terminal setting: ENABLE_TIMESTAMP


	‘Netscript Execution Time’, which can be found in the Options, now has a minimum value of 15ms rather than 25ms


	Bug Fix: Fixed a typo in the Fulcrum Technologies company name (Technolgies -> Technologies)


	Bug Fix: hacknetnodes keyword should no longer incur RAM cost if its in a comment


	Bug Fix: disableLog() now works for the commitCrime() Netscript function (fixed by Github user hydroflame)







v0.36.0 - 5/2/2018


	Added BN-6: Bladeburners


	Rebalanced many combat Augmentations so that they are slightly less powerful


	Bug Fix: When faction invites are suppressed, an invitation will no longer load the Faction page







v0.35.2 - 3/26/2018


	
	Corporation Changes:

	
	Fixed an issue with Warehouse upgrade cost. Should now be significantly cheaper than before.


	Scientific Research now has a slightly more significant effect on Product quality


	The Energy and Water Utilities industries are now slightly more profitable


	The Robotics and Computer Hardware industries are now less profitable


	The Software industry is slightly less profitable


	When selling Materials and Products, the ‘PROD’ qualifier can now be used to set dynamic sell amounts based on your production


	Exporting MAX should now work properly


	You can no longer export past storage limits


	Scientific Research production reduced


	Effects of AdVert. Inc upgrade were reduced, but the effect that popularity and awareness have on sales was increased to compensate (popularity/awareness numbers were getting too big with Advert. Inc)


	Bug Fix: Products from Computer Hardware division should now properly have ratings










	Improved Augmentation UI/UX. Now contains collapsible headers and sort buttons


	Improved Faction Augmentations display UI/UX. Now contains sort buttons. There is also an option to disable confirmation when purchasing Augmentations







v0.35.1 - 3/12/2018


	You can now easily download all of your scripts/text files as zip folders. Use the ‘help download’ Terminal command for details


	Scripts are now downloaded with the .script.js extension at the end of their filename


	
	Corporation Management Changes:

	
	Implemented Smart Supply unlock


	Changed the way a division’s Production Multiplier is calculated. It is now the sum of the individual Production Multiplier for every city. Therefore, it is now beneficial to open offices in different cities


	Several small UI/UX improvements


	Numerous balance changes. The significant ones are listed below.


	Product descriptions will now display their estimated market price


	The sale price of Products can no longer be marked up as high as before


	Scientific Research now affects the rating of Products


	In general, the maximum amount of product you are able to sell is reduced


	Sale bonus from advertising (popularity/awareness) now has diminishing returns rather than scaling linearly










	Experience gained during Infiltration now scales linearly based on the clearance level you reach. Compared to before, the experience gained will be much less at lower clearance levels, but much more at higher clearance levels


	The editor can now be used to edit both scripts and text files


	New Terminal config file that can be edited using the command ‘nano .fconf’. Right now there is only one option, but there will be more in the future.


	You can now enable Bash-style Terminal hotkeys using the .fconf file referenced above


	Bug Fix: Fixed an issue with the UI elements of Gang Management persisting across different instances of BitNode-2







v0.35.0 - 3/3/2018


	Minor rebalancing of BitNodes due to the fact that Corporations provide a (relatively) new method of progressing


	
	Corporation Management Changes:

	
	Once your Corporation gets big/powerful enough, you can now bribe Factions for reputation using company funds an/or stock shares


	You can now only create one Division for every Industry type


	Added several new UI/UX elements


	Wilson Analytics multiplier was significantly reduced to 1% per level (additive).


	Reduced the effect of Advert Inc upgrade. Advert Inc. upgrade price increases faster


	Materials can now be marked up at higher prices










	Added Javascript’s built-in Number object to Netscript


	Added getCharacterInformation(), getCompanyFavor(), and getFactionFavor() Netscript Singularity functions


	Rebalanced Singularity Function RAM Costs. They now cost x8 as much when outside of BN-4 (rather than x10). Also, many of the functions now use significantly less RAM


	Refactored Netscript Ports. You can now get a handle for a Netscript port using the getPortHandle() Netscript function. This allows you to access a port’s underlying queue (which is just an array) and also makes several new functions available such as tryWrite(), full(), and empty().


	Number of Netscript Ports increased from 10 to 20


	Netscript assignments should now return proper values. i.e. i = 5 should return 5.


	Added throw statements to Netscript. It’s not super useful since ‘catch’ isn’t implemented, but it can be used to generate custom runtime error messages.


	Added import declaration to Netscript. With this, you are able to import functions (and only functions) from other files. Using export declarations is not necessary


	Most Netscript Runtime errors (the ones that cause your script to crash) should now include the line number where the error occured


	When working for a company, your current company reputation is now displayed


	Whenever you get a Faction Invite it will be immediately appended to your ‘invited factions’ list. Therefore the checkFactionInvitations() Singularity Function should now be properly useable since you no longer need to decline a Faction Invitation before it shows up in the result.


	Bug Fix: When purchasing servers, whitespace should now automatically be removed from the hostname


	Bug Fix: Can no longer have whitespace in the filename of text files created using write()


	Bug Fix: In Netscript, you can no longer assign a Hacknet Node handle (hacknetnodes[i]) to another value


	Bug Fix: If you are in the Factions tab when you accept an invitation from a Faction, the page will now properly ‘refresh’


	Bug Fix: Scripts that run recursive functions should now be killed properly







v0.34.5 - 2/24/2018


	
	Corporation Management Changes:

	
	Market Research unlocks are now cheaper


	New ‘VeChain’ upgrade: displays useful statistics about Corporation


	Corporation cycles are processed 25% faster


	Corporation valuation was lowered by ~10% (this affects stock price and investments)


	Rebalanced the effects of advertising. Should now be more effective for every Industry


	Fixed several bugs/exploits involving selling and buying back stock shares


	You will now receive a Corporation Handbook (.lit file) when starting out BitNode-3. It contains a brief guide to help you get started. This same handbook can be viewed from the Corporation management screen


	Slightly decreased the amount by which a Product’s sell price can be marked up


	Employees can now be assigned to a ‘Training’ task, during which they will slowly increase several of their stats










	Hopefully fixed an exploit with Array.forEach(). If there are any issues with using forEach, let me know


	Arguments passed into a script are now passed by value. This means modifying the ‘args’ array in a script should no longer cause issues


	Scripts executed programatically (via run(), exec(), etc.) will now fail if null/undefined is passed in as an argument


	Added peek() Netscript function


	killall() Netscript function now returns true if any scripts were killed, and false otherwise.


	hack() Netscript function now returns the amount of money gained for successful hacks, and 0 for failed hacks


	scp Terminal command and Netscript function now work for txt files


	
	Changes courtesy of Wraithan:

	
	Text files are now displayed using ‘pre’ rather than ‘p’ elements when using the ‘cat’ Terminal command. This means tabs are retained and lines don’t automatically wrap


	ls() Netscript function now returns text files as well










	Removed round() Netscript function, since you can just use Math.round() instead


	Added disableLog() and enableLog() Netscript functions


	Removed the ‘log’ argument from sleep(), since you can now use the new disableLog function


	‘Netscript Documentation’ button on script editor now points to new readthedocs documentation rather than wiki


	When working for a faction, your current faction reputation is now displayed


	Bug Fix: Hacking Missions should no longer break when dragging an existing connection to another Node


	Bug Fix: Fixed RAM usage of getNextHacknetNodeCost() (is not 1.5GB instead of 4GB)







v0.34.4 - 2/14/2018


	Added several new features to Gang UI to make it easier to manage your Gang.


	Changed the Gang Member upgrade mechanic. Now, rather than only being able to have one weapon/armor/vehicle/etc., you can purchase all the upgrades for each Gang member and their multipliers will stack. To balance this out, the effects (AKA multipliers) of each Gang member upgrade were reduced.


	Added a new script editor option: Max Error Count. This affects how many approximate lines the script editor will process (JSHint) for common errors. Increasing this option can affect negatively affect performance


	Game theme colors (set using ‘theme’ Terminal command) are now saved when re-opening the game


	‘download’ Terminal command now works on scripts


	Added stopAction() Singularity function and the spawn() Netscript function


	The ‘Purchase Augmentations’ UI screen will now tell you if you need a certain prerequisite for Augmentations.


	Augmentations with prerequisites can now be purchased as long as their prerequisites are puchased (before, you had to actually install the prerequisites before being able to purchase)







v0.34.3 - 1/31/2018


	
	Minor balance changes to Corporations:

	
	Upgrades are generally cheaper and/or have more powerful effects.


	You will receive more funding while your are a private company.


	Product demand decreases at a slower rate.


	Production multiplier for Industries (receives for owning real estate/hardware/robots/etc.) is slightly higher










	Accessing the hacknetnodes array in Netscript now costs 4.0GB of RAM (only counts against RAM usage once)


	Bug Fix: Corporation oustanding shares should now be numeric rather than a string


	Bug Fix: Corporation production now properly calculated for industries that dont produce materials.


