

Welcome to Bioinformatics in the Cloud Workshop’s documentation!

Cloud technologies are emerging as a critical tool in Bioinformatics analysis
as datasets grow exponentially in number and size. However, the set of cloud
technologies and concepts necessary to deploy Bioinformatics analysis is
rapidly evolving and complex. This series of workshops will introduce the cloud
analysis paradigm using the Amazon Web Services (AWS) platform, cover some
current strategies for deploying Bioinformatics data and applications for
analysis, and give students some hands-on experience with these topics. The
workshop will also highlight FireCloud [https://software.broadinstitute.org/firecloud/], a scalable Bioinformatics cloud
solution provided by the Broad Institute.

Note

Bioinformatics knowledge is not required, as the materials are
intended to be sufficiently generic to allow users familiar with the
prerequisite concepts to deploy their own applications in the cloud. The
workshop simply uses a bioinformatics analysis as the use case for the
hands-on materials.

Quick links:

	Prerequisites

	Time & Location

	Registration

	Online Materials

Prerequisites

This workshop is fairly technical. You will need a good understanding of the
following to maximally benefit from the materials:

	Ability to use linux/command line

	Programming in python, Java, C/C++, or other comparable languages

	General familiarity with how the linux operating system works

Attendees are expected to bring their own (preferrably Mac/Linux) laptops.

Time & Location

	Session 1 - Cloud Concepts: Monday July 30th 2PM-5PM

	Session 2 - Packaging and Deploying Applications: Wednesday August 1st 2PM-5PM

	Session 3 - FireCloud [https://software.broadinstitute.org/firecloud/] Case Study: Thursday August 2nd 2PM-5PM

Location: Life Sciences and Engineering Building (LSEB) 103

Registration

Registration is now closed.

Online Materials

Nota bene

This content is under construction!

	Cloud Concepts Workshop
	Prerequisites

	Introduction to the cloud

	Cloud concepts

	The AWS infrastructure

	CloudFormation

	AWS CLI

	Cheat sheet

	Cloud App Deployment Workshop
	Prerequisites

	Containerization

	Introduction to docker

	Running docker

	Packaging your own application

	FireCloud Workshop
	Prerequisites

	Five dollar genome analysis pipeline

	Upload data and run a custom method

Indices and tables

	Index

	Module Index

	Search Page

Cloud Concepts Workshop

This is day 1 of the “Bioinformatics in the Cloud” workshop.
In this session, you will learn basic cloud concepts and terminologies and work on setting up your own cloud instance and running an application on the cloud.

Workshop Outline:

	Introduction to the cloud (~10min) @Dileep

	Cloud concepts (~15min) @Sebastian

	Deployment Walkthrough: Web Console (~35min) @Sebastian

	Break (~5min)

	Deployment Walkthrough: CLI (~30min) @Dileep

	Working with deployed resources (~10min) @Dileep

	Hands-on section (~40min)

	Machine Learning on the Cloud (~30min) @Gerard

Sections:

	Prerequisites

	Introduction to the cloud

	Cloud concepts

	The AWS infrastructure

	CloudFormation

	AWS CLI

	Cheat sheet

Prerequisites

The participants are required to have access to the following resources before attending the workshop

	
	AWS account

	Access to the AWS account through BU

	
	Web browser

	A modern web browser is needed to log into the AWS management console

	
	A terminal emulator and SSH client

	A terminal emulator and ssh client are needed to log in remotely to our AWS instance

	
	AWS CLI

	A working installation of the AWS CLI

What is Cloud Computing?

Cloud computing allows access to arbitrary amounts of compute resources instantaneously.
The computing resources exist on servers managed by the cloud providers, thereby, helping you avoid the hassle of hardware maintenance.

[image: ../_images/rise-of-clouds.jpg]

Key advantages

[image: ../_images/Advantage-of-Cloud-Computing.png]

	High availability - your files are always available across multiple systems

	Fault tolerant - automatic backups enable recovery from failure

	Scalability and Elasticity - easily scale compute resources to fit new requirements within minutes

There are various cloud providers, the most popular ones include Amazon (Amazon Web Services), Google (Google Compute Engine) and Microsoft (Azure).

Common use-cases

	Web hosting

	Storage

	Software as a Service

	Big Data Analytics

	Test and Development

Cloud concepts

Virtual Machines

Virtual Machines emulate the architecture and functionality of physical computers in the cloud. In AWS, VMs are called Elastic Compute Cloud (EC2), which can be created using different operating systems (i.e. Linux, Windows) and vCPU sizes. Using EC2 eliminates the need to invest in hardware up-front. EC2 can be used to launch as many or as few virtual servers needed, configure security and networking, and manage storage. Amazon EC2 enables scaling up or down to handle changes in requirements or spikes in popularity, reducing the need to forecast traffic.

[image: ../_images/vm.png]

Storage Units

Storage services are also provided for the VMs, in AWS they come in two types depending on your needs:

	Elastic Block Storage (EBS): block level storage volumes that can be directly mount to EC2

	Simple Storage Service (S3): bucket of storage accessible through API or command line

[image: ../_images/ebs_s3.jpg]

Databases

Relational Database Service (RDS) allows to set up, operate and scale relational databases (i.e. MySQL)

Serverless

Removes the need to worry about managing and operating web servers for applications. It also provides scaling and cost-efficient options.

The AWS infrastructure

[image: ../../_images/amazon_services.png]
This workshop involves working with the Amazon Web Services (AWS) cloud infrastructure, but the concepts in this workshop will apply to other cloud computing services as well. The only difference involves the exact terms used to describe services and actions.

Sections:

	Amazon Web Services and the console

	Elastic Compute Cloud instances

	Simple Storage Service buckets

	Elastic Block Storage

	Relational Database Service

	AWS lambda

	Pricing

0. The AWS and the web console

	Creating an account

In order to use AWS you will need to create an account. And in order to create instances and the other services used in this workshop you, will need to associate a credit card with the account.
For the purposes of this workshop we will provide you with pre-existing AWS accounts, but you will need to create your own accounts for any future use.

	Logging into the AWS console

To log into AWS, go to aws.amazon.com and hit the Sign in to the Console [https://console.aws.amazon.com/console/home] button as shown below.

[image: ../../_images/main_page.png]

	AWS regions

An AWS Region is a physical warehouse of servers (data centers) and other computer hardware that Amazon maintains.
At any point in time you are can only operate in one region.
After logging in, the current region is shown in the upper right corner of the console.

Regions are important for several reasons:

	When you launch a service like an EC2 instance, it will be confined to the region you launched it in. If you switch regions later, you will not see this instance.

	The cost of usage for many AWS resources varies by region.

	Since different regions are located in different parts of the world, your choice of region might add significant networking overhead to the performance of your application.

[image: ../../_images/aws_console.png]
At the time of writing the following AWS regions exist:

	Region Name

	Region

	Endpoint

	protocol

	US East (Ohio)

	us-east-2

	rds.us-east-2.amazonaws.com

	HTTPS

	US East (N. Virginia)

	us-east-1

	rds.us-east-1.amazonaws.com

	HTTPS

	US West (N. California)

	us-west-1

	rds.us-west-1.amazonaws.com

	HTTPS

	US West (Oregon)

	us-west-2

	rds.us-west-2.amazonaws.com

	HTTPS

	Asia Pacific (Tokyo)

	ap-northeast-1

	rds.ap-northeast-1.amazonaws.com

	HTTPS

	Asia Pacific (Seoul)

	ap-northeast-2

	rds.ap-northeast-2.amazonaws.com

	HTTPS

	Asia Pacific (Osaka-Local)

	ap-northeast-3

	rds.ap-northeast-3.amazonaws.com

	HTTPS

	Asia Pacific (Mumbai)

	ap-south-1

	rds.ap-south-1.amazonaws.com

	HTTPS

	Asia Pacific (Singapore)

	ap-southeast-1

	rds.ap-southeast-1.amazonaws.com

	HTTPS

	Asia Pacific (Sydney)

	ap-southeast-2

	rds.ap-southeast-2.amazonaws.com

	HTTPS

	Canada (Central)

	ca-central-1

	rds.ca-central-1.amazonaws.com

	HTTPS

	China (Beijing)

	cn-north-1

	rds.cn-north-1.amazonaws.com.cn

	HTTPS

	China (Ningxia)

	cn-northwest-1

	rds.cn-northwest-1.amazonaws.com.cn

	HTTPS

	EU (Frankfurt)

	eu-central-1

	rds.eu-central-1.amazonaws.com

	HTTPS

	EU (Ireland)

	eu-west-1

	rds.eu-west-1.amazonaws.com

	HTTPS

	EU (London)

	eu-west-2

	rds.eu-west-2.amazonaws.com

	HTTPS

	EU (Paris)

	eu-west-3

	rds.eu-west-3.amazonaws.com

	HTTPS

	South America (S�o Paulo)

	sa-east-1

	rds.sa-east-1.amazonaws.com

	HTTPS

VPC: Virtual private cloud. Your private section of AWS, where you can place AWS resources, and allow/restrict access to them.

1. EC2 instances

Amazon Elastic Compute Cloud (Amazon EC2) provides scalable computing capacity in the Amazon Web Services (AWS) cloud.
This service allows you to configure and rent computers to meet your compute needs on an as needed basis.
Using EC2 eliminates the need to invest in hardware up-front.
EC2 can be used to launch as many or as few virtual servers needed, configure security and networking, and manage storage.
Amazon EC2 enables scaling up or down to handle changes in requirements or spikes in popularity, reducing the need to forecast traffic.

Instance come in various shapes and sizes.
Some instances might be geared towards running CPU intensive tasks while other might be optmized for memory or storage.
Some of the different options available are shown in the figure below and more information can be found here [https://aws.amazon.com/ec2/instance-types/].

[image: ../../_images/ec2_instances.png]
The following sections outline the various steps involved in setting up an EC2 instance:

	AMI selection

An Amazon Machine Instance [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html] (AMI) is a preconfigured template for launching an instance.
It packages the various applications you need for your server (including the operating system and additional software).
There are four main options when selecting an AMI: Quick Start, My AMIs, AWS Marketplace and Community AMIs.
These options can be seen in the image below on the left sidebar.
Select the desired AMI and then proceed to the next step.

[image: ../../_images/instance_launch.png]

	Instance type selection

Once an AMI is selected, the next step is to choose an instance type.
If choosing an AMI is equivalent to choosing the software you want on your computer then choosing an instance type is equivalent to choosing the hardware.
Broadly speaking the different instance types vary in the number of CPUs, or size of RAM, or storage.
The price per hour for each of the options is not listed here. To get the price of a particular instance, look up the name of the instance on the EC2 pricing list [http://aws.amazon.com/ec2/pricing/].
Once you are ready, proceed to the next step by pressing the Next: Configure Instance Details button.

[image: ../../_images/instance_types.png]

	Instance general configuration

Once you have selected your instance type, the next step is to configure your instance.
This step involves many advanced concepts that will be not be covered in detail in this tutorial.
Using the Number of instances option you can launch multiple instances with the same AMI and hardware configuration at the same time.
Additionally you could also Request Spot instances (spot instances offer spare compute capacity at steep discounts but they are reclaimed whenever EC2 needs the capacity back)
Shutdown behavior determines the behavior of the instance when it is shutdown from within the AMI

For this tutorial we will use the proceed with the default values for all the options.

