

 Navigation

 	
 index

 	
 next |

 	Bit Recovery 1.2.2 documentation

bit-recover 1.2

[image: _images/Dirk-bu-104.jpg]
[image: _images/Checksumdiff.jpg]
Contents:

	ABOUT
	Data in various stages of decay and salvation

	Account

	Contents

	checksum.pl
	Description

	Usage

	Generating

	Verifying

	Repairing

	Restoring

	Executing

	Diagnostics

	Author

	Configuration

	Implementation details

	perfset.pl
	Description

	Usage

	corrupt.pl
	Description

	Usage

	gather.pl
	Description

	Usage

Indices and tables

	Index

	Module Index

	Search Page

Footnotes

 Copyright 2013, Dirk Roorda.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bit Recovery 1.2.2 documentation

ABOUT

Data in various stages of decay and salvation

When you store TeraBytes of data for many years, some bits in it will decay.
It is hard to get figures about how much damage we can expect.
But it might be in the order of a handful per TB per year.

How do we recover from it? Here is an elegant method.
Add some redundancy, in the form of checksums.
Periodically check the checksums.
When there are errors, use the checksums to correct the errors, if possible.
If it is not possible, use a backup.
But beware: the backup might have errors as well.
Even the checksums themselves might have errors.
Before we explain our strategy, here is an example that it actually works.

1. original

We start with a photo of the author. It is a 436 KB jpeg image. This is indeed the uncorrupted form.

[image: _images/Dirk-orig.jpg]
2. 174 bit errors

Now 174 bit errors are added, at random positions

[image: _images/Dirk-174.jpg]
3. 104 errors in the backup

We will also use a backup, but also this one is corrupted: 104 different errors

[image: _images/Dirk-bu-104.jpg]
4-5. 27 + 16 bit errors in the checksum files

We also corrupt the checksums: 27 bit errors

[image: _images/Dirk-chk-27.jpg]
[image: _images/Checksumdiff.jpg]
and the checksums of the backup are not spared either: 16 bit errors

[image: _images/Dirk-bu-chk-16.jpg]
6. checking the corrupt image with the corrupt checksums

we get 163 damaged blocks

[image: _images/Checksumerrors.jpg]
7. after repairing 138 and leaving 25 bit errors

First we try to repair without using the backup, we can repair the majority of damaged blocks, 138.

[image: _images/Dirk-25.jpg]
But 25 remain unrepaired. See the result.

[image: _images/Repairresults.jpg]
Let us again check the checksums. 50 damaged blocks!
But remember that the checksums themselves were faulty!

[image: _images/Recheck.jpg]
Yet, by a combination of restoring and repairing it is effectively possible to correct all errors.

8. We need to use the backup

[image: _images/Restoreresults.jpg]
9. fully restored, thank you

[image: _images/Dirk-restored.jpg]
10. There are absolutely no errors left

[image: _images/Diff.jpg]

Account

This story I wrote on Good Friday, 2013-03-29.
All data and screenshots were directly taken from the computer when I executed the process as described above.
By the way, that was a Macbook Air, and the whole process is expressed in a Perl script, which only uses the module Digest:MD5.
Both Perl and this module are already present in OSX.

Contents

After that, I have tested extensively.
The code for this lab is in Github[#1].

The report I published on Figshare[#2].

It is a tool for checksumming files in such a way that you can recover from errors.
It also does the recovering.
Besides, it is an environment to test various checksumming algorithms and parameters to see what performs best.
You find also test data of a few dozens of experiments,
summarized in an excel document[#3].
The code is here (Perl).

There is a program for checksumming files, verifying, repairing and restoring: checksum.pl.

Then there is a setup to do experiments: perfset.pl creates a pool of corrupt file and organizes tests of various checksum methods.

The question is: wich checksum methods perform best in the brute force search for the original byte sequence?

In order to make file corrupt, you can run corrupt.pl with a variety of parameters.

To gather the results of a series of experiments, use gather.pl. It creates a csv file, that you can use to create nice graphics
in a spreadsheet program.