	Bug Fix: Gangs should now properly reset when switching BitNodes


	Bug Fix: Corporation UI should now properly reset when you go public







v0.34.2 - 1/27/2018


	
	Corporation Management Changes:

	
	Added advertising mechanics


	Added Industry-specific purchases


	Re-designed employee management UI


	Rebalancing: Made many upgrades/purchases cheaper. Receive more money from investors in early stage. Company valuation is higher after going public


	Multiple bug fixes










	Added rm() Netscript function


	Updated the way script RAM usage is calculated. Now, a function only increases RAM usage the first time it is called. i.e. even if you call hack() multiple times in a script, it only counts against RAM usage once. The same change applies for while/for loops and if conditionals.


	
	The RAM cost of the following were increased:

	
	If statements: increased by 0.05GB


	run() and exec(): increased by 0.2GB


	scp(): increased by 0.1GB


	purchaseServer(): increased by 0.25GB










	Note: You may need to re-save all of your scripts in order to re-calculate their RAM usages. Otherwise, it should automatically be re-calculated when you reset/prestige


	The cost to upgrade your home computer’s RAM has been increased (both the base cost and the exponential upgrade multiplier)


	The cost of purchasing a server was increased by 10% (it is now $55k per RAM)


	Bug fix: (Hopefully) removed an exploit where you could avoid RAM usage for Netscript function calls by assigning functions to a variable (foo = hack(); foo(‘helios’);)


	Bug fix: (Hopefully) removed an exploit where you could run arbitrary Javascript code using the constructor() method


	Thanks to Github user mateon1 and Reddit users havoc_mayhem and spaceglace for notifying me of the above exploits


	The fileExists() Netscript function now works on text files (.txt). Thanks to Github user devoidfury for this







v0.34.1 - 1/19/2018


	
	Updates to Corporation Management:

	
	Added a number of upgrades to various aspects of your Corporation


	Rebalanced the properties of Materials and the formula for determining the valuation of the Corporation


	Fixed a number of bugs










	‘Stats’ page now shows information about current BitNode


	You should now be able to create Corporations in other BitNodes if you have Source-File 3


	Added a new create-able program called b1t_flum3.exe. This program can be used to reset and switch BitNodes


	Added an option to adjust autosave interval


	Line feeds, newlines, and tabs will now work with the tprint() Netscript function


	Bug fix: ‘check’ Terminal command was broken


	Bug fix: ‘theme’ Terminal command was broken when manually specifying hex codes


	Bug fix: Incorrect promotion requirement for ‘Business’-type jobs


	Bug fix: Settings input bars were incorrectly formatted when loading game







v0.34.0 - 12/6/2017


	Added clear() and exit() Netscript functions


	When starting out or prestiging, you will now receive a ‘Hacking Starter Guide’. It provides tips/pointers for new players


	Doubled the amount of RAM on low-level servers (up to required hacking level 150)


	Slightly increased experience gain from Infiltration


	buyStock(), sellStock(), shortStock(), and sellShort() Netscript function now return the stock price at which the transaction occurred, rather than a boolean. If the function fails for some reason, 0 will be returned.


	
	Hacking Mission Changes:

	
	You can now select multiple Nodes of the same type by double clicking. This allows you to set the action of all of selected nodes at once (e.g. set all Transfer Nodes to Fortify). Creating connections does not work with this multi-select functionality yet


	Shield and Firewall Nodes can now fortify


	The effects of Fortifying are now ~5% lower


	Conquering a Spam Node now increases your time limit by 25 seconds instead of 15


	Damage dealt by Attacking was slightly reduced


	The effect of Scanning was slightly reduced


	Enemy CPU Core Nodes start with slightly more attack. Misc Nodes start with slightly less defense










	
	Corporation Management changes:

	
	Added several upgrades that unlock new features


	Implemented Exporting mechanic


	Fixed many bugs















v0.33.0 - 12/1/2017


	Added BitNode-3: Corporatocracy. In this BitNode you can start and manage your own corporation. This feature is incomplete. Much more will be added to it in the near future


	Minor bug fixes







v0.32.1 - 11/2/2017


	Updated Netscript’s ‘interpreter/engine’ to use the Bluebird promise library instead of native promises. It should now be faster and more memory-efficient. If this has broken any Netscript features please report it through Github or the subreddit (reddit.com/r/bitburner)


	Rebalanced stock market (adjusted parameters such as the volatility/trends/starting price of certain stocks)


	Added prompt() Netscript function


	Added ‘Buy Max’ and ‘Sell All’ functions to Stock Market UI


	Added ‘Portfolio’ Mode to Stock Market UI so you can only view stocks you have a position/order in


	Added a button to kill a script from its log display box







v0.32.0 - 10/25/2017


	Added BitNode-8: Ghost of Wall Street


	Re-designed Stock Market UI


	Minor bug fixes







v0.31.0 - 10/15/2017


	Game now saves to IndexedDb (if your browser supports it). This means you should no longer have trouble saving the game when your save file gets too big (from running too many scripts). The game will still be saved to localStorage as well


	New file type: text files (.txt). You can read or write to text files using the read()/write() Netscript commands. You can view text files in Terminal using ‘cat’. Eventually I will make it so you can edit them in the editor but that’s not available yet. You can also download files to your real computer using the ‘download’ Terminal command


	Added a new Crime: Bond Forgery. This crime takes 5 minutes to attempt and gives $4,500,000 if successful. It is meant for mid game.


	Added commitCrime(), getCrimeChance(), isBusy(), and getStats() Singularity Functions.


	Removed getIntelligence() Netscript function


	Added sprintf and vsprintf to Netscript. See [https://github.com/alexei/sprintf.js this Github page for details]


	Increased the amount of money gained from Infiltration by 20%, and the amount of faction reputation by 12%


	Rebalanced BitNode-2 so that Crime and Infiltration are more profitable but hacking is less profitable. Infiltration also gives more faction rep


	Rebalanced BitNode-4 so that hacking is slightly less profitable


	Rebalanced BitNode-5 so that Infiltration is more profitable and gives more faction rep


	Rebalanced BitNode-11 so that Crime and Infiltration are more profitable. Infiltration also gives more faction rep.


	Fixed an annoying issue in Hacking Missions where sometimes you would click a Node but it wouldnt actually get selected


	Made the Hacking Mission gameplay a bit slower by lowering the effect of Scan and reducing Attack damage


	Slightly increased the base reputation gain rate for factions when doing Field Work and Security Work







v0.30.0 - 10/9/2017


	Added getAugmentations() and getAugmentationsFromFaction() Netscript Singularity Functions


	Increased the rate of Intelligence exp gain


	Added a new upgrade for home computers: CPU Cores. Each CPU core on the home computer grants an additional starting Core Node in Hacking Missions. I may add in other benefits later. Like RAM upgrades, upgrading the CPU Core on your home computer persists until you enter a new BitNode.


	Added lscpu Terminal command to check number of CPU Cores


	Changed the effect of Source-File 11 and made BitNode-11 a little bit harder


	Fixed a bug with Netscript functions (the ones you create yourself)


	
	Hacking Missions officially released (they give reputation now). Notable changes in the last few updates:

	
	Misc Nodes slowly gain hp/defense over time


	Conquering a Misc Node will increase the defense of all remaining Misc Nodes that are not being targeted by a certain percentage


	Reputation reward for winning a Mission is now affected by faction favor and Player’s faction rep multiplier


	Whenever a Node is conquered, its stats are reduced















v0.29.3 - 10/3/2017


	Fixed bug for killing scripts and showing error messages when there are errors in a player-defined function


	Added function name autocompletion in Script Editor. Press Ctrl+space on a prefix to show autocompletion options.


	Minor rebalancing and bug fixes for Infiltration and Hacking Missions







v0.29.2 - 10/1/2017


	installAugmentations() Singularity Function now takes a callback script as an argument. This is a script that gets ran automatically after Augmentations are installed. The script is run with no arguments and only a single thread, and must be found on your home computer.


	Added the ability to create your own functions in Netscript. See [[Netscript Functions|this link]] for details


	Added :q, :x, and :wq Vim Ex Commands when using the Vim script editor keybindings. :w, :x, and :wq will all save the script and return to Terminal. :q will quit (return to Terminal) WITHOUT saving. If anyone thinks theres an issue with this please let me know, I don’t use Vim


	Added a new Augmentation: ADR-V2 Pheromone Gene


	In Hacking Missions, enemy nodes will now automatically target Nodes and perform actions.


	Re-balanced Hacking Missions through minor tweaking of many numbers


	The faction reputation reward for Hacking Missions was slightly increased







v0.29.1 - 9/27/2017


	New gameplay feature that is currently in BETA: Hacking Missions. Hacking Missions is an active gameplay mechanic (its a minigame) that is meant to be used to earn faction reputation. However, since this is currently in beta, hacking missions will NOT grant reputation for the time being, since the feature likely has many bugs, balance problems, and other issues. If you have any feedback regarding the new feature, feel free to let me know


	CHANGED THE RETURN VALUE OF getScriptIncome() WHEN RAN WITH NO ARGUMENTS. It will now return an array of two values rather than a single value. This may break your scripts, so make sure to update them!


	Added continue statement for for/while loops


	Added getServerMinSecurityLevel(), getPurchasedServers(), and getTimeSinceLastAug() Netscript functions


	Netscript scp() function can now take an array as the first argument, and will try to copy every file specified in the array (it will just call scp() normally for every element in the array). If an array is passed in, then the scp() function returns true if at least one element from the array is successfully copied


	Added Javascript’s Date module to Netscript. Since ‘new’ is not supported in Netscript yet, only the Date module’s static methods will work (now(), UTC(), parse(), etc.).