[image: ../../_images/instance_configure.png]

	Instance storage configuration

The next step is to configure the storage that will be available to the instance.
The storage that you start with depends on the type of instance you have selected.
In the image below we have an EBS root volumne with 8GiB size. This is the Root volume where the operating system will exist
By default, this volume is set to be deleted when the instance is terminated, but, this behavior can be changed.
The Add New Volume button can be used to add additional storage to our instance.

	ephemeral or Instance store storage

	EBS storage

[image: ../../_images/instance_storage.png]

	Instance tagging

When dealing with multiple instances, tagging creates a simpler way to track usage and billing information from groups of related instances

[image: ../../_images/instance_tags.png]

	Instance security

Secure login information for instances using key pairs (AWS stores the public key, and the user stores the private key in a secure place)
A firewall that enables you to specify the protocols, ports, and source IP ranges that can reach your instances using security groups

[image: ../../_images/instance_security.png]

	Instance review

Static IPv4 addresses for dynamic cloud computing, known as Elastic IP addresses

[image: ../../_images/instance_review.png]
Created instance

[image: ../../_images/instance_created.png]
Create a key and save it

[image: ../../_images/instance_key.png]
Key file example. The file can be saved as Test.pem

-----BEGIN RSA PRIVATE KEY-----
MIIEpAIBAAKCAQEAhEpF18lIUouMH8qia/BSB70vrQVq/mTTkiRbsACB78rzy3XGRMfvwUseIsGY
H6SDOAFrRlmTrAArH5A0t2TZ8PKrq7b9FtEAvMCeE7rWEiqBblAWiER0k1pbnIqyKJJCo1YRSUs0
oNMdvjB4CUylYraSsSNFYJG5gRwcNhBENLDVnDS79geQcPLu/JeEiJ9V+w+CCYAG40f7li/TuULr
rSy6Oq6jgn2Gy7rrHU7XHU5hcEvxuSeoLb8h/bH1N+cN/H7x3ipEjIDdA2ScCkRXum1V6/kTFQFq
vDG0lqoTlmTNKgDGpb+rdzJgOg/3QX4RSrX/c0W6aFkV9Ib/jQxT+wIDAQABAoIBADAvWXc6wpQG
bjiaN0T3mPlmqHnuEkWs9f8yLQ9TcACmvNwr/tbIuISAVu6z8zP7WSxKIAfU0twAh7SMcxclrdh8
m5kFIvRvlkQqKKnpENY3E0PZ+gsSXB/b9qhzQGdUtt8Fl3BJ61Z07016HA7PEyJ8e7v3q+p7ycTE
N2Zd0GocRIX8zxdRo9GS8ouS0QcFgNF8KblzlJ6Vs0gI7o7mIRZIm9vWkuR9Lp9uEPD2flUIvN3z
yRmY/FE/R1yc76Uq+g8eywifRAh+GFyyO8PmFoYRni4Ki6+tEIFaq5JauT0JJF66EZeZP8ZKoWm9
1K30Ucti2D5l8t+CpbBM5JxhmjECgYEAxz1ET42F1sBGYqNn5hmfjrRp+YF3EYz2awRSibOeerpJ
Bh1QZeB7/QD3wcB00XFiMu/3haP9xs4eesjSSug+1F59nyzDplNsybz1sYpUQwP9LjX0loUCIb8r
3O2VdLJ5ZJ9dfNgpStC/wi7kkr8xjK5XiHgP6DLk6+H1Lr2d+kMCgYEAqfpUseZ/sm1vYt80LlWI
r8ozsUmzuISRspGVUppyDD47Iyj/1mkiWnsFDDl07oBcFIUFIEd1rkJNB3gXKSr76kcY0X4lav7a
0dvse2T9PC/pLSFkax9UjVnydCN8ElyNoXI2wT5HuLDjjCmHBD/4E9ZOO201JICSbRxaykl17+kC
gYEAxRiWuxwFiqwq9Okxny856LIRJAIvB+2q17Mu84n8/OvL0YCuSBoKjf6nGcSJy6eevUUmV84i
/sho3o5Lek7F2NCg9RYTdjaRKAEGDNwK/0Cy9UPq8fwiX7/+ZE+jyg3EiQYeNaKhNqHLEQ3SkFkT
a1gMv7QGCG5QiAi/w71QyoECgYARcn+VDyrWXsNLK8wIYYE5QhESRpVrADiQUr84DmBcf1rEniW8
lWgQT4ZSHeexv300If9Hs+4RZ/7OIHaIJEBdaNTUVBV1KRm+5sscU15m+if+GOpc0Id2RuBLKYVH
wTZMdxPFvCXSgF2q+mxAdGx7ZMj88pW83HGrP3jWQLoZWQKBgQCX5jxy3QXlPpwDppqwKKBQ8cGn
YDDQHCeD5LhrVCUqo5DCobswzmGKU/xEqYsqlk/Mz1Zkvg4FbJwJDgQGkSyAu071NLi0O6w27dm+
UHuvF5mCDdAHWirFUBSiebxOpEQnkZ9IPXUUCSC6IQvPFbdGN8G3WjoER6Lw121Q4rJxGA==
-----END RSA PRIVATE KEY-----

2. S3 buckets

Simple storage service (S3)

This service allows the storage of large volumes of data, which can be accessed by an API or a command line interface such as aws-cli

[image: ../../_images/s3_main.png]
Setting up an S3 bucket

	Create S3 bucket

[image: ../../_images/s3_create.png]

	Change permissions

[image: ../../_images/s3_permissions.png]

	Review

[image: ../../_images/s3_review.png]

3. EBS

Elastic Block Storage

EBS allows to rent storage and directly mount it to your EC2 instance. In contrast to S3, EBS can only be connected to one EC2 instance at a time and its storage prices are higher.

4. RDS

Relational Database Service

5. AWS Lambda

Run code without thinking about servers. Pay only for the compute time you consume.

6. Pricing

When you create EC2 instances or S3 buckets you are renting computing power from Amazon for which you will be charged. Once you start the instance you will be charged hourly

There is a pricing list
Amazon provides a monthly price calculator

CloudFormation

AWS CloudFormation is a service that helps deploy infrastructure as code.
You create a template that describes all the AWS resources that you want (like Amazon EC2 instances or Amazon RDS DB instances), and AWS CloudFormation takes care of provisioning and configuring those resources for you.
You don’t need to individually create and configure AWS resources and figure out what’s dependent on what; AWS CloudFormation handles all of that.
There are similar resources for other services as well, for example, Azure Resource Manager for Microsoft Azure.

Advantages

	Simplify infrastructure management

	Quickly replicate your infrastructure

	Reproducible infrastructure deployment

	Easily control and track changes to your infrastructure

	Automatic resource removal

Concepts

	Templates:
The CloudFormation template is a JSON or YAML formatted text file that contains the configuration information about the AWS resources you want to create.
When fed to CloudFormation, the template will direct it to create the required resources on AWS.
Templates can also be created using the AWS CloudFormation Designer [https://console.aws.amazon.com/cloudformation/designer]

	Stacks:
When you use AWS CloudFormation, you manage related resources as a single unit called a stack.
You create, update, and delete a collection of resources by creating, updating, and deleting stacks.
All the resources in a stack are defined by the stack’s AWS CloudFormation template.
You can create, update or delete stacks by using the AWS CloudFormation console [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html], API [http://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_CreateStack.html], or AWS CLI [http://docs.aws.amazon.com/cli/latest/reference/cloudformation/create-stack.html].

	Change Sets:
If you need to make changes to the running resources in a stack, you update the stack.
Before making changes to your resources, you can generate a change set, which is summary of your proposed changes.
Change sets allow you to see how your changes might impact your running resources, especially for critical resources, before implementing them

Template Components

The anatomy of a CloudFormation template:

{
 "AWSTemplateFormatVersion": "version date",
 "Description": "description of the template",
 "Parameters": {"set of parameters"},
 "Mappings": {"set of mappings"},
 "Conditions": {"set of conditions"},
 "Resources": {"set of resources"},
 "Outputs": {"set of outputs"}
}

All templates consist of the following:

	Parameters: Values to pass to your template at run-time (during stack creation), containing the specifics for the EC2 or S3 needed. A parameter is an effective way to specify sensitive information, such as user names and passwords or unique information, that you don’t want to store in the template itself. You can refer to parameters from the Resources and Outputs sections of the template. Multiple parameters can be passed such as the EC2 instance type, SSH security protocols, etc. For example, the code section below defines an InstanceTypeParameter for an EC2 instance.

{
 "Parameters": {
 "InstanceTypeParameter": {
 "Type": "String",
 "Default": "t2.micro",
 "AllowedValues": [
 "t2.micro",
 "m1.small",
 "m1.large"
],
 "Description": "Enter t2.micro, m1.small, or m1.large. Default is t2.micro."
 }
 }
}

	Mappings: A mapping of keys and associated values that you use to specify conditional parameter values, similar to a lookup table. You can match a key to a corresponding value by using the Fn::FindInMap intrinsic function in the Resources and Outputs section. In this example, it will match the corresponding AMI for a given AWS region

{
 "Mappings": {
 "RegionMap": {
 "us-east-1": {
 "32": "ami-6411e20d"
 },
 "us-west-1": {
 "32": "ami-c9c7978c"
 },
 "eu-west-1": {
 "32": "ami-37c2f643"
 },
 "ap-southeast-1": {
 "32": "ami-66f28c34"
 },
 "ap-northeast-1": {
 "32": "ami-9c03a89d"
 }
 }
 }
}

	Conditions: Conditions that control whether certain resources are created or whether certain resource properties are assigned a value during stack creation or update. For example, you could conditionally create a resource that depends on whether the stack is for a production or test environment.

	Resources: The Resources section specifies the stack resources and their properties, such as an AWS EC2 instance or an AWS S3 bucket. This is the only part of the template that is mandatory. Each resource is listed separately and specifies the properties that are necessary for creating that particular resource. You can refer to resources in the Resources and Outputs sections of the template. The following code section describes an EC2Instance resource and InstanceSecurityGroup resource. The resource declaration begins with a string that specifies the logical name for the resource.

{
 "Resources": {
 "EC2Instance": {
 "Type": "AWS::EC2::Instance",
 "Properties": {
 "InstanceType": "InstanceType",
 "SecurityGroups": [
 "InstanceSecurityGroup"
],
 "KeyName": "KeyName",
 "ImageId": "ami-08f569078da6ad4c2"
 }
 },
 "InstanceSecurityGroup": {
 "Type": "AWS::EC2::SecurityGroup",
 "Properties": {
 "GroupDescription": "Enable SSH access via port 22",
 "SecurityGroupIngress": [
 {
 "IpProtocol": "tcp",
 "FromPort": 22,
 "ToPort": 22,
 "CidrIp": "SSHLocation"
 }
]
 }
 }
 }
}

	Outputs: Describes the values that are returned whenever you view your stack’s properties. For example. you can declare an output for an EC2 instance to display its id and availability zone

{
 "Outputs": {
 "InstanceId": {
 "Description": "InstanceId of the newly created EC2 instance",
 "Value": "EC2Instance"
 },
 "AZ": {
 "Description": "Availability Zone of the newly created EC2 instance",
 "Value": {
 "Fn::GetAtt": [
 "EC2Instance",
 "AvailabilityZone"
]
 }
 }
 }
}

Note

	The Resource Type attribute has the format - AWS::ProductIdentifier::ResourceType. Eg: The Resource Type for an S3 bucket is AWS::S3:Bucket and that for an EBS volume is AWS::EC2::Volume.

	The Ref function returns the value of the object it refers to. The Ref function can also set a resource’s property to the value of another resource.

	Depending on the resource type, some properties are required, other optional properties are assigned default values.

	Some resources can have Multiple properties and some properties can have one or more subproperties.

Best Practices

Take a look at the official best practices [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html] to be able to use AWS CloudFormation more effectively and securely.

AWS CLI

The AWS CLI is an open source tool built on top of the AWS SDK for Python (Boto) that provides commands for interacting with AWS services.
With minimal configuration, you can start using all of the functionality provided by the AWS Management Console from your favorite terminal program.

For installation instructions refer to the official documentation [https://docs.aws.amazon.com/cli/latest/userguide/installing.html].

Advantages

	Easy to install

	Supports all Amazon Web Services

	Easy to use

	Can be incorporated in shell scripts for automation and reproducibility

Setting up your profile

Before you can start using the aws-cli you need to configure the CLI with your AWS credentials.
The aws configure command is the fastest way to set this up.
This command automatically generates the credentials file at ~/.aws/credentials and the config file at ~/.aws/config.

$ aws configure
AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: us-east-1
Default output format [None]: json

The AWS CLI will prompt you for four pieces of information. AWS Access Key ID and AWS Secret Access Key are your account credentials.

