

Binstar is now Anaconda Cloud!

Binstar is now Anaconda Cloud. Please see our current documentation: http://docs.anaconda.org/

 Python Module Index

 b

 		 	

 		
 b	

 	
 	
 binstar_client	

Index

 A
 | B
 | C
 | D
 | P
 | R
 | U

A

 	
 	add_package() (binstar_client.Binstar method)

 	add_release() (binstar_client.Binstar method)

 	
 	all_packages() (binstar_client.Binstar method)

 	authentication() (binstar_client.Binstar method)

 	authentications() (binstar_client.Binstar method)

B

 	
 	Binstar (class in binstar_client)

 	
 	binstar_client (module)

C

 	
 	check_server() (binstar_client.Binstar method)

D

 	
 	download() (binstar_client.Binstar method)

P

 	
 	package() (binstar_client.Binstar method)

R

 	
 	release() (binstar_client.Binstar method)

 	
 	remove_authentication() (binstar_client.Binstar method)

 	remove_release() (binstar_client.Binstar method)

U

 	
 	upload() (binstar_client.Binstar method)

 	user() (binstar_client.Binstar method)

 	
 	user_licenses() (binstar_client.Binstar method)

 	user_packages() (binstar_client.Binstar method)

Binstar and .condarc

The .condarc file is a user configuration file located in $HOME/.condarc.

While conda requires very little user configuration it will read minimal configuration from a .condarc file, if it is present.

The .condarc file follows the YAML [http://www.yaml.org/] syntax and is simple to understand.

Here is an example:

This is a sample .condarc file
This .condarc file should be placed in $HOME/.condarc

conda will search *only* the channels listed here
channels:
 - defaults
 - http://conda.anaconda.org/USER-NAME
 - http://conda.anaconda.org/USER-NAME-2

environment locations:
 - ~/envs

This example shows that when searching or installing with the conda command it will first check the default conda locations and then the conda.binstar user repositories listed.

If you have already uploaded a file to anaconda.org, which can be done by following along the Getting Started guide, you should now add your conda.binstar url to the .condarc file as shown above and run:

$ conda search <test_package1>

You will see the package name and version printed out.

To install the package run:

$ conda install <test_package1>

The .condarc file is an excellent method for organizations to share searchable Binstar repos between developers.

Welcome to Binstar’s documentation!

Binstar is a package management solution that will maintain up to date mirrors of public package hosts (conda, pypi, ruby gem’s, etc.)

Site Documentation

	Uploading a Conda Package

	Installing Conda Packages

	Uploading a Pypi Package to Binstar

	FAQ

	API

	Windows

	Support

Indices and tables

	Index

	Module Index

	Search Page

License Agreement
Binstar is distributed under the OpenBSD license.

Uploading a Conda Package

To get started you must have:

	Anaconda [http://docs.continuum.io/anaconda/install.html] installed on your system

	An account on Binstar [https://anaconda.org/]

If you are not using Anaconda 1.6+ install the binstar command line client:

$ conda install binstar
$ conda update binstar

If you are not using Anaconda, then Binstar is also available on pypi:

$ pip install binstar

Now we can login:

$ binstar login

Test your login with the whoami command:

$ binstar whoami

We are going to be uploading a package with a simple ‘hello world’ function. To follow along start by getting my demonstration package repo from Github:

$ git clone https://github.com/Ghostface-jr/Test-Package

This a small directory that looks like this:

package/
 setup.py
 test_package/
 __init__.py
 hello.py
 bld.bat
 build.sh
 meta.yaml

Setup.py is the standard python build file and hello.py has our single hello_world() function.

The bld.bat, build.sh, and meta.yaml are scripts and metadata for the Conda package. You can read the Conda build [http://docs.continuum.io/conda/build.html] page for more info on those three files and their purpose.

Now we create the package by running:

$ conda build test_package/

That is all it takes to create a Conda package.

The final step is uploading to binstar by copying and pasting the last line of the print out after running the conda build test_package/ command. On my system the command is:

$ binstar upload /home/xavier/anaconda/conda-bld/linux-64/test_package-0.1.0-py27_0.tar.bz2

Since it is your first time creating a package and release you will be prompted to fill out some text fields which could alternatively be done through the web app.

You will see a done printed out to confirm you have successfully uploaded your Conda package to Binstar.

See the package on ‘https://anaconda.org/<username>/<package_name>’

FAQ

What is Anaconda Cloud?

Binstar is a complete package management solution. It allows you to launch your own private package hosting server and allows unlimited public packages.

Support

The easiest way to get help is to open an issue on Github [https://github.com/Binstar/binstar_client/issues]. Alternatively you can send an email to support@anaconda.org.

Installing Conda Packages

The .condarc file is a user configuration file located in $HOME/.condarc.

While conda requires very little user configuration it will read minimal configuration from a .condarc file, if it is present.

The .condarc file follows the YAML [http://www.yaml.org/] syntax and is simple to understand.

Here is an example:

This is a sample .condarc file
The .condarc file should be placed in $HOME/.condarc

conda will search *only* the channels listed here
channels:
 - defaults
 - http://conda.anaconda.org/USER-NAME
 - http://conda.anaconda.org/USER-NAME-2

environment locations:
 - ~/envs

This example shows that when searching or installing with the conda command it will first check the default conda locations, `continuum repo`_, and then the conda.binstar user repositories listed.