	Failing a crime now gives half the experience it did before


	The forced repeated ‘Find The-Cave’ message after installing The Red Pill Augmentation now only happens if you’ve never destroyed a BitNode before, and will only popup every 15 minutes. If you have already destroyed a BitNode, the message will not pop up if you have messages suppressed (if you don’t have messages suppressed it WILL still repeatedly popup)


	fileExists() function now works on literature files







v0.29.0 - 9/19/2017


	Added BitNode-5: Artificial Intelligence


	Added getIp(), getIntelligence(), getHackingMultipliers(), and getBitNodeMultipliers() Netscript functions (requires Source-File 5)


	Updated scan() Netscript function so that you can choose to have it print IPs rather than hostnames


	Refactored scp() Netscript function so that it takes an optional ‘source server’ argument


	For Infiltration, decreased the percentage by which the security level increases by about 10% for every location


	Using :w in the script editor’s Vim keybinding mode should now save and quit to Terminal


	Some minor optimizations that should reduce the size of the save file


	scan-analyze Terminal command will no longer show your purchased servers, unless you pass a ‘-a’ flag into the command


	After installing the Red Pill augmentation from Daedalus, the message telling you to find ‘The-Cave’ will now repeatedly pop up regardless of whether or not you have messages suppressed


	Various bugfixes







v0.28.6 - 9/15/2017


	Time required to create programs now scales better with hacking level, and should generally be much faster


	Added serverExists(hostname/ip) and getScriptExpGain(scriptname, ip, args…) Netscript functions


	Short circuiting && and || logical operators should now work


	Assigning to multidimensional arrays should now work


	Scripts will no longer wait for hack/grow/weaken functions to finish if they are killed. They will die immediately


	The script loop that checks whether any scripts need to be started/stopped now runs every 6 seconds rather than 10 (resulting in less delays when stopping/starting scripts)


	Fixed several bugs/exploits


	Added some description for BitNode-5 (not implemented yet, should be soon though)







v0.28.5 - 9/13/2017


	The fl1ght.exe program that is received from jump3r is now sent very early on in the game, rather than at hacking level 1000


	Hostname is now displayed in Terminal


	Syntax highlighting now works for all Netscript functions


	Export should now work on Edge/IE







v0.28.4 - 9/11/2017


	Added getScriptIncome() Netscript function


	Added Javascript’s math module to Netscript. See [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math this link for details]


	Added several member variables for the Hacknet Node API that allow you to access info about their income


	All valid Netscript functions are now syntax highlighted as keywords in the editor. This means they will a different color than invalid netscript functions. The color will depend on your theme. Note that right now, this only applies for normal Netscript functions, not functions in the TIX API, Hacknet Node API, or Singularity Functions.


	Comments and operators no longer count towards RAM usage in scripts.


	Variety of bug fixes and updates to informational text in the game







v0.28.3 - 9/7/2017


	Added ls() Netscript function


	Increased company wages by about ~10% across the board


	The scp() Netsction function and Terminal command now works for .lit files


	Increased the amount of RAM on many lower level servers (up to level 200 hacking level required).







v0.28.2 - 9/4/2017


	Added several configuration options for script editor (key bindings, themes, etc.)


	Certain menu options will now be hidden until their relevant gameplay is unlocked. This includes the Factions, Augmentations, Create Program, Travel, and Job tabs. This will only affect newer players.


	Most unrecognize or un-implemented syntax errors in Netscript will now include the line number in the error message







v0.28.1 - 9/1/2017


	The script editor now uses the open-source Ace editor, which provides a much better experience when coding!


	Added tprint() Netscript function







v0.28.0 - 8/30/2017


	Added BitNode-4: The Singularity


	Added BitNode-11: The Big Crash


	Migrated the codebase to use webpack (doesn’t affect any in game content, except maybe some slight performance improvements and there may be bugs that result from dependency errors







v0.27.3 - 8/19/2017


	You can now purchase upgrades for Gang Members (BitNode 2 only)


	Decreased Gang respect gains and slightly increased wanted gains (BitNode 2 only)


	Other gangs will increase in power faster (BitNode 2 only)


	Added getHackTime(), getGrowTime(), and getWeakenTime() Netscript functions







v0.27.2 - 8/18/2017


	Added getServerGrowth() Netscript function


	Added getNextHacknetNodeCost() Netscript function


	Added new ‘literature’ files (.lit extension) that are used to build lore for the game. These .lit files can be found in certain servers throughout the game. They can be viewed with the ‘cat’ Terminal command and copied over to other servers using the ‘scp’ command. These .lit files won’t be found until you reset by installing Augmentations


	Fixed some bugs with Gang Territory(BitNode 2 only)







v0.27.1 - 8/15/2017


	Changed the way Gang power was calculated to make it scale better late game (BitNode 2 only)


	Lowered the respect gain rate in Gangs (Bitnode 2 only)


	Added ‘| grep pattern’ option for ls Terminal command. This allows you to only list files that contain a certain pattern


	Added break statement in Netscript


	Display for some numerical values is now done in shorthand (e.g 1.000m instead of 1,000,000)







v0.27.0 - 8/13/2017


	Added secondary ‘prestige’ system - featuring Source Files and BitNodes


	MILD SPOILERS HERE: Installing ‘The Red Pill’ Augmentation from Daedalus will unlock a special server called w0r1d_d43m0n. Finding and manually hacking this server through Terminal will destroy the Player’s current BitNode, and allow the player to enter a new one. When destroying a BitNode, the player loses everything except the scripts on his/her home computer. The player will then gain a powerful second-tier persistent upgrade called a Source File. The player can then enter a new BitNode to start the game over. Each BitNode has different characteristics, and many will have new content/mechanics as well. Right now there are only 2 BitNodes. Each BitNode grants its own unique Source File. Restarting and destroying a BitNode you already have a Source File for will upgrade your Source File up to a maximum level of 3.


	Reputation gain with factions and companies is no longer a linear conversion, but an exponential one. It will be much easier to gain faction favor at first, but much harder later on.


	Significantly increased Infiltration exp gains


	Fixed a bug with company job requirement tooltips


	Added scriptRunning(), scriptKill(), and getScriptRam() Netscript functions. See documentation for details


	Fixed a bug with deleteServer() Netscript function







v0.26.4 - 8/1/2017


	All of the ‘low-level servers’ in early game that have a required hacking level now have 8GB of RAM instead of 4GB


	Increased the amount of experience given at university


	Slightly increased the production of Hacknet Nodes and made them cheaper to upgrade


	Infiltration now gives slightly more EXP and faction reputation


	Added two new crimes. These crimes are viable to attempt early on in the game and are relatively passive (each take 60+ seconds to complete)


	Crimes give more exp and more money


	Max money available on a server decreased from 50x the server’s starting money to 25x


	Significantly increased wages for all jobs







v0.26.3


	Added support for large numbers using Decimal.js. Right now it only applies for the player’s money


	Purchasing servers with the Netscript function purchaseServer() is no longer 2x as expensive as doing manually it now costs the same


	Early game servers have more starting money







v0.26.2


	Major rebalancing and randomization of the amount of money that servers start with


	Significantly lowered hacking exp gain from hacking servers. The exp gain for higher-level servers was lowered more than that of low level servers. (~16% for lower level servers, up to ~25% for higher-level servers)


	Added deleteServer() Netscript function


	You can now purchase a maximum of 25 servers each run (Deleting a server will allow you to purchase a new one)


	Added autocompletion for ‘./’ Terminal command


	Darkweb prices now displayed properly using toLocaleString()


	Added NOT operator (!) and negation operator(-) in Netscript, so negative numbers should be functional now


	Rejected faction invitations will now show up as ‘Outstanding Faction Invites’ in the Factions page. These can be accepted at any point in the future


	Added a few more configurable game settings for suppressing messages and faction invitations


	Added tooltips for company job requirements







v0.26.1


	Added autocompletion for aliases


	Added getServerRam() Netscript function()


	Added getLevelUpgradeCost(n), getRamUpgradeCost(), getCoreUpgradeCost() functions for Netscript Hacknet Node API


	Added some configurable settings (See Game Options menu)







v0.26.0


	Game now has a real ending, although it’s not very interesting/satisfying right now. It sets up the framework for the secondary prestige system in the future


	Forgot to mention that since last update, comments now work in Netscript. Use // for single line comments or /* and */ for multiline comments just like in Javascript


	Added ports to Netscript. These ports are essentially serialized queues. You can use the write() Netscript function to write a value to a queue, and then you can use the read() Netscript function to read the value from the queue. Once you read a value from the queue it will be removed. There are only 10 queues (1-10), and each has a maximum capacity of 50 entries. If you try to write to a queue that is full, the the first value is removed. See wiki/Netscript documentation for more details


	You can now use the ‘help’ Terminal command for specific commands


	You can now use ‘./’ to run a script/program (./NUKE.exe). However, tab completion currently doesn’t work for it (I’m working on it)