Alternatively you can manually create and populate these files.

~/.aws/credentials

[default]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

~/.aws/config

[default]
region=us-east-1
output=json

If you have multiple profiles you can also configure additional named profiles using the --profile option

$ aws configure --profile user2
AWS Access Key ID [None]: AKIAI44QH8DHBEXAMPLE
AWS Secret Access Key [None]: je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY
Default region name [None]: us-east-1
Default output format [None]: text

Commands

Help:

To get help when using the AWS CLI, you can simply add help at the end of a command or sub-command.

$ aws help
$ aws ec2 help
$ aws ec2 describe-instances help

The help for each command is divided into six sections: Name, Description, Synopsis, Options, Examples and Output.

Command Structure:

$ aws <command> <sub-command> [options and parameters]

Specifying parameter values

$ aws ec2 create-key-pair --key-name my-key-pair

Output:

The AWS CLI supports three different output formats:

	json

	Tab-delimited text

	ASCII formatted table

The default output format is chosen during the configuration step of aws configure.
This can be changed by editing the config file or setting the AWS_DEFAULT_OUTPUT environment variable.

Additionally, per command output can be changed using the --output option

$ aws swf list-domains --registration-status REGISTERED --output text

Example output
$ aws ec2 describe-volumes

{
 "Volumes": [
 {
 "AvailabilityZone": "us-west-2a",
 "Attachments": [
 {
 "AttachTime": "2013-09-17T00:55:03.000Z",
 "InstanceId": "i-a071c394",
 "VolumeId": "vol-e11a5288",
 "State": "attached",
 "DeleteOnTermination": true,
 "Device": "/dev/sda1"
 }
],
 "VolumeType": "standard",
 "VolumeId": "vol-e11a5288",
 "State": "in-use",
 "SnapshotId": "snap-f23ec1c8",
 "CreateTime": "2013-09-17T00:55:03.000Z",
 "Size": 30
 },
 {
 "AvailabilityZone": "us-west-2a",
 "Attachments": [
 {
 "AttachTime": "2013-09-18T20:26:16.000Z",
 "InstanceId": "i-4b41a37c",
 "VolumeId": "vol-2e410a47",
 "State": "attached",
 "DeleteOnTermination": true,
 "Device": "/dev/sda1"
 }
],
 "VolumeType": "standard",
 "VolumeId": "vol-2e410a47",
 "State": "in-use",
 "SnapshotId": "snap-708e8348",
 "CreateTime": "2013-09-18T20:26:15.000Z",
 "Size": 8
 }
]
}

You can query the resultant output using the --query option.

$ aws ec2 describe-instances --instance-ids i-0787e4282810ef9cf --query 'Reservations[0].Instances[0].PublicIpAddress'
"54.183.22.255"

Examples:

The following examples show the interface in action performing various tasks and demonstrate how powerful it can be.

deleting an s3 bucket
aws s3 rb s3://bucket-name --force

start ec2 instances
aws ec2 start-instances --instance-ids i-34hj23ie

Miscellaneous

	Try the aws-shell [https://github.com/awslabs/aws-shell] to get a more interactive command line experience.

	Use jq [https://stedolan.github.io/jq/] to parse the json outputs from various cli commands.

Cheat sheet

AWS CLI

	Configuring your AWS CLI

$ aws configure --profile <profile>

CloudFormation

	Deploying your stack using the AWS CLI via CloudFormation

$ aws --profile <profile> cloudformation create-stack --stack-name <stack> [--template-body <template>] [--parameters <parameters>]

Note

Local files need to be prefixed with file://

	Verify and check stack deployment using the AWS CLI

$ aws --profile <profile> cloudformation describe-stacks [--stack-name <stack>]

	List resources of a stack using the AWS CLI

$ aws --profile <profile> cloudformation list-stack-resources --stack-name <stack>

	Validate your CloudFormation template using the AWS CLI

$ aws --profile <profile> cloudformation validate-template --template-body <template>

	Update your stack using the AWS CLI

$ aws --profile <profile> cloudformation update-stack --stack-name <stack> [--template-body <template>] [--parameters <parameters>]

EC2 Instance

	Connecting to the deployed EC2 instance via ssh

$ ssh -i <key.pem> user@<publicip>

To obtain the PublicIpAddress of your instance:

$ aws ec2 describe-instances --instance-ids i-0787e4282810ef9cf --query 'Reservations[0].Instances[0].PublicIpAddress'

Note

The “key.pem” must only allow read access to the user

	Key - The key specified must be at the path indicated. It must be the private key. Permissions on the key must be restricted to the owner and the key must be associated with the instance.

	User - The user name must match the default user name associated with the AMI you used to launch the instance. For an Ubuntu AMI, this is ubuntu. For an Amazon Linux AMI, it is ec2-user.

	Instance - The public IP address or DNS name of the instance. Verify that the address is public and that port 22 is open to your local machine on the instance’s security group.

S3 bucket

	Copy an object from an S3 bucket to EC2 instance or local machine

$ aws s3 cp s3://my_bucket/my_folder/my_file.ext my_copied_file.ex

	Copy an object from and EC2 instance or local machine to S3 bucket

$ aws s3 cp my_copied_file.ext s3://my_bucket/my_folder/my_file.ext

	Download an entire Amazon S3 bucket to a local directory on your instance

$ aws s3 sync s3://remote_S3_bucket local_directory

Files

	EC2 template [https://bitbucket.org/bubioinformaticshub/cloud-bioinformatics/raw/c74b8fad4d526b676d90a044d5be3bc0dfa8fef2/00__cloud_concepts/files/ec2_template.json]

	EC2 parameters [https://bitbucket.org/bubioinformaticshub/cloud-bioinformatics/raw/c74b8fad4d526b676d90a044d5be3bc0dfa8fef2/00__cloud_concepts/files/ec2_parameters.json]

	S3 template [https://bitbucket.org/bubioinformaticshub/cloud-bioinformatics/raw/c74b8fad4d526b676d90a044d5be3bc0dfa8fef2/00__cloud_concepts/files/s3_template.json]

	S3 parameters [https://bitbucket.org/bubioinformaticshub/cloud-bioinformatics/raw/c74b8fad4d526b676d90a044d5be3bc0dfa8fef2/00__cloud_concepts/files/s3_parameters.json]

Exercise

	Configure your AWS CLI

	Run the cloudformation describe-stacks and ec2 describe-instances to look at existing stacks or instances

	Try to --query the output or display the --output in different formats

	Combine the EC2 and S3 templates to create one template that launches both an EC2 instance and an S3 bucket

	Validate the template using the cloudformation validate-template command

	Update the ImageId to “ami-08f569078da6ad4c2” and run the cloudformation update-stack command

	Connect to the EC2 instance using the pem file

	Copy the contents of this S3 bucket (s3://buaws-training-shared/test_reads.fastq.gz) to the instance

	Delete the stack using the cloudformation delete-stack command

Cloud App Deployment Workshop

This is day 2 of the “Bioinformatics in the Cloud” workshop.
In this session, you will learn about containerization software, how to execute
docker containers on an AWS EC2 instance, and how to package your own
applications into docker images.

Sections:

	Prerequisites
	docker

	Creating an CloudFormation Stack

	Containerization
	Motivation

	Containerization

	What is a container?

	Introduction to docker
	docker

	docker concepts

	Running docker
	Your First Docker Container

	Pulling docker images

	Managing docker containers

	Creating docker images

	Packaging your own application
	Workflow Overview

	Preparing docker image for your code

	Putting your code into a docker image

	Running your docker container

	Publishing your docker image

	Hands On Exercise

Prerequisites

docker

This workshop assumes you have an environment where docker [https://www.docker.com/] is installed.
If you followed workshop 1, the EC2
instance you deployed already has docker installed and configured. If not,
you may follow this setup guide [https://docs.docker.com/get-started/] to use docker on your own resources.

Creating an CloudFormation Stack

You may use the following template and parameters to create a CloudFormation
stack with an EC2 instance that has docker pre-installed:

	Template

	Parameters

You may download these files as-is to create your AWS stack, be sure to
change the stack name to something else!:

$ aws configure
AWS Access Key ID [****************QNQG]:
AWS Secret Access Key [****************z5bv]:
Default region name [us-east-1]:
Default output format [json]:
$ aws cloudformation create-stack --template-body file://main.yaml \
 --parameters file://buaws-training-ec2-parameters.json \
 --stack-name ec2-stack-studentXX
{
 "StackId": "arn:aws:cloudformation:us-east-1:438027732470:stack/test-stack-AL/18c...."
}

When your stack creation is complete, you should ssh to the instance using the
appropriate private key:

$ ssh -i buawsawstrainec2.pem ec2-user@<IP from cloudformation output>
The authenticity of host 'XX.XXX.XX.XX (XX.XXX.XX.XX)' can't be established.
RSA key fingerprint is 5d:e6:c4:f6:35:a5:9e:85:66:a4:b3:af:56:86:20:93.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'XX.XXX.XX.XX' (RSA) to the list of known hosts.
Last login: Mon Jul 23 16:27:27 2018 from nowhere

 __| __|_)
 _| (/ Amazon Linux AMI
 ___|___|___|

https://aws.amazon.com/amazon-linux-ami/2018.03-release-notes/
2 package(s) needed for security, out of 4 available
Run "sudo yum update" to apply all updates.
[ec2-user@ip-172-31-19-57 ~]$

Containerization

Motivation

Science today faces a reproducibility crisis [http://www.pnas.org/content/early/2018/03/08/1708272114]. Key findings published cross
scientific disciplines are not corroborated by other scientists when tested
independently. A survey conducted by Nature [https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970] asked scientists which factors
they though contributed the most to the crisis. Over 80% of respondants felt
the reason of ‘Methods, code unavailable’ contributed to irreproducible
research.

For many scientists, software and analysis have become an indispensible and
increasingly unavoidable component of their research. Critical findings now
arise from the analysis of data that uses tools developed in house as well as
tools published by others. These components are usually integrated by custom
‘glue code’ that connects them together.

This environment poses a new set of challenges to scientists who use
computational methods in their research:

	How do we write analysis code that is robust and reproducible?

	How can we concisely communicate our code with other researchers?

	How do we share analysis code with other researchers in a form that can be easily executed?

As computational analysis and tools become more complex, so do the environments
needed to execute them. Modern software packages often require hundreds of
supporting software packages, provided either by a particular operating system
or from a third party. Further, each of these software package dependencies has
a specific version or set of versions that are needed for the package to run.
The author of a package could in principle record all of these packages and
their dependencies and provide this list with their software distribution, but
maintaining this list of software and ensuring cross-platform compatibility is
a major challenge. Environment management software packages such as
miniconda [https://conda.io/miniconda.html] are available to address this challenge, but introduce additional
complexity due to the fact that it itself is an additional software dependency,
package availability is largely dependent upon community support, and because
third party software packages may not be supported across different platforms.
A superior solution to managing and deploying complex software environments is
to create containerized applications.

Containerization

Containerization, also known as operating-system-level virtualization [https://en.wikipedia.org/wiki/Operating-system-level_virtualization], is
a technology that enables the encapsulation and execution of sets of software
and their dependencies in a platform-agnostic manner. A software container is
a file that has been built by specific containerization software, e.g.
docker [https://www.docker.com/] or singularity [https://www.sylabs.io/guides/2.5.1/user-guide/], to contain all of the necessary software and
instructions to run.

What is a container?

Generally speaking, a container is a file that specifies a collection of
software that can run in a particular execution environment. The execution
environment is provided by the containerization software, e.g. docker [https://www.docker.com/], such
that the container doesn’t have to be aware of the particular machine it is
running on. This means that a container will be portable to any environment
where the containerization software can run, thus eliminating the need for
software authors (i.e. us) to worry about whether or not our code will run
on any given hardware/OS/etc.

At the time of writing (July 2018), docker [https://www.docker.com/] is by far the most popular
containerization software. docker has been open source since its release in
2013 and an enormous docker community has grown since. Due to its popularity,
this workshop will use docker exclusively as the vehicle for demonstrating
containerization of custom applications.

