biicode docs Documentation
Release 3.0.2

biicode

July 12, 2015

Contents

1 Biicode 3
1.1 Installation 0 e e e e e e e 3
1.2 Getting started e e e e e e e e 8
1.3 Dependencies o i i i e e e e e e e e e e 12
1.4 Publishing e e e 16
1.5 Custom build configuration L oL 17
1.6 Adaptyourlibrary 24
1.7 Advanced Usage 0 i i i i e 30
1.8 Examples e e e e e e e e 44
1.9 Inte@rations i e e e e e e e e e e 191
1.10 Reference e e 205
I[.11 Releasenotes o o i i e e e e 230
112 FAQs . . . o e 242
1.13 Troubleshooting e 243
2 Arduino 247
2.1 Installation e e e e e e 247
2.2 Getting started L L e e e e 250
2.3 Arduinocommands L.l o e e e e e 253
24 HOWIO o o e e e 256
2.5 Examples e e e e e e e 265
2.6 Troubleshooting e 273
3 Raspberry Pi Cross Compilation 275
3.1 Installation L.l e e e e 275
3.2 Getting started L oL e e e e e e 277
33 RPicommands 280
34 HOWIO . . . o oo e e 283
3.5 Examples e e e e e e 284
3.6 Troubleshooting e 303

4 Node.js
4.1 Gettingstarted L L e e e
42 HOW'to e

biicode docs Documentation, Release 3.0.2

Here’s all the information to get started using biicode with your projects:

* User Guide: For C and C++ programmers. Guides to get started, learn how to use the
libraries available in biicode, manage your projects with your usual IDE’s, integrate with
other tools, publish blocks, control your dependencies. There’s also a full reference guide.

* Arduino Docs: specifics to develop C and C++ projects with Arduino and biicode. Includes
a getting started guide.

* Raspberry Pi Docs: specifics to C and C++ cross-compiling and native development for
Raspberry Pi boards using biicode.

* Node.js Docs: specific tools, commands and examples to develop Node.js projects with
biicode.

Contents 1

biicode docs Documentation, Release 3.0.2

2 Contents

CHAPTER 1

Biicode

A multi-platform C and C++ dependency manager.

1.1 Installation

Biicode is a file-oriented Dependencies Manager for C and C++ developers. Install both biicode
and the C/C++ tools to get started.

1.1.1 Install Biicode

Download Biicode Installer and double-click the downloaded package. Open the terminal and
make sure biicode is installed:

~S bii —--version

Check alternative installations for:
e Debian based distributions
e Arch based distributions

* Running biicode from source

1.1.2 Install C/C++ tools

Then install required tools like CMake and MinGW or GCC:

’~$ bii setup:cpp

If any problem installing C/C++ tools, check how to install C/C++ tools manually.

The setup command installs programs in a directory called .biicode in your home directory.

https://www.biicode.com/downloads

biicode docs Documentation, Release 3.0.2

Execute again to make sure the tools are installed:

~5 bii setup:cpp
CMake 3.0.2 already installed
gcc 4.8.2 already installed
g+t+ 4.8.2 already installed

You’re now ready to get started.

1.1.3 Debian based distributions

Alternative install for Debian based distributions (Ubuntu, Raspbian)

Use the apt —get program to install biicode through the APT repository:

Quick install:

wget http://apt.biicode.com/install.sh && chmod +x install.sh && ./install.sh

Execute bii setup:cpp to make sure you’ve got all tools required.

Step by step install:

1.

Create a file named '/etc/apt/sources.list

Ubuntu 12:
deb http://apt.biicode.com precise main

Ubuntu 13:
deb http://apt.biicode.com saucy main

Ubuntu 14:
deb http://apt.biicode.com trusty main

Debian Wheezy:

2.
sudo

3.
sudo

4.
sudo

5.

bii setup:cpp

deb http://apt.biicode.com wheezy main

Add our
wget -0

Execute
apt—get

Execute
apt—-get

Execute

public key executing:
/etc/apt/trusted.gpg.d/biicode.gpg

apt—-get update:
update

apt-get install:
-y install biicode

bii setup:cpp to make sure you've

.d/biicode.list' and

put the 11

http://apt.biicode.¢com/keyring

got all tools requirg

ed .

Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

1.1.4 Arch based distributions

Alternative install for Archlinux based distributions (Manjaro, Arch Linux ARM, etc)

Biicode maintains a package at the Arch User Repository (AUR). Install it using your preferred
package manager:

$ sudo yaourt -S biicode ‘

The package is maintained in the AUR, so your package manager will notify you automatically
when we update the package.

1.1.5 Run biicode from source

The most flexible way to make a package for your distro is running biicode from source. Also, if
you are developing biicode, testing new feature or helping to resolve a bug, you may need to run
biicode directly from source.

Follow this guide at GitHub to run biicode from source.

1.1.6 Install C/C++ tools manually

Install, set up and verify some tools to build C and C++ projects with biicode.

Follow these steps if something failed during the automatic installation explained before. If you
experience any issues, please contact us at our forum, we’ll try to solve your problem as soon as
possible. Linux

Install the required development tools as root:

S sudo apt-get install build-essential cmake

That’s all! MacOS
You need to get installed both XCode Developer Tools and CMake:
1. The XCode Developer Tools

S xcode—-select —--install

2. Download and install the appropriate version of CMake for your Mac OSX.
Windows

To develop C/C++ programs in Windows you need:

1.1. Installation 5

http://biicode.github.io/biicode/
http://forum.biicode.com/category/client
http://www.cmake.org/cmake/resources/software.html

biicode docs Documentation, Release 3.0.2

e CMake. Open Source tool that manages the software building process in a compiler-
independent manner.

* Compilers and build system. This could be one of the following (among other alternatives):
— MinGW (make sure to include gcc, g++, and mingw32-make with your installation)
— Visual Studio C++
These are the steps for manual installation of our recommended tools:
1. Download and install CMake. You can download the latest version of CMake here.

2. Download and install “base, g++ packages of MinGW. Follow this link to get the installer,
and choose while installing two additional packages, GCC and G++ package.

3. Add to your user PATH environment variable the paths to these tools. We recommend Rapid
Environment Editor for editing environment variables. Otherwise, go to My Computer,
click Properties, click Advanced System Settings and in the System Properties window
click the Environment Variables button. then you will see a new window and in User
Variables you’ll find the variable PATH:

Variables de entorno x|

—Variables de usuario para drodri

TMP %ol JSERPROFILE%: \AppData'Local Temp

Mueva... Editar... | Eliminar |

—Variables del sistema

Variahle | Valor | -

ComSpec C:\Windows\system32\omnd. exe s

configsetroot Cr\Windows\ConfigSetRoot

EMC_AUTOPLAY C:YProgram Files (x86)\Common Files'R...

FP_NO_HOST C... NO =
Mueva. .. | Editar... | Elirninar |

Aceptar I Cancelar |

Add your tools binaries folders (i.e. C:\MinGW\bin for MiGW, and C:\Program Files
(x86) \CMake\bin for CMake).

You might need to close and open again any cmd windows in order to load the new value for the
PATH variable.

6 Chapter 1. Biicode

http://www.cmake.org/
http://www.mingw.org/
http://www.cmake.org/cmake/resources/software.html
http://sourceforge.net/projects/mingw/files/Installer/
http://www.rapidee.com/
http://www.rapidee.com/

biicode docs Documentation, Release 3.0.2

Verify your installation

To check your automatic installation open the Terminal and type bii setup:cpp. To check your
manual installation, run the following commands. If the output messages look similar to these, the
tools are successfully installed.

S cmake —--version
cmake version [version]

$ gcc —-version
gcc (GCC) [version]

S g++ —-—-version
gt+ (GCC) [version]

S mingw32-make —--version
GNU Make [version]

1.1.7 Connect through a proxy server

Set an environment variable “HTTPS_PROXY” with your proxy server address.
Linux/OSx:

$ export HTTPS_PROXY="http://user:pass@proxy_ip:port"

You need to export this variable whenever you open a new shell. Append previous line on ~/.bashrc
file and it will be executed when a shell is opened.

Windows:

1. From the Desktop, right-click the very bottom left corner of the screen to get the Power User
Task Menu.

2. From the Power User Task Menu, click System.
3. Click the Advanced System Settings link in the left column.

4. In the System Properties window, click on the Advanced tab, and then click the Environment
Variables button near the bottom of that tab.

