

General binary file parser

[image: _images/bin-parser.svg]
 [https://github.com/jfjlaros/bin-parser/graphs/commit-activity][image: _images/bin-parser1.svg]
 [https://travis-ci.org/jfjlaros/bin-parser][image: https://readthedocs.org/projects/bin-parser/badge/?version=latest]
 [https://bin-parser.readthedocs.io/en/latest][image: _images/bin-parser2.svg]
 [https://github.com/jfjlaros/bin-parser/releases][image: _images/bin-parser3.svg]
 [https://github.com/jfjlaros/bin-parser/releases][image: _images/bin-parser4.svg]
 [https://pypi.org/project/bin-parser/][image: _images/bin-parser5.svg]
 [https://www.npmjs.com/package/bin-parser][image: _images/bin-parser6.svg]
 [https://github.com/jfjlaros/bin-parser][image: _images/bin-parser7.svg]
 [https://github.com/jfjlaros/bin-parser][image: _images/bin-parser8.svg]
 [https://github.com/jfjlaros/bin-parser][image: _images/bin-parser9.svg]
 [https://raw.githubusercontent.com/jfjlaros/bin-parser/master/LICENSE.md]

This library provides general binary file parsing by interpreting documentation
of a file structure and data types. By default, it supports basic data types
like big-endian and little-endian integers, floats and doubles, variable length
(delimited) strings, maps and bit fields (flags) and it can iterate over sub
structures. Other data types are easily added.

The file structure and the types are stored in nested dictionaries. The
structure is separated from the types, this way multiple file formats using the
same types (within one project for example) can be easily supported without
much duplication.

The design of the library is such that all operations can be reversed. This
means that fully functional binary editing is possible using this
implementation; first use the reader to convert a binary file to a serialised
dictionary representation, this representation is easily edited using a text
editor, and then use the writer to convert back to binary.

This idea is implemented in two languages; Python and JavaScript. All main
development is done in Python. We chose YAML as our preferred serialised
dictionary format, but other serialisation formats (JSON for example) can be
used too.

Please see ReadTheDocs [https://bin-parser.readthedocs.io/en/latest/index.html] for the latest documentation.

Contents:

	Introduction
	Why this library?

	Background

	Approach

	Limitations

	Installation
	Python

	JavaScript

	From source

	Command line usage
	Python

	JavaScript

	Types
	Types

	Constants

	Defaults

	Macros

	Structure
	Flat structure

	Loops and conditionals

	for loops

	while loops

	Conditionals

	Complex conditionals

	Notes on evaluation

	Library
	Basic usage

	Defining new types

	Extras
	Debugging

	make_skeleton

	compare_yaml

	sync_test

	Contributors

Introduction

Why this library?

Writing a parser for binary files requires reverse engineering skills,
knowledge of encodings, and above all, patience and intuition. Once all
knowledge is gathered, the person doing the reverse engineering usually writes
a parser and, if we are lucky, leaves some documentation. We try to facilitate
this process by providing the tools to do this in a uniform way. In essence, we
document the knowledge we gain from the reverse engineering process and use
this documentation directly in a parser.

Since the bulk of the types stored in binary files are standard, dedicated
parsers contain a lot of boiler plate code. We try to minimise this by
providing a framework where all knowledge is recorded in a human readable
format (YAML files) while the obligatory boiler plate code is incorporated in
the library.

Background

In the following example, we read two bytes from an input stream, convert the
read data to an integer and store it in an output dictionary under the keys
weight and age.

output['weight'] = s_char_to_int(input_handle.read(1))
output['age'] = s_char_to_int(input_handle.read(1))

This approach results in file specific literals (like weight and 1) and
data type conversions (s_char_to_int()) directly in source code. This has
several disadvantages:

	It is difficult to see what the file format is. This can be deduced only from
the source code of the developed parser.

	A separate piece of software needs to be implemented if the conversion needs
to be reversed.

	The parser is not portable to other programming languages.