	Decreased the base growth rate of servers by ~25%


	Both the effect of weaken() and its time to execute were halved. In other words, calling weaken() on a server only lowers its security by 0.05 (was 0.1 before) but the time to execute the function is half of what it was before. Therefore, the effective rate of weaken() should be about the same


	Increased all Infiltration rewards by ~10%, and increased infiltration rep gains by an additional 20% (~32% total for rep gains)


	The rate at which the security level of a facility increases during Infiltration was decreased significantly (~33%)


	Getting treated at the Hospital is now 33% more expensive


	Slightly increased the amount of time it takes to hack a server


	Slightly decreased the amount of money gained when hacking a server (~6%)


	Slightly decreased the base cost for RAM on home computer, but increased the cost multiplier. This means that upgrading RAM on the home computer should be slightly cheaper at the start, but slightly more expensive later on


	Increased the required hacking level for many late game servers


	The sleep() Netscript function now takes an optional ‘log’ argument that specifies whether or not the ‘Sleeping for N milliseconds’ will be logged for the script


	Added clearLog() Netscript function


	Deleted a few stocks. Didn’t see a reason for having so many, and it just affects performance. Won’t take effect until you reset by installing Augmentations


	There was a typo with Zeus Medical’s server hostname. It is now ‘zeus-med’ rather than ‘zeud-med’


	Added keyboard shortcuts to quickly navigate between different menus. See wiki link (http://bitburner.wikia.com/wiki/Shortcuts)


	Changed the Navigation Menu UI







v0.25.0


	Refactored Netscript to use the open-source Acorns Parser. This re-implementation was done by [https://github.com/MrNuggelz Github user MrNuggelz]. This has resulted in several changes in the Netscript language. Some scripts might break because of these changes. Changes listed below:


	Arrays are now fully functional Javascript arrays. You no longer need to use the ‘Array’ keyword to declare them.


	The length(), clear/clear(), insert(), and remove() functions no longer work for arrays.


	All Javascript array methods are available (splice(), push(), pop(), join(), shift(), indexOf(), etc. See documentation)


	Variables assigned to arrays are now passed by value rather than reference


	Incrementing/Decrementing are now available (i++, ++i)


	You no longer need semicolons at the end of block statements


	Elif is no longer valid. Use ‘else if’ instead


	Netscript’s Hacknet Node API functions no longer log anything


	Stock prices now update every ~6 seconds when the game is active (was 10 seconds before)


	Added a new mechanic that affects how stock prices change


	Script editor now has dynamic indicators for RAM Usage and Line number


	Augmentation Rebalancing - Many late game augmentations are now slightly more expensive. Several early game augmentations had their effects slightly decreased


	Increased the amount of rewards (both money and rep) you get from infiltration


	Purchasing servers is now slightly more expensive


	Calling the Netscript function getServerMoneyAvailable(‘home’) now return’s the player’s money


	Added round(n) Netscript function - Rounds a number


	Added purchaseServer(hostname, ram) Netscript function


	Added the TIX API. This must be purchased in the WSE. It persists through resets. Access to the TIX API allows you to write scripts that perform automated algorithmic trading. See Netscript documentation


	Minor rebalancing in a lot of different areas


	Changed the format of IP Addresses so that they are smaller (will consist mostly of single digit numbers now). This will reduce the size of the game’s save file.







v0.24.1


	Adjusted cost of upgrading home computer RAM. Should be a little cheaper for the first few upgrades (up to ~64GB), and then will start being more expensive than before. High RAM upgrades should now be significantly more expensive than before.


	Slightly lowered the starting money available on most mid-game and end-game servers (servers with required hacking level greater than 200) by about 10-15%


	Rebalanced company/company position reputation gains and requirements


	Studying at a university now gives slightly more EXP and early jobs give slightly less EXP


	Studying at a university is now considerably more expensive


	Rebalanced stock market


	Significantly increased cost multiplier for purchasing additional Hacknet Nodes


	The rate at which facility security level increases during infiltration for each clearance level was lowered slightly for all companies


	Updated Faction descriptions


	Changed the way alias works. Normal aliases now only work at the start of a Terminal command (they will only replace the first word in the Terminal command). You can also create global aliases that work on any part of the command, like before. Declare global aliases by entering the optional -g flag: alias -g name=”value” - [https://github.com/MrNuggelz Courtesy of Github user MrNuggelz]


	‘top’ Terminal command implemented courtesy of [https://github.com/LTCNugget Github user LTCNugget]. Currently, the formatting gets screwed up if your script names are really long.







v0.24.0


	Players now have HP, which is displayed in the top right. To regain HP, visit the hospital. Currently the only way to lose HP is through infiltration


	Infiltration - Attempt to infiltrate a company and steal their classified secrets. See ‘Companies’ documentation for more details


	Stock Market - Added the World Stock Exchange (WSE), a brokerage that lets you buy/sell stocks. To begin trading you must first purchase an account. A WSE account will persist even after resetting by installing Augmentations. How the stock market works should hopefully be self explanatory. There is no documentation about it currently, I will add some later. NOTE: Stock prices only change when the game is open. The Stock Market is reset when installing Augmentations, which means you will lose all your stocks


	Decreased money gained from hacking by ~12%


	Increased reputation required for all Augmentations by ~40%


	Cost increase when purchasing multiple augmentations increased from 75% to 90%


	Added basic variable runtime to Netscript operations. Basic commands run in 100ms. Any function incurs another 100ms in runtime (200ms total). Any function that starts with getServer incurs another 100ms runtime (300ms total). exec() and scp() require 400ms total.


	Slightly reduced the amount of experience gained from hacking







v0.23.1


	scan() Netscript function now takes a single argument representing the server from which to scan.







v0.23.0


	You can now purchase multiple Augmentations in a run. When you purchase an Augmentation you will lose money equal to the price and then the cost of purchasing another Augmentation during this run will be increased by 75%. You do not gain the benefits of your purchased Augmentations until you install them. This installation can be done through the ‘Augmentation’ tab. When you install your Augmentations, your game will reset like before.


	Reputation needed to gain a favor from faction decreased from 7500 to 6500


	Reputation needed to gain a favor from company increased from 5000 to 6000


	Reputation cost of all Augmentations increased by 16%


	Higher positions at companies now grant slightly more reputation for working


	Added getServerMaxMoney() Netscript function


	Added scan() Netscript function


	Added getServerNumPortsRequired() Netscript function


	There is now no additional RAM cost incurred when multithreading a script







v0.22.1


	You no longer lose progress on creating programs when cancelling your work. Your progress will be saved and you will pick up where you left off when you start working on it again


	Added two new programs: AutoLink.exe and ServerProfiler.exe


	Fixed bug with Faction Field work reputation gain







v0.22.0 - Major rebalancing, optimization, and favor system


	Significantly nerfed most augmentations


	Almost every server with a required hacking level of 200 or more now has slightly randomized server parameters. This means that after every Augmentation purchase, the required hacking level, base security level, and growth factor of these servers will all be slightly different


	The hacking speed multiplier now increases rather than decreases. The hacking time is now divided by your hacking speed multiplier rather than multiplied. In other words, a higher hacking speed multiplier is better


	Servers now have a minimum server security, which is approximately one third of their starting (‘base’) server security


	If you do not steal any money from a server, then you gain hacking experience equal to the amount you would have gained had you failed the hack


	The effects of grow() were increased by 50%


	grow() and weaken() now give hacking experience based on the server’s base security level, rather than a flat exp amount


	Slightly reduced amount of exp gained from hack(), weaken(), and grow()


	Rebalanced formulas that determine crime success


	Reduced RAM cost for multithreading a script. The RAM multiplier for each thread was reduced from 1.02 to 1.005


	Optimized Script objects so they take less space in the save file


	Added getServerBaseSecurityLevel() Netscript function


	New favor system for companies and factions. Earning reputation at a company/faction will give you favor for that entity when you reset after installing an Augmentation. This favor persists through the rest of the game. The more favor you have, the faster you will earn reputation with that faction/company


	You can no longer donate to a faction for reputation until you have 150 favor with that faction


	Added unalias Terminal command


	Changed requirements for endgame Factions







v0.21.1


	IF YOUR GAME BREAKS, DO THE FOLLOWING: Options -> Soft Reset -> Save Game -> Reload Page. Sorry about that!


	Autocompletion for aliases - courtesy of [https://github.com/LTCNugget Github user LTCNugget]







v0.21.0


	Added dynamic arrays. See Netscript documentation


	Added ability to pass arguments into scripts. See documentation


	The implementation/function signature of functions that deal with scripts have changed. Therefore, some old scripts might not work anymore. Some of these functions include run(), exec(), isRunning(), kill(), and some others I may have forgot about. Please check the updated Netscript documentation if you run into issues.-Note that scripts are now uniquely identified by the script name and their arguments. For example, you can run a script using:

run foodnstuff.script 1









and you can also run the same script with a different argument:

run foodnstuff.script 2





These will be considered two different scripts. To kill the first script you must run:

kill foodnstuff.script 1





and to kill the second you must run:

kill foodnstuff.script 2





Similar concepts apply for Terminal Commands such as tail, and Netscript commands such as run(), exec(), kill(), isRunning(), etc.