Another more recent containerization software called singularity [https://www.sylabs.io/guides/2.5.1/user-guide/] is available
that addresses some of the usability shortcomings of docker. If docker is not
available on your computational resources due to security concerns, then
singularity may be an option. The containerization concepts are identical
between docker and singularity, and all of the content of this workshop is
easily adaptable to from docker to singularity.

Introduction to docker

docker

docker [https://www.docker.com/] is an open source software project supported and provided for free by
Docker Inc [https://www.docker.com/company]. The software is available for Mac OS, Windows, and Linux operating
systems. From its initial open source announcement in 2013, docker [https://www.docker.com/] is:

a LinuX Container (LXC) technology augmented with a a high level API providing
a lightweight virtualization solution that runs Unix processes in isolation. It
provides a way to automate software deployment in a secure and repeatable
environment.

(emphasis added). docker containers are:

	automated because every docker container contains all of its own
configuration is run with the same executable interface, and thus can be
started automatically without manual intervention

	secure because each runs in its own environment isolated from the host and
other containers

	repeatable because the container behavior is guaranteed to be the same on
any system that runs the docker software

These three properties make docker an excellent solution to the problems faced
by scientists who wish to write reproducible analysis and applications.

docker concepts

There are four critical concepts needed to get started as a docker user:

images

A docker image is a description of a software environment and is configuration.
The concept of an image is abstract, as images are not run directly. Instead,
images are used to instantiate containers that are runnable.
For those familiar with object oriented programming, an image is to a container
as a class is to an object. As such, images are not executed.

docker images are usually created, or built, with a Dockerfile. Images are often created using other images as a base and
adding more application-specific configuration and software. For example, a
common base image contains a standard ubuntu [https://hub.docker.com/_/ubuntu/] installation upon which other
software is installed. While it is possible to build an image interactively [https://hostpresto.com/community/tutorials/how-to-create-a-docker-container-using-an-interactive-shell/]
without writing a Dockerfile, this practice is highly discouraged due to its
irreproducibility.

Images can either be stored locally or in a public or private Image Registry.
In any case, in order to create a container based off of an image, the image
must be resident in the local docker installation. When building an image
locally, the image is automatically added to the local registry. When using an
image published on a public registry like Docker Hub [https://hub.docker.com/], the image is first
pulled to the local installation and then used to create an image.

Most docker images have a version associated with them. This enables the image
to change over time while maintaining backwards compatibility and
reproducibility. The image version is specified at build time.

container

A container is an instance created by image. You can think of a container as a
physical file that has all of the software described by the image bundled
together in a form that can be run. Each container is created using a single
image.

By default, containers lack the permissions to communicate with the world
outside its immediate docker execution environment. When a container is run,
the user can specify locations on the host system that are exposed to the
docker container by binding files and directories explicitly. The container
can only read and write data to locations it is given permission to access.
Containers that run services, like web servers, can also be granted access to
certain ports on the host system at run time to allow communication outside of
the host. In general, a docker container can only be granted access to the
resources available to the user running the container (e.g. a normal user
without elevated privileges cannot bind to reserved ports 0-1024 on linux).

Dockerfiles

A Dockerfile [https://docs.docker.com/engine/reference/builder/] is a text file that contains the instructions for building an
image. It is the preferred method for building docker images, over creating
them interactively.

Dockerfiles are organized into sections that specify different aspects of an
image. The following is a simple Dockerfile from the docs:

Use an official Python runtime as a parent image
This implicitly looks for and pulls the docker image named 'python'
annotated with version '2.7-slim' from Docker Hub (if it was not already
pulled locally)
FROM python:2.7-slim

Set the working directory to /app inside the container
The /app directory is created implicitly inside the container
WORKDIR /app

Copy the current (host) directory contents into the container at /app
ADD . /app

Install any needed packages specified in requirements.txt
The file requirements.txt was copied into /app during the ADD step above
RUN pip install --trusted-host pypi.python.org -r requirements.txt

Make port 80 available to the world outside this container
This implies that app.py runs a web server on port 80
EXPOSE 80

Define environment variable $NAME
ENV NAME World

Run app.py when the container launches
CMD ["python", "app.py"]

The commands in all capital letters at the beginning of the line are
Dockerfile commands that perform different configuration operations on
the image.

Image Registry

Image registries are servers that store and host docker images. The software
to run a Docker Registry [https://docs.docker.com/registry/] is freely available, but Docker Hub [https://hub.docker.com/] is by far
the most popular public registry. Docker images for your own apps can be freely
published to and listed on Docker Hub [https://hub.docker.com/] for others to pull and use. Other
free registries exist, including Amazon Elastic Container Registry [https://aws.amazon.com/ecr/] and
Google Cloud Container Registry [https://cloud.google.com/container-registry/].

Exercise

Navigate to Docker Hub [https://hub.docker.com/] and locate the python repository. Explore the
page until you find the Dockerfile for python version 3.7-stretch and
view it. What parent image was used to build the python:3.7-stretch
image?

Locate the parent image on Docker Hub and examine its Dockerfile. What parent
image was used to build this image?

Continue looking up the parent images of each Dockerfile you find until you
reach the root image. What is its name?

Running docker

Nota Bene

You must be using a computer with docker installed to complete the exercises on
this page. If you are attending the BU workshop, refer to the page on
connecting to your EC2 instance for
instructions on how to SSH into your instance.

Your First Docker Container

Containers are run using the command:

$ docker run <image name>[:<tag>]

The <image name> must be a recognized docker image name either on the local
machine or on Docker Hub [https://hub.docker.com/]. The optional :<tag> specifies a particular
version of the image to run.

Exercise

Run a container for the hello-world docker image hosted on Docker Hub [https://hub.docker.com/].

If you need help, try running docker and docker run without any
arguments to see usage information.

Read the text output by the container after it has been run.

Pulling docker images

As part of running a container from a public docker image, the image itself is
pulled and stored locally. This only occurs once for each version of an image;
subsequently run containers will use the local copy of the image.

If you have never run any docker containers in this environment before, there
should be no local images listed by the docker images command:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
$

To verify that the hello-world image has been pulled, we again use the
docker images command after running the container:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hello-world latest 2cb0d9787c4d 2 weeks ago 1.85kB
$

This output tells us that we have the latest version of the hello-world
image in our local registry.

We can pull images explicitly, rather than doing so implicitly with a
docker run call, using the docker pull command:

$ docker pull nginx

This may be useful if we do not want to run a container immediately, or want
to perform our own modifications to the image locally prior to running.

Exercise

Pull the nginx image using the docker pull command. Verify that the
latest image of nginx has been pulled using docker images.

Managing docker containers

Running detached containers

The hello-world container runs, prints its message, and then exits. If we
were running a docker container that provided a service, we would want the
container to persist running until we chose to shut it down. An example of
this is the nginx [https://nginx.org/en/] web server, which we can run with the command:

$ docker run -d -p 8080:80 nginx

Here, the -d flag tells docker to keep the container running and return
control to the command line when it is finished setting up the container. The
-p 8080:80 means forward port 80, the default port for HTTP traffic, on the
container to the unrestricted port 8080 on the local machine. When control has
returned to the command line, we can verify that the container is still running
using the docker ps command:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
49af27e82231 nginx "nginx -g 'daemon of…" 4 minutes ago Up 4 minutes 0.0.0.0:8080->80/tcp elastic_mcnulty
$

Exercise

Run an nginx container as above. Verify that the container is running with
docker ps.

If specified correctly, the local port 8080 should behave as if it is a web
server. Verify that this is the case by running:

$ curl localhost:8080

Attaching data volumes to containers

Scientific analyses almost always utilize some form of data. Docker containers
are intended to execute code, and are not designed to house data. Directories
and data volumes that exist on the host machine can be mounted in the
container at run time to enable the container to read and write data to the
host:

$ docker run -d -p 8080:80 --mount type=bind,source="$PWD"/data,target=/ nginx

The directory named data in the current host directory will be mounted
as /data in the root directory of the container.

Stopping running containers

When a docker container has been run in a detached state, it runs until it is
stopped or encounters an error. To stop a running container, we need either the
CONTAINER ID or NAMES attribute of the running container from
docker ps:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
49af27e82231 nginx "nginx -g 'daemon of…" 4 minutes ago Up 4 minutes 0.0.0.0:8080->80/tcp elastic_mcnulty
$ docker stop 49af72e82231 # could also have provided elastic_mcnulty
49af27e82231
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
$

Stopping a container sends signals to the container that it should start
shutting down, so once a container is stopped it usually cannot be started again.

Nota Bene

Docker maintains a record of all containers that have been run on a machine.
After they have been stopped, docker ps does not show them, but the
containers still exists. To see a list of all containers that have been run,
use docker ps -a.

It is good practice to remove old containers if they are no longer needed. You
can do this with the command docker container prune.

Creating docker images

Building a custom image

Chances are there is not an existing docker container that does exactly what you
want (but check first!). To create your own image, you must write a Dockerfile [https://docs.docker.com/engine/reference/builder/].
As an example, we will create an image that has the python package scipy_
installed for us to use. It is common convention to create a new directory
named for the the image you wish to create, and create a text file named
Dockerfile in it. In the scipy directory, our Dockerfile contains:

pull a current version of python3
FROM python:3.6

install scipy with pip
RUN pip install scipy

when the container is run, put us directly into a python3 interpreter
CMD ["python3"]

To build this docker images, we use the docker build command from within
the scipy directory containing the Dockerfile:

$ docker build --tag scipy:latest .
Sending build context to Docker daemon 2.048kB
Step 1/3 : FROM python:3.6
 ---> 638817465c7d
Step 2/3 : RUN pip install scipy
 ---> Running in 1eef65d3b6fd
Collecting scipy
 Downloading https://files.pythonhosted.org/...
Collecting numpy>=1.8.2 (from scipy)
 Downloading https://files.pythonhosted.org/...
Installing collected packages: numpy, scipy
Successfully installed numpy-1.15.0 scipy-1.1.0
Removing intermediate container 1eef65d3b6fd
 ---> 7f34e9147bef
Step 3/3 : CMD ["python3"]
 ---> Running in 5c9d778426e6
Removing intermediate container 5c9d778426e6
 ---> e27603f4ffaf
Successfully built e27603f4ffaf
Successfully tagged scipy:latest
$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
scipy latest e27603f4ffaf About a minute ago 1.15GB
python 3.6 638817465c7d 25 hours ago 922MB
$

The --tag scipy:latest argument gives our image a name when it is listed in
docker images. Notice also that the python:3.6 image has been pulled in
the process of building the scipy image.

Now that we have built our image, we can run and connect to the image using
docker run with two additional flags:

$ docker run -i -t scipy
Python 3.6.0 (default, Jul 17 2018, 11:04:33)
[GCC 6.3.0 20170516] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import scipy
>>>

The -i flag tells docker we want to use the container interactively, and
the -t flag connects our current terminal to the container so that we may
send and receive information to and from the terminal.

Exercise

Create a new Dockerfile where you will install the most recent version of
R. Use ubuntu:bionic [https://hub.docker.com/_/ubuntu/] as the base image. You may follow
these instructions [https://www.digitalocean.com/community/tutorials/how-to-install-r-on-ubuntu-18-04], without using the sudo command.

Hint: Use a different RUN line for each command.

Solution

Passing containers CLI arguments

The CMD Dockerfile command specifies a standalone executable to run when a
container starts. However, sometimes it is convenient to be able to pass
command line arguments to a container, for example to run an analysis pipeline
on different files, or files with filenames that are not known at build time.
For instance, if you we might want to run the following:

$ docker run python process_fastq.py some_reads.fastq.gz

The CMD command does not allow command line arguments to be passed to the
run command. Instead, the ENTRYPOINT command is used to prefix a set of
commands to any command line arguments passed to docker:

FROM python:3.6

we will mount the current working directory to /cwd when the container is run
WORKDIR /cwd

RUN pip install pysam

ENTRYPOINT instead of CMD
ENTRYPOINT ["python3"]

Any command line arguments passed to docker will be appended to the command(s)
specified in the ENTRYPOINT.