Within the framework of this library, we attempt to solve the aforementioned
problems.

By first defining the types, we can reuse them easily:

s_char:
 function:
 name: struct

Now we can use the type s_char in our structure definition:

- name: weight
 type: s_char
- name: age
 type: s_char

By recording the file structure this way, the knowledge of the file format and
the implementation of the parser are strictly separated. This has the following
advantages:

	The file format is documented in a human readable way.

	Reading and writing of the file format is supported.

	The parser is portable.

Approach

In order to parse a binary file, the library needs two pieces of
information: it needs to know what the structure of the binary file is
and it needs to know which types are used. Both of these information
sources are provided to the library as nested dictionaries.

Example: Personal information

Suppose we have a file (person.dat) that contains the following:

	An age (one byte integer).

	A name (zero delimited string).

	A weight (an other one byte integer).

To make a parser for this type of file, we need to create a file that
contains the type definitions. We name this file types.yml.

types:
 s_char:
 function:
 name: struct
 text:
 delimiter:
 - 0x00

Then we create a file that contains the definition of the structure.
This file we name structure.yml.

- name: age
 type: s_char
- name: name
 type: text
- name: weight
 type: s_char

We can now call the command line interface as follows:

bin_parser read person.dat structure.yml types.yml person.yml

This will result in a new file, named person.yml, which contains the
content of the input file (person.dat) in a human (and machine)
readable format:

age: 36
name: John Doe
weight: 81

Limitations

The main assumption made is that the binary files are linearly parsable. File
seeking or multiple passes over an input file are not supported. Also, there is
no support for the chaining of data types, so currently, compressed and
encrypted files are not supported.

Installation

The software is distributed via PyPI [https://pypi.org/project/bin-parser] and npm [https://www.npmjs.com/package/bin-parser] for the Python and JavaScript
implementations respectively.

Python

The Python version of the package is installed with pip:

pip install bin-parser

JavaScript

The JavaScript version of the package is installed with npm:

npm install bin-parser

From source

The source is hosted on GitHub [https://github.com/jfjlaros/bin-parser.git], to install the latest development version, use
the following commands.

git clone https://github.com/jfjlaros/bin-parser.git
cd bin-parser
pip install .

For the JavaScript implementation, replace the last command with:

npm install .

Command line usage

A command line interface is available for both implementations. Apart from some
implementation details concerning standard streams, their behaviour is
identical.

Python

To convert a binary file to YAML, use the read subcommand:

bin_parser read input.bin structure.yml types.yml output.yml

To convert a YAML file to binary, use the write subcommand:

bin_parser write input.yml structure.yml types.yml output.bin

JavaScript

To convert a binary file to YAML, use the read subcommand:

./node_modules/.bin/bin_parser read input.bin structure.yml types.yml \
 output.yml

To convert a YAML file to binary, use the write subcommand:

./node_modules/.bin/bin_parser write input.yml structure.yml types.yml \
 output.bin

Please note that when installing from source, the bin_parser executable is
not installed. Instead run the script cli.js as follows:

nodejs javascript/cli.js

Types

Types, constants, defaults and macros are defined in a nested dictionary which
is usually serialised to YAML. This file, usually named types.yml, consists
of three (optional) sections; types, constants, defaults and
macros. In general the types file will look something like this:

constants:
 multiplier: 10
defaults:
 size: 2
types:
 s_char:
 size: 1
 function:
 name: struct
 text:
 delimiter:
 - 0x00

Types

A type consists of two subunits controlling two stages; the acquirement stage
and the processing stage.

The acquirement stage is controlled by the size and delimiter
parameters, the size is given in number of bytes, the delimiter is a list of
bytes. Usually specifying one of these parameters is sufficient for the
acquisition of the data, but in some cases, where for example we have to read a
fixed sized block in which a string of variable size is stored, both parameters
can be used simultaneously. Once the data is acquired, it is passed to the
processing stage.

