
birding Documentation
Release 0.0

Parse.ly

December 02, 2015

Contents

1 Problem statement & topology 3
1.1 Problem Statement . 3
1.2 Specifics . 3
1.3 Observations . 3
1.4 Topology . 3
1.5 Other Goals . 3

2 Downloading and running birding 5

3 A tour of birding‘s implementation 7
3.1 Python Twitter Client . 7
3.2 Twitter API . 7
3.3 Search Manager . 7
3.4 Storm Bolts . 7
3.5 Storm Spouts . 8
3.6 Storm Topology . 8

4 Using birding in production 11

5 Configuring birding 13

6 Searching Gnip 15

7 API 17

Python Module Index 23

i

ii

birding Documentation, Release 0.0

birding is an open source project to produce a stream of recent twitter activity based on a sequence of search terms,
using only twitter’s public APIs. It serves as both a standalone project and a demo of distributed real-time computing
with Python using Storm/streamparse and Kafka/pykafka.

Problem statement & topology describes the problem and how it fits into a topology. Downloading and running birding
describes how to interact with birding for development, demo, or light usage. A tour of birding’s implementation
provides a light introduction to internals. Using birding in production discusses how birding is packaged for production
use in an existing streamparse project. Configuring birding discusses various options for birding behavior when
running locally or in production.

Contents 1

https://github.com/Parsely/birding
https://twitter.com
https://dev.twitter.com/rest/public
http://python.org
http://storm.apache.org
https://github.com/Parsely/streamparse
http://kafka.apache.org
https://github.com/Parsely/pykafka

birding Documentation, Release 0.0

2 Contents

CHAPTER 1

Problem statement & topology

1.1 Problem Statement

Take as input a sequence of terms and timestamps and produce a “filtered firehose” of twitter activity using only
twitter’s public APIs, without requiring special API access to twitter or any third party.

1.2 Specifics

• Input is in the format of (term, timestamp), where term is any string and timestamp is a date/time value in an
ISO 8601 format, e.g. 2015-06-25T08:00Z.

• The motivating use-case:

– provides this input as a Kafka topic

– prefers output be sent to a Kafka topic & include full twitter API results

– prefers the solution be implemented in Python

1.3 Observations

Twitter provides GET search/tweets to get relevant Tweets (status updates) matching a specified query. Any detail
not provided in the search results can be accessed with GET statuses/lookup, looking up multiple status updates in a
batched request.

The problem has potentially unbounded streams of data, which makes Storm a relevant technology for the solution.
Given that the motivating use-case prefers Python with Kafka I/O, streamparse and pykafka are relavant.

1.4 Topology

Given the problem statement, a streaming solution looks something like:

1.5 Other Goals

The solution should:

3

https://twitter.com
https://dev.twitter.com/rest/public
http://kafka.apache.org
http://python.org
https://dev.twitter.com/rest/reference/get/search/tweets
https://dev.twitter.com/overview/api/tweets
https://dev.twitter.com/rest/reference/get/statuses/lookup
http://storm.apache.org
https://github.com/Parsely/streamparse
https://github.com/Parsely/pykafka
https://docs.google.com/drawings/d/1dijNLPjn_96Q2VyPaiGYUfrnO6jXA0sBcIEKcnNERjE/edit

birding Documentation, Release 0.0

• Encode best practices about how to use Storm/streamparse and Kafka/pykafka.

• Be fully public & open source to serve as an example project, so it should not depend on anything specific to a
specific company/organization. Depending on the publicly scrutable Twitter API is, of course, okay.

• Include basic command-line tools for testing the topology with data and ways to configure things like Twitter
authentication credentials.

Next, goto one of:

• Downloading and running birding

• A tour of birding’s implementation

4 Chapter 1. Problem statement & topology

http://storm.apache.org
https://github.com/Parsely/streamparse
http://kafka.apache.org
https://github.com/Parsely/pykafka

CHAPTER 2

Downloading and running birding

Note: Existing streamparse projects should include the birding Python package instead of cloning the birding reposi-
tory, which is described in Using birding in production.