If a container is intended to run files that exist on the host, the docker run
command must also be supplied with a mount point so the container can access
the files. In the example above, the WORKDIR is specified as /cwd,
so we can bind the current working directory of the host to /cwd in the
container so it can access the files process_fastq.py and some_reads.fastq
in the current directory:

$ docker run -mount type=bind,source=$PWD,target=/cwd process_fastq.py some_reads.fastq

Packaging your own application

Workflow Overview

The simplest workflow for building a docker container with your own code
usually follows these steps:

	Identify an appropriate image

	Identify additional dependencies needed for your application

	Install those dependencies with the appropriate RUN commands

	Add your code to the image, either with ADD or git

	Specify an appropriate CMD or ENTRYPOINT specification

	Build your image, repeating 2-4 if needed until success

	Run a container of your image, test behavior

	Iterate, if needed

Preparing docker image for your code

Choosing a base image

The first step in creating a docker container is choosing an appropriate base
image. In general, picking the most specific image that meets your requirements
is desirable. For example, if you are packaging a python app, it is likely
advantageous to choose a python base image [https://hub.docker.com/_/python/] with the appropriate python version
rather than pulling an ubuntu base image [https://hub.docker.com/_/ubuntu/] and installing python using RUN
commands.

Installing dependencies

Once a base image is chosen, any additional dependencies need to be installed.
For debian based images [https://www.debian.org/derivatives/], the apt package manager [https://wiki.debian.org/Apt] is used to manage additional
packages. For Fedora based images [https://itsfoss.com/best-fedora-linux-distributions/], the yum package manager [http://yum.baseurl.org/] is used. Be sure
to check which base linux image is used for a more specific image to know which
package manager to use.

Annoyance Alert

In practice, it can be hard to know all of the additional system packages
that need to be installed. Often, building a image to completion and
running it to identify errors is the most expedient way to create an image.

Occasionally, a software package dependency, or a specific version of software,
is not available in the software repositories for a base image linux distro. In
these cases, it might be necessary to download and install precompiled binaries
manually, or build a package from source. For example, here is an example
Dockerfile that installs a specific version of samtools [http://samtools.sourceforge.net/] from a source release [https://github.com/samtools/samtools/releases]
available on github [http://github.com]:

FROM ubuntu:bionic

RUN apt update

need these packages to download and build samtools:
https://github.com/samtools/samtools/blob/1.9/INSTALL
RUN apt install -y wget gcc libz-dev ncurses-dev libbz2-dev liblzma-dev \
 libcurl3-dev libcrypto++-dev make
RUN wget https://github.com/samtools/samtools/releases/download/1.9/samtools-1.9.tar.bz2 && \
 tar jxf samtools-1.9.tar.bz2 && \
 cd samtools-1.9 && ./configure && make install

CMD ["samtools"]

Putting your code into a docker image

Once your dependencies are installed, the final step is to move your own code
into your image. There are primarily two different strategies for doing so:

	Copy source files into the image using the ADD command in the Dockerfile

	Clone a git repository into the image from a publicly hosted repo like github [http://github.com]
or bitbucket [http://bitbucket.org]

Nota Bene

In any case, it is a good idea to create a git or other source code
versioning system to develop your code, hosted publicly if possible. Your
Dockerfile should be developed and tracked along with your code, so that
both can be developed over time while maintaining reproducibility.

Locally

The local strategy is convenient when developing software. Running development
code in a docker container ensures your testing and debugging environment are
consistent with the execution environment where your code will ultimately run.
To build from a local source tree:

	Create a Dockerfile in the root directory where your code resides

	Prepare the Dockerfile for your code as in Preparing docker image for your code

	Copy all of the source files into a directory (e.g. /app) in the
container with ADD . /app

	Perform any setup that comes bundled with your package source (e.g.
pip install -r requirements.txt or python setup.py) with the RUN
command

	Set the CMD entry point appropriately for your app

	Build your image with an appropriate tag

	Run and test your application, ideally with unit tests

Assuming we have written a python application named app.py, from within the
source code directory containing the application we could write the following
Dockerfile:

Use an official Python runtime as a parent image
FROM python:2.7-slim

Copy the current (host) directory contents into the container at /app
ADD . /app

Install any needed packages specified in requirements.txt
RUN pip install --trusted-host pypi.python.org -r requirements.txt

mount the current working directory to /cwd when the container is run
WORKDIR /cwd

Run app.py when the container launches
ENTRYPOINT ["python", "app.py"]

When a container is run, app.py will be run directly and passed any
additional arguments specified to the docker run command.

Cloning from github/bitbucket

For software projects hosted on github [http://github.com] or bitbucket [http://bitbucket.org], or when it is not
desired to include a Dockerfile along with your application source code, the
Dockerfile can also be set to clone and install a git repo instead of adding
code locally. Instead of using the ADD command from above,
use a RUN git clone <repo url> instead:

FROM python:3.6

have to install git to clone
RUN apt install git

git clone repo instead of ADD
RUN git clone https://bitbucket.org/bubioinformaticshub/docker_test_app /app
RUN pip install --trusted-host pypi.python.org -r /app/requirements.txt

mount the current working directory to /cwd when the container is run
WORKDIR /cwd

use ENTRYPOINT so we can pass files on the command line
ENTRYPOINT ["python", "/app/app.py"]

Cloning a public repo into a Docker container in this way has the advantage
that the environment where you write your code can be the same or different
than the platform where the code is run.

There is one additional caveat to this method of adding code to your image.
To save on build time, docker caches the sequential steps in your Dockerfile
when building an image, and only reruns the steps from the command where a
change has been made. The ADD command automatically detects if local file
changes have been made and automatically re-copies them into the container
on docker build. This method of cloning a repo from bitbucket, however, does
not re-trigger a build. When cloning your application from a public git
repo, the --no-cache flag must be provided to your docker build command:

$ docker build --no-cache --tag app:latest .

This invalidates all build cache and re-clones your repo on each build.

Running your docker container

Once your code has been loaded into an image, containers for your image can
be run in the normal way with docker run. Any host directories containing
files needed for the analysis must be mounted:

$ docker run --mount type=bind,source=/data,target=/data \
 --mount type=bind,source=$PWD,target=/cwd app \
 --in=/data/some_data.txt --out=/data/some_data_output.csv

Remember that any time your code changes you will need to rebuild your image,
including --no-cache if you pull your code from a git repo.

Publishing your docker image

Once your docker image is complete and your app is read to share, you can
create a free account on Docker Hub [https://hub.docker.com/] and upload your image. Be sure to
provide a full description of what the image does, what software it contains,
and how to run it, specifying any directories the container expects to be
mounted to access data (e.g. /data). You might alternatively consider
hosting your image on the Amazon Elastic Container Registry [https://aws.amazon.com/ecr/] or
Google Cloud Container Registry [https://cloud.google.com/container-registry/]. If your app will primarily be executed
in either AWS or GAE environments, it may be preferable to publish your image
to the corresponding registry.

Hands On Exercise

Writing the Dockerfile

Write, build, and run a Dockerfile that:

	Uses the python:3.6 base image

	Installs git with apt

	Clones the repo docker_test_app [https://bitbucket.org/bubioinformaticshub/docker_test_app/src/master/]

	Installs the dependencies using the requirements.txt file in the repo

	Configures the ENTRYPOINT to run the script in the repo with python3

Running the Dockerfile with data from an S3 bucket

Nota Bene

When you run this app, you should specify the -t flag to your
docker run command.

Try running the container using docker run with no arguments to see the
usage.

A fastq file that can be passed to this script has been made available on a
shared S3 bucket. You will download this file to your local instance using
the aws cli. First, you must run aws configure and provide your access
keys. Specify us-east-1 as the region. The bucket address of the file is:

s3://buaws-training-shared/test_reads.fastq.gz

Download the file using the aws cli and pass it to the app using docker run.
You must mount the directory where you downloaded the fastq file using the
--mount command line option as above.

FireCloud Workshop

This is day 3 of the “Bioinformatics in the Cloud” workshop.
In this session, you will learn about the platform FireCloud. We will learn how to run workflows, upload data, and create methods.

Workshop Outline:

	Introduction to FireCloud from Broad pipeline outreach coordinator Kate Noblett (~10min)

	FireCloud Intro Presentation (~15min)

	FireCloud Guided Tour (~25min)

	FireCloud $5 Pipeline Hands-On (~15min)

	Break (~5min)

	FireCloud Custom Data and Method Hands-On (~40min)

	Explore FireCloud (Rest of Workshop Time)

Sections:

	Prerequisites

	Five dollar genome analysis pipeline
	Find the pipeline

	Clone the workspace

	Find the workflow

	Select the pipeline

	Launch the analysis

	Select the sample

	Monitor the pipeline

	Upload data and run a custom method
	Setup

	Create a workspace in FireCloud

	Add workspace attributes

	Set up data model

	Put WDL on FireCloud

	Import configuration to workspace

	Fill in method config

	Run

Prerequisites

Note

The participants are required to have access to the following resources before attending the workshop

	
	FireCloud account

	Credits to run workflows ($300 free on sign up)

	
	portal.firecloud.org [http://portal.firecloud.org]

	Make an account and connect to a google account

Five dollar genome analysis pipeline

Clone and run a featured workspace

Open up portal.firecloud.org [http://portal.firecloud.org]

Find the pipeline

	Navigate to the workspace tab

	Navigate to “Featured Workspaces”

	Click on “five-dollar-genome-analysis-pipeline”

[image: ../_images/workspace.png]

Clone the workspace

	Append your name to the workspace name (to make it unique)

	Clone the workspace

[image: ../_images/clone_name.png]

Find the workflow

	Navigate to the Method Configurations tab

[image: ../_images/navigate_method.png]

Select the pipeline

	Select the five-dollar-genome-analysis-pipeline

[image: ../_images/method.png]

Launch the analysis

	Launch the analysis

[image: ../_images/launch_analysis.png]

Select the sample

	Select either sample_id to run the analysis on

	Launch

[image: ../_images/choose_data_launch.png]

Monitor the pipeline

	Monitor the submitted job, well done!

[image: ../_images/submitted.png]

Upload data and run a custom method

Setup

Please download the materials for this section FireCloud Files

Create a workspace in FireCloud

	
	Workspaces > Create a new workspace

	
	name: hello_gatk_fc_YOUR_NAME

	billing project: YOUR_PROJECT

Add workspace attributes

	
	Workspaces > Summary > Workspace attributes > Import Attributes

	
	data_bundle > FireCloud > workspaceAttributes.tsv

	When it is uploaded, look at the workspace attributes section to see if the upload was successful

Set up data model

	
	Workspaces > Data > Import Metadata > Import from file

	
	
	Upload in this order:

	
	data_bundle > FireCloud > participant.txt

	data_bundle > FireCloud > sample.txt

	When it is uploaded, look at the two tables in the data tab that are filled in to see if it was successfully uploaded.

Put WDL on FireCloud

	
	Method Repository > Create New Method

	
	namespace: YOUR_NAME

	name: hello_gatk_fc

	
	wdl: load from file

	
	This WDL calls HaplotypeCaller in GVCF mode, which takes a BAM input & outputs a GVCF file of variant likelihoods.

	The FireCloud version has a docker image specified among other runtime settings -- the memory and disk size of the machine we will request from Google’s cloud, as well as the number of times we will try to run on a preemptible machine.

	Notice that you can type in the WDL field to edit if needed.

	documentation: We won’t be filling this out today, but in general documentation here is highly recommended, as it is helpful for others who may want to run your method.

	Upload

Import configuration to workspace

	
	Method Repository > your method > Export to Workspace

	
	
	Use Blank Configuration

	
	Name: hello_gatk_fc

	Root Entity Type: sample

	Destination Workspace: YOUR_PROJECT/hello_gatk_fc_YOUR_NAME

	Would you like to go to the edit page now? Yes

	
Note

If you get popup “Synchronize Access to Method” Grant Read Permission

Fill in method config

	Workspace > Method Configurations > hello_gatk_fc

	
	Select the Edit Configuration button to fill it in. There are 3 types of inputs.