5. In the Environment Variables window, click “New” and add variable name HTTPS_PROXY
and value “http://user:pass @proxy_ip:port*

Example: If my proxy is on localhost (port 7775) and my user is “lasote” with password “mypp”:

1.1. Installation 7

http://user:pass@proxy_ip:port

biicode docs Documentation, Release 3.0.2

S export HTTPS_PROXY="http://lasote:mypp@localhost:7775"

If you have any questions, we are available at . You can also for suggestions and feedback.

1.2 Getting started

Welcome to biicode.

Biicode manages your project’s dependencies so you can use the libs you need (Curl, Catch, Fann,
OpenSSL, OpenCV, Poco, Boost, Libuv, GTest ...) as you wish within your project. Biicode uses
CMake to configure and build your projects and it is compatible with many IDEs and version
control systems.

This guide will help you get your first biicode block off the ground. Let’s run a block with a unit
test using the in biicode. There’s no need to install GTest, biicode downloads and configures it for
you, is already in biicode!

1.2.1 Basics

Make sure biicode is installed. Open the terminal and execute bii setup:cpp to ensure you’ve got
all tools required.

1.2.2 Create your first project

bii init -L a folder to create a new project. The commands below create unit_test/ folder as a
biicode project containing a block and a main.cpp file.

~$ bii init unit_test -L
~$ cd unit_test
~/unit_test$ echo "//main.cpp code goes here" >> main.cpp

Place this code into the main.cpp file:

#include "google/gtest/include/gtest/gtest.h"
int sum(int a, int b) {return a+b;}
TEST (Sum, Normal) {

EXPECT_EQ (5, sum(2, 3));

}

int main (int argc, char *xargv) {
testing::InitGoogleTest (&argc, argv);

8 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

return RUN_ALL_ TESTS () ;

It is just a sum function and a test using Google Test framework.

The #include is composed as #include <biicode_user>/<block_name>/path/to/file.
In this case, it #includes the include/gtest/gtest .h header from block and user google.

In the web, you see its latest version is 10 tagged STABLE:

Version |10 j STABLE ||® 2015an-2
Description: gtest 1.7.0 Google C++ Testing Framework
TAGS: | CPP || FEATURED || TESTING

Code Browser

Block requirements Block dependencies Dependencies

> 8 puild-aux @ Raw | % Deps | B
> B cmake

> M codegear

> B fusedarc [§ google/gtest/include/gtest/gtesth
4 M include
» 1
B grest 2| 4/ Copyright 2605, Google Inc.
* Bl internal 3 ;j All rights reserved.
El gtest_pred_implh 5 // Redistribution and use in source and binary forms, with or without
B 6 // modification, are permitted provided that the following conditions are
gtest prod.h 7 /7 met:
El gtest death testh 8 "
e 9 £ * Redistributions of source code must retain the above copyright
El gtest-messageh 10 /f notice, this list of conditions and the following disclaimer.
B 1 £ * Redistributions in binary form must reproduce the above
gtest-param-testh 12| s/ copyright notice, this list of conditions and the following disclaimer
E gtest-param-testh.pump 13 // in the documentation and/or other materials provided with the
14 /4 distribution.
B gtest-printers.h 15 £ * Neither the name of Google Inc. nor the names of its
B 16| /7 contributors may be used to endorse or promote products derived from
gtest-splh 17 // this software without specific prior written permission.
I grest-test-parth il
e p 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
EI grest-typed-testh 20 £f "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
| B ~ | 21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
gtesth 22 #/ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

Retrieve the dependency:

~/unit_test$ bii find

INFO: Analyzing compatibility for found dependencies...
INFO: All dependencies resolved
Find resolved new dependencies:
google/gtest: 10
INFO: Saving files from: google/gtest

bii find creates a biicode.conf file and downloads GoogleTest block into your bii/deps folder:

unit_test/
—— bii/

1.2. Getting started 9

biicode docs Documentation, Release 3.0.2

| -— deps/

| | -— google/

| | —-— gtest/
—— biicode.conf

—-— main.cpp

[optional] Keeping #includes short

Keep reading to see how to keep your #includes as usual. You can also skip this section.

‘ #include "gtest/gtest.h" ‘

Instead of using long #includes, you can write the specs to retrieve this dependency in your bi-
icode.conf.