The birding project fully automates dependencies for the purposes of development, demo, or light usage. In a terminal
on a Unix-like system, clone the birding repository:

git clone https://github.com/Parsely/birding.git
cd birding

Then run:

make run

The birding project makes every effort to detect if an underlying dependency is unmet. If make run fails, look for
messages indicating what is missing or what went wrong. If an error message says that an address is in use, look for
other processes on the system which are currently using the referenced network port, then shut them down in order to
run birding. If an error is unclear, submit an issue including a build log and mention your operating system. To create
a build.log:

make run 2>&1 | tee build.log

When birding is running, its console output is verbose as it includes all output of zookeeper, kafka, storm, and stream-
parse. Note that – as with all streamparse projects – output from the birding code itself ends up in the logs/ directory
and not in the console. To stop running birding, issue a keyboard interrupt in the console with Control-C:

Control-C

Using make run will pick up birding.yml as the project configuration file if it exists in the root directory next to the
Makefile. See Configuring birding. This simple birding.yml to sets the search terms used by birding:

TermCycleSpout:
terms:
- mocking bird
- carrier pigeon

Data for the project ends up in a directory relative to the project root. Clean runtime data with:

make clean-data

Build docs with make docs and check for Python errors by static analysis with make flakes. Make allows
multiple targets at once:

5

https://pypi.python.org/pypi/birding
https://github.com/Parsely/birding/issues

birding Documentation, Release 0.0

make clean-data flakes run

Next, goto one of:

• A tour of birding’s implementation

• Using birding in production

• Configuring birding

6 Chapter 2. Downloading and running birding

CHAPTER 3

A tour of birding‘s implementation

3.1 Python Twitter Client

There are many Python packages for Twitter. The Python Twitter Tools project (pip install twitter) is of
interest because:

1. It has a command-line application to get twitter activity which includes a straightforward authentication work-
flow to log into twitter and get OAuth credentials, using a PIN-Based workflow.

2. It provides APIs in Python which bind to twitter’s public APIs in a dynamic and predictable way, where Python
attribute and method names translate to URL paths, e.g. twitter.statuses.friends_timeline()
retrieves data from http://twitter.com/statuses/friends_timeline.json.

3. The OAuth credentials saved by the command-line tool can be readily used when making API calls using the
package.

3.2 Twitter API

To ease configuration, birding adds a from_oauth_file() method which will creates a Twitter binding using the
OAuth credential file created by the twitter command-line application. The twitter command need only be run
once to create this file, which is saved in the user home directory at ~/.twitter_oauth. Once that file is in place,
twitter API interactions look like this:

• Twitter API Demo

3.3 Search Manager

It is useful to solve the problem itself before being concerned with details about the topology. birding’s
TwitterSearchManager composes the Twitter object into higher-level method signatures which perform the
processing steps needed for the given Problem statement & topology. A full interaction before applying Storm looks
like this (see In[2]):

• Simple Simulated Stream

3.4 Storm Bolts

With APIs in place to do the work, Bolt classes provide Storm components:

7

https://pypi.python.org/pypi?%3Aaction=search&term=twitter&submit=search
http://mike.verdone.ca/twitter/
https://twitter.com
https://dev.twitter.com/oauth
https://dev.twitter.com/oauth/pin-based
https://dev.twitter.com/rest/public
https://github.com/Parsely/birding/blob/master/docs/Twitter%20API%20Demo.ipynb
https://github.com/Parsely/birding/blob/master/docs/Simple%20Simulated%20Stream.ipynb
https://storm.apache.org/documentation/Concepts.html#bolts

birding Documentation, Release 0.0

• TwitterSearchBolt searches the input terms.

• TwitterLookupBolt expands search results into full tweets.

• ElasticsearchIndexBolt indexes the lookup results in elasticsearch.

• ResultTopicBolt publishes the lookup results to Kafka.

3.5 Storm Spouts

Spout classes provide Storm components which take birding’s input and provide the source of streams in the topology:

• DispatchSpout() dispatches spout class based on config. See Configuring birding.

• TermCycleSpout cycles through a static list of terms.

3.6 Storm Topology

With Storm components ready for streamparse, a topology can pull it all together. birding’s topology uses the
Clojure DSL; the streamparse discussion of topologies has more detail. In the topology definition below, note
the class references "birding.bolt.TwitterSearchBolt", "birding.bolt.TwitterLookupBolt",
and "birding.bolt.ResultTopicBolt". These are full Python namespace references to the birding classes.
The names given in the DSL can then be used to wire the components together. For example, the definition of
"search-bolt" (python-bolt-spec ...) allows "search-bolt" to be used as input in another bolt,
"lookup-bolt" (python-bolt-spec ... {"search-bolt" :shuffle} ...).

