

 Navigation

 	
 index

 	
 next |

 	biometryd 0.0.1 documentation

Welcome to biometryd’s documentation

	Introduction
	Coordinates

	Architecture & Technology
	Device
	Template Store

	Identifier

	Verifier

	Operation

	Interfaces

	Extending Biometryd

	Manual Test Plan
	Turbo
	Enrolling a New Template

	Identifying With A Fingerprint

	Removing a Previously Enrolled Template

 Copyright 2016, Canonical Ltd..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	biometryd 0.0.1 documentation

Introduction

Biometryd multiplexes and mediates access to devices for biometric
identification and verification. A fingerprint reader is an example of
such a device, but the overall system is designed with arbitrary
devices and mechanisms in mind.

Security and privacy is one the most important design goal. For that,
design, API and implementation do make sure that actual template
boundary is never exposed to client applications. More to this,
Biometryd and its API are designed such that actual template data is
not needed for operation (unless really needed by a device). Instead,
the API focuses on controlling and monitoring devices and operations
instead of dealing with handling actual template data.

Coordinates

	Project: https://launchpad.net/biometryd
	Code: https://launchpad.net/biometryd

	Docs: http://biometryd.rtfd.io/

	Bugs: https://bugs.launchpad.net/biometryd

 Copyright 2016, Canonical Ltd..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	biometryd 0.0.1 documentation

Architecture & Technology

This section presents a high-level overview of the system design. The
system is devided into a set of core components and concepts that are
exposed via DBus to client applications.

Please note that we designed the core components such that other types
of (remote) interfaces are possible, e.g., a REST API. At the time of
this writing, DBus is the primary interface though.

The primary implementation language is C++11, and we offer both a C++11
client library as well as QML bindings. Other languages, runtimes and
toolkits can easily consume Biomtryd by either leveraging theq
aforementioned client bindings or by directly consuming the DBus API.

The following diagram gives an overview of the main interfaces as
further described in this secion:

[image: Biometryd overview]

Device

A Device abstracts an arbitrary biometric device. It bundles together access to
a set of interfaces that enable client applications to:

	enroll and query information about known templates

	identify a user from a set of candidate users

	verify that a given user is actually interacting with a device

Template Store

A template store enables applications to manage and query information
about enrolled templates. A template is device-specific and its actual
data is not available to applications. Instead, it is referred to
and uniquely identified by a numeric id in the context of one specific
device implementation. Applications can:

	add (enroll) a template to the template store

	remove an individual template from the template store

	clear out all templates

	list all enrolled templates

Identifier

An identifier enables applications to identify one user from a given
set of candidate users.

Verifier

A verifier enables applications to verify that a specific user is
interacting with a device.

Operation

The overall system and access to its functionality is structured
around the notion of an asynchronous operation. An operation is a
state machine as shown in: [image: Operation state machine]

Client applications can start and cancel an operation, all other state
transitions are triggered by the device implementation executing an
operation. An operation and its state transitions can be observed by
client applications and certain type of devices hand out detailed
information about the ongoing operation.

Please note that both the service and device implementations might
cancel an ongoing operation, too.

 Copyright 2016, Canonical Ltd..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	biometryd 0.0.1 documentation

Interfaces

	
class biometry::Device

	Device models a biometric device.

Inherits from DoNotCopyOrMove

Subclassed by biometry::devices::FingerprintReader

Public Types

	
typedef std::string Id

	Id is the unique name of a device.

Public Functions

	
virtual TemplateStore &template_store() = 0

	enroller returns a device-specific template_store implementation.

	
virtual Identifier &identifier() = 0

	identifier returns a device-specific Identifier implementation.

	
virtual Verifier &verifier() = 0

	verifier returns a device-specific Verifier implementation.

	
class Descriptor

	Descriptor bundles details about a device.

Inherits from DoNotCopyOrMove

Public Functions

	
virtual std::shared_ptr<Device> create(const util::Configuration&) = 0

	create returns an instance of the device.

	
virtual std::string name() const = 0

	name returns the human-readable name of the device.

	
virtual std::string author() const = 0

	author returns the name of the author of the device implementation.

	
virtual std::string description() const = 0

	description returns a one-line summary of the device implementation.

	
class biometry::TemplateStore

	TemplateStore models maintenance of a device-specific template store in way that ensures that no template data ever crosses over the wire (or would need to be extracted from a TEE).