	
	
	In the data model

	
	You’ll find this value in your data tab. Since it is under the sample section, and your root entity type is sample, simply type this. and allow autocomplete to guide you.

	eg: inputBam = this.inputBam

	
	In the workspace attributes

	
	You’ll find this value in your workspace attributes section under the summary tab. To find it, type in workspace. and let autocomplete guide you.

	eg: refDict = workspace.refDict

	
	Hard-coded

	
	These are values which are not in your data model or workspace attributes. They are fixed numbers or strings that are typed in here. You can find the values for these inputs in the inputs json in your data bundle (data_bundle > hello_gatk > hello_gatk_fc.inputs.json)

	eg: disk_size = 10

	eg: java_opt = "-Xmx2G"

	Fill in the remaining inputs on your own/helping your neighbors.

	Fill out the output. It won’t auto-complete, but we want to write it to the data model. The value should be this.output_gvcf

	Save the configuration

Run

	Refresh the page and check for the yellow refresh credentials banner BEFORE running. This isn’t typically an issue for users in a normal setting, but because in a workshop we start and stop a lot, the idle time can cause the credentials to time out. It will throw a Rawls error if you run that won’t pop up until after the job has been submitted and queued, which can be frustrating.

	Method Config > Launch Analysis > Select sample > Launch

	Watch & refresh from the monitor tab. Click the view link when it appears, and open the timing diagram to see what’s happening.

Index

Syllabus

NB: Under construction!

	Cloud Concepts

	Lecture Topics:

	What is the cloud?

	Fundamental cloud concepts (VMs, subnets, storage, scalability, etc)

	Focus on AWS: EC2, S3, serverless services (e.g. lambda)

	Pricing

	Hands-on tasks:

	Procure and launch an EC2 instance

	Instantiate with a specific image

	Run and connect to VM

	Run your app from the command line?

	Running Code in the Cloud

	Lecture topics:

	Good coding practices?

	Version control?

	Containerization technology and deployment

	Hands-on tasks:

	Given some piece of code, package and deploy it as a docker/singularity container

	Cloud App Demonstration - FireCloud (Broad Institute)

	Lecture Topics:

	What is FireCloud?

	What makes FireCloud a cloud app?

	Hands-on tasks:

	FireCloud workflow with annotations about how it works wrt concepts previously covered

Cloud Concepts Online Materials

Hands-on

	Setting up the instance

	Setting up singularity container on EC2 instance

	Running the tool.

	Enable other people to use your tool

FireCloud Workshop

Pipeline recap Presentation ~15min

	What is a pipeline for

	

	

	

	

Firecloud Presentation ~15min

	How do elements of FireCloud relate to what we’ve described in previous days?

	Google Buckets

	FireCloud entity types

	

	

Demo $5 pipeline and describe elements of FireCloud ~45min

	Summary

	Data

	Method configurations
- WDL

	

	

Users run $5 pipeline ~15

-Workspaces
-$5
-Clone workspace
-Name it with user’s own name
-

Break?

Firecloud custom method uploading files ~45min

	

	

	

	

	

Extra time:

Let people play around with Firecloud

FireCloud Online Materials

 _images/rise-of-clouds.jpg
What is Cloud Computing?

_images/s3_create.png
Create bucket X
(© Name and region (2) Set propertes () setpermissions (@) Review

Bucket name

Copy settings from an existing bucket

_images/method.png
FireCloud Workspaces DataLibrary ~ Method Repository e

crzyprplmnky@gmail.com v

WORKSPACE
fccredits-boron-maroon-9691/five-dollar-genome-analysis-pipeline_MY_NAME Q
Summary Data Analysis Notebooks BETA Method Configurations Monitor

Filter B Import Configuratio

Name 15 Root Entity Type Method Source Method

five-dollar-genome-analysis-pipeline

sample FireCloud gatk/five-dollar-genome-analysis-pipeline Snapshot ID: 10

1-1 of 1result ° 20 4 perpage

EZBROAD

INSTITUTE
© 2015-2018 Broad Institute | Privacy Policy | Terms of Service | User Guide | FireCloud Forum | Firecloud Status

_images/navigate_method.png
FireCloud Workspaces DataLibrary Method Repository © cmprimniy@gmail.com v

WORKSPACE Q
help-gatk/five-dollar-genome-analysis-pipeline
Summary Data Analysis Notebooks BETA Method Configurations Monitor
Workspace Access Storage & Analysis
0 Complete
Access Level Google Bucket
Reader fc-ef9abb30-2a10-4229-b574-895e3ac9cf88 &
Workspace Owner Analysis Submissions
[Catalog Dataset... bshifaw@broadinstitute.org 3 Submissions
Authorization Domain * 3Done
None
C
U Clone... Created By

bshifaw@broadinstitute.org
February 14,2018,11:16 PM
v Tags

gatk germline best-practices variant discovery pre-processing SNP INDEL

~ Description
GATK Best Practices for Germline SNPs and Indels as used at the Broad Institute

The purpose of this workspace is to provide a fully reproducible example of the GATK Best Practices workflows for Data Pre-processing and Germline Short Variant Discovery. A scientific description
of the workflow is available in Gatk's Best Practices Document.

The "$5 Genome Analysis Pipeline" name refers to the cost of running the full pipeline (with all options turned to do the maximum amount of work) on a typical whole genome dataset, on the Google
Cloud Platform, as explained on the Broad site in a Gatk blog post.

_images/s3_review.png
Name and region

Bucket name cloud-bioinfo-bu Region US East (Ohio)

Properties

Versioning
Server logging
Tagging

Obiject-level logging
Default encryption

Permissions

Users

_images/submitted.png
FireCloud Workspaces DataLibrary ~ Method Repository © cmprimniy@gmail.com v

WORKSPACE
fccredits-boron-maroon-9691/five-dollar-genome-analysis-pipeline_MY_NAME

Summary Data Analysis Notebooks BETA Method Configurations Monitor

-— Method Configuration Submitted by Total Run Cost @
Submitted
Namespace: gatk crzyprplmnky@gmail.com Not Available
Name: five-dollar-genome-analysis-pipeline July 27,2018, 8:45 PM (a few seconds ago)
A Abort Submission Entity Submission ID Call Caching @
Type: sample 30c5a58d-2d4a-49b8-a977-1da1f794af6d & Enabled
Name: NA12878_small

Workflows:

o]

All (1) Queued (1) Launching (0) Submitted (0) Running (0) Aborting (0) Succeeded (0) Failed (0) Aborted (0)

Data Entity Last Changed I status Messages Workflow ID Run Cost

NA12878_small (sample) July 27, 2018, 8:45 PM (a few seconds ago) B Queued n/a @

1-1 of 1result ° 20 4 perpage

_images/s3_main.png
Services v ResourceGroups v %

Stream Video to AWS for Analytics—Easily capture, process, and store video streams for analytics and machine learning.

‘ Amazon S3 X Discover the new console @ Quick tips.

Q Search for buckets

2 Buckets 1 1 Regions &

Bucket name 1=

Region 1= Date created 1=
& microbial-ai US East (Ohio) Dec 2, 2017 9:44:17 AM GMT-0500
& microbial-interaction-database Not public * US East (Ohio) Nov 18, 2017 3:16:07 PM GMT-0500

* Objects might il be publicly accessible due to object ACLS. Learn more

Q@ English (US)

_images/s3_permissions.png
Create bucket X

@ temosnirogon @ Seiproperios (3 Sotpormissions (3) Roviow
I Manage users I

User ID Objects Object permissions.

Read
Write

Read [Write X

k dileep1994(Owner)

Access for other AWS account + Add account

Account Objects.
Manage public permissions

Do not grant public read access to this bucket (Recommended)

Manage system permissions

Do not grant 3 Log Delivery group write access to this bucket

Next

_images/vm.png
Application Application
Operating System [ll Operating System

m @ a

Application

Operating System

x86 Architecture

Disk

_images/workspace.png
FireCloud Workspaces

Filter

Tags Clear

Status Clear

Complete
) Running
) Exception

Access Clear

Project Owner

I No Access

Publishing Glear

" Published
" Un-published

TCGA Access Clear

TCGA Open Access
TCGA Controlled Access

Status

o
()
()
()
()

()
()
()
()

#1

Data Library Method Repository

ﬂ Collapse filters

My Workspaces (1)

Workspace ~ #3

help-gatk
five-dollar-genome-analysis-pipeline

help-gatk
Germline-SNPs-Indels-GATK4-hg38

help-gatk

help-gatk
Somatic-CNVs-GATK4

help-gatk
Pre-processing_b37_v3

help-gatk
Somatic-SNVs-Indels-GATK4

help-gatk
Pre-processing_hg38_v2

help-gatk
Germline-SNPs-Indels-GATK4-b37

amaltobroad
gmal

1-9 of 9 results (fitered from 105 total)

Public Workspaces (104)

#2

Featured Workspaces (9)

Description

GATK Best Practices for Germline SNPs an
GATK Best Practices for Germline SNPs & |
Methods for format conversion

GATK Best Practices for Somatic CNV Disc
GATK Best Practices for Germline SNPs Inc
GATK Best Practices for Single Tumor-Norr
GATK Best Practices for Germline SNPs Inc
GATK Best Practices for Germline SNPs Inc

#GMQL 101: an introduction to the GenoMetric

Last Modified

Jun 18,2018, 2:53 PM

Jul 27,2018, 8:10 AM

Jul 24,2018, 11:54 AM

Apr 27,2018, 7:45 PM

Jun 18,2018, 2:54 PM

Jun 21,2018, 1:55 PM

Jun 18,2018, 2:54 PM

Jul 27,2018, 10:31 AM

May 6, 2018, 7:00 PM

]

Create New Workspac

Access Level 12

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

2

per page

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Bioinformatics in the Cloud Workshop’s documentation!

 		
 Cloud Concepts Workshop

 		
 Prerequisites

 		
 Introduction to the cloud

 		
 Key advantages

 		
 Common use-cases

 		
 Cloud concepts

 		
 Virtual Machines

 		
 Storage Units

 		
 Databases

 		
 Serverless

 		
 The AWS infrastructure

 		
 Amazon Web Services and the console

 		
 Elastic Compute Cloud instances

 		
 Simple Storage Service buckets

 		
 Elastic Block Storage

 		
 Relational Database Service

 		
 AWS lambda

 		
 Pricing

 		
 CloudFormation

 		
 Advantages

 		
 Concepts

 		
 Template Components

 		
 Best Practices

 		
 AWS CLI

 		
 Advantages

 		
 Setting up your profile

 		
 Commands

 		
 Miscellaneous

 		
 Cheat sheet

 		
 AWS CLI

 		
 CloudFormation

 		
 EC2 Instance

 		
 S3 bucket

 		
 Files

 		
 Exercise

 		
 Cloud App Deployment Workshop

 		
 Prerequisites

 		
 docker

 		
 Creating an CloudFormation Stack

 		
 Containerization

 		
 Motivation

 		
 Containerization

 		
 What is a container?

 		
 Introduction to docker

 		
 docker

 		
 docker concepts

 		
 Running docker

 		
 Your First Docker Container

 		
 Pulling docker images

 		
 Managing docker containers

 		
 Creating docker images

 		
 Packaging your own application

 		
 Workflow Overview

 		
 Preparing docker image for your code

 		
 Putting your code into a docker image

 		
 Running your docker container

 		
 Publishing your docker image

 		
 Hands On Exercise

 		
 FireCloud Workshop

 		
 Prerequisites

 		
 Five dollar genome analysis pipeline

 		
 Find the pipeline

 		
 Clone the workspace

 		
 Find the workflow

 		
 Select the pipeline

 		
 Launch the analysis

 		
 Select the sample

 		
 Monitor the pipeline

 		
 Upload data and run a custom method

 		
 Setup

 		
 Create a workspace in FireCloud

 		
 Add workspace attributes

 		
 Set up data model

 		
 Put WDL on FireCloud

 		
 Import configuration to workspace

 		
 Fill in method config

 		
 Run

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/up.png

_images/aws_console.png
Services v

Re

AWS services

8]

+ Recently visited services

v All services

Compute
EC2

Lightsail &'

Elastic Container Service
EKS

Lambda

Batch

Elastic Beanstalk

Storage
s3

EFS

Glacier

Storage Gateway

Database

RDS
DynamoDB
ElastiCache
Neptune
Amazon Redshift

Migration
AWS Migration Hub
Application Discovery Service
Database Migration Service
Server Migration Service

Management Tools @
CloudWatch

AWS Auto Scaling

CloudFormation

CloudTrail

Config

OpsWorks

Service Catalog o
Systems Manager

Trusted Advisor

Managed Services 53]

Media Services

Elastic Transcoder

Kinesis Video Streams

MediaConvert

Medialive

MediaPackage =
MediaStore &
MediaTailor

Machine Learning

Amazon SageMaker ol
Amazon Comprehend

AWS Deeplens

Amazon Lex

Machine Learning

Amazon Polly

Mobile Services
Mobile Hub

AWS AppSync
Device Farm
Mobile Analytics.