(ns birding
(:use [streamparse.specs])
(:gen-class))

(defn birding [options]
[
;; spout configuration
{"term-spout" (python-spout-spec

options
; Dispatch class based on birding.yml.
"birding.spout.DispatchSpout"
["term" "timestamp"]
:conf {"topology.max.spout.pending", 8}
)

}
;; bolt configuration
{"search-bolt" (python-bolt-spec

options
; Use field grouping on term to support in-memory caching.
{"term-spout" ["term"]}
"birding.bolt.TwitterSearchBolt"
["term" "timestamp" "search_result"]
:p 2
)

"lookup-bolt" (python-bolt-spec
options
{"search-bolt" :shuffle}
"birding.bolt.TwitterLookupBolt"
["term" "timestamp" "lookup_result"]
:p 2

8 Chapter 3. A tour of birding‘s implementation

https://storm.apache.org/documentation/Concepts.html#spouts
http://storm.apache.org/documentation/Clojure-DSL.html
http://streamparse.readthedocs.org/en/master/topologies.html

birding Documentation, Release 0.0

)
"elasticsearch-index-bolt" (python-bolt-spec

options
{"lookup-bolt" :shuffle}
"birding.bolt.ElasticsearchIndexBolt"
[]
:p 1
)

"result-topic-bolt" (python-bolt-spec
options
{"lookup-bolt" :shuffle}
"birding.bolt.ResultTopicBolt"
[]
:p 1
)

}
]

)

Next, goto one of:

• Downloading and running birding

• Using birding in production

• Configuring birding

3.6. Storm Topology 9

birding Documentation, Release 0.0

10 Chapter 3. A tour of birding‘s implementation

CHAPTER 4

Using birding in production

Note: birding is currently alpha software.

If birding itself satisfies project requirements, see the streamparse project’s discussion of remote deployment and use
sparse submit from a checkout of the birding repository. Otherwise, birding is available on the Python Package
Index, which projects can use as a dependency:

pip install birding

Once installed in the Python environment, birding references are available to the topology definition. A project’s
topology can include python-spout-spec and python-bolt-spec declarations which have class references
to birding.spout and birding.bolt namespaces, respectively. The snippet below illustrates this. The Storm
Topology section has more detail.

"search-bolt" (python-bolt-spec
options
{"term-spout" ["term"]}
"birding.bolt.TwitterSearchBolt"
["term" "timestamp" "search_result"]
:p 2)

The streamparse project discusses remote deployment using the sparse submit command. Configuring birding
discusses the birding.yml file which is located by the BIRDING_CONF environment variable. Projects using
birding should include its configuration file as part of host configuration management or a streamparse submit hook,
and likewise set the BIRDING_CONF variable accordingly.

Next, goto Configuring birding.

11

http://streamparse.readthedocs.org/en/master/quickstart.html#remote-deployment
https://pypi.python.org/pypi
https://pypi.python.org/pypi
http://streamparse.readthedocs.org/en/master/quickstart.html#remote-deployment

birding Documentation, Release 0.0

12 Chapter 4. Using birding in production

CHAPTER 5

Configuring birding

birding uses a validated configuration file for runtime details.

Configuration files use a YAML format. All values have a default (below) and accept values of the same name in
the configuration file, which has a default path of birding.yml in the current working directory. If needed, the
BIRDING_CONF environment variable can point to the filepath of the configuration file.

The scope of the configuration file is limited to details of birding itself, not of Storm-related topics. Storm details are
in the project topology definition.

When a configuration value is a Python dotted name, it is a string reference to the Python object to import. In general,
when the value is just an object name without a full namespace, its assumed to be the relevant birding namespace,
e.g. LRUShelf is assumed to be birding.shelf.LRUShelf. Respective *_init configuration values specify
keyword (not positional) arguments to be passed to the class constructor.

See Using birding in production for further discussion on configuration in production environments.

For advanced API usage, see get_config(). The config includes an Appendix to support any additional values not
known to birding, such that these values are available in config[’Appendix’] and bypass any validation. This is
useful for code which uses birding’s config loader and needs to define additional values.