Inherits from DoNotCopyOrMove

Subclassed by biometry::devices::FingerprintReader::TemplateStore

Public Types

	
typedef std::uint64_t TemplateId

	TemplateId is a numeric uniquely identifying a biometric template.

Public Functions

	
virtual Operation<SizeQuery>::Ptr size(const Application &app, const User &user) = 0

	size() returns the number of templates known for user.

	Parameters

	
	app - The application requesting the information.

	user - The user for which we want to query the number of known templates.

	
virtual Operation<List>::Ptr list(const Application &app, const User &user) = 0

	list returns an operation that yields the list of all templates enrolled for app and user.

	Parameters

	
	app - The application requesting the information.

	user - The user for which we want to query all enrolled templates.

	
virtual Operation<Enrollment>::Ptr enroll(const Application &app, const User &user) = 0

	enroll returns an operation that represents the enrollment of a new template for a user.

	Parameters

	
	app - The application requesting the enrollment operation.

	user - The user for which we want to enroll the new template.

	
virtual Operation<Removal>::Ptr remove(const Application &app, const User &user, TemplateId id) = 0

	remove returns an operation that represents the removal of an individual template.

	Parameters

	
	app - The application requesting the removal operation.

	user - The user for which we want to remove a specific template.

	id - The id of the template that should be removed.

	
virtual Operation<Clearance>::Ptr clear(const Application &app, const User &user) = 0

	clear returns an operation that represents removal of all templates associated to user.

	Parameters

	
	app - The application requesting the clear operation.

	user - The user for which we want to clear templates for.

	
struct Clearance

	Clearance bundles the types passed to an observer of clearance operations.

Public Types

	
typedef biometry::Progress Progress

	Progress information about the completion status of an operation.

	
typedef std::string Reason

	Details about cancelation of an operation.

	
typedef std::string Error

	Describes error conditions.

	
typedef Void Result

	Describes the result of a Clearance operation.

	
struct Enrollment

	Enrollment bundles the types passed to an observer of enrollment operations.

Public Types

	
typedef biometry::Progress Progress

	Progress information about the completion status of an operation.

	
typedef std::string Reason

	Details about cancelation of an operation.

	
typedef std::string Error

	Describes error conditions.

	
typedef TemplateId Result

	Describes the result of an Enrollment operation.

	
struct List

	List bundles the types passed to an observer of a size operation.

Public Types

	
typedef biometry::Progress Progress

	Progress information about the completion status of an operation.

	
typedef std::string Reason

	Details about cancelation of an operation.

	
typedef std::string Error

	Describes error conditions.

	
typedef std::vector<TemplateId> Result

	Describes the result of a List operation.

	
struct Removal

	Remove bundles the types passed to an observer of a removal operation.

Public Types

	
typedef biometry::Progress Progress

	Progress information about the completion status of an operation.

	
typedef std::string Reason

	Details about cancelation of an operation.

	
typedef std::string Error

	Describes error conditions.

	
typedef TemplateId Result

	Describes the result of an Enrollment operation.

	
struct SizeQuery

	SizeQuery bundles the types passed to an observer of a size operation.

Public Types

	
typedef biometry::Progress Progress

	Progress information about the completion status of an operation.

	
typedef std::string Reason

	Details about cancelation of an operation.

	
typedef std::string Error

	Describes error conditions.

	
typedef std::uint32_t Result

	Describes the result of a SizeQuery operation.

	
class biometry::Identifier

	Verifier abstracts verification of a user.

Inherits from DoNotCopyOrMove

Public Functions

	
virtual Operation<Identification>::Ptr identify_user(const Application &app, const Reason &reason) = 0

	identify_user returns an operation that represents the identification of a user given a set of candidates with the given reason.

	
class biometry::Verifier

	Verifier abstracts verification of a user.

Inherits from DoNotCopyOrMove

Public Functions

	
virtual Operation<Verification>::Ptr verify_user(const Application &app, const User &user, const Reason &reason) = 0

	verify_user returns an operation that represents the verification of ‘user’ for ‘reason’.

	
template <typename T>

	
class biometry::Operation

	An Operation models an asynchronous operation that can be started and cancelled, as well as observed.

Inherits from DoNotCopyOrMove

Public Functions

	
virtual void start_with_observer(const typename Observer::Ptr &observer) = 0

	start_with_observer starts the operation, handing updates to ‘observer’.

	
virtual void cancel() = 0

	cancel stops the operation, confirming cancellation to the installed observer.

	
class Observer

	An Observer enables client code to monitor an ongoing operation.