» Split the long #include "google/gtest/include/gtest/gtest.h" in two
halfs:

[requirements]
google/gtest: 10

[includes]
gtest/gtest.h: google/gtest/include

You can also use patterns:

[includes]
gtest/*.h: google/gtest/include

1.2.3 Using an IDE

biicode configures your default settings to no IDE and MinGW (Windows) or UNIX Makefiles
(MacOS and Linux). You can change these values executing bii configure:

~/unit_test$ bii configure -G "Visual Studio 10"

Here’s more about configuring your IDE.

1.2.4 Build and run

Build and run your Unit Test, check it works:

~/unit_test$ bii build

~/unit_test$ bin/user_unit_test _main

10 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

[==========] Running 1 test from 1 test case.

[—————————=] Global test environment tear—-down
[==========] 1 test from 1 test case ran. (15 ms total)
[PASSED] 1 test.

Linux/Mac users might run as:

~/unit_test$./bin/user_unit_test_main

That’s it, that output means Google Test was downloaded, configured and built in your project!

unit_test/
-— bii/
—-— biicode.conf
-— bin
| —— user_unit_test_main
—— CMakeLists.txt
—— main.cpp

Congrats! You have just used GoogleTest within your project. You know that we are available at
for any problems. You can also for suggestions and feedback.

1.2.5 Publishing

Publish to make your libs available in biicode.

* Execute $ bii user your_username.

~/unit_testS bii publish

INFO: R R b b S b b b d b b b 4 b b 2 b b b d b b db b b b a4
INFO: xxx%+ Publishing public *xxxx
INFO: R b b b b b b db b b S g b b 2 b b b d b b A b b b a4

INFO: Successfully published your_username/unit_test: 0

Go to your profile at www.biicode.com/your_username to check what you’ve just uploaded.

1.2. Getting started 11

biicode docs Documentation, Release 3.0.2

| biicode.com | v C

€ blicode

C/C++ DEPENDENCY MANAGER

on [0+ DEV | @ 2015-M

Description: Getting Start

7aGs: [cpp || ExampLE | [TESTING

biicode.conf ® h's B
CMakeLists.txt

main.cpp

=
1 [requirements]
google/gtest: 10

4 [includes]
gtest/gtest.h: google/gtest/include

* Log in to edit the block’s web description.
* Make sure you’ve to publish. It’s free.

Take a look into your block’s biicode.conf file (~/unit_test/biicode.conf). [parent] section tells

you “who is your parent version”, which is the latest published version of your block and looks
like this:

[parent]
your_username/unit_test: 0

Celebrate! You’ve just published your first block in biicode. You know that we are available at for
any issues. You can also for suggestions and feedback.

1.3 Dependencies

Learn how to get the dependencies your project needs and how to handle their versions via your
[requirements] and [includes] sections of your biicode.conf file.

1.3.1 Dependencies

The getting started guide explained basics on depending. To recall, these are the steps to depend
on a library available in biicode, we’re using OpenSSL in this guide.

¢ Create a new folder and init it:

12 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

~$ mkdir deps_example

~$ cd deps_example

~/deps_example$ bii init -L

~/deps_exampleS echo "//main.cpp code goes here" >> main.cpp

* Write your source code as usual in your main.cpp:

#include <stdio.h>
#include <string.h>
#include "openssl/md5.h"

int main ()

{
unsigned char digest[MD5_DIGEST_LENGTH];

char string[] = "happy";

MD5 ((unsigned charx) &string, strlen(string), (unsigned charx) &digest);

char mdString[33];

for(int 1 = 0; i < 16; i++)
(

sprintf (&mdString[ix2], "%02x", (unsigned int)digest[i]);

printf ("md5 digest: %s\n", mdString);

return O;

}

» Search the library you want in biicode, and specify which lib you’re using in your bi-

icode.conf file.

1.3. Dependencies

13

biicode docs Documentation, Release 3.0.2

‘€biicode” - come e tone e ([

C/C++ DEPENDENCY MANAGER

asote/openss

Version

Description:

Code Browser

* M apps ® Raw 4P Deps B Code
* M certs

> M crypro
* M demos
* [doc

> engines 2 /* crypto/md5/mds.h */

Let’s first use OpenSSL 1.0.1 available in lasote/openssl version 0:

* Write in your biicode.conf file:

[requirements]
lasote/openssl: O

[includes]
openssl/md5.h: lasote/openssl/include

* bii build and you’re done.