Defaults:

Spout: TermCycleSpout
TermCycleSpout:

terms:
- real-time analytics
- apache storm
- pypi

SearchManager:
class: birding.twitter.TwitterSearchManagerFromOAuth
init: {}

TwitterSearchBolt:
shelf_class: FreshLRUShelf
shelf_init: {}
shelf_expiration: 300

ElasticsearchIndexBolt:
elasticsearch_class: elasticsearch.Elasticsearch
elasticsearch_init:
hosts:
- localhost: 9200

index: tweet
doc_type: tweet

ResultTopicBolt:
kafka_class: pykafka.KafkaClient

13

http://yaml.org/

birding Documentation, Release 0.0

kafka_init:
hosts: 127.0.0.1:9092 # comma-separated list of hosts

topic: tweet
shelf_class: ElasticsearchShelf
shelf_init: {}
shelf_expiration: null

Appendix: {}

14 Chapter 5. Configuring birding

CHAPTER 6

Searching Gnip

Gnip is Twitter’s enterprise API platform, which birding supports for projects seeking to search at higher rates than
allowed in the public API. The configuration snippet below uses Gnip’s APIs instead of Twitter. See Configuring
birding for how to configure birding.

SearchManager:
class: birding.gnip.GnipSearchManager
init:
base_url: https://search.gnip.com/accounts/Example
stream: prod.json
username: admin@example.org
password: This.yml.file.should.be.untracked.

See birding API docs for Gnip and GnipSearchManager for underlying behavior, which is minimal.

15

https://gnip.com/

birding Documentation, Release 0.0

16 Chapter 6. Searching Gnip

CHAPTER 7

API

birding.spout.DispatchSpout()
Factory to dispatch spout class based on config.

class birding.spout.TermCycleSpout

initialize(stormconf, context)
Initialization steps:

1.Prepare sequence of terms based on config: TermCycleSpout/terms.

next_tuple()
Next tuple steps:

1.Emit (term, timestamp) for next term in sequence w/current UTC time.

class birding.bolt.TwitterSearchBolt

initialize(conf, ctx)
Initialization steps:

1.Get search_manager_from_config().

2.Prepare to track searched terms as to avoid redundant searches.

process(tup)
Process steps:

1.Stream in (term, timestamp).

2.Perform search() on term.

3.Emit (term, timestamp, search_result).

class birding.bolt.TwitterLookupBolt

initialize(conf, ctx)
Initialization steps:

1.Get search_manager_from_config().

process(tup)
Process steps:

1.Stream in (term, timestamp, search_result).

2.Perform lookup_search_result().

17

birding Documentation, Release 0.0

3.Emit (term, timestamp, lookup_result).

class birding.bolt.ElasticsearchIndexBolt

initialize(conf, ctx)
Initialization steps:

1.Prepare elasticsearch connection, including details for indexing.

process(tup)
Process steps:

1.Index third positional value from input to elasticsearch.

class birding.bolt.ResultTopicBolt

initialize(conf, ctx)
Initialization steps:

1.Connect to Kafka.

2.Prepare Kafka producer for tweet topic.

3.Prepare to track tweets published to topic, to avoid redundant data.

process(tup)
Process steps:

1.Stream third positional value from input into Kafka topic.

birding.search.search_manager_from_config()
Get a SearchManager instance dynamically based on config.

config is a dictionary containing class and init keys as defined in birding.config.

class birding.search.SearchManager
Abstract base class for service object to search for tweets.

lookup(id_list, **kw)
Lookup list of statuses, return results directly from source.

Input can be any sequence of numeric or string values representing status IDs.

lookup_search_result(result, **kw)
Perform lookup() on return value of search().

search(q=None, **kw)
Search for q, return results directly from source.

class birding.twitter.Twitter(format=u’json’, domain=u’api.twitter.com’, secure=True,
auth=None, api_version=<class ‘twitter.api._DEFAULT’>,
retry=False)

classmethod from_oauth_file(filepath=None)
Get an object bound to the Twitter API using your own credentials.

The twitter library ships with a twitter command that uses PIN OAuth. Generate your own OAuth cre-
dentials by running twitter from the shell, which will open a browser window to authenticate you. Once
successfully run, even just one time, you will have a credential file at ~/.twitter_oauth.

This factory function reuses your credential file to get a Twitter object. (Really, this code is just lifted from
the twitter.cmdline module to minimize OAuth dancing.)

18 Chapter 7. API

birding Documentation, Release 0.0

class birding.twitter.TwitterSearchManager(twitter)
Service object to provide fully-hydrated tweets given a search query.

static dump(result)
Dump result into a string, useful for debugging.

lookup(id_list, **kw)
Lookup list of statuses, return results directly from twitter.