Inherits from DoNotCopyOrMove

Subclassed by biometry::qml::TypedOperation< T >::Observer

Public Functions

	
virtual void on_started() = 0

	on_state_changed is called whenever the state of an operation changed, handing the current (new) and previous state to the observer.

	
virtual void on_progress(const Progress &progress) = 0

	on_progress is called whenever an operation advances.

	Parameters

	
	progress - contains details describing the progress.

	
virtual void on_canceled(const Reason &reason) = 0

	on_canceled is called when an operation is cancelled.

	Parameters

	
	reason - contains details explaing the reson for cancelling.

	
virtual void on_failed(const Error &error) = 0

	on_failed is called when an operation fails.

	Parameters

	
	error - provides details describing the error condition.

	
virtual void on_succeeded(const Result &result) = 0

	on_succeeded is called when an operation succeeds.

	Parameters

	
	result - provides details handing the result of the operation to observers.

 Copyright 2016, Canonical Ltd..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	biometryd 0.0.1 documentation

Extending Biometryd

Biometryd can be extended by implementing the interface
biometry::Device. We support both in-tree and out-of-tree
plugins. In-tree plugin authors should add their device implementation
in the folder ${BIOMETRYD_ROOT}/src/biometry/devices and submit
their code contribution as a merge proposal to https://launchpad.net/biometryd.

Out-of-tree plugin authors should rely on

	BIOMETRYD_DEVICES_PLUGIN_DESCRIBE(name, author, desc, major, minor, patch)
	name The name of the plugin

	author The author of the plugin

	desc Human-readable description of the plugin

	major Major revision of the plugin

	minor Minor revision of the plugin

	patch Patch level of the plugin

	BIOMETRYD_DEVICES_PLUGIN_CREATE

	BIOMETRYD_DEVICES_PLUGIN_DESTROY

to describe, instantiate and destroy their plugin, respectively. The
following snippet demonstrates a complete plugin definition. The
resulting shared object file should be installed to biometryd config --flag default_plugin_directory. Once the plugin is installed, it can
be referenced by its name as passed to
BIOMETRYD_DEVICES_PLUGIN_DESCRIBE.

#include <biometry/devices/plugin/interface.h>

#include "mock_device.h"

/// [Defining the create function]
BIOMETRYD_DEVICES_PLUGIN_CREATE
{
 return new testing::MockDevice();
}
/// [Defining the create function]

/// [Defining the destroy function]
BIOMETRYD_DEVICES_PLUGIN_DESTROY
{
 delete d;
}
/// [Defining the destroy function]

/// [Describing the plugin]
BIOMETRYD_DEVICES_PLUGIN_DESCRIBE(
 "TestPlugin",
 "Thomas Voß <thomas.voss@canonical.com>",
 "Just a plugin for testing purposes",
 0,
 0,
 0)
/// [Describing the plugin]

 Copyright 2016, Canonical Ltd..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	biometryd 0.0.1 documentation

Manual Test Plan

This section lists manual test cases that should be executed prior to landing. The test cases exercise the main functionality and aim to guarantee a baseline level of functionality that should not regress across releases.

Please note that individual landings might require specific testing steps in addition to the ones listed here.

We assume that testers use a freshly bootstrapped device.

Turbo

Enrolling a New Template

	Boot the phone

	Unlock the greeter/complete the wizard

	Start “System Settings”

	Switch to the “Security & Privacy” page

	Select “Fingerprint ID”

	Select “Add Fingerprint”
	Enroll a new template according to the onscreen instructions.

	Make sure that feedback given during enrollment is meaningful and reasonable.

	After completion, check if the list of enrolled fingerprints has grown by 1.

	Select the recently enrolled fingerprint and rename it:
	Ensure that the name of the fingerprint is persistent across restarts of “System Settings”

Identifying With A Fingerprint

	In “System Settings”, choose Fingerprint ID as lock security.

	Lock the screen.

	Wake up the phone by pressing the power button.

	Try to identify with your previously enrolled fingerprint.

	Lock the screen again.

	Wake up with the home button.

	Try to identify with your previously enrolled fingerprint.

	Lock the screen again.

	Wake up the screen and try to identify with a finger that hasn’t been enrolled previously. The attempts should fail and the device should fall back to your passcode.