Footnotes

	[#1]	https://github.com/Dans-labs/bit-recover

	[#2]	http://dx.doi.org/10.6084/m9.figshare.903698

	[#3]	https://github.com/Dans-labs/bit-recover/blob/master/experiment/summary.xlsx

 Copyright 2013, Dirk Roorda.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bit Recovery 1.2.2 documentation

checksum.pl

Description

This tool is an instrument in bit preservation of (large) files.
It is estimated that if one reads 10 TB from disk, 1 bit will be in error.
Also, when 1 TB is stored for a year without touching it, some bits might
be damaged by random physical events such as radiation.

In order to bit-peserve large files for longer periods of time (years, decades),
it becomes important to guard against data loss.

While there is no profound solution to this problem, the following stratgegy
counts as best practice.

	Make several copies

	Divide the file and their copies in chuncks and compute checksums of the chunks

	periodically check checksums and restore damaged blocks from copies where the corresponding
block is undamaged.

Checksum.pl is a script to compute checksums for files, to verify checksums, and
to repair corrupted file by means of brute force searching, or if that is not feasible,
by restoring from backup copies, even if those are corrupt themselves.
It works even when the checksums themselves are corrupt.

It al depends on the damage being not too big.

Usage

Call the script like this:

./checksum.pl [-v] [-m method] [-t task]* [--conf kind=path]* --data kind=path [backupfile] [origfile] [corruptfile]

where

-v verbose operation
method key of %config_checksum
task member of:
 generate
 verify
 repair
 restore
 restore_ambi_no
 restore_ambi_only
 execute_repair
 execute_restore
 diag

conf:
 kind key of %files
 path will replace the name value in %files

data
 kind key of %datafile
 path path to a file on the file system

This script can generate checksums, verify them, and perform repair and restore from backup.
The verification step produces a file with mismatches, if present.
The repair and restore steps look at the file with mismatches and then try to find out how to repair
those mismatches. The result is writen to a file with instructions.
An execute step reads those instructions and executes them, actually changing the data file.
The checksum files are not modified. They can easily be recomputed again.

All intermediate files (also those with the generated checksums) are binary:
all data consists of fixed length strings, 64-bit integers, or fixed-size blocks of binary data.
All these files have a header, indicating the checksum method used, as well as the data block size and the
checksum length.

With arguments like file:kind=path you can overrule the locations and names (but not extensions) of all files that are read and written to.
The kind part must occur as key in the %files hash.

Generating

Command:

./checksum.pl file

Generates checksums for (large) files, block by block. The size of a block is configured to 1_000 bytes.
The main reason to keep it fairly small is to be able to do brute force guessing when a checksum is found not
to agree anymore with a datablock.

By generating many slight bit errors in the datablock as well as the checksum, and then searching for a valid
combination of datablock and checksum, we can be nearly completely sure that we have the original datablock and checksum
back.

The file with checksums has the same name as the input file, but with .chk appended to it.

Verifying

Command:

./checksum.pl -v file

Verifies given checksums. It expects next to the input file a file.chk with checksums, in the format indicated
above. It then extracts from file each block as specified in file.chk, computes its checksum and compares it
to the given checksum.

If there are checksum errors, references to the blocks in error are written to an error file, with name file.x .
This file contains records of mismatch information.
Such a record consists of just the block number, the given checksum, and the computed checksum.

If there are no errors, the file.x will not be present. If it existed, it will be deleted.

Repairing

Command:

./checksum.pl -c file

Looks at checksum mismatches. In every case, modifies checksum and corresponding blocks in many small ways,
until the combination matches again. Both block and checksum are dithered.
That means, a frame of at most n bits wide moves over the data, and inside the frame the bits are mangled
in all possible ways. The dither results of the checksum are stored in a hash.
The dithered blocks are not stored. They are generated on the fly, their checksum is computed, and quickly
tested against the hash of checksums. If there is a hit, it will be stored.
If there are no hits, repair is not possible by the current method. You might try further by increasing the
frame width, or by trying other kinds of variants of the block.
But maybe it is better to forget this method and try to restore from backup in such cases.
If there are multiple hits, that would be a weird situation. Maybe there has been intentional tampering.
The program will give clear warnings in these cases.