	Added basic theme functionality using the ‘theme’ Terminal command - All credit goes to /u/0x726564646974 who implemented the awesome feature


	Optimized Script objects, which were causing save errors when the player had too many scripts


	Formula for determining exp gained from hacking was changed


	Fixed bug where you could purchase Darkweb items without TOR router


	Slightly increased cost multiplier for Home Computer RAM


	Fixed bug where you could hack too much money from a server (and bring its money available below zero)


	Changed tail command so that it brings up a display box with dynamic log contents. To get old functionality where the logs are printed to the Terminal, use the new ‘check’ command


	As a result of the change above, you can no longer call tail/check on scripts that are not running


	Added autocompletion for buying Programs in Darkweb







v0.20.2


	Fixed several small bugs


	Added basic array functionality to Netscript


	Added ability to run scripts with multiple threads. Running a script with n threads will multiply the effects of all hack(), grow(), and weaken() commands by n. However, running a script with multiple threads has drawbacks in terms of RAM usage. A script’s ram usage when it is ‘multithreaded’ is calculated as: base cost * numThreads * (1.02 ^ numThreads). A script can be run multithreaded using the ‘run [script] -t n’ Terminal command or by passing in an argument to the run() and exec() Netscript commands. See documentation.


	RAM is slightly (~10%) more expensive (affects purchasing server and upgrading RAM on home computer)


	NeuroFlux Governor augmentation cost multiplier decreased


	Netscript default operation runtime lowered to 200ms (was 500ms previously)







v0.20.1


	Fixed bug where sometimes scripts would crash without showing the error


	Added Deepscan programs to Dark Web


	Declining a faction invite will stop you from receiving invitations from that faction for the rest of the run


	(BETA) Added functionality to export/import saves. WARNING This is only lightly tested. You cannot choose where to save your file it just goes to the default save location. Also I have no idea what will happen if you try to import a file that is not a valid save. I will address these in later updates







v0.20.0


	Refactored Netscript Interpreter code. Operations in Netscript should now run significantly faster (Every operation such as a variable assignment, a function call, a binary operator, getting a variable’s value, etc. used to take up to several seconds, now each one should only take ~500 milliseconds).


	Percentage money stolen when hacking lowered to compensate for faster script speeds


	Hacking experience granted by grow() halved


	Weaken() is now ~11% faster, but only grants 3 base hacking exp upon completion instead of 5


	Rebalancing of script RAM costs. Base RAM Cost for a script increased from 1GB to 1.5GB. Loops, hack(), grow() and weaken() all cost slightly less RAM than before


	Added getServerRequiredHackingLevel(server) Netscript command.


	Added fileExists(file, [server]) Netscript command, which is used to check if a script/program exists on a specified server


	Added isRunning(script, [server]) Netscript command, which is used to check if a script is running on the specified server


	Added killall Terminal command. Kills all running scripts on the current machine


	Added kill() and killall() Netscript commands. Used to kill scripts on specified machines. See Netscript documentation


	Re-designed ‘Active Scripts’ tab


	Hacknet Node base production rate lowered from 1.6 to 1.55 ($/second)


	Increased monetary cost of RAM (Upgrading home computer and purchasing servers will now be more expensive)


	NEW GROWTH MECHANICS - The rate of growth on a server now depends on a server’s security level. A higher security level will result in lower growth on a server when using the grow() command. Furthermore, calling grow() on a server raises that server’s security level by 0.004. For reference, if a server has a security level of 10 it will have approximately the same growth rate as before.


	Server growth no longer happens naturally


	Servers now have a maximum limit to their money. This limit is 50 times it’s starting money


	Hacking now grants 10% less hacking experience


	You can now edit scripts that are running


	Augmentations cost ~11% more money and 25% more faction reputation







v0.19.7


	Added changelog to Options menu


	Bug fix with autocompletion (wasn’t working properly for capitalized filenames/programs







v0.19.6


	Script editor now saves its state even when you change tabs


	scp() command in Terminal/script will now overwrite files at the destination


	Terminal commands are no longer case-sensitive (only the commands themselves such as ‘run’ or ‘nano’. Filenames are still case sensitive


	Tab automcompletion will now work on commands







v0.19.0


	Hacknet Nodes have slightly higher base production, and slightly increased RAM multiplier. But they are also a bit more expensive at higher levels


	Calling grow() and weaken() in a script will now work offline, at slower rates than while online (The script now keeps track of the rate at which grow() and weaken() are called when the game is open. These calculated rates are used to determine how many times the calls would be made while the game is offline)


	Augmentations now cost 20% more reputation and 50% more money


	Changed the mechanic for getting invited to the hacking factions (CyberSec, NiteSec, The Black Hand, BitRunners) Now when you get to the required level to join these factions you will get a message giving you instructions on what to do in order to get invited.


	Added a bit of backstory/plot into the game. It’s not fully fleshed out yet but it will be used in the future


	Made the effects of many Augmentations slightly more powerful


	Slightly increased company job wages across the board (~5-10% for each position)


	Gyms and classes are now significantly more expensive


	Doubled the amount by which a server’s security increases when it is hacked. Now, it will increase by 0.002. Calling weaken() on a server will lower the security by 0.1.







v0.18.0


	Major rebalancing (sorry didn’t record specifics. But in general hacking gives more money and hacknet nodes give less)


	Server growth rate (both natural and manual using grow()) doubled


	Added option to Soft Reset


	Cancelling a full time job early now only results in halved gains for reputation. Exp and money earnings are gained in full


	Added exec() Netscript command, used to run scripts on other servers.


	NEW HACKING MECHANICS: Whenever a server is hacked, its ‘security level’ is increased by a very small amount. The security level is denoted by a number between 1-100. A higher security level makes it harder to hack a server and also decreases the amount of money you steal from it. Two Netscript functions, weaken() and getServerSecurityLevel() level, were added. The weaken(server) function lowers a server’s security level. See the Netscript documentation for more details


	When donating to factions, the base rate is now $1,000,000 for 1 reputation point. Before, it was $1,000 for 1 reputation point.


	Monetary costs for all Augmentations increased. They are now about ~3.3 - 3.75 times more expensive than before







v0.17.1


	Fixed issue with purchasing Augmentations that are ‘upgrades’ and require previous Augmentations to be installed


	Increased the percentage of money stolen from servers when hacking







v0.17.0


	Greatly increased amount of money gained for crimes (by about 400% for most crimes)


	Criminal factions require slightly less negative karma to get invited to


	Increased the percentage of money stolen from servers when hacking


	Increased the starting amount of money available on beginning servers (servers with <50 required hacking))


	Increased the growth rate of servers (both naturally and manually when using the grow() command in a script)


	Added getHostname() command in Netscript that returns the hostname of the server a script is running on


	jQuery preventDefault() called when pressing ctrl+b in script editor


	The Neuroflux Governor augmentation (the one that can be repeatedly leveled up) now increases ALL multipliers by 1%. To balance it out, it’s price multiplier when it levels up was increased


	Hacknet Node base production decreased from $1.75/s to $1.65/s


	Fixed issue with nested for loops in Netscript (stupid Javascript references)


	Added ‘scp’ command to Terminal and Netscript


	Slightly nerfed Hacknet Node Kernel DNI and Hacknet Node Core DNI Augmentations


	Increased TOR Router cost to $200k







v0.16.0


	New Script Editor interface


	Rebalanced hacknet node - Increased base production but halved the multiplier from additional cores. This should boost its early-game production but nerf its late-game production


	Player now starts with 8GB of RAM on home computer


	‘scan-analyze’ terminal command displays RAM on servers


	Slightly buffed the amount of money the player steals when hacking servers (by about ~8%)


	Time to execute grow() now depends on hacking skill and server security, rather than taking a flat 2 minutes.


	Clicking outside of a pop-up dialog box will now close it


	BruteSSH.exe takes 33% less time to create


	‘iron-gym’ and ‘max-hardware’ servers now have 2GB of RAM


	Buffed job salaries across the board


	Updated Tutorial


	Created a Hacknet Node API for Netscript that allows you to access and upgrade your Hacknet Nodes. See the Netscript documentation for more details. WARNING The old upgradeHacknetNode() and getNumHacknetNodes() functions waere removed so any script that has these will no longer work







v0.15.0


	Slightly reduced production multiplier for Hacknet Node RAM


	Faction pages now scroll


	Slightly increased amount of money gained from hacking


	Added ‘alias’ command


	Added ‘scan-analyze’ terminal command - used to get basic hacking info about all immediate network connections


	Fixed bugs with upgradeHacknetNode() and purchaseHacknetNode() commands


	Added getNumHacknetNodes() and hasRootAccess(hostname/ip) commands to Netscript


	Increased Cost of university classes/gym


	You can now see what an Augmentation does and its price even while its locked










          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 


A


  	
      	applyToCompany() (built-in function)


  

  	
      	ascendMember() (built-in function)


      	attempt() (built-in function)


  





B


  	
      	brutessh() (built-in function)


  

  	
      	buyStock() (built-in function)


  





C


  	
      	cancelOrder() (built-in function)


      	canRecruitMember() (built-in function)


      	checkFactionInvitations() (built-in function)


  

  	
      	clear() (built-in function)


      	clearLog() (built-in function)


      	commitCrime() (built-in function)


      	createProgram() (built-in function)


  





D


  	
      	deleteServer() (built-in function)