Here’s more on this OpenSSL example project.

1.3.2 Modifying the version you depend on

Manually edit your biicode.conf file to depend on any version you want.

To depend on lasote/openssl version 2, write in your biicode.conf:

[requirements]
lasote/openssl: 2

[includes]
openssl/md5.h: lasote/openssl/include

Update your biicode.conf file to depend on lasote/OpenSSL tagged version 1.0.11:

14 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

[requirements]
lasote/openssl: @1.0.11

[includes]
openssl/md5.h: lasote/openssl/include

Run bii build and you’ll see the new dependencies in your bii/deps folder.
For OpenSSL, there are two tracks available:

* OpenSSL 1.0.1 isavailable at lasote/openssl versions 0,1,2 and 3.

* OpenSSL 1.0.2 is available at lasote/openssl(v1.0.2) versions 0 and 1.

Update to release 1.0.2, just write it in your biicode.conf:

[requirements]
lasote/openssl(v1.0.2): O

[includes]
openssl/md5.h: lasote/openssl/include

Execute bii build and you’ll see the new dependencies in your bii/deps folder.

Depending on a block track

Currently, libuv keeps four maintained versions or block tracks:
* (Stable, used by Nodejs)
* (Non stable, but commonly used)
e (Latest)

Depend on one or another to fit your needs:

* Write this #include line in your source code:

‘ #include "uv.h"

* And depend on , write in your biicode.conf file [requirements] :

[requirements]
lasote/libuv(v0.11): 1

[includes]
uv.h : lasote/libuv/include

 Execute bii build and you’re ready to go.

1.3. Dependencies

15

biicode docs Documentation, Release 3.0.2

Let’s switch to :

* Modify [requirements] section in your biicode.conf :

[requirements]
lasote/libuv(v1.0): O

[includes]
uv.h : lasote/libuv/include

¢ Execute bii build and it’s switched.
And now, switch to :

* Modify [requirements] section in your biicode.conf :

[requirements]
lasote/libuv(v0.10): 1

[includes]
uv.h : lasote/libuv/include

¢ bii build and it’s switched.
At last, switch to :

* Modify [requirements] section in your biicode.conf :

[requirements]

lasote/libuv(vl.x): 8
[includes]

uv.h : lasote/libuv/include

¢ bii build and it’s switched.

Got any doubts? or .

1.4 Publishing

bii publish command publishes your code to biicode.

[bii publish

Tag’s default value is DEV.

'S bii publish --tag STABLE

16 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

STABLE versions are frozen after publication and DEV versions are overridden by a new version.
Each time you publish to biicode your local [parent] value updates to the latest one you just
published.

Let’s understand this behavior with an example:
* Publish your first DEV version.

Its [parent] section should be empty or with its first value like this:

[parent]
user_name/block_name: -1

Once published, your [parent] updates to version O and that’s also number 0O in biicode.
* Publish a DEV version. That’s still number 0.
* Publish a STABLE version. That’s still number 0.

¢ Publish another STABLE version. That’s number 1 in biicode.

1.4.1 Tag a version

Put a semantic name to your block versions. Once tagged, you can depend on a version just
knowing its semantic tag. Just execute:

$ bii publish --tag STABLE --versiontag=1l.2rc3

DEV versions can not be tagged.

1.4.2 Private blocks

Upgrade your account to Premium, , to use Private blocks. Store your code in private, choose who
can see or edit your blocks.

Create private blocks in our web page. Just press Add block button and choose private.

Got any doubts? or .

1.5 Custom build configuration

Biicode knows how the source code files connect to each other, with this information, biicode
constructs a base CMake layout to build your project automatically.

However, this automatic process is just a feature, you can have full control over the building
process.

Here, you’ll learn how to define your CMakeLists.txt to delve into full functionality.

1.5. Custom build configuration 17

biicode docs Documentation, Release 3.0.2

1.5.1 CMake basics

If you’re a CMake newbie, these are the tips you need to know before understanding how biicode
uses CMake.
So CMake:

* Basically requires one thing, a CMakeLists.txt file.