The processing stage is controlled by the function parameter, it denotes
the function that is responsible for processing the acquired data. Additional
parameters for this function can be supplied by the args parameter.

Basic types

In version 0.0.14 the struct type was introduced to replace basic types
like int, float, etc. and simple compound data types. The formatting
parameter fmt is used to control how a value is packed or unpacked. For
example, a 4-byte little-endian integer uses the formatting string '<i' and
a big-endian unsigned long uses the formatting string '>L'. To avoid any
issues with serialisation to YAML (the > sign may cause problems), it is
recommended to quote the string.

For a complete overview of the supported basic types, see the Python struct [https://docs.python.org/2/library/struct.html#format-characters]
documentation or our extensive list of examples [https://github.com/jfjlaros/bin-parser/blob/master/examples/types/types.yml].

Examples

The following type is stored in two bytes and is processed by the
text function:

id:
 size: 2
 function:
 name: text

This type is stored in a variable size array delimited by 0x00 and is
processed by the text function:

comment:
 delimiter:
 - 0x00
 function:
 name: text

We can pass additional parameters to the text function, in this case split
on the character 0x09, like so:

comment:
 delimiter:
 - 0x00
 function:
 name: text
 args:
 split:
 - 0x09

A 2-byte little-endian integer is defined as follows:

int:
 size: 2
 function:
 name: struct
 args:
 fmt: '<h'

And a 4-byte big-endian float is defined as follows:

float:
 size: 4
 function:
 name: struct
 args:
 fmt: '>f'

Compound types

Simple compound types can also be created using the struct function. By
default this will return a list of basic types, which can optionally be mapped
using an annotation list. Additionally, a simple dictionary can be created by
labeling the basic types.

In the following example, we read three unsigned bytes, by providing a list of
labels, the first byte is labelled r, the second one g, and the last
one b. If the values are 0, 255 and 128 respectively, the resulting
dictionary will be: {'r': 0, 'g': 255, 'b': 128}.

colour:
 size: 3
 function:
 name: struct
 args:
 fmt: 'BBB'
 labels: [r, g, b]

Values can also be mapped using an annotation list to improve readability. This
procedure replaces specific values by their annotation and leaves other values
unaltered. Note that mapping multiple values to the same annotation will break
reversibility of the parser.

In the following example, we read one 4-byte little-endian unsigned integer and
provide annotation for the maximum and minimum value. If the value is 0, the
result will be unknown, if the value is 10, the result will be 10 as well.

date:
 size: 4
 function:
 name: struct
 args:
 fmt: '<I'
 annotation:
 0xffffffff: defined
 0x00000000: unknown

Labels and annotation lists can be combined.

Constants

A constant can be used as an alias in structure.yml. Using constants can
make conditional statements and loops more readable.

Defaults

To save some space and time writing types definitions, the following default
values are used:

	size defaults to 1.

	function defaults to the name of the type.

	If no name is given, the type defaults to raw and the destination is a
list named __raw__.

So, for example, since a byte is of size 1, we can omit the size parameter
in the type definition:

byte:
 function:
 name: struct

In the next example the function text will be used.

text:
 size: 2

And if we need an integer of size one which we want to name struct, we do
not need to define anything.

If the following construction is used in the structure, the type will default
to raw:

- name:
 size: 20

Overrides

The following defaults can be overridden by adding an entry in the defaults
section:

	delimiter (defaults to []).

	name (defaults to '').

	size (defaults to 1).

	type (defaults to text).

	unknown_destination (defaults to __raw__).

	unknown_type (defaults to raw).

Macros

Macros were introduced in version 0.0.15 to define complex compound types. A
macro is equivalent to a sub structure, which are also used in the structure
definition either as is, or as the body of a loop or conditional statement.