  

  	
      	disableLog() (built-in function)


      	donateToFaction() (built-in function)


  





E


  	
      	enableLog() (built-in function)


  

  	
      	exec() (built-in function)


      	exit() (built-in function)


  





F


  	
      	fileExists() (built-in function)


  

  	
      	ftpcrack() (built-in function)


  





G


  	
      	getActionAutolevel() (built-in function)


      	getActionCountRemaining() (built-in function)


      	getActionCurrentLevel() (built-in function)


      	getActionEstimatedSuccessChance() (built-in function)


      	getActionMaxLevel() (built-in function)


      	getActionRepGain() (built-in function)


      	getActionTime() (built-in function)


      	getAugmentationCost() (built-in function)


      	getAugmentationPrereq() (built-in function)


      	getAugmentationsFromFaction() (built-in function)


      	getBitNodeMultipliers() (built-in function)


      	getBlackOpNames() (built-in function)


      	getBlackOpRank() (built-in function)


      	getBonusTime() (built-in function), [1]


      	getCacheUpgradeCost() (built-in function)


      	getChanceToWinClash() (built-in function)


      	getCharacterInformation() (built-in function)


      	getCity() (built-in function)


      	getCityChaos() (built-in function)


      	getCityEstimatedCommunities() (built-in function)


      	getCityEstimatedPopulation() (built-in function)


      	getCompanyFavor() (built-in function)


      	getCompanyFavorGain() (built-in function)


      	getCompanyRep() (built-in function)


      	getContractNames() (built-in function)


      	getContractType() (built-in function)


      	getCoreUpgradeCost() (built-in function)


      	getCrimeChance() (built-in function)


      	getCurrentAction() (built-in function)


      	getData() (built-in function)


      	getDescription() (built-in function)


      	getEquipmentCost() (built-in function)


      	getEquipmentNames() (built-in function)


      	getEquipmentType() (built-in function)


      	getFactionFavor() (built-in function)


      	getFactionFavorGain() (built-in function)


      	getFactionRep() (built-in function)


      	getFavorToDonate() (built-in function)


      	getGangInformation() (built-in function)


      	getGeneralActionNames() (built-in function)


      	getGrowTime() (built-in function)


      	getHackingLevel() (built-in function)


      	getHackingMultipliers() (built-in function)


      	getHacknetMultipliers() (built-in function)


      	getHackTime() (built-in function)


      	getHostname() (built-in function)


      	getInformation() (built-in function)


      	getLevelUpgradeCost() (built-in function)


      	getMemberInformation() (built-in function)


      	getMemberNames() (built-in function)


      	getNodeStats() (built-in function)


      	getNumSleeves() (built-in function)


      	getNumTriesRemaining() (built-in function)


      	getOperationNames() (built-in function)


  

  	
      	getOrders() (built-in function)


      	getOtherGangInformation() (built-in function)


      	getOwnedAugmentations() (built-in function)


      	getOwnedSourceFiles() (built-in function)


      	getPortHandle() (built-in function)


      	getPurchasedServerCost() (built-in function)


      	getPurchasedServerLimit() (built-in function)


      	getPurchasedServerMaxRam() (built-in function)


      	getPurchasedServers() (built-in function)


      	getPurchaseNodeCost() (built-in function)


      	getRamUpgradeCost() (built-in function)


      	getRank() (built-in function)


      	getScriptExpGain() (built-in function)


      	getScriptIncome() (built-in function)


      	getScriptLogs() (built-in function)


      	getScriptName() (built-in function)


      	getScriptRam() (built-in function)


      	getServerBaseSecurityLevel() (built-in function)


      	getServerGrowth() (built-in function)


      	getServerMaxMoney() (built-in function)


      	getServerMinSecurityLevel() (built-in function)


      	getServerMoneyAvailable() (built-in function)


      	getServerNumPortsRequired() (built-in function)


      	getServerRam() (built-in function)


      	getServerRequiredHackingLevel() (built-in function)


      	getServerSecurityLevel() (built-in function)


      	getSkillLevel() (built-in function)


      	getSkillNames() (built-in function)


      	getSkillPoints() (built-in function)


      	getSkillUpgradeCost() (built-in function)


      	getSleeveAugmentations() (built-in function)


      	getSleevePurchasableAugs() (built-in function)


      	getSleeveStats() (built-in function)


      	getStamina() (built-in function)


      	getStats() (built-in function)


      	getStockAskPrice() (built-in function)


      	getStockBidPrice() (built-in function)


      	getStockForecast() (built-in function)


      	getStockMaxShares() (built-in function)


      	getStockPosition() (built-in function)


      	getStockPrice() (built-in function)


      	getStockPurchaseCost() (built-in function)


      	getStockSaleGain() (built-in function)


      	getStockSymbols() (built-in function)


      	getStockVolatility() (built-in function)


      	getTask() (built-in function)


      	getTaskNames() (built-in function)


      	getTeamSize() (built-in function)


      	getTimeSinceLastAug() (built-in function)


      	getUpgradeHomeRamCost() (built-in function)


      	getWeakenTime() (built-in function)


      	grow() (built-in function)


      	growthAnalyze() (built-in function)


      	gymWorkout() (built-in function)


  





H


  	
      	hack() (built-in function)


      	hackAnalyzePercent() (built-in function)


      	hackAnalyzeThreads() (built-in function)


  

  	
      	hackChance() (built-in function)


      	hashCost() (built-in function)


      	hasRootAccess() (built-in function)


      	httpworm() (built-in function)


  





I


  	
      	installAugmentations() (built-in function)


      	isBusy() (built-in function)


  

  	
      	isLogEnabled() (built-in function)


      	isRunning() (built-in function)


  





J


  	
      	joinBladeburnerDivision() (built-in function)


  

  	
      	joinBladeburnerFaction() (built-in function)


      	joinFaction() (built-in function)


  





K


  	
      	kill() (built-in function), [1]


  

  	
      	killall() (built-in function)


  





L


  	
      	ls() (built-in function)


  





N


  	
      	NetscriptPort.data (NetscriptPort attribute)


      	nFormat() (built-in function)


  

  	
      	nuke() (built-in function)


      	numHashes() (built-in function)


      	numNodes() (built-in function)


  





P


  	
      	peek() (built-in function)


      	placeOrder() (built-in function)


      	print() (built-in function)


      	prompt() (built-in function)


      	ps() (built-in function)


      	purchase4SMarketData() (built-in function)


      	purchase4SMarketDataTixApi() (built-in function)


  

  	
      	purchaseAugmentation() (built-in function)


      	purchaseEquipment() (built-in function)


      	purchaseNode() (built-in function)


      	purchaseProgram() (built-in function)


      	purchaseServer() (built-in function)


      	purchaseSleeveAug() (built-in function)


      	purchaseTor() (built-in function)


  





R


  	
      	read() (built-in function)


      	recruitMember() (built-in function)


  

  	
      	relaysmtp() (built-in function)


      	rm() (built-in function)


      	run() (built-in function)


  





S


  	
      	scan() (built-in function)


      	scp() (built-in function)


      	scriptKill() (built-in function)


      	scriptRunning() (built-in function)


      	sellShort() (built-in function)


      	sellStock() (built-in function)


      	serverExists() (built-in function)


      	setActionAutolevel() (built-in function)


      	setActionLevel() (built-in function)


      	setMemberTask() (built-in function)


      	setTeamSize() (built-in function)


      	setTerritoryWarfare() (built-in function)


      	setToCommitCrime() (built-in function)


      	setToCompanyWork() (built-in function)


  

  	
      	setToFactionWork() (built-in function)


      	setToGymWorkout() (built-in function)


      	setToShockRecovery() (built-in function)


      	setToSynchronize() (built-in function)


      	setToUniversityCourse() (built-in function)


      	shortStock() (built-in function)


      	sleep() (built-in function)


      	spawn() (built-in function)


      	spendHashes() (built-in function)


      	sprintf() (built-in function)


      	sqlinject() (built-in function)


      	startAction() (built-in function)


      	stopAction() (built-in function)


      	stopBladeburnerAction() (built-in function)


      	switchCity() (built-in function)


  





T


  	
      	tail() (built-in function)


      	tprint() (built-in function)


  

  	
      	travel() (built-in function)


      	travelToCity() (built-in function)


      	tryWrite() (built-in function)


  





U


  	
      	universityCourse() (built-in function)


      	upgradeCache() (built-in function)


      	upgradeCore() (built-in function)


  

  	
      	upgradeHomeRam() (built-in function)


      	upgradeLevel() (built-in function)


      	upgradeRam() (built-in function)


      	upgradeSkill() (built-in function)


  





V


  	
      	vsprintf() (built-in function)


  





W


  	
      	weaken() (built-in function)


      	wget() (built-in function)


  

  	
      	workForCompany() (built-in function)


      	workForFaction() (built-in function)


      	write() (built-in function)


  







          

      

      

    

  _static/ajax-loader.gif





_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/down.png





_static/file.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Bitburner’s documentation!
        


        		
           Netscript
          
            		
               Learn to Program
              
                		
                  For Beginner Programmers
                


                		
                  For Experienced Programmers
                


                		
                  Netscript 1.0 vs Netscript 2.0
                


              


            


            		
               Netscript 1.0
              
                		
                  Which ES6+ features are supported?
                