Allows defining t arget s which are each executable or library you want to build for your
project.

Is multi-platform and automatically generates the files your O.S./compiler needs to build
your project.

CMakelLists.txt basic example (without biicode):

Specify the CMake version used (biicode makes this automatically)
cmake_minimum_required (VERSION 2.6)

Name your project here (biicode names it automatically)

project (fibonacci)

This tells CMake to build a library with other.c and file.c and name i
(biicode automatically creates a library for each block)
add_library(mylib other.c file.c)

Sends the -std=c99 flag to the gcc compiler
add_definitions (-std=c99)

This tells CMake to build an executable with fib.c and name it fibonac
(biicode automatically adds detected targets in your source code)
add_executable (fibonacci fib.c)

Links mylib to the fibonacci executable
(biicode automatically links block's library to each executable)
target_link_libraries (fibonacci PUBLIC mylib)

t mylib

Got any doubts? or .

1.5.2 Where is biicode’s “magic”?

bii configure or bii build commands generate a CMakeLists.txt file in each block.

CMakeLists.txt has 1 line by default (stripping out comments):

‘ADD_BII_TARGETS()

So biicode:

18 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

* Detects how source code files are connected and builds a dependency graph (fol-
lowing #includes and searching for implementations).

* Generates, for each block, a CMakeLists.txt defining some variables according
to the dependency graph detected. These variables allow Biicode to “plug” your
library to its cloud so it is easily reused.

* Builds a library for each block you have in your project (including each depen-
dency).

¢ Builds an executable for each file with amain () function.
* Link the block’s library to all executables within the block.

* Builds the block’s library only with the source code files needed, according to
the dependencies detected (how files are connected).

1.5.3 Define and prepare targets

In the CMakeLists.txt file, before ADD_BII_TARGETS () you can adjust:

Which source code files are part of the block’s library

BII_LIB_SRC contains all the source code biicode adds to the library (through CMake
add_library)

EXAMPLE: Exclude my_file.cpp from being compiled in the block’s library.

Remove my_file.cpp from being compiled in library
LIST(REMOVE_ITEM BII_LIB_SRC my_file.cpp)

ADD_BII_TARGETS ()

EXAMPLE: Include other_file.cpp to be compiled in the block library.

Include my_file.cpp to be compiled in library
LIST (APPEND BII_LIB_SRC other_file.cpp)

ADD_BII_TARGETS ()

ESSENTIAL TIP: If biicode did not add a file needed to your block’s library, you
could specify this dependency in the [dependencies] section of the biicode.conf
file. Why? This way you wire the dependency (fixing the dependency graph). If
someone depends on your library, biicode will also download the missing file and will
add it to BIT_LIB_SRC automatically. Otherwise file won’t be downloadedm and
their build will fail.

1.5. Custom build configuration 19

biicode docs Documentation, Release 3.0.2

Choose STATIC or SHARED library

BII_LIB_TYPE value is empty by default (turns out it is STATIC in most cases). It can be either
STATIC or SHARED.

EXAMPLE: Making a shared library (.dll, .so):

SET(BII_LIB_TYPE SHARED)

ADD_BTII_TARGETS ()

Modify which executable targets are made
BII_BLOCK_EXES List of executable targets (mains). Each “exe” matches this pattern:
path_to_mainfile.

For example, if the block lasote/game has a main.cpp in a folder named “src”, the variable has an
element: “src_main”

EXAMPLE: Prevent biicode from creating an EXE target for (exam-
ples/src/my_program.cpp):

LIST (REMOVE_ITEM BII_BLOCK_EXES examples_src_my_program)

ADD_BII_TARGETS ()

You can also do this by adding !examples_src_my_programline to [mains]
section of biicode.conf .

Which source code files are part of each executable
BII_exe_name_SRC contains all source code that will be added to the exe. ‘“‘exe_name”
matches this pattern: path_to_mainfile.

For example, if the block lasote/game has a main.cpp in a folder named ‘“‘src” the variable is:
“BII_src_main_SRC*

EXAMPLE: Exclude my_file.cpp from being compiled with examples/main.cpp exe-
cutable.