In the following example, we have a substructure that occurs more than once in
our binary file. We have two persons, of which the name, age, weight and height
are stored. Using a flat file structure will result in something similar to
this:

- name: name_1
- name: age_1
 type: u_char
- name: weight_1
 type: u_char
- name: height_1
 type: u_char
- name: name_2
- name: age_2
 type: u_char
- name: weight_2
 type: u_char
- name: height_2
 type: u_char

Note that we have to choose new variable names for every instance of a person.
This makes downstream processing quite tedious. Furthermore, code duplication
makes maintenance tedious.

The structure directive can be used to group variables in a substructure.
This solves the variable naming issue, but it does not solve the maintenance
issue.

- name: person_1
 structure:
 - name: name
 - name: age
 type: u_char
 - name: weight
 type: u_char
 - name: height
 type: u_char
- name: person_2
 structure:
 - name: name
 - name: age
 type: u_char
 - name: weight
 type: u_char
 - name: height
 type: u_char

We can define a macro in the types.yml file by adding a section named
macros where we describe the structure of the group of variables.

types:
 u_char:
 function:
 name: struct
 args:
 fmt: 'B'
 text:
 delimiter:
 - 0x00
macros:
 person:
 - name: name
 - name: age
 type: u_char
 - name: weight
 type: u_char
 - name: height
 type: u_char

This macro can then be used in the structure.yml file in almost the same we
we use a basic type.

- name: person_1
 macro: person
- name: person_2
 macro: person

A common substructure in binary formats is a data field preceded by its length,
e.g., a string preceded by its length as a little endian 32-bit unsigned
integer: \x0b\x00\x00\x00hello world. In the size_string [https://github.com/jfjlaros/bin-parser/tree/master/examples/size_string] example we show
how we can use a macro to facilitate this.

Macros can also be used to define variable types, i.e., a type that depends on
the value of a previously defined variable. In the var_type [https://github.com/jfjlaros/bin-parser/tree/master/examples/var_type] example, we show
how this can be accomplished.

Structure

After having defined the basic types, the structure of the binary file can be
recorded in a separate nested dictionary which is usually serialised to YAML.
This file, usually named structure.yml contains the general structure of
the binary file.

Flat structure

A simple flat structure is recorded as a list in which, for every variable, we
supply a name and a type. In the following example we see the definition of a
simple flat structure containing two short integers and one text field.

- name: year_of_birth
 type: short
- name: name
 type: text
- name: balance
 type: short

Loops and conditionals

Both loops and conditionals (except the for loop) are controlled by an
evaluation of a logic statement. The statement is formulated by specifying one
or two operands and one operator. The operands are either constants,
variables or literals. The operator is one of the following:

	operator

	binary

	explanation

	not

	no

	Not.

	and

	yes

	And.

	or

	yes

	Or.

	xor

	yes

	Exclusive or.

	eq

	yes

	Equal.

	ne

	yes

	Not equal.

	ge

	yes

	Greater then or equal.

	gt

	yes

	Greater then.

	le

	yes

	Less then or equal.

	lt

	yes

	Less then.

	mod

	yes

	Modulo.

	contains

	yes

	Is a sub string of.

A simple test for truth or non-zero can be done by supplying one operand and no
operator.

for loops

A simple for loop can be made as follows.

- name: fixed_size_list
 for: 2
 structure:
 - name: item
 - name: value
 type: s_char

The size can also be given by a variable.

- name: size_of_list
 type: s_char
- name: variable_size_list
 for: size_of_list
 structure:
 - name: item
 - name: value
 type: s_char

while loops

The do-while loop reads the structure as long as the specified condition is
met. Evaluation is done at the end of each cycle, the resulting list is
therefore at least of size 1.

- name: variable_size_list
 do_while:
 operands:
 - value
 - 2
 operator: ne
 structure:
 - name: item
 - name: value
 type: s_char

The while loop first reads the first element of the structure and if the
specified condition is met, the rest of the structure is read. Evaluation is
done at the start of the cycle, the resulting list can therefore be of size 0.
The element used in the last evaluation (the one that terminates the loop),
does not have an associated structure, so its value is stored in the variable
specified by the term keyword.