              


            


            		
               NetscriptJS (Netscript 2.0)
              
                		
                  Browser compatibility
                


                		
                  How to use NetscriptJS
                


                		
                  Warnings
                


                		
                  Examples
                


                		
                  Final Note
                


              


            


            		
               Script Arguments
            


            		
               Basic Functions
              
                		
                  hack()
                


                		
                  grow()
                


                		
                  weaken()
                


                		
                  hackAnalyzeThreads()
                


                		
                  hackAnalyzePercent()
                


                		
                  hackChance()
                


                		
                  growthAnalyze()
                


                		
                  sleep()
                


                		
                  print()
                


                		
                  tprint()
                


                		
                  clearLog()
                


                		
                  disableLog()
                


                		
                  enableLog()
                


                		
                  isLogEnabled()
                


                		
                  getScriptLogs()
                


                		
                  tail()
                


                		
                  scan()
                


                		
                  nuke()
                


                		
                  brutessh()
                


                		
                  ftpcrack()
                


                		
                  relaysmtp()
                


                		
                  httpworm()
                


                		
                  sqlinject()
                


                		
                  run()
                


                		
                  exec()
                


                		
                  spawn()
                


                		
                  kill()
                


                		
                  killall()
                


                		
                  exit()
                


                		
                  scp()
                


                		
                  ls()
                


                		
                  ps()
                


                		
                  hasRootAccess()
                


                		
                  getHostname()
                


                		
                  getHackingLevel()
                


                		
                  getHackingMultipliers()
                


                		
                  getHacknetMultipliers()
                


                		
                  getServerMoneyAvailable()
                


                		
                  getServerMaxMoney()
                


                		
                  getServerGrowth()
                


                		
                  getServerSecurityLevel()
                


                		
                  getServerBaseSecurityLevel()
                


                		
                  getServerMinSecurityLevel()
                


                		
                  getServerRequiredHackingLevel()
                


                		
                  getServerNumPortsRequired()
                


                		
                  getServerRam()
                


                		
                  serverExists()
                


                		
                  fileExists()
                


                		
                  isRunning()
                


                		
                  getPurchasedServerCost()
                


                		
                  purchaseServer()
                


                		
                  deleteServer()
                


                		
                  getPurchasedServers()
                


                		
                  getPurchasedServerLimit()
                


                		
                  getPurchasedServerMaxRam()
                


                		
                  write()
                


                		
                  tryWrite()
                


                		
                  read()
                


                		
                  peek()
                


                		
                  clear()
                


                		
                  getPortHandle()
                


                		
                  rm()
                


                		
                  scriptRunning()
                


                		
                  scriptKill()
                


                		
                  getScriptName()
                


                		
                  getScriptRam()
                


                		
                  getHackTime()
                


                		
                  getGrowTime()
                


                		
                  getWeakenTime()
                


                		
                  getScriptIncome()
                


                		
                  getScriptExpGain()
                


                		
                  getTimeSinceLastAug()
                


                		
                  sprintf()
                


                		
                  vsprintf()
                


                		
                  nFormat()
                


                		
                  prompt()
                


                		
                  wget()
                


                		
                  getFavorToDonate()
                


              


            


            		
               Advanced Functions
              
                		
                  getBitNodeMultipliers()
                


                		
                  getHackTime(), getGrowTime(), & getWeakenTime()
                


              


            


            		
               Hacknet Node API
              
                		
                  numNodes()
                


                		
                  purchaseNode()
                


                		
                  getPurchaseNodeCost()
                


                		
                  getNodeStats()
                


                		
                  upgradeLevel()
                


                		
                  upgradeRam()
                


                		
                  upgradeCore()
                


                		
                  upgradeCache()
                


                		
                  getLevelUpgradeCost()
                


                		
                  getRamUpgradeCost()
                


                		
                  getCoreUpgradeCost()
                


                		
                  getCacheUpgradeCost()
                


                		
                  numHashes()
                


                		
                  hashCost()
                


                		
                  spendHashes()
                


                		
                  Referencing a Hacknet Node
                


                		
                  RAM Cost
                


                		
                  Utilities
                


                		
                  Example(s)
                


              


            


            		
               Trade Information eXchange (TIX) API
              
                		
                  getStockSymbols()
                


                		
                  getStockPrice()
                


                		
                  getStockAskPrice()
                


                		
                  getStockBidPrice()
                


                		
                  getStockPosition()
                


                		
                  getStockMaxShares()
                


                		
                  getStockPurchaseCost()
                


                		
                  getStockSaleGain()
                


                		
                  buyStock()
                


                		
                  sellStock()
                


                		
                  shortStock()
                


                		
                  sellShort()
                


                		
                  placeOrder()
                


                		
                  cancelOrder()
                


                		
                  getOrders()
                


                		
                  getStockVolatility()
                


                		
                  getStockForecast()
                


                		
                  purchase4SMarketData()
                


                		
                  purchase4SMarketDataTixApi()
                


              


            


            		
               Singularity Functions
              
                		
                  universityCourse()
                


                		
                  gymWorkout()
                


                		
                  travelToCity()
                


                		
                  purchaseTor()
                


                		
                  purchaseProgram()
                


                		
                  getStats()
                


                		
                  getCharacterInformation()
                


                		
                  isBusy()
                


                		
                  stopAction()
                


                		
                  upgradeHomeRam()
                


                		
                  getUpgradeHomeRamCost()
                


                		
                  workForCompany()
                


                		
                  applyToCompany()
                


                		
                  getCompanyRep()
                


                		
                  getCompanyFavor()
                


                		
                  getCompanyFavorGain()
                


                		
                  checkFactionInvitations()
                


                		
                  joinFaction()
                


                		
                  workForFaction()
                


                		
                  getFactionRep()
                


                		
                  getFactionFavor()
                


                		
                  getFactionFavorGain()
                


                		
                  donateToFaction()
                


                		
                  createProgram()
                


                		
                  commitCrime()
                


                		
                  getCrimeChance()
                


                		
                  getOwnedAugmentations()
                


                		
                  getOwnedSourceFiles()
                


                		
                  getAugmentationsFromFaction()
                


                		
                  getAugmentationPrereq()
                


                		
                  getAugmentationCost()
                


                		
                  purchaseAugmentation()
                


                		
                  installAugmentations()
                


              


            


            		
               Bladeburner API
              
                		
                  getContractNames()
                


                		
                  getOperationNames()
                


                		
                  getBlackOpNames()
                


                		
                  getGeneralActionNames()
                


                		
                  getSkillNames()
                


                		
                  startAction()
                


                		
                  stopBladeburnerAction()
                


                		
                  getCurrentAction()
                


                		
                  getActionTime()
                


                		
                  getActionEstimatedSuccessChance()
                


                		
                  getActionRepGain()
                


                		
                  getActionCountRemaining()
                


                		
                  getActionMaxLevel()
                


                		
                  getActionCurrentLevel()
                


                		
                  getActionAutolevel()
                


                		
                  setActionAutolevel()
                


                		
                  setActionLevel()
                


                		
                  getRank()
                


                		
                  getBlackOpRank()
                


                		
                  getSkillPoints()
                


                		
                  getSkillLevel()
                


                		
                  getSkillUpgradeCost()
                


                		
                  upgradeSkill()
                


                		
                  getTeamSize()
                


                		
                  setTeamSize()
                


                		
                  getCityEstimatedPopulation()
                


                		
                  getCityEstimatedCommunities()
                


                		
                  getCityChaos()
                


                		
                  getCity()
                


                		
                  switchCity()
                


                		
                  getStamina()
                


                		
                  joinBladeburnerFaction()
                


                		
                  joinBladeburnerDivision()
                


                		
                  getBonusTime()
                


                		
                  Bladeburner Action Types
                


                		
                  Examples
                


              


            


            		
               Gang API
              
                		
                  getMemberNames()
                


                		
                  getGangInformation()
                


                		
                  getOtherGangInformation()
                


                		
                  getMemberInformation()
                


                		
                  canRecruitMember()
                


                		
                  recruitMember()
                


                		
                  getTaskNames()
                


                		
                  setMemberTask()
                


                		
                  getEquipmentNames()
                


                		
                  getEquipmentCost()
                


                		
                  getEquipmentType()
                


                		
                  purchaseEquipment()
                


                		
                  ascendMember()
                


                		
                  setTerritoryWarfare()
                


                		
                  getChanceToWinClash()
                


                		
                  getBonusTime()
                


              


            


            		
               Coding Contract API
              
                		
                  attempt()
                


                		
                  getContractType()
                


                		
                  getDescription()
                


                		
                  getData()
                


                		
                  getNumTriesRemaining()
                


              


            


            		
               Sleeve API
              
                		
                  getNumSleeves()
                


                		
                  getSleeveStats()
                


                		
                  getInformation()
                


                		
                  getTask()
                


                		
                  setToShockRecovery()
                


                		
                  setToSynchronize()
                


                		
                  setToCommitCrime()
                


                		
                  setToFactionWork()
                


                		
                  setToCompanyWork()
                


                		
                  setToUniversityCourse()
                


                		
                  setToGymWorkout()
                


                		
                  travel()
                


                		
                  getSleeveAugmentations()
                