AR &VR

Amazon Sumerian

Application Integration
Step Functions

Amazon MQ

Simple Notification Service
Simple Queue Service
SWF

Customer Engagement
Amazon Connect
Pinpoint

Simple Email Service

Business Productivity
Alexa for Business
Amazon Chime
WorkDocs

WorkMail

Helpful tips

@ Manage your costs

Moritor your AWS costs, usage, and
reservations using AWS Budgets. Start now

Create an organization

Use AWS Organizations for policy-based
management of multiple AWS accounts. Start
now

Explore AWS

Machine Leamning with Amazon SageMaker

The fastest way to build, train, and deploy machine learing
models. Leam more. ('

Amazon Relational Database Service (RDS)
RDS manages and scales your database for you. RDS
supports Aurora, MySQL, PostgreSQL, MariaDB, Oracle,
and SQL Server. Leam more. ('

AWS Fargate Runs Containers for You

AWS Fargate works with Amazon ECS to run and scale
your containers for you. Pay only for the compute resources
you need, scale quickly, and run any size application.

Leam more.

AWS Marketplace

Find, buy, and deploy popular software products that run on
AWS. Leam more. &

_images/choose_data_launch.png
Launch Analysis

Estimated wait time: a few seconds
Workflows ahead of yours: 0
Queue status: 0 Queued; 1319 Active

Selected: None

o]

Q

participant (1 total) sample (2 total)

sample_id E flowcell_unmapp...| output_bgsr_rep... output_cram output_cram_ind...| output_cram_md5 output_vcf output_vcf_index participant
NA12878 o gs://broad-public.. gs:/fc-ef9abb30-.. gs:/fc-ef9abb30-.. gs:/fc-ef9abb30-.. gs:/fc-ef9abb30-.. gs:/fc-ef9abb30-.. gs:/fc-ef9abb30-.. NA12878
NA12878_small gs://gatk-test-dat... gs:/fc-ef9abb30-.. gs:/fc-ef9abb30-.. gs:/fc-ef9abb30-.. gs:/fc-ef9abb30-.. gs:/fc-ef9abb30-.. gs:/fc-ef9abb30-.. NA12878
1-2 of 2results ° 20 4 perpage

Define Expression

leave blank for default

Use Call Caching Learn about call caching &'

. Cromwell Version: 32 &'

_images/Advantage-of-Cloud-Computing.png
Advantages of

Cloud Computing

_images/amazon_services.png
compute e
. ‘Amazon Elastic Auto Amazon Simple Storage Amazon Elastic Block Storage AWS. AWS Storage AWS
Amazon Elastic Compute Cloud (Amazon EC2) MapReduce scaling Service (Amazon 53) 1Amamn EBS) Impnrl/Expnrl Gateway Service Glacier
‘." nﬂ...v¢°¢ ‘iﬁ‘ ﬁ = ol
Database
‘Amazon DynamoDB ‘Amazon Relational Database Service (Amazon RDS) ‘Amazon ElastiCache

om - @ e o
o= Ug
om
oyramoon Aurbues AmionRm RES0D mUsmomwme RsOR MyQLOS omckDs Amon Hmticxhe
I sy (WiGA) iwame immme Iwame tmtcehe Cate o
resd epis
Networking Content Delivery
Amazon Route 53 Amazon Elastic AWS Direct Amazon Virtual Private Gloud (VPC) Amazon Cloudfront Elastic Network
Load Balancing Connect Instance
Amion vestedzone Rowe abk et ot s oiect Amionvc muer memet Cwwmer Vewswuay veHGomecton Amion Downkad sueamie e toceton chstc nevork
roes3 whreer comect Gaevay cmesay Coufron Debuon Dstbuton s
Application Services
Amazon simple Queue Service Amazon Amazon simple Email Amazon Simple Workflow . . .
(sas) Cloudsearch Servioe (SE5)) Amazon simple Notification Service (SNS)
@ OrIm Omiow HENEN
I L | = ==
[R m— ———]
ameonsas mesme smzon Amonses e Amsonswr oecer workr Ammonss Ermitgicon TR teeton 109k
clouiserh
Deployment and Management Monitoring Non-service specific

Amazon Elastic
Beanstalk

AWS Identity and Access

Management (vt AWS CloudFormation

-l'f’ ?O- mEIII

Amazon doudWatch

nid L0 8 e EEE

o scon - . T amon s = e e vk fna o coom
oo cinen cE. T Sl
Groups

o

| | Hstic t vitua Comorate

| vaitabitty | Security | | Beanstalk | | instance vec Sarver Private Aws Data

DU non || o | | Covants | | ot | | st | comes | ot] o | | o

_images/ec2_instances.png
General Purpose Compute Optimized Memory Optimized

Accelerated Computing Storage Optimized

T2

T2 Instances are Burstable Performance Instances that provide
a baseline level of CPU performance with the ability to burst Model
above the baseline.

T2 Unlimited Instances can sustain high CPU performance for t2.nano.
aslong as a workload needs It. For most general-purpose

‘workloads, T2 Unlimited Instances will provide ample

performance without any additional charges. If the instance t2.micro
needs to run at higher CPU utilization for a prolonged period, it

can also do so at a flat additional charge of 5 cents per vCPU-

t2.small
hour.

‘The baseline performance and ability to burst are governed by
CPU Credits. T2 instances receive CPU Credits continuously ata ~ t2-medium
Set rate depending on the Instance size, accumulating CPU

Credits when they are Idle, and consuming CPU credits when

they are active. T2 Instances are a good choice for a variety of

general-purpose workloads Including micro-services, low-

latency interactive applications, small and medium databases, 12 large
virtual desktops, development, build and stage environments,

code repositories, and product prototypes. For more

Information see Burstable Performance Instances. t2.2xlarge

t2large

vePU

CPU Credits / hour

12

24

36

54

81

Mem
(GiB)

05

16

32

)

storage
EBs-
only

EBs-
only

EBs-
only

EBs-
only

EBs-
only

EBs-
only

EBs-
only

_images/instance_configure.png
Services v Resource Groups v

1.ChooseAMI 2.Chooseinstance Type 3.Configure Instance 4.Add Storage 5.AddTags 6. Configure Security Group 7. Review

Step 3: Configure Instance Details

Configure the instance to suit your requirements. You can launch multiple instances from the same AMI, request Spot instances to take advantage of the lower pricing, assign an access management role to the instance, and more

Number of instances (i 1 Launch into Auto Scaling Group (i

Purchasing option Request Spot instances

Network (i [vpe-5494b53c (default) v] C Create new VPC
Subnet (i) [No preference (default subnet in any Availabiity Zor v] ~ Create new subnet
Auto-assign Public IP () [Use subnet seting (Enable) vl

Placement group Add instance to placement group.

1AM role

[None v] C Create new IAM role

Shutdown behavior [Stop v

Enable termination protection Protect against accidental termination

Monitoring (i Enable CloudWatch detailed monitoring
Additional charges apply.
Tenancy (i [Shared - Run a shared hardware instance v
Additional charges will apply for dedicated tenancy.
T2 Unlimited (i Enable

Additional charges may apply

» Advanced Details

Cancel | Previous [IGEVEVEUFIRVUION | Next: Add Storage

_images/clone_name.png
Clone Workspace

#1
Workspace Name
five-dollar-genome-analysis-pip
Only letters, numbers, underscores, &8 — Wowed

Billing Project

fccredits-boron-maroon-9691

<

Description (optional)

GATK Best Practices for Germline SNPs and Indels as used at the Broad Institute

The purpose of this workspace is to provide a fully reproducible example of the GATK Best Practices workflows for
Data Pre-processing and Germline Short Variant Discovery. A scientific description of the workflow is available in

[Gatk's Best Practices Document](https://software.broadinstitute.org/gatk/best-practices/workflow?id=11145). ,

Authorization Domain (optional) €@

The cloned Workspace will automatically inherit the Authorization Domain from this Workspace.
You may add Groups to the Authorization Domain, but you may not remove existing ones.

You are not a member of any groups. You must be a member of a group to set an Authorization Domain.

Cancel Clone Workspace

_images/ebs_s3.jpg
Storage Options on AWS

Block Storage Object Storage
(Elastic Block Store) (53, Glacier)
f’“;"" Use for:
C;ESS fo ’adwh| K * Pictures, videos,
unformattad blod highly durable

level storage
« Persistent Storage

media storage
+ Cold storage for
long-term archive

_static/plus.png

_images/instance_key.png
Select an existing key pair or create a new key pair X

Akey pair consists of a public key that AWS stores, and a private key file that you store. Together,
they allow you to connect to your instance securely. For Windows AMIs, the private key file is required
to obtain the password used to log into your instance. For Linux AMIs, the private key file allows you to
securely SSH into your instance.

Note: The selected key pair will be added to the set of keys authorized for this instance. Learn more
‘about removing existing key pairs from a public AMI

Create a new key pair
Key pair name
[Test|

Download Key Pair |

You have to download the private key file (* pem file) before you can continue:
Store it in a secure and accessible location. You will not be able to download the
file again after it's creat

_images/instance_launch.png
Services v Resource Groups v

1.Choose AMI 2.Choose InstanceType 3.Configure Instance 4.Add Storage 5.AddTags 6. Configure Security Group 7. Review

Step 1: Choose an Amazon Machine Image (AMI) Cancel and Exit

An AMI is a template that contains the software configuration (operating system, application server, and applications) required to launch your instance. You can select an AMI provided by AWS, our user community, or the AWS Marketplace: or you can select one of your own AMIs.