- name: variable_size_list
 while:
 operands:
 - value
 - 2
 operator: ne
 term: list_term
 structure:
 - name: value
 type: s_char
 - name: item

When using this structure on the input \x01hello\x00\x03world\x00\x02, the
result will be as follows.

list_term: 2
variable_size_list:
- item: hello
 value: 1
- item: world
 value: 3

Conditionals

A variable or structure can be read conditionally using the if statement.

- name: something
 type: s_char
- name: item
 if:
 operands:
 - something
 - 2
 operator: eq

Complex conditionals

More complex conditional statements can be built by using nesting. The
following example evaluates the expression (1 == 2) or True.

- name: item
 if:
 operands:
 - operands:
 - 1
 - 2
 operator: eq
 - true
 operator: or

Also see complex_eval [https://github.com/jfjlaros/bin-parser/blob/master/examples/complex_eval] for a working example.

Notes on evaluation

Since we use a general way of evaluating expressions, there are usually
multiple ways of writing such an expression. For example, the following
statements are equal:

Implicit truth test.

- name: item
 if:
 operands:
 - something

Explicit truth test.

- name: item
 if:
 operands:
 - something
 - true
 operator: eq

Explicit non-false test.

- name: item
 if:
 operands:
 - something
 - false
 operator: ne

Library

While the command line interface can be used to parse a binary file when the
correct types and structure files are provided, it may be useful to have a
dedicated interface for specific file types. It could also be that the current
library does not provide all functions required for a specific file type. In
these cases, direct interfacing to the library is needed.

Basic usage

For both implementations we provide a BinReader and a BinWriter object
that are initialised with the input file and the types and structure
definitions.

Python

To use the library from our own code, we need to use the following:

#!/usr/bin/env python
import yaml

from bin_parser import BinReader

parser = BinReader(
 open('balance.dat', 'rb').read(),
 yaml.safe_load(open('structure.yml')),
 yaml.safe_load(open('types.yml')))

print('{}\n'.format(parser.parsed['name']))
print('{}\n'.format(parser.parsed['year_of_birth']))
print('{}\n'.format(parser.parsed['balance']))

The BinReader object stores the original data in the data member
variable and the parsed data in the parsed member variable.

JavaScript

Similarly, in JavaScript, we use the following:

#!/usr/bin/env node

'use strict';

var fs = require('fs'),
 yaml = require('js-yaml');

var BinParser = require('../../javascript/index');

var parser = new BinParser.BinReader(
 fs.readFileSync('balance.dat'),
 yaml.load(fs.readFileSync('structure.yml')),
 yaml.load(fs.readFileSync('types.yml')),
 {})

console.log(parser.parsed.name);
console.log(parser.parsed.year_of_birth);
console.log(parser.parsed.balance);

Defining new types

See prince [https://github.com/jfjlaros/bin-parser/blob/master/examples/prince] for a working example of a reader and a writer in both Python and
JavaScript.

Python

Types can be added by subclassing the BinReadFunctions class. Suppose we
need a function that inverts all bits in a byte. We first have to make a
subclass that implements this function:

from bin_parser import BinReadFunctions

class Invert(BinReadFunctions):
 def inv(self, data):
 return data ^ 0xff

By default, the new type will read one byte and process it with the inv
function. In this case there is no need to define the type in types.yml.

Now we can initialise the parser using an instance of the new class:

parser = bin_parser.BinReader(
 open('something.dat', 'rb').read(),
 yaml.safe_load(open('structure.yml')),
 yaml.safe_load(open('types.yml')),
 functions=Invert())

JavaScript

Similarly, in JavaScript, we make a prototype of the BinReadFunctions
function.

var Functions = require('../../../javascript/functions');

function Invert() {
 this.inv = function(data) {
 return data ^ 0xff;
 };

 Functions.BinReadFunctions.call(this);
}

Now we can initialise the parser with the prototyped function:

var parser = new BinParser.BinReader(
 fs.readFileSync('something.dat'),
 yaml.load(fs.readFileSync('structure.yml')),
 yaml.load(fs.readFileSync('types.yml')),
 {'functions': new Invert()});

Extras

In this section we discuss a number of additional features and programs
included in this project.