                		
                  getSleevePurchasableAugs()
                


                		
                  purchaseSleeveAug()
                


                		
                  Referencing a Duplicate Sleeve
                


                		
                  Examples
                


              


            


            		
               Miscellaneous
              
                		
                  Netscript Ports
                


                		
                  Comments
                


                		
                  Importing Functions
                


                		
                  Standard, Built-In JavaScript Objects
                


              


            


          


        


        		
           Basic Gameplay
          
            		
              Stats
              
                		
                  Hacking
                


                		
                  Strength
                


                		
                  Defense
                


                		
                  Dexterity
                


                		
                  Agility
                


                		
                  Charisma
                


              


            


            		
              Terminal
              
                		
                  Configuration
                


                		
                  Filesystem (Directories)
                


                		
                  Commands
                


                		
                  Argument Parsing
                


                		
                  Chaining Commands
                


              


            


            		
              Servers
              
                		
                  Server RAM
                


                		
                  Identifying Servers
                


                		
                  Player-owned Servers
                


                		
                  Hackable Servers
                


              


            


            		
              Hacking
              
                		
                  Gaining Root Access
                


                		
                  General Hacking Mechanics
                


                		
                  Server Security
                


              


            


            		
              Scripts
              
                		
                  Script Arguments
                


                		
                  Identifying a Script
                


                		
                  Multithreading scripts
                


                		
                  Working with Scripts in Terminal
                


                		
                  Working with Scripts in Netscript
                


                		
                  Notes about how Scripts Work Offline
                


              


            


            		
              World
            


            		
              Factions
              
                		
                  List of Factions and their Requirements
                


              


            


            		
              Augmentations
              
                		
                  How to acquire Augmentations
                


                		
                  Installing Augmentations
                


                		
                  Purchasing Multiple Augmentations
                


              


            


            		
              Companies
              
                		
                  Information about all Companies
                


              


            


            		
              Crimes
              
                		
                  Basic Mechanics
                


                		
                  Crime details
                


              


            


            		
              Infiltration
              
                		
                  Overview
                


              


            


            		
              Stock Market
              
                		
                  Fundamentals
                


                		
                  Automating the Stock Market
                


                		
                  Under the Hood
                


                		
                  Offline Progression
                


              


            


            		
              Coding Contracts
              
                		
                  Running in Terminal
                


                		
                  Interacting through Scripts
                


                		
                  Submitting Solutions
                


                		
                  Rewards
                


                		
                  Notes
                


                		
                  List of all Problem Types
                


              


            


          


        


        		
           Advanced Gameplay
          
            		
              BitNodes
              
                		
                  What is a BitNode
                


                		
                  How to destroy a BitNode
                


                		
                  BitNode Details
                


              


            


            		
              Source-Files
              
                		
                  List of all Source-Files
                


              


            


            		
              Intelligence
            


            		
              Sleeves
              
                		
                  Duplicate Sleeves
                


                		
                  Re-sleeving
                


              


            


          


        


        		
           Keyboard Shortcuts
          
            		
              Game Navigation
            


            		
              Script Editor
            


            		
              Terminal Shortcuts
            


            		
              Terminal Bash Shortcuts
            


            		
              Popup/Dialog Box Shortcuts
            


          


        


        		
           Script Editors
          
            		
              Universal Key Bindings
            


            		
              Linter
            


            		
              Ace
              
                		
                  Settings
                


                		
                  Ace Key Bindings
                


                		
                  Vim Key Bindings
                


                		
                  Emacs Key Bindings
                


              


            


            		
              CodeMirror
              
                		
                  Settings
                


                		
                  Default Key Bindings
                


                		
                  Sublime Key Bindings
                


                		
                  Vim Key Bindings
                


                		
                  Emacs Key Bindings
                


              


            


          


        


        		
           Game Frozen or Stuck?
          
            		
              Infinite Loop in NetscriptJS
            


            		
              Bug
            


          


        


        		
           Guides & Tips
          
            		
               Getting Started Guide for Beginner Programmers
              
                		
                  Introduction
                


                		
                  First Steps
                


                		
                  Creating our First Script
                


                		
                  Running our Scripts
                


                		
                  Increasing Hacking Level
                


                		
                  Editing our Hacking Script
                


                		
                  Creating a New Script to Purchase New Servers
                


                		
                  Additional Sources of Income
                


                		
                  After you Purchase your New Servers
                


                		
                  Reaching a Hacking Level of 50
                


                		
                  Using Additional Servers to Hack Joesguns
                


                		
                  Profiting from Scripts & Gaining Reputation with CyberSec
                


                		
                  Purchasing Upgrades and Augmentations
                


                		
                  Next Steps
                


                		
                  Random Tips
                


              


            


            		
               What BitNode should I do?
              
                		
                  Overview of each BitNode
                


                		
                  Recommended BitNodes
                


              


            


          


        


        		
           Tools & Resources
          
            		
              Official Script Repository
            


            		
              Visual Studio Code Extension
            


          


        


        		
           Changelog
          
            		
              v0.47.1 - 6/27/2019
            


            		
              v0.47.0 - 5/17/2019
            


            		
              v0.46.3 - 4/20/2019
            


            		
              v0.46.2 - 4/14/2019
            


            		
              v0.46.1 - 4/12/2019
            


            		
              v0.46.0 - 4/3/2019
            


            		
              v0.45.1 - 3/23/2019
            


            		
              v0.45.0 - 3/22/2019
            


            		
              v0.44.1 - 3/4/2019
            


            		
              v0.44.0 - 2/26/2019
            


            		
              v0.43.1 - 2/11/2019
            


            		
              v0.43.0 - 2/4/2019
            


            		
              v0.42.0 - 1/8/2019
            


            		
              v0.41.2 - 11/23/2018
            


            		
              v0.41.1 - 11/5/2018
            


            		
              v0.41.0 - 10/29/2018
            


            		
              v0.40.5 - 10/09/2018
            


            		
              v0.40.4 - 9/29/2018
            


            		
              v0.40.3 - 9/15/2018
            


            		
              v0.40.2 - 8/27/2018
            


            		
              v0.40.1 - 8/5/2018 - Community Update
            


            		
              v0.40.0 - 7/28/2018
            


            		
              v0.39.1 - 7/4/2018
            


            		
              v0.39.0 - 6/25/2018
            


            		
              v0.38.1 - 6/15/2018
            


            		
              v0.38.0 - 6/12/2018
            


            		
              v0.37.2 - 6/2/2018
            


            		
              v0.37.1 - 5/22/2018
            


            		
              v0.37.0 - 5/20/2018
            


            		
              v0.36.1 - 5/11/2018
            


            		
              v0.36.0 - 5/2/2018
            


            		
              v0.35.2 - 3/26/2018
            


            		
              v0.35.1 - 3/12/2018
            


            		
              v0.35.0 - 3/3/2018
            


            		
              v0.34.5 - 2/24/2018
            


            		
              v0.34.4 - 2/14/2018
            


            		
              v0.34.3 - 1/31/2018
            


            		
              v0.34.2 - 1/27/2018
            


            		
              v0.34.1 - 1/19/2018
            


            		
              v0.34.0 - 12/6/2017
            


            		
              v0.33.0 - 12/1/2017
            


            		
              v0.32.1 - 11/2/2017
            


            		
              v0.32.0 - 10/25/2017
            


            		
              v0.31.0 - 10/15/2017
            


            		
              v0.30.0 - 10/9/2017
            


            		
              v0.29.3 - 10/3/2017
            


            		
              v0.29.2 - 10/1/2017
            


            		
              v0.29.1 - 9/27/2017
            


            		
              v0.29.0 - 9/19/2017
            


            		
              v0.28.6 - 9/15/2017
            


            		
              v0.28.5 - 9/13/2017
            


            		
              v0.28.4 - 9/11/2017
            


            		
              v0.28.3 - 9/7/2017
            


            		
              v0.28.2 - 9/4/2017
            


            		
              v0.28.1 - 9/1/2017
            


            		
              v0.28.0 - 8/30/2017
            


            		
              v0.27.3 - 8/19/2017
            


            		
              v0.27.2 - 8/18/2017
            


            		
              v0.27.1 - 8/15/2017
            


            		
              v0.27.0 - 8/13/2017
            


            		
              v0.26.4 - 8/1/2017
            


            		
              v0.26.3
            


            		
              v0.26.2
            


            		
              v0.26.1
            


            		
              v0.26.0
            


            		
              v0.25.0
            


            		
              v0.24.1
            


            		
              v0.24.0
            


            		
              v0.23.1
            


            		
              v0.23.0
            


            		
              v0.22.1
            


            		
              v0.22.0 - Major rebalancing, optimization, and favor system
            


            		
              v0.21.1
            


            		
              v0.21.0
            


            		
              v0.20.2
            


            		
              v0.20.1
            


            		
              v0.20.0
            


            		
              v0.19.7
            


            		
              v0.19.6
            


            		
              v0.19.0
            


            		
              v0.18.0
            


            		
              v0.17.1
            


            		
              v0.17.0
            


            		
              v0.16.0
            


            		
              v0.15.0
            


          


        


      


    
  

_static/plus.png





_static/minus.png





_static/up-pressed.png





_static/up.png





