

 Navigation

 	
 index

 	
 next |

 	bio_pieces 1.0.0 documentation

Bio Pieces

[image: Documentation Status]
 [http://bio-pieces.readthedocs.org/en/latest/]
 [https://travis-ci.org/VDBWRAIR/bio_pieces]
 [https://coveralls.io/r/VDBWRAIR/bio_pieces]Various bioinformatics scripts

All documentation is hosted at http://bio-pieces.readthedocs.org/en/latest

TODO

	Include existing scripts

Contents:

	Installation

	Scripts
	rename_fasta

	beast_checkpoint

	beast_wrapper

	AMOS
	Parsing

	Examples

	CHANGELOG
	Version 1.0.0

	Version 0.1.0

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Tyghe Vallard, Michael Panciera.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bio_pieces 1.0.0 documentation

Installation

	Install dependencies

pip install -r requirements.txt

For python 2.6 you will need to also install some additional packages

pip install -r requirements-py26.txt

	Install bio_pieces

It is recommended to install into a virtualenv. If you know what you are doing
and don’t want to install into virtualenv, then you can skip right to step 3

	Setup Virtualenv

It is assumed you have virtualenv already installed. If not see
https://virtualenv.pypa.io/en/latest/installation.html

virtualenv env

	Activate virtualenv

. env/bin/activate

	Install bio_pieces

python setup.py install

 Copyright 2015, Tyghe Vallard, Michael Panciera.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bio_pieces 1.0.0 documentation

Scripts

	rename_fasta
	Rename Mapping File Syntax

	beast_checkpoint
	Example

	Tracer

	Notes and Improvements

	beast_wrapper
	Example

 Copyright 2015, Tyghe Vallard, Michael Panciera.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bio_pieces 1.0.0 documentation

 	Scripts

rename_fasta

Many times you find you have a fasta file where the identifiers are all wrong and you
want to rename them all via some mapping file.

Take the example where you have the following fasta file(example.fasta):

>id1
ATGC
>id2
ATGC
>id3
ATGC

You want to rename each identifier(id1, id2, id3) based on a mapping you have.
In a file called renamelist.csv you would have the following:

#From,To
id1,samplename1
id2,samplename2
id3,samplename3

Then to rename your fasta without replacing the original file you have two options:

	Rename without replacing original file

rename_fasta renamelist.csv example.fasta > renamedfasta.fasta

	Rename replacing original file’s contents

reanme_fasta renamelist.csv example.fasta --inplace

Rename Mapping File Syntax

The file you specify as the rename map file is a simple comma separated text file.

The following rules apply to the format:

	The first entry is the identifier to find in the supplied fasta file.

	The second entry is what to replace the found identifier with

	Any line beginning with a pound sign(#) will be ignored by the renamer

Missing identifiers that are in fasta but not rename file

In the case where your fasta file contains an identifier that is not in the rename
map file you supply, an error will be displayed in the console telling you as such:

idwhatever is not in provided mapping

 Copyright 2015, Tyghe Vallard, Michael Panciera.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bio_pieces 1.0.0 documentation

 	Scripts

beast_checkpoint

beast_checkpoint is a fork of https://gist.github.com/trvrb/5277297 that has been
rewritten in python and slightly imporoved as the ruby script seemed to have a few
errors.

It accepts any previously run or terminated beast run and will generate an xml
file that essentially starts from the last generated tree/log state.

Since beast is random in nature, there does not appear to be a way to restart the run
exactly from the same state that it left off.

Example

We will use the benchmark2.xml file that comes with Beast 1.8
This file is located in:

BEASTv1.8.0/examples/Benchmarks/benchmark2.xml

First you need to fix the benchmark2.xml because each taxa has a trailing space and
that is annoying

$> sed 's/ "/"/' benchmark2.xml > beast.xml

Now run beast for about half of the iterations and hit CTRL-C to kill it
This benchmark is set to run 1,000,000 iterations so around 500,000 you can kill it.
Notice we are using a predifined seed

$> seed=1234567890
$> mkdir run1
$> cp beast.xml run1/beast.xml
$> beast -seed $seed -beagle_SSE beast.xml

Now we will want to re-run beast from that last state. We can use beast_checkpoint
to do so by supplying the original xml and the produced trees and log files.
We will put the new xml into a new directory since the .trees and .log files would
create an error or possibly be overwritten.

$> mkdir run2
$> beast_checkpoint beast.xml *.trees *.log > run2/beast.xml

Now you can simply just re-run beast on the new xml using the same seed

$> cd run2
$> beast_checkpoint -seed $seed -beagle_SSE beast.xml

Tracer

If you name your runs sequentially as we did in the example(aka, run1, run2,...)
then you can easily load all log files into tracer via the command line as follows

tracer run*/*.log

Notes and Improvements

	After re-running beast I’m not sure if you should use logcombiner to combine all
log and tree files. Rudementary tests seem that it is fine, but more thourough
tests on longer more complex runs are needed to verify that.