Input can be any sequence of numeric or string values representing twitter status IDs.

lookup_search_result(result, **kw)
Perform lookup() on return value of search().

search(q=None, **kw)
Search twitter for q, return results directly from twitter.

birding.twitter.TwitterSearchManagerFromOAuth()
Build TwitterSearchManager from user OAuth file.

Arguments are passed to birding.twitter.Twitter.from_oauth_file().

class birding.gnip.Gnip(base_url, stream, username, password, **params)
Simple binding to Gnip search API.

search(q, **kw)
Search Gnip for given query, returning deserialized response.

session_class
alias of Session

class birding.gnip.GnipSearchManager(*a, **kw)
Service object to provide fully-hydrated tweets given a search query.

static dump(result)
Dump result into a string, useful for debugging.

lookup(id_list, **kw)
Not implemented.

lookup_search_result(result, **kw)
Do almost nothing, just pass-through results.

search(q, **kw)
Search gnip for q, return results directly from gnip.

birding.config.get_config(filepath=None, default_loader=None, on_missing=None)
Get a dict for the current birding configuration.

The resulting dictionary is fully populated with defaults, such that all valid keys will resolve to valid values.
Invalid and extra values in the configuration result in an exception.

See Configuring birding (module-level docstring) for discussion on how birding configuration works, including
filepath loading. Note that a non-default filepath set via env results in a OSError when the file is missing, but
the default filepath is ignored when missing.

This function caches its return values as to only parse configuration once per set of inputs. As such, treat the
resulting dictionary as read-only as not to accidentally write values which will be seen by other handles of the
dictionary.

Parameters

• filepath (str) – path to birding configuration YAML file.

19

https://dev.twitter.com/rest/reference/get/statuses/lookup
https://dev.twitter.com/rest/reference/get/search/tweets
http://support.gnip.com/apis/search_api/api_reference.html
https://docs.python.org/dev/library/exceptions.html#OSError
https://docs.python.org/dev/library/stdtypes.html#str

birding Documentation, Release 0.0

• default_loader (callable) – callable which returns file descriptor with YAML data of
default configuration values

• on_missing (callable) – callback to call when file is missing.

Returns dict of current birding configuration; treat as read-only.

Return type dict

birding.shelf.shelf_from_config()
Get a Shelf instance dynamically based on config.

config is a dictionary containing shelf_* keys as defined in birding.config.

class birding.shelf.Shelf
Abstract base class for a shelf to track – but not iterate – values.

Provides a dict-interface.

clear()
Remove all items from the shelf.

delitem(key)
Remove an item from the shelf.

getitem(key)
Get an item’s value from the shelf or raise KeyError(key).

pack(key, value)
Pack value given to setitem, inverse of unpack.

setitem(key, value)
Set an item on the shelf, with the given value.

unpack(key, value)
Unpack value from getitem.

This is useful for Shelf implementations which require metadata be stored with the shelved values, in
which case pack should implement the inverse operation. By default, the value is simply passed through
without modification. The unpack implementation is called on __getitem__ and therefore can raise
KeyError if packed metadata indicates that a value is invalid.

class birding.shelf.FreshPacker
Mixin for pack/unpack implementation to expire shelf content.

expire_after = 300
Values are no longer fresh after this value, in seconds.

freshness()
Clock function to use for freshness packing/unpacking.

is_fresh(freshness)
Return False if given freshness value has expired, else True.

pack(key, value)
Pack value with metadata on its freshness.

set_expiration(expire_after)
Set a new expiration for freshness of all unpacked values.

unpack(key, value)
Unpack and return value only if it is fresh.

class birding.shelf.LRUShelf(maxsize=1000)
An in-memory Least-Recently Used shelf up to maxsize..

20 Chapter 7. API

https://docs.python.org/dev/library/functions.html#callable
https://docs.python.org/dev/library/functions.html#callable
https://docs.python.org/dev/library/stdtypes.html#dict

birding Documentation, Release 0.0

class birding.shelf.FreshLRUShelf(maxsize=1000)
A Least-Recently Used shelf which expires values.

class birding.shelf.ElasticsearchShelf(index=’shelf’, doc_type=’shelf’, **elasticsearch_init)
A shelf implemented using an elasticsearch index.

class birding.shelf.FreshElasticsearchShelf(index=’shelf’, doc_type=’shelf’, **elastic-
search_init)

An shelf implementation with elasticsearch which expires values.

To discuss this project, join the streamparse user group.