Quick Start

My AMIs

AWS Marketplace

Community AMIs

Free tier only

110 35 of 35 AMIs

Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-8c122be9 Select

Amazon Linux 2 comes with five years support. It provides Linux kemel 4.14 tuned for optimal performance on Amazon EC2, systemd 219, GCC 7.3, Glibc 2.26, Binutils 2.29.1, and the latest software packages through extras sabit

Root device type: ebs Virualization type: hum

Amazon Linux AMI 2018.03.0 (HVM), SSD Volume Type - ami-40142d25 Select

The Amazon Linux AMI is an EBS-backed, AWS-supported image. The default image includes AWS command line tools, Python, Ruby, Perl, and Java. The repositories include Docker, PHP, MySQL, PostgreSQL, and other

64-bit
packages.
Root devic type:obs Vetalzaton ype:
Y Red Hat Enterprise Linux 7.5 (HVM), SSD Volume Type - ami-03291866
RedHat Red Hat Enterprise Linux version 7.5 (HVM), EBS General Purpose (SSD) Volume Type cabit
Root devic type:obs Vetalzaton ype:
3 ‘SUSE Linux Enterprise Server 12 SP3 (HVM), SSD Volume Type - ami-f4e6dadl
SUSELinux SUSE Linux Enterprise Server 12 Service Pack 3 (HVM), EBS General Purpose (SSD) Volume Type. Public Cloud, Advanced Systems Management, Web and Scripting, and Legacy modules enabled. it
Root devic type:obs Vetalzaton ype:
® Ubuntu Server 16.04 LTS (HVM), SSD Volume Type - ami-6a003c0f
Ubuntu Server 16.04 LTS (HVM),EBS General Purpose (SSD) Volume Type. Support available from Canonical (http://www. ubuntu.com/cloud/services). 64-bit
Root devic type:obs Vetalzaton ype:
Are you launching a database instance? Try Amazon RDS. Hide

Amazon RDS

Amazon Relational Database Service (RDS) makes it easy to set up, operate, and scale your database on AWS by automating time-consuming database management tasks. With RDS, you can easily deploy Amazon Aurora,
MariaDB, MySQL, Oracle, PostgreSQL, and SQL Server databases on AWS. Aurora is a MySQL- and PostgreSQL-compatible, enterprise-class database at 1/10th the cost of commercial databases. Learn more about RDS

Launch a database using RDS -

@ Feedback @ English (US)

_images/instance_created.png
Services v Resource Groups v

EC2 Dashboard
Launch Instance Connest Actions v
4_ @ iAo % 0

Events
Tags Q Filter by tags and attributes or search by keyword) ltolofl

Reports @ Name ~ Instance ID ~ InstanceType - Availability Zone - | Instance State - Status Checks - Alarm Status PublicDNS (IPvd) - IPvAPubliclP - IPV6IPs ~ KeyName - Monitoring ~ Laun
‘L‘mj's . (] -0b214bdd3473df580 t2.micro us-east-2c @ running Z Initilizing None Y ec2521521418luse.. 5215214181 - Test [disabled July €
INSTANCES

Instances

Launch Templates.
Spot Requests
Reserved Instances.
Dedicated Hosts
IMAGES

AMIs

Bundle Tasks

ELASTIC BLOCK STORE
Volumes

Snapshots

NETWORK & SECURITY
Security Groups.
Elastic IPs

Placement Groups. ‘
Public DNS: ec2-52-15-214-181.us-east-2.compute.amazonaws.com _}_N=]

Key Pairs

Network Interfaces. —
Description | Status Checks | Monitoring | Tags.
LOAD BALANCING

Load Balancers Instance 1D H0b214bdd34734580 Public DNS (IPv4) ec2-52-15-214-161 us-east-2.compute.amazonaws.com
52.15.214.181
Target Groups Instance state running 1Pva Public IP
Instance type 12 micro IPVEIPs -
VIO scALNG Elastic IPs Private DNS ip-172-31-38-155.us-east-2.compute.intemal

Launch Availabilty zone us-east-2¢ Private IPs 172.3138.155
Configurations

Secuity groups launch-wizard-1. view inbound rules . view outbound rules Secondary private IPs
Auto Scaling Groups Scheduled events No scheduled events VPCID vpc-5494b53c .

@ Feedback @ English (US)

_images/instance_storage.png
Services v Resource Groups v

1.ChooseAMI 2.Choosenstance Type 3.Configure Instance 4.AddStorage 5.AddTags 6. Configure Security Group 7. Review

Step 4: Add Storage

Your instance will be launched with the following storage device settings. You can attach additional EBS volumes and instance store volumes to your instance, or
edit the settings of the root volume. You can also attach additional EBS volumes after launching an instance, but not instance store volumes. Learn more about
storage options in Amazon EC2.

Volume Type (i Device (i) Snapshot (i Size (GiB) (1) | Volume Type (i 10PS (i (":I';:"—"'!’“‘ Delete on Termination (i) Encrypted (i
i
Root Idevisdal ~ snap-OaB0Babclef3aed 8 General Purpose SSD (GP2) ___v] 100/3000 NIA @ Not Encrypted

Add New Volume

Free tier eligible customers can get up to 30 GB of EBS General Purpose (SSD) or Magnetic storage. Learn more about free usage tier eligibility and
usage restrictions.

Cancel | Previous [ii8

SPUETRNITN | Next: Add Tags

@ Feedback @ English (US)

_images/instance_tags.png
Services v Resource Groups v

1.ChooseAMI 2.Chooseinstance Type 3.Configure Instance 4.Add Storage 5.AddTags 6. Configure Securty Group 7. Review

Step 5: Add Tags

Atag consists of a case-sensitive key-value pair. For example, you could define a tag with key = Name and value = Webserver.

A copy of a tag can be applied to volumes, instances or both

Tags will be applied to all instances and volumes. Learn more about tagging your Amazon EC2 resources.

Instances (i Volumes (i

Key (127 characters maximum) Value (255 characters maximum)

fest_instancel

name

Add anothertag | (Up to 50 tags maximum)

Cancel | Previous [GCVEVEUEREWREON Next: Configure Security Group

@ Feedback @ English (US)

_images/instance_review.png
Services v Resource Groups v

1.ChooseAMI 2.Choosenstance Type 3.Configure Instance 4.Add Storage 5.AddTags 6. Configure Security Group 7. Review

Step 7: Review Instance Launch

Please review your instance launch details. You can go back to edit changes for each section. Click Launch to assign a key pair to your instance and complete the launch process.

A Improve your instances' security. Your security group, launch-wizard-1, is open to the world.
Your instances may be accessible from any IP address. We recommend that you update your security group rules to allow access from known IP addresses only.
You can also open additional ports in your security group to facilitate access to the application or service you're running, e.g., HTTP (80) for web servers. Edit security groups

~ AMI Details

@ Ubuntu Server 16.04 LTS (HVM), SSD Volume Type - ami-6a003c0f

Ubuntu Server 16.04 LTS (HVM),EBS General Purpose (SSD) Volume Type. Support available from Canonical (http:/fuw.ubuntu. com/cloud/services).
Root Device Type: ebs Virualzaton type: hvm

~ Instance Type
Instance Type ECUs VCPUs Memory (GiB) Instance Storage (GB) EBS-Optimized Available Network Performance
2.micro Variable 1 1 EBS only

- Low to Moderate

¥ Security Groups

Security group name launch-wizard-1

Description launch-wizard-1 created 2018-07-06T15:29:09.159-04:00
Type (i Protocol (i Port Range (i Source (i Description (i
SSH TcP 22 00000

» Instance Details

» Storage

@ Feedback @ English (US)

Edit AMI

Editinstance type

Edit security groups

Editinstance details

Editstorage

_images/instance_security.png
Services v Resource Groups v

1.ChooseAMI 2.Chooselnstance Type 3.Configure Insiance 4.Add Storage 5.AddTags 6. Configure Security Group 7. Review

Step 6: Configure Security Group
A security group is a set of firewall rules that control the traffic for your instance. On this page, you can add rules to allow specific traffic to reach your instance. For example, if you want to set up a web server and allow Internet traffic to reach your instance, add rules that allow unrestricted
access to the HTTP and HTTPS ports. You can create a new security group or select from an existing one below. Learn more about Amazon EC2 security groups.

Assign a security group: ®Create a new security group

Select an existing security group

Security group name: launch-wizard-1
Description: [launch-wizard-1 created 2018-07-06T15:29:09.159-04:00
Type G Protocol (i Port Range (i Source (i Description (i
ssH frep 22 Custom] [0.0.0.010 [e-g. SSH for Admin Deskiop o
Add Rule
A waming

Rules with source of 0.0.0.0/0 allow all IP addresses to access your instance. We recommend setting security group rules to allow access from known IP addresses only.

[SUPSIN SVl Review and Launch

@ Feedback @ English (US)

_images/main_page.png
Contact Sales Products ~ Solutions Pricing Getting Started Documentation AWS Marketplace Support Customers More ~ English ~ My Account ~ n In to the Console

QWS SUMMIT
N -) NEW YORK

JULY 16-17, 2018

Register now »

" /\(

=@ /Q(/

N } |

Lightsail Get AWS Certified AWS IoT in the Connected Home AWS Lambda + Amazon SQS
Everything you need to get started on Join us at the AWS New York Summit to Build groundbreaking connected devices Trigger Lambda functions by sending
AWS—for alow, predictable price validate your skills and show others your and applications messages to an SQS queue

expertise with AWS.

Explore Our Products

8 @ & v

Storage Database Migration Networking & Content

_images/instance_types.png
Services v Resource Groups v

1.ChooseAMI 2.ChooselnstanceType 3.Configure Instance ~ 4.Add Storage 5.AddTags 6. Configure Security Group 7. Review

Step 2: Choose an Instance Type
Amazon EC2 provides a wide selection of instance types optimized to fit different use cases. Instances are virtual servers that can run applications. They have varying combinations of CPU, memory, storage, and networking capacity, and give you the flexibility to choose the appropriate mix
of resources for your applications. Learn more about instance types and how they can meet your computing needs.

Filterby: | Allinstancetypes v | Curment generation v ShowlHide Columns

Currently selected: t2 micro (Variable ECUs, 1 vCPUs, 2.5 GHz, Intel Xeon Family, 1 Gi& memory, EBS only)

Family - Type - vCPUs (i - Memory (GiB) - Instance Storage (GB) (i - EBS-Optimized Available (i - Network Performance (i ~ IPv6 Support (i)~
General purpose t2.nano 1 05 EBS only - Low to Moderate Yes
(] {2.micto 1 1 EBS only - Low to Moderate Yes
1 2 EBS only - Low to Moderate Yes
2 4 EBS only - Low to Moderate Yes
General purpose 2 8 EBS only - Low to Moderate Yes
General purpose t2.darge 4 16 EBS only - Moderate Yes
General purp: 12.2xlarge 8 32 EBS only - Moderate Yes
General purpose mSd.large 2 8 175 (SSD) Yes Up to 10 Gigabit Yes
General purpose mbd.darge 4 16 1x150 (SSD) Yes Up to 10 Gigabit Yes
General purp: mSd. 2xlarge 8 32 1300 (SSD) Yes Up to 10 Gigabit Yes
eral purp mSd.dxlarge 16 64 2300 (SSD) Yes Up to 10 Gigabit Yes
General purpose mSd.12xlarge 48 192 2900 (SSD) Yes 10 Gigabit Yes

Cancel | Previous WGEVEVEUFIBWLEON Next: Configure Instance Details

@ Feedback @ English (US)

_images/launch_analysis.png
FireCloud Workspaces DataLibrary Method Repository © caprpimniy@gmailcom v

WORKSPACE
fccredits-boron-maroon-9691/five-dollar-genome-analysis-pipeline_MY_NAME Q
Summary Data Analysis Notebooks BETA Method Configurations Monitor

Vd Edit Configuration Method Configuration Name Launch Analysis...

five-dollar-genome-analysis-pipeline

i Delete
Referenced Method
< Publish...
Namespace: gatk Created: March 26,2018, 12:17 PM
Name: five-dollar-genome-analysis-pipeline Owners: bshifaw@broadinstitute.org
Snapshot ID: 10 Synopsis: This WDL pipeline implements data pre-processing and initial variant calling
Entity Type: Workflow Snapshot Comment: disk_size calculation updated

Source: FireCloud

Documentation:

Copyright Broad Institute, 2018 This WDL pipeline implements data pre-processing and initial variant calling (GVCF generation) according to the GATK Best Practices (June 2016) for
germline SNP and Indel discovery in human whole-genome and exome sequencing data. Requirements/expectations : - Human whole-genome pair-end sequencing data in unmapped
BAM (uBAM) format - One or more read groups, one per uBAM file, all belonging to a single sample (SM) - Input uBAM files must additionally comply with the following requirements: - -
filenames all have the same suffix (we use ".unmapped.bam") - - files must pass validation by ValidateSamFile - - reads are provided in query-sorted order - - all reads must have an RG
tag - GVCF output names must end in ".g.vcf.gz" - Reference genome must be Hg38 with ALT contigs Runtime parameters are optimized for Broad's Google Cloud Platform
implementation. For program versions, see docker containers. LICENSING : This script is released under the WDL source code license (BSD-3) (see LICENSE in
https://github.com/broadinstitute/wdl). Note however that the programs it calls may be subject to different licenses. Users are responsible for checking that they are authorized to run all
programs before running this script. Please see the docker page at https://hub.docker.com/r/broadinstitute/genomes-in-the-cloud/ for detailed licensing information pertaining to the
included programs.

WDL: Expand