	If your fileLog and treeFileLog do not have the same logEvery then when beast
exits you may end up with more/less tree states than log states. Not sure how much
that matters, but seems like it could matter. Could be possible to get
beast_checkpoint to check for that scenario and use the last tree state that matches
the last log state

 Copyright 2015, Tyghe Vallard, Michael Panciera.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bio_pieces 1.0.0 documentation

 	Scripts

beast_wrapper

Beast wrapper is intended as a helper script to run beast. At this point it just
runs beast with the same arguments you would normally give to beast from the command
line and just adds a estimated time left column to the console output

Example

$> beast_wrapper -beagle_SSE my_beast.xml
...
state Posterior Prior Likelihood rootHeight my_beast.ucld.mean location.clock.rate location.nonZeroRates
0 -86527.5880 -6850.8316 -79676.7564 57.6772 1.16103E-3 4.86012 15.0000 -
20000 -29044.3753 -1123.5287 -27920.8466 288.102 3.02471E-4 0.11891 16.0000 0.21 hours/million states 2d 04:29:44
40000 -25517.9525 -979.5343 -24538.4182 211.705 1.35118E-4 0.25060 16.0000 0.25 hours/million states 2d 14:29:24
60000 -24212.1250 -1040.4103 -23171.7147 188.454 1.05572E-4 0.18908 15.0000 0.25 hours/million states 2d 14:29:06
80000 -24097.9354 -1019.8099 -23078.1256 182.242 1.53593E-4 0.12857 16.0000 0.26 hours/million states 2d 16:58:45
100000 -24121.5382 -1105.6545 -23015.8837 178.060 1.26907E-4 0.10367 17.0000 0.27 hours/million states 2d 19:28:22
120000 -23930.6897 -1105.7390 -22824.9507 187.411 1.01885E-4 0.34214 17.0000 0.27 hours/million states 2d 19:28:03
140000 -23869.4856 -1087.1915 -22782.2942 178.535 8.76375E-5 0.26128 18.0000 0.26 hours/million states 2d 16:57:48

 Copyright 2015, Tyghe Vallard, Michael Panciera.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bio_pieces 1.0.0 documentation

AMOS

AMOS is a file format that is similar to any assembly file format such as ACE or SAM.
It contains information about each read that is used to assemble each contig.

The format is broken into different message blocks. For the Ray assembler, it
produces an AMOS file that is broken into 3 types of message blocks

	RED

{RED
iid:\d+
eid:\d+
seq:
[ATGC]+
.
qlt:
[A-Z]+
}

	iid

	Integer identifier

	eid

	Same as iid?

	seq

	Sequence data

	qlt

	Should be quality, but is only a series of D’s from Ray assembler

	TLE

{TLE
src:\d+
off:\d+
clr:\d+,\d+
}

	src

	RED iid that was used

	off

	One would think offset, but unsure what it actually means

	clr

	Not sure what this is either

	CTG

{CTG
iid:\d+
eid:\w+
com:
.*$
.
seq:
[ATGC]+
.
qlt:
[A-Z]+
.
{TLE
...
}
}

	iid

	integer id of contig

	eid

	contig name

	com

	Communication software that generated this contig

	seq

	Contig sequence data

	qlt

	Supposed to be contig quality data, but for Ray it only produces D’s

	TLE

	0 or more TLE blocks that represent RED sequences that compose the contig

Parsing

bio_pieces contains an interface to parse a given file handle that has been opened
on an AMOS file.

To read in the AMOS file you simply do the following

from bio_pieces import amos
a = None
with open('AMOS.afg') as fh:
 a = amos.AMOS(fh)

CTG

To get information about the contigs(CTG) you can access the .ctgs attribute.
The contigs are indexed based on their iid so to get the sequence of contig iid 1
you would do the following:

ctg = a.ctgs[1]
seq = ctg.seq

To retrieve all the reads(RED) that belong to a specific contig:

reads = []
for tle in ctg.tlelist:
 reads.append(a.reds[tle.src])

RED

To get information about the reads(RED) you can access the .reds attribute.
The reds are indexed based on their iid so to get the sequence of red iid 1 you
would do the following:

red = a.reds[1]
seq = red.seq

If you want to convert a RED entry into anything you can use the .format
method. The .format method allows you to utilize any of the properties of
a RED object such as .iid, .eid, .seq, .qlt. You can see in
the examples below how to do this.

Examples

Here is an example of how to convert all RED blocks into a single fastq file

from bio_pieces import amos

Fastq format string
fastq_fmt = '@{iid}\n{seq}\n+\n{qlt}'

with open('amos.fastq','w') as fh_out:
 with open('AMOS.afg') as fh_in:
 for iid, red in amos.AMOS(fh_in).reds.items():
 fq = red.format(fastq_fmt)
 fh_out.write(fq + '\n')

 Copyright 2015, Tyghe Vallard, Michael Panciera.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	bio_pieces 1.0.0 documentation

CHANGELOG

Version 1.0.0

	Version bump. Starting here we will employ semantic versioning

	Added version script to get version from project

Version 0.1.0

	Started project over to setup for Continuous Integration testing

	Added rename_fasta that can rename fasta sequence identifiers based
on a input rename file

	Added travis, coveralls, readthedocs

	Added amos file parser that is specific to Ray assembler amos format

	Added format functionality for amos classes such that it is easy to
convert to different formats

	Added amos2fastq to pull sequences out of AMOS files organized by their contigs.

	Added vcfcat.py, a commandline app for filtering and comparing vcf files.

	Completed documentation for vcfcat

	Added beast_checkpoint script and documentation

	Added beast_wrapper script that prints estimated time column in beast output

	Added beast_est_time script that allows you to easily get estimated time left
from already running beast run

 Copyright 2015, Tyghe Vallard, Michael Panciera.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	bio_pieces 1.0.0 documentation

Index

 Copyright 2015, Tyghe Vallard, Michael Panciera.
 Created using Sphinx 1.3.1.

 _static/comment-close.png

_static/minus.png

_static/down.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/comment.png

search.html

 Navigation

 		
 index

 		bio_pieces 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Tyghe Vallard, Michael Panciera.
 Created using Sphinx 1.3.1.

_static/up.png

_static/down-pressed.png

Readme.html

 Navigation

 		
 index

 		bio_pieces 1.0.0 documentation »

Documentation

To build documentation simply do the following

pip install -r requirements.txt
make html

View the documentation in browser

firefox _build/html/index.html

 © Copyright 2015, Tyghe Vallard, Michael Panciera.
 Created using Sphinx 1.3.1.