Debugging

The parser and the writer support four debug levels, controlled via the -d
option of the command line interface.

	level

	description

	0

	No debugging.

	1

	Show general debugging information and internal variables.

	2

	Show general debugging information and parsing details.

	3

	Show all debugging information.

General debugging information

The section DEBUG INFO contains some general debugging information.

For the parser it contains:

	The file position after the parsing has finished and the size of the file.
Something is wrong if these two values are not equal.

	The number of bytes that have been parsed and assigned to variables. This is
all the data that has not been assigned to the __raw__ list.

For the writer this section only contains the number of bytes written.

Internal variables

The section INTERNAL VARIABLES contains the internal key-value store used
for referencing previously read variables.

Parsing details

The section named PARSING DETAILS contains a detailed trace of the parsing
or writing process. Every line represents either a conversion or information
about substructures.

For the parser, a conversion line contains the following fields:

	field

	description

	1 :

	File position.

	2

	Field content.

	(3)

	Field size (not used for strings).

	--> 4

	Variable name.

In the following example, we see how the file from our balance [https://github.com/jfjlaros/bin-parser/blob/master/examples/balance] example is
parsed.

0x000000: cf 07 (2) --> year_of_birth
0x000002: John Doe --> name
0x00000b: 8a 0c (2) --> balance

For the writer, a conversion line contains the following fields:

	field

	description

	1 :

	File position.

	2

	Variable name.

	--> 3

	Field content.

In the following example, we see how the file from our balance [https://github.com/jfjlaros/bin-parser/blob/master/examples/balance] example is
written.

0x000000: year_of_birth --> 1999
0x000002: name --> John Doe
0x00000b: balance --> 3210

The start of a substructure is indicated by -- followed by the name of the
substructure, the end of a substructure is indicated by --> followed by the
name of the substructure.

make_skeleton

To facilitate the development of support for a new file type, the
make_skeleton command can be used to generate a definition stub. It takes
an example file and a delimiter as input and outputs a structure and types
files definition. The input file is scanned for occurrences of the delimiter
and creates a field of type raw for the preceding bytes. All fields are
treated as delimited variable length strings that are processed by the raw
function, as a result, all fixed sized fields are appended to the start of
these strings.

Example

Suppose we know that the string delimiter in our balance [https://github.com/jfjlaros/bin-parser/blob/master/examples/balance] example is 0x00.
We can create a stub for the structure and types definitions as follows:

make_skeleton -d 0x00 balance.dat structure.yml types.yml

The -d parameter can be used multiple times for multi-byte delimiters.

This will generate the following types definition:

types:
 raw:
 delimiter:
 - 0x00
 function:
 name: raw
 text:
 delimiter:
 - 0x00

with the following structure definition:

- name: field_000000
 type: raw
- name: field_000001
 type: raw

The performance of these generated definitions can be assessed by using the
parser in debug mode:

bin_parser read -d 2 \
 balance.dat structure.yml types.yml balance.yml 2>&1 | less

which gives the following output:

0x000000: <CF>^GJohn Doe --> field_000000
0x00000b: <8A>^L --> field_000001

We see that the first field has two extra bytes preceding the text field. This
is an indication that one or more fields need to be added to the start of the
structure definition. If we also know that in this file format only strings and
16-bit integers are used, we can change the definitions as follows.

We remove the raw type and add a type for parsing 16-bit integers:

types:
 short:
 size: 2
 function:
 name: struct
 args:
 fmt: '<h'
 text:
 delimiter:
 - 0x00

and we change the structure to enable parsing of the newly found integers:

- name: number_1
 type: short
- name: name
 type: text
- name: number_2
 type: short

By iterating this process, reverse engineering of these types of file formats
is greatly simplified.

compare_yaml

Since YAML files are serialised dictionaries or JavaScript objects, the order
of the keys is not fixed. Also, differences in indentation, line wrapping and
other formatting differences can lead to false positive detection of
differences when using rudimentary tools like diff.

compare_yaml takes two YAML files as input and outputs differences in the
content of these files:

compare_yaml input_1.yaml input_2.yaml

The program recursively compares the contents of dictionaries (keys), lists and
values. The following differences are reported:

	Missing keys at any level.