Removing a Previously Enrolled Template

	Start “System Settings”

	Switch to “Security & Privacy” page

	Remove at least one enrolled fingerprint
	Make sure that the fingerprint is removed from the list

	Lock the screen and try to identify with the fingerprint. The attemtps should fail.

 Copyright 2016, Canonical Ltd..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	biometryd 0.0.1 documentation

Index

 B

B

 	

 	biometry::Device (C++ class)

 	biometry::Device::Descriptor (C++ class)

 	biometry::Device::Descriptor::author (C++ function)

 	biometry::Device::Descriptor::create (C++ function)

 	biometry::Device::Descriptor::description (C++ function)

 	biometry::Device::Descriptor::name (C++ function)

 	biometry::Device::Id (C++ type)

 	biometry::Device::identifier (C++ function)

 	biometry::Device::template_store (C++ function)

 	biometry::Device::verifier (C++ function)

 	biometry::Identifier (C++ class)

 	biometry::Identifier::identify_user (C++ function)

 	biometry::Operation (C++ class)

 	biometry::Operation::cancel (C++ function)

 	biometry::Operation::Observer (C++ class)

 	biometry::Operation::start_with_observer (C++ function)

 	biometry::Operation<T>::Observer::on_canceled (C++ function)

 	biometry::Operation<T>::Observer::on_failed (C++ function)

 	biometry::Operation<T>::Observer::on_progress (C++ function)

 	biometry::Operation<T>::Observer::on_started (C++ function)

 	biometry::Operation<T>::Observer::on_succeeded (C++ function)

 	biometry::TemplateStore (C++ class)

 	biometry::TemplateStore::clear (C++ function)

 	biometry::TemplateStore::Clearance (C++ class)

 	biometry::TemplateStore::Clearance::Error (C++ type)

 	biometry::TemplateStore::Clearance::Progress (C++ type)

 	biometry::TemplateStore::Clearance::Reason (C++ type)

 	biometry::TemplateStore::Clearance::Result (C++ type)

 	

 	biometry::TemplateStore::enroll (C++ function)

 	biometry::TemplateStore::Enrollment (C++ class)

 	biometry::TemplateStore::Enrollment::Error (C++ type)

 	biometry::TemplateStore::Enrollment::Progress (C++ type)

 	biometry::TemplateStore::Enrollment::Reason (C++ type)

 	biometry::TemplateStore::Enrollment::Result (C++ type)

 	biometry::TemplateStore::List (C++ class)

 	biometry::TemplateStore::list (C++ function)

 	biometry::TemplateStore::List::Error (C++ type)

 	biometry::TemplateStore::List::Progress (C++ type)

 	biometry::TemplateStore::List::Reason (C++ type)

 	biometry::TemplateStore::List::Result (C++ type)

 	biometry::TemplateStore::Removal (C++ class)

 	biometry::TemplateStore::Removal::Error (C++ type)

 	biometry::TemplateStore::Removal::Progress (C++ type)

 	biometry::TemplateStore::Removal::Reason (C++ type)

 	biometry::TemplateStore::Removal::Result (C++ type)

 	biometry::TemplateStore::remove (C++ function)

 	biometry::TemplateStore::size (C++ function)

 	biometry::TemplateStore::SizeQuery (C++ class)

 	biometry::TemplateStore::SizeQuery::Error (C++ type)

 	biometry::TemplateStore::SizeQuery::Progress (C++ type)

 	biometry::TemplateStore::SizeQuery::Reason (C++ type)

 	biometry::TemplateStore::SizeQuery::Result (C++ type)

 	biometry::TemplateStore::TemplateId (C++ type)

 	biometry::Verifier (C++ class)

 	biometry::Verifier::verify_user (C++ function)

 Copyright 2016, Canonical Ltd..
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		biometryd 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Canonical Ltd..
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_images/biometryd.png
default_device(): biometry:Device:Ptr

1
biometry:Verifier

verify_user(..): biometry:Operationsidentification>::Ptr

1
biometry:Operation<Size>:Ptr biometry:identifier
lometry:Operation<List>:Ptr
“Operation<Enroll>:Ptr identify_user(..): biometry:Operationsldentification>::Ptr
.

‘Operation<Remove>:Ptr
beration<Clear>:Ptr

_images/state_machine.png
biometry:Operation:ready

biometry:Operation:running

biometry:Operation:failed biometry:Operation::canceled biometry:Operation:succeeded