If you have already uploaded a file to anaconda.org, which can be done by following along the Getting Started guide, you should now add your conda.binstar url to the .condarc file as shown above and run:

$ conda search <test_package1>

You will see the package name and version printed out.

To install the package run:

$ conda install <test_package1>

The .condarc file is an excellent method for organizations to share searchable Binstar repos between developers.

Uploading a Pypi Package to Binstar

Converting a PyPI package into a Conda package and uploading to Binstar is a very simple process. All you need is the Conda [http://docs.continuum.io/conda/intro.html] tool and the PyPI url of your package.

If you would like to follow along use my demonstration package located at: https://pypi.python.org/pypi/binstar_test_package1

The first step is to run:

$ conda skeleton pypi binstar_test_package1

This will run a script to pull the package information from the PyPi repo and create a new directory containing the bld.bat, build.sh, meta.yaml files.

Cd into the new package and build a Conda package:

$ cd binstar_test_package1

$ conda build .

The final step is uploading to binstar by copying and pasting the last line of the print out after running conda build ..

On my machine the command is:

$ binstar upload /home/xavier/anaconda/conda-bld/linux-64/binstar_test_package1-0.1.0-py27_0.tar.bz2

After seeing done you have successfully converted a PyPI package (already on binstar) to a Conda package
and then uploaded the Conda package to Binstar. See your packages on ‘https://anaconda.org/<username>/<package_name>’

Windows

Windows versions of Binstar coming soon.

API

	
class binstar_client.Binstar(token=None, domain=u'https://api.anaconda.org', verify=True, **kwargs)

	An object that represents interfaces with the Anaconda Cloud restful API.

	Parameters:	token – a token generated by Binstar.authenticate or None for
an anonymous user.

	
add_package(login, package_name, summary=None, license=None, public=True, license_url=None, license_family=None, attrs=None)

	Add a new package to a users account

	Parameters:	
	login – the login of the package owner

	package_name – the name of the package to be created

	package_type – A type identifier for the package (eg. ‘pypi’ or ‘conda’, etc.)

	summary – A short summary about the package

	license – the name of the package license

	license_url – the url of the package license

	public – if true then the package will be hosted publicly

	attrs – A dictionary of extra attributes for this package

	
add_release(login, package_name, version, requirements, announce, release_attrs)

	Add a new release to a package.

	Parameters:	
	login – the login of the package owner

	package_name – the name of the package

	version – the version string of the release

	requirements – A dict of requirements TODO: describe

	announce – An announcement that will be posted to all package watchers

	
all_packages(modified_after=None)

	

	
authentication()

	Retrieve information on the current authentication token

	
authentications()

	Get a list of the current authentication tokens

	
check_server()

	Checks if the server is reachable and throws
and exception if it isn’t

	
download(login, package_name, release, basename, md5=None)

	Download a package distribution

	Parameters:	
	login – the login of the package owner

	package_name – the name of the package

	version – the version string of the release

	basename – the basename of the distribution to download

	md5 – (optional) an md5 hash of the download if given and the package has not changed
None will be returned

	Returns:	a file like object or None

	
package(login, package_name)

	Get information about a specific package

	Parameters:	
	login – the login of the package owner

	package_name – the name of the package

	
release(login, package_name, version)

	Get information about a specific release

	Parameters:	
	login – the login of the package owner

	package_name – the name of the package

	version – the name of the package

	
remove_authentication(auth_name=None, organization=None)

	Remove the current authentication or the one given by auth_name

	
remove_release(username, package_name, version)

	remove a release and all files under it

	Parameters:	
	username – the login of the package owner

	package_name – the name of the package

	version – the name of the package

	
upload(login, package_name, release, basename, fd, distribution_type, description=u'', md5=None, size=None, dependencies=None, attrs=None, channels=(u'main',), callback=None)

	Upload a new distribution to a package release.

	Parameters:	
	login – the login of the package owner

	package_name – the name of the package

	version – the version string of the release

	basename – the basename of the distribution to download

	fd – a file like object to upload

	distribution_type – pypi or conda or ipynb, etc

	description – (optional) a short description about the file

	attrs – any extra attributes about the file (eg. build=1, pyversion=‘2.7’, os=’osx’)

	
user(login=None)

	Get user information.

	Parameters:	login – (optional) the login name of the user or None. If login is None
this method will return the information of the authenticated user.

	
user_licenses()

	Download the user current trial/paid licenses.

	
user_packages(login=None, platform=None, package_type=None, type_=None, access=None)

	Returns a list of packages for a given user and optionally filter
by platform, package_type and type_.

	Parameters:	
	login – (optional) the login name of the user or None. If login
is None this method will return the packages for the
authenticated user.

	platform – only find packages that include files for this platform.
(e.g. ‘linux-64’, ‘osx-64’, ‘win-32’)

	package_type – only find packages that have this kind of file
(e.g. ‘env’, ‘conda’, ‘pypi’)

	type – only find packages that have this conda type
(i.e. ‘app’)

	access – only find packages that have this access level
(e.g. ‘private’, ‘authenticated’, ‘public’)

 _static/comment-close.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Binstar is now Anaconda Cloud!

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