The repair instructions are written to file.ri

Restoring

Command:

./checksum.pl -r[a|A] file file-backup

Compares blocks and checksums of data and backup. The bit positions where they differ, will be varied among all
possibilities. The checksums are stored in a hash for easy lookup. Then the blocks will be generated on the fly.
So even if the backup is damaged, and even if the checksums are all damaged, it is still possible by brute force
search to find the original data back. If data and backup differ in less than 20 bits per block, there are only a million
possibilities per block to be searched.
If called with -rA only the blocks for which repair found multiple hits will be restored (not the ones without hits)
If called with -ra both the blocks for which repair found multiple hits and no hits will be restored

The restore instructions are written file.rib

Executing

Commands:

./checksum.pl -ec file
./checksum.pl -er file

Executes the repair resp. restore instructions in file.ri resp. file.rib
All information needed from the backup file is already in the instruction file, so the backup file itself is not
needed here. The work has been done in the previous steps, this step only performs the write actions in the file.

Diagnostics

Command:

./checksum.pl -dia file backupfile origfile corruptfile

Creates a diagnostic report of the repair and restore instructions. It takes as second argument the backup file and as
third argument the original file and as fourth argument the unrestored/unrepaired corrupted file.
It gives all info about the blocks which have not been restored correctly.
On the basis of this information it shows which instructions helped to correctly get the original back,
and which instructions were faulty.

Author

Dirk Roorda,
Data Archiving and Networked Services (DANS)[#1]
2013-03-29
dirk.roorda@dans.knaw.nl

See also DANS Lab Bit rot and recovery[#2]

Configuration

In order to compare performance between md5 and sha256 hashing we provide two standard configurations, which can be
invoked by the command line flag -m:

-m md5
-m sha256

invoke the md5 and the sha256 checksum algorithms respectively.
The default parameter values for these methods are loaded. It remains possible to overrule these values
by means of additional flags on the command line.

The default checksum mode is sha256.

Implementation details

Looking for hits

When measuring how close a “hit” is to the actual situation, the number of different bits in the checksums
and in the blocks are counted. However, differences in the checksum count much more than differences in the blocks.

Bit differences in the checksums are far less probable than bit differences in the blocks, because blocks are larger.
Moreover, if checksums are very different, it is an indication of tampering: a new checksum has been computed for a slightly altered block.
So by default we multiply the checksum bit distance by the $data_checksum_ration.
In addition, you can configure to increase or decrease this effect by multiplying with the $check_diff_penalty which is by default 1.

We compare hits with the foreground file, not with the backup.
We want a hit that is closest to the foreground, since the foreground has been always under our control, and the backup has been far less in our control.

We want to keep the search effort constant for the different checksum methods. Depending on the blocksize determined by the checksum method, we can
set the search parameters in such a way that the prescribed number of search operations will be used.

Binary files and headers

Every binary non-data file we read, is a file generated by this program. Such a file has a header.
It will be read and written by the following two functions.
It has the format:

a8 a8 L L L L

where:

a8 is arbitrary binary data of 8 bytes. Reserved for a string indicating the checksum method
a8 is arbitrary binary data of 8 bytes. Reserved for a string indicating the checksum method
L is a long integer (32 bits = 4 bytes), indicating the checksum size
L is a long integer (32 bits = 4 bytes), indicating the checksum size
L is a long integer (32 bits = 4 bytes), indicating the block size
L is a long integer (32 bits = 4 bytes), indicating the block size

All together the header is 32 bytes = 256 bits

The header could be damaged. We assume the checksum size and the block size are powers of two.
If one of them does not appear a power of two, choose the other. If both are not powers of two, we are stuck.
If both are powers of two but different, we are also stuck.
Likewise, we choose between the values encountered for the checksummethod.

Reading and Writing files

Opens files for reading, writing, and read-writing.
Uses the specification created in the init() function.
Returns a file handle in case of succes.
The file handle is meant to be stored in global variables.
So more than one routine can easily read and write the same file.