	Lists of unequal size.

	Differences in values.

When a difference is detected, no further recursive comparison attempted, so
the list reported differences is not guaranteed to be complete. Conversely, if
no differences are reported, then the YAML files are guaranteed to have the
same content.

sync_test

To keep the Python- and JavaScript implementations in sync, we use a shell
script that compares the output of both the parser and the writer for various
examples.

./extras/sync_test

This will perform a parser test and an invariance test for all examples.

Parser test

This test uses the Python- and JavaScript implementation to convert from binary
to YAML. compare_yaml is used to check for any differences.

Invariance test

This test performs the following steps:

	Use the Python implementation to convert from binary to YAML.

	Use the Python implementation to convert the output of step 1 back to
binary.

	Use the JavaScript implementation to convert the output of step 1 back to
binary.

	Use the Python implementation to convert the output of step 2 to YAML.

The output of step 1 and 4 is compared using compare_yaml to assure that
the generated YAML is invariant under conversion to binary and back in the
Python implementation. The two generated binary files in step 2 and 3 are
compared with diff to confirm that the Python- and JavaScript
implementations behave identically.

Note that the original binary may not be invariant under conversion to YAML and
back. This is the case when variable length strings within fixed sized fields
are used.

Contributors

	Jeroen F.J. Laros <J.F.J.Laros@lumc.nl> (Original author, maintainer)

	Daniel S. Katz <d.katz@ieee.org>

	Jamie Ross <jamie.ross@electricityexchange.ie>

	Matthew Fernandez <matthew.fernandez@gmail.com>

	Robert Haines <rhaines@manchester.ac.uk>

Find out who contributed:

git shortlog -s -e

Index

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone.

Our Standards

Examples of behaviour that contributes to creating a positive environment
include:

	Using welcoming and inclusive language.

	Being respectful of differing viewpoints and experiences.

	Gracefully accepting constructive criticism.

	Focusing on what is best for the community.

	Showing empathy towards other community members.

Examples of unacceptable behaviour by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances.

	Trolling, insulting/derogatory comments, and personal or political attacks.

	Public or private harassment.

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission.

	Other conduct which could reasonably be considered inappropriate in a
professional setting.

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behaviour and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behaviour.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviour that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an
appointed representative at an online or offline event. Representation of a
project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behaviour may be
reported by contacting the project team at mailto:j.f.j.laros@lumc.nl. The
project team will review and investigate all complaints, and will respond in a
way that it deems appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an
incident. Further details of specific enforcement policies may be posted
separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org],
version 1.4, available at
http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

Contributing

Please follow these guidelines if you would like to contribute to the project.

Table of Contents

Please read through these guidelines before you get started:

	Questions & Concerns

	Issues & Bugs

	Feature Requests

	Submitting Pull Requests

	Code Style

Questions & Concerns

If you have any questions about using or developing for this project, reach out
to @jfjlaros or send an email.

Issues & Bugs

Submit an issue [https://github.com/jfjlaros/bin-parser/issues/new] or pull request [https://github.com/jfjlaros/bin-parser/compare] with a fix if you find any
bugs in the project. See below for instructions on
sending in pull requests, and be sure to reference the code style
guide first!

When submitting an issue or pull request, make sure you are as detailed as
possible and fill in all answers to questions asked in the templates. For
example, an issue that simply states “X/Y/Z is not working!” will be closed.

Feature Requests

Submit an issue [https://github.com/jfjlaros/bin-parser/issues/new] to request a new feature. Features fall into one of
two categories:

	Major: Major changes should be discussed with me via email. I am
always open to suggestions and will get back to you as soon as I can!