LIST (REMOVE_ITEM BII_examples_main_SRC my_file.cpp)

ADD_BII_TARGETS ()

20 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

Modify which test targets are made

BII_BLOCK_TESTS is a subset of BIT_BLOCK_EXES and contains the executables specified
in [tests] section of biicode.conf file.

EXAMPLE: Exclude tests/one.cpp from tests.

LIST(REMOVE_ITEM BII_BLOCK_TESTS tests_one)

ADD_BTII_TARGETS ()

1.5.4 Configure targets

Once we have selected which files belong to each target and the targets we want, we are ready to
call ADD_BII_TARGETS().

ADD_BII_TARGETS() generates the block’s library target and a target for each executable.

Configure library target

BII_LIB_TARGET contains the name of the block’s library target. This target
may be an INTERFACE target (no source files) if BII_LIB_SRC is empty before
ADD_BIICODE_TARGETS call For this reason we recommend you to always use
BIT_BLOCK_TARGET.

BII_BLOCK_TARGET: Use this better, instead of BII_LIB_TARGET. Created to ease target con-
figuration. It always exists and it is always a CMake Interface. Represents the whole block, and it
is applied to BITI_LIB_TARGET and each target executable.

EXAMPLE: Linking with pthread.

Link against the always existing BII_BLOCK_TARGET
TARGET_LINK_LIBRARIES (S$S{BII_BLOCK_TARGET} INTERFACE pthread)

or link against the library (if it's not an interface we specify &
TARGET_LINK_LIBRARIES (S$S{RII_LIB_TARGET} PUBLIC pthread)

You can also do this by adding pthread to ${BII_LIB_DEPS} before calling
ADD_BII_TARGETS ()

EXAMPLE: Adding include directories to all targets of this block.

TARGET_INCLUDE_DIRECTORIES (${BII_BLOCK_TARGET} INTERFACE myincludedi

You can also add private include directories to the Lib (if exist]

TARGET_INCLUDE_DIRECTORIES (${BII_LIB_TARGET} PRIVATE myincludedir)

1.5. Custom build configuration 21

UBLIC attr

ng)

biicode docs Documentation, Release 3.0.2

You can also do this by adding myincludedir line to [paths] section of bi-
icode.conf .

EXAMPLE: How to activate C++11 for all targets (including lib target).

IF (APPLE)

TARGET_COMPILE_OPTIONS (${BII_BLOCK_TARGET} INTERFACE "-std=c++11
ELSEIF (WIN32 OR UNIX)

TARGET COMPILE_OPTIONS (${BII_BLOCK_TARGET} INTERFACE "-std=c++11"
ENDIF (APPLE)

—-stdlib=11i

~

EXAMPLE: Adding compile definitions to all targets (including lib target).

TARGET_COMPILE_DEFINITIONS (${BII_BLOCK_TARGET} PUBLIC "MY_DEFINITION=1")

EXAMPLE: Setting properties to lib target.

SET_TARGET_PROPERTIES (S$S{BII_LIB_TARGET} PROPERTIES COMPILE_DEFINITI

NS "IOV_MA

SET_TARGET_PROPERTIES only allows setting some white-listed properties to
BII_ BLOCK_TARGET, because it is an interface. Use BII_LIB_TARGET to set
target properties.

Configure executable target

BII_exe_name_TARGET contains the name of the target for each executable target. Each “exe”
matches this pattern: path_to_mainfile.

EXAMPLE: Linking pthread to an executable target (file: examples/one.cpp):

TARGET_LINK_LIBRARIES (S$S{BII_examples_one_TARGET} PUBLIC pthread)

EXAMPLE: Adding compile definitions to an executable target (file: my_main.cpp).

TARGET_COMPILE_DEFINITIONS (${BII_my_main_ TARGET} PUBLIC "MY_DEFINIT]

[ON=1")

When someone depends on your library, biicode only downloads the required
files (according to the dependency graph). So you can not assume that
${BII_my_main_TARGET} target will exist. It may seem obvious, but if you ref-
erence a target that doesn’t exist build fails. When possible it’s better to not act upon
EXE targets. Remember that BIT_BLOCK_TARGET will be applied to each target in
your block.

It is best to act upon BII_BLOCK_TARGET.

22

Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

1.5.5 Select build type: Debug or Release

You can set the build type with -D option in bii configure command:

$ bii configure -DCMAKE_BUILD_TYPE=DEBUG
$ bii build

Possible values are: DEBUG, RELEASE, RELWITHDEBINFO, MINSIZEREL
Check official docs from .