Repair block

This function implements a main step: Repair a single block
We apply ditherings progressively, in rounds corresponding to the frame length n of the dithering.
We start with n = 0, then n = 1 and so on.
So the smaller disturbances will be checked first, and we assume that bigger disturbances do not compete with smaller ones.
If there are hits in a round, the next rounds will be skipped.

Restore block

now generate the set by creating all possible bit values at the positions where $str1 and $str2 differ
in order to optimize the search process, we want to search in such a way that we do cases first where bits are taken
consecutively from the data version or the backup version.
The reason is that errors come in bursts. Hence, if backup and data differ in bit i and bit i+1, both bits are likely to be correct in either backup
or in data. It is much less likely that bit i is correct in data and bit i+1 in backup, or vice versa.
So if the max number of brute force operations does not permit full traversal, we do a partial traversal with the most likely suspects first.
This will increase the change of finding a good restore.

So we generate all possibile bit strings for the difference mask. We will xor the bits in the mask with the corresponding bits in the data.
So we should try bitstrings first with minimal alterations between 1s and 0s.

Dithering

This is the technique used for repairing blocks.

Dithering is subtly mangling a bit string, by introducing a limitied amount of bit errors.
We let an imaginary frame of fixed width slide over the bitstring, and inside the frame
we generate all possible bit errors.

More precisely, n-dithering is dithering with a frame of exactly width n.
And <=n-dithering is dithering with frames of width 1 to n.

If we do n-dithering, we generate bitstrings of length n, and x-or the input bitstring with it,
at a reference position that slides throughout the input.

Bit 0 and bit n-1 of an n-frame are always 1. If one or of them would be 0, we would have an n-1 frame,
or an n-2 frame, or even less. We would be doing double work then.

Bits 1 up to and including n-2 range over the full set of possible bitstrings of length n-2.

n-ditherings and m ditherings are mutually exclusive when n <> m.
This is precisely because the end points are always one, and the endpoints change the input bitstring.

So the number of ditherings with frame length <= n is: 2 ^ (n-1)

Masking

This is the technique used for restoring blocks.
When the corresponding block from the backup is fetched, and we have the data block,
then in the most general case we do not know which block is right.
They could be both wrong. Even the checksums could be all wrong.

We assume however, that the bits in which they agree are correct.

So me make a mask of the differing bits, and we create all bit variations in that mask.

We try them all out by brute force.

So there is good chance that we find a hit, even if all initial data is corrupted.

Footnotes

	[#1]	http://www.dans.knaw.nl/en

	[#2]	http://demo.datanetworkservice.nl/mediawiki/index.php/Bit_Rot_and_Recovery

 Copyright 2013, Dirk Roorda.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bit Recovery 1.2.2 documentation

perfset.pl

Description

Generates a test sets from a base file called dataname-orig in a root directory.
The root directory and some other parameters are defined by the experiment.
There are several experiments spelled out below, the first argument selects a specific one.
An original data file is corrupted and copied to form the starting point of several parts of the test set.
Each part correspondes to a checksum method such as md5 or sha256.
Corruption is pseudo random, no two corruptions will be the same.
From then on both parts will be subjected to checksum tests and error correcting.

Usage

Command:

./perfset.sh [-v] [-v] [-d] -e experiment [-tm timestamp]

where

-v verbose rsync, if twice: verbose all
-d debug mode when calling perl scripts
-f force fresh corruption
-c execute the changes and perform final check
-e experiment key of %experiment

Footnotes

 Copyright 2013, Dirk Roorda.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bit Recovery 1.2.2 documentation

corrupt.pl

Description

Corrupts the file with (burst)bit errors.
If level is given, it is the desired number of (burst)bit errors per TB.
If number is given, it is the desired absolute number of bit errors.

The bit errors are generated at independently randomly chosen positions.

It is also possible to generate burst errors of length at most nbits.
A burst error is a sequence of identical bits that will overwrite a sequence of equal length in the input file.
The length of the burst is determined randomly and independently but stays below the maximum length.
The value of the burst (zeroes or ones) will be determined randomly.