	Minor: A minor feature can simply be added via a pull request [https://github.com/jfjlaros/bin-parser/compare].

Submitting Pull Requests

Before you do anything, make sure you check the current list of pull
requests [https://github.com/jfjlaros/bin-parser/pulls] to ensure you are not duplicating anyone’s work. Then, do the
following:

	Fork the repository and make your changes in a git branch: git checkout -b my-branch base-branch

	Read and follow the code style guidelines.

	Make sure your feature or fix does not break the project! Test thoroughly.

	Commit your changes, and be sure to leave a detailed commit message.

	Push your branch to your forked repo on GitHub: git push origin my-branch

	Submit a pull request [https://github.com/jfjlaros/bin-parser/compare] and hold tight!

	If any changes are requested by the project maintainers, make them and
follow this process again until the changes are merged in.

Code Style

Please follow the coding style conventions detailed below:

	For Python: PEP 8 - Style Guide for Python Code [https://www.python.org/dev/peps/pep-0008/].

	For JavaScript:
w3schools JavaScript Style Guide and Coding Conventions [https://www.w3schools.com/js/js_conventions.asp].

title: General binary file parser.
tags:

	binary

	parser

	yaml

	json

	read write
authors:

	name: Jeroen F.J. Laros
orchid: 0000-0002-8715-7371
affiliation: 1
affiliations:

	name: Leiden University Medical Center,
index: 1
date: 5 June 2018
bibliography: paper.bib

Summary

To enable interoperability for (proprietary) binary file formats while
maintaining compatibility with the original software, a lot of effort needs to
be put in reverse engineering of the file format and the subsequent programming
of a dedicated parser and writer. Here we introduce a library that aims to keep
this effort to a minimum by providing a framework that enables a programmer to
record the knowledge gained in the reverse engineering process in a structured
way for it to be used directly in a parser, a writer and as documentation.

General binary file parsing and writing is implemented by interpretation of
human readable documentation of the file structure and data types. Basic types
like variable length strings, maps and bit fields (flags), as well as
elementary data types provided by the struct library [@structPython, @structJs]
are supported and other data types are easily added. Apart from basic types,
nested structures and various kinds of iterators are supported to accommodate
for complicated file formats. Numerous character encodings are supported via
the iconv library [@iconvJs].

Since all operations needed for parsing a binary file can be reversed, fully
functional binary editing is possible using this library. A binary file can be
converted to a serialised dictionary representation, edited and be converted
back to its binary form.

We have made two implementations of this library: one in Python and one in
JavaScript. We chose YAML [@yamlPython, @yamlJs] as our preferred serialised
dictionary format, but other serialisation formats (JSON for example) can be
used too.

References

 _static/file.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 General binary file parser

 		
 Introduction

 		
 Why this library?

 		
 Background

 		
 Approach

 		
 Example: Personal information

 		
 Limitations

 		
 Installation

 		
 Python

 		
 JavaScript

 		
 From source

 		
 Command line usage

 		
 Python

 		
 JavaScript

 		
 Types

 		
 Types

 		
 Basic types

 		
 Examples

 		
 Compound types

 		
 Constants

 		
 Defaults

 		
 Overrides

 		
 Macros

 		
 Structure

 		
 Flat structure

 		
 Loops and conditionals

 		
 for loops

 		
 while loops

 		
 Conditionals

 		
 Complex conditionals

 		
 Notes on evaluation

 		
 Library

 		
 Basic usage

 		
 Python

 		
 JavaScript

 		
 Defining new types

 		
 Python

 		
 JavaScript

 		
 Extras

 		
 Debugging

 		
 General debugging information

 		
 Internal variables

 		
 Parsing details

 		
 make_skeleton

 		
 Example

 		
 compare_yaml

 		
 sync_test

 		
 Parser test

 		
 Invariance test

 		
 Contributors

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