Documentation Index

21

https://github.com/Parsely/streamparse#user-group

birding Documentation, Release 0.0

22 Chapter 7. API

Python Module Index

b
birding.bolt, 17
birding.config, 13
birding.gnip, 19
birding.search, 18
birding.shelf, 20
birding.spout, 17
birding.twitter, 18

23

birding Documentation, Release 0.0

24 Python Module Index

Index

B
birding.bolt (module), 17
birding.config (module), 13
birding.gnip (module), 19
birding.search (module), 18
birding.shelf (module), 20
birding.spout (module), 17
birding.twitter (module), 18

C
clear() (birding.shelf.Shelf method), 20

D
delitem() (birding.shelf.Shelf method), 20
DispatchSpout() (in module birding.spout), 17
dump() (birding.gnip.GnipSearchManager static method),

19
dump() (birding.twitter.TwitterSearchManager static

method), 19

E
ElasticsearchIndexBolt (class in birding.bolt), 18
ElasticsearchShelf (class in birding.shelf), 21
expire_after (birding.shelf.FreshPacker attribute), 20

F
FreshElasticsearchShelf (class in birding.shelf), 21
FreshLRUShelf (class in birding.shelf), 20
freshness() (birding.shelf.FreshPacker method), 20
FreshPacker (class in birding.shelf), 20
from_oauth_file() (birding.twitter.Twitter class method),

18

G
get_config() (in module birding.config), 19
getitem() (birding.shelf.Shelf method), 20
Gnip (class in birding.gnip), 19
GnipSearchManager (class in birding.gnip), 19

I
initialize() (birding.bolt.ElasticsearchIndexBolt method),

18
initialize() (birding.bolt.ResultTopicBolt method), 18
initialize() (birding.bolt.TwitterLookupBolt method), 17
initialize() (birding.bolt.TwitterSearchBolt method), 17
initialize() (birding.spout.TermCycleSpout method), 17
is_fresh() (birding.shelf.FreshPacker method), 20

L
lookup() (birding.gnip.GnipSearchManager method), 19
lookup() (birding.search.SearchManager method), 18
lookup() (birding.twitter.TwitterSearchManager method),

19
lookup_search_result() (bird-

ing.gnip.GnipSearchManager method), 19
lookup_search_result() (birding.search.SearchManager

method), 18
lookup_search_result() (bird-

ing.twitter.TwitterSearchManager method),
19

LRUShelf (class in birding.shelf), 20

N
next_tuple() (birding.spout.TermCycleSpout method), 17

P
pack() (birding.shelf.FreshPacker method), 20
pack() (birding.shelf.Shelf method), 20
process() (birding.bolt.ElasticsearchIndexBolt method),

18
process() (birding.bolt.ResultTopicBolt method), 18
process() (birding.bolt.TwitterLookupBolt method), 17
process() (birding.bolt.TwitterSearchBolt method), 17

R
ResultTopicBolt (class in birding.bolt), 18

S
search() (birding.gnip.Gnip method), 19

25

birding Documentation, Release 0.0

search() (birding.gnip.GnipSearchManager method), 19
search() (birding.search.SearchManager method), 18
search() (birding.twitter.TwitterSearchManager method),

19
search_manager_from_config() (in module bird-

ing.search), 18
SearchManager (class in birding.search), 18
session_class (birding.gnip.Gnip attribute), 19
set_expiration() (birding.shelf.FreshPacker method), 20
setitem() (birding.shelf.Shelf method), 20
Shelf (class in birding.shelf), 20
shelf_from_config() (in module birding.shelf), 20

T
TermCycleSpout (class in birding.spout), 17
Twitter (class in birding.twitter), 18
TwitterLookupBolt (class in birding.bolt), 17
TwitterSearchBolt (class in birding.bolt), 17
TwitterSearchManager (class in birding.twitter), 18
TwitterSearchManagerFromOAuth() (in module bird-

ing.twitter), 19

U
unpack() (birding.shelf.FreshPacker method), 20
unpack() (birding.shelf.Shelf method), 20

26 Index

	Problem statement & topology
	Problem Statement
	Specifics
	Observations
	Topology
	Other Goals

	Downloading and running birding
	A tour of birding`s implementation
	Python Twitter Client
	Twitter API
	Search Manager
	Storm Bolts
	Storm Spouts
	Storm Topology

	Using birding in production
	Configuring birding
	Searching Gnip
	API
	Python Module Index