Usage

Command:

./corrupt.pl [-s] [-b nbits] [-l level | -n number] --data file*

Footnotes

 Copyright 2013, Dirk Roorda.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Bit Recovery 1.2.2 documentation

gather.pl

Description

Gather data from experiments

Usage

Command:

./gather.pl [-v] [--base reportbasedir]

where

-v verbose rsync, if twice: verbose all
--base base directory of the reports

Footnotes

 Copyright 2013, Dirk Roorda.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Bit Recovery 1.2.2 documentation

Index

 Copyright 2013, Dirk Roorda.
 Created using Sphinx 1.3.1.

 _static/file.png

_static/up-pressed.png

_images/Dirk-25.jpg

_static/ajax-loader.gif

_images/Dirk-orig.jpg

_images/Dirk-restored.jpg

_static/down-pressed.png

_images/Checksumdiff.jpg
806

dirk.jpg.chk vs dirk jpg.orig.chk

G
780
728
740
760
780
880
820
840
860
880
980
20

DCABBDIL CBSFEDES
83057234 FODCSESD
ADDBFFAY AGEESSE3
BAES7AG 0251484A
SCCT6171 BCF3EDAR
A7SBA413 AAE44DIE
51C57FA A36EERS3
CodcrDaD 4EAgFaRC
S6ABBCA2 51457467
CéDonzrd FEERCTTT
(3139648 B7CESIER
C592B8ER 206C0C1D
D393444C 20FOBCIA
2R7AAIES 4BECABAS
238D4SDE 77231457
78320055 G66F4FEE
AARE239) FBIAZDER
BFBE1173 D9BIC2D
6426802C B4FAC53S
G7EECAR2 23207460
FEICFAD 5249705
ODEZERD2 94060395
937CSAFA 97DBCCFS
BFO13TFC 67324418
SF185CS FACTCIT
32852845 B25DC260
86C37345 94310008
2FACSE60 F1506299
B7A4SCIC 144438EB
77820387 A7C93585

Co57B044 BD94PARD
FDDCSESD CTDSEFCS
AGEESSE3 54890517
8251484A DB2C21CO
BCF3EQ4D EF193927
BAE&AD15 1E20D45T
53608893 FFISDCE2
4ERGFBBC SBEDGDOE.
51457467 247B921C
FBERCTTT 6275CCEA
BICES1ER 4EC51403
206COC1D 62659185
20FOBCIA 4COACD2S
4B5CABAS 2480908
77231457 AgOFFaEC

BDO4FAFD 27698344 EBB53028 || 690 DCABED31
CTDSEFCS 36779830 2008CACB | | 700 83857234
54830517 11070955 2488760 | | 728 ADDBFFa8
DB2C21CY 73CA28C7 91506100 | | 740 Ba9ESTAG
EF798327 92693785 EB94114A | | 768 SCC7E171
TE2CD457 BAF2BECE FABBAB17 | | 760 A79BA413
FFISDCB2 BBAZGECE EGDDIDTS | | 68| Sicsyre
SBEDEDOE 92277C6D ADAF4ASS | | 820 CBACFDAD
24FB921C 90441939 947505 | | 848/ Sehgach2
8275CCEA 61F15ED7 6D7ABOCF | | 850 CaDogare
4BC51403 6913118 Froasa7n | | 888 | (313958
52659185 80267163 AB10588D | | 98| C599EBER
4CDACD24 1FFBEDAT 6AladsES | | 928 | p39nsnaC
24805084 BIBBE2S7 2F4ACAEL | | 940 2A7ARIEE
BoFFBRC FogaC7Ar 32354903 | | 960 | 238DasDE
it o
82277084 475GEGEF 66459508 | | 1000 AARE2092
BAAFCATA 49334FFE 22084767 | | 1020 BFBa1i73
96520E24 BIC3SAED 84350044 | | 1040 GAzsEnac
GE7A7ED ABBOADED SZAEEISC | | 1060/ 67EECoH2
FAIS7B3E ABBEDGDS 18DGEFG7 | | 1080 FEICEaED
26719639 S627ECAD 46261847 | | 1100 pDEgERD?
FE7E879D BCET0SC3 4EOFBane | | 1120 937CoARA
3DBICAE7 CIBGDARS 4FEBRDES | | 1140 BFOT37FC
8677300 GBOBSFCF 974A8FF2 | | 1168 3F18E5CS
BEDACOF4 FFAFAE7S COSBEGS | | 1180 52852645
7988526 4B8C0617 C19832cE | | 1280 BoCh7348.
4075838 A2554A1D Cr777CéA | | 1228 | 2Facsase
BCIG6EBD AFCAEF69 EAESESZS | | 1240 57Ad5CaC
B2560625 99ESI20E E3337851 | | 1260 77820387

20: Replace 1 byte at offset 0x1409 with 1 byte
21: Replace 1 byte at offset 0x1628 with 1 byte
22: Replace 1 byte at offset 0x1640 with 1 byte
23: Replace 1 byte at offset 0x169e with 1 byte
24: Replace 1 byte at offset 0x181a with 1 byte
25: Replace 1 byte at offset 0x18dc with 1 byte
26: Replace 1 byte at offset 0x1900 with 1 byte
27: Replace 1 byte at offset 0x19¢7 with 1 byte

DRASDE
FEIAIDEA B20F704é
DIBEIC2D BAGFCATA
B4FOCS05 96520E24
23207460 GETATBES
B84SFDBE FALS7BIE
94060306 26718630
97DBCCr4 FE7ERTAD
67324418 30BICAET
FECTC173 56778308
B25DC260 BBDACEFS
9431308 79885260
FI506209 4aFSDB30
1444360 BC1GERD
A7CO3585 B2580825

2ron3es
36779230
11070966
73C828C7
32693786
88F2BECE
BBAZSECE
92277050
9441539
61FI5ED7
as1311ce
0287183
TFFOEDAT
8388207
Fs2C7F
DE326CF3
a756E8EF
49334FFE
83CI54ER
ey
88BDED
SE27ECAD
acEre9C
CibeDais
GBOBSFCE
FRAFAETS
4B8Cos17
42554410
AFCeEree
99EST20E

EBB53028
2000CACE
2498576
81506100
EB94114A
FABBAE1T
EBDDIDTS
ADRFAASE
9e7casDs
a7AACF
Frausazh
28103880
BA1496E0
2FAACHEL
52354903
EDASDEST
68AR95BE
22984767
Bk3sDDes
S2AEEINC
TaDsEFa7
45261847
P
4FEBADER
978kBFF2
cosBesst
Cloe3ac
CrrTicea
E4ESESE
E3357851

_static/down.png

_images/Repairresults.jpg
Info: Repair results:
Repaired blocks: 138
Unrepaired blocks: 25
Suspicion level: @

_images/Dirk-bu-chk-16.jpg
Info: /Users/dirk/Scratch/dirk-bu.jpg.chk has 55936 bits
d to generate 16 bit errors for [/Users/dirk/Scratch/dirk-bu.jpg.chk]

_images/Recheck.jpg
Verification results
Total blocks: 436
Good blocks: 386
Damaged blocks: 50

Inf

_images/Dirk-174.jpg

_images/Diff.jpg
dirk:~/Scratch > diff -s dirk-orig.jpg dirk-restored.jpg
Files dirk-orig.jpg and dirk-restored.jpg are identical

_images/Dirk-bu-104.jpg

_images/Restoreresults.jpg
Restore result:
Restored blocks: 50
Unrestored blocks: @
Suspicion level: @

_images/Checksumerrors.jpg
Info: Verification results:
Total blocks: 436
Good blocks: 273
Damaged blocks: 163

_images/Dirk-chk-27.jpg
Info: /Users/dirk/Scratch/dirk.jpg.chk has 55936 bits
d to generate 27 bit errors for [/Users/dirk/Scratch/dirk.jpg.chk]

_static/minus.png

search.html

 Navigation

 		
 index

 		Bit Recovery 1.2.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Dirk Roorda.
 Created using Sphinx 1.3.1.

_static/up.png

_static/plus.png

_static/comment.png

_static/comment-close.png

_static/comment-bright.png