If you are using Visual Studio or any other IDE with a select list box for build type use:

$ bii build --config=DEBUG

Use bii clean command to restore most of your project’s meta-information. Here’s more about bii
clean command.

1.5.6 Complete variable reference

Sorted according to their specific use before or after ADD_BITI_TARGETS () variable:
BII_LIB_SRC List of files belonging to the library.
BII_LIB_TYPE Empty by default, (STATIC in most cases) STATIC or SHARED.
BII_LIB_DEPS Dependencies to other libraries (user2_block?2, user3_blockX).

BII_LIB_SYSTEM HEADERS System linking requirements as windows.h,
pthread.h, etc.

BII_LIB_INCLUDE_PATHS List of directories that the library target will include
through a call to TARGET_INCLUDE_DIRECTORIES

BII_BLOCK_EXES List of targets that represent the executables (mains) defined in
this block. If you want to prevent biicode from creating an EXE target, first
remove it from this list.

29 ¢

BII_exe_name_SRC List of files belonging to an “exe”. “exe_name” matches this
pattern: path_to_mainfile. For example, if the block lasote/game has a main.cpp
in a folder named “‘src” the variable will be: BIT_src_main_SRC

BII_exe_name_DEPS Dependencies of this “exe” target to other libraries, includ-
ing its own block library if any (user2_block2, user3_blockX).

BII_BLOCK_TESTS List of executables specified in [tests] section of bi-
icode.conf file. Will be excluded from bii build compilation and compiled with
bii test command. add_test

] ADD_BII_TARGETS ()

1.5. Custom build configuration 23

biicode docs Documentation, Release 3.0.2

BII_LIB_TARGET Target library name, usually in the form “user_block™. It may
not exist if BIT__LIB_SRC is empty, so better use ${BII_BLOCK_TARGET}
as a general rule.

BII_BLOCK_TARGET CMake Interface that represents the whole block. It always
exists and it’s applied both library and executables (each target). You can use it
to configure a block’s building configuration: Link libraries, compile flags...etc

BII_BLOCK_TARGETS List of all targets defined in the block

BII_exe_name_TARGET Executable target (listed in ${BII_BLOCK_EXES}).
e.g. ${BII_main_TARGET}. You can also use directly the name of the exe-
cutable target (e.g. user_block_main)

Got any doubts? or .

1.6 Adapt your library

Transforming your library in a full functional biicode block can be straightforward or require
some work. The bigger or “heavier” a library is, the higher time it takes to adapt it.

We assume you’ve read Custom build configuration section and have understood how biicode
builds your code.

1.6.1 Concepts to understand

* Place your library’s source code in a biicode block.

* Biicode analyzes your code and builds a dependency graph with how each file connects to
the others. These files are appended to BIT_LIB_SRC variable in your CMakeLists.txt file.

* When you #include a header (ex: file.h) from a remote block, biicode only downloads the
files that depend on “file.h” (recursively) and builds a library with the files needed. The
dependency library built is linked to your targets automatically.

* When you’re the one uploading a “reusable” library, it’s really important that the dependency
graph for that lib is built correctly.

* A quick way to be sure that your library is fully reusable, is publishing with DEV tag and
then depend on it from another project making an example. The example can be a main
including a header from your own library. You can check a lot of examples reusing libsS in .

Key facts

As biicode may build the libraries with just a few files from the whole library (biicode only down-
loads and builds the needed files), you shouldn’t assume in your CMakeLists.txt that all your library

24 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

files will be present.

> Example: Make sure an exe target exists before executing
TARGET_LINK_LIBRARIES upon it.

> Example: Adding my_file.cpp to your library explicitly isn’t recommended as you
don’t know if biicode has downloaded this file.

Biicode needs a library in BIT__LIB_TARGET variable to make it reusable, as a “plug”.

It builds ${BII_LIB_TARGET} for each block with the source code files in BII_LIB_SRC
variable (list).

1.6.2 Without a previous CMakeLists.txt

If your current library doesn’t have a CMakeLists.txt biicode creates it when you execute bii con-
figure or bii build.

1. Look for unresolved dependencies with bii deps

* If some of your header files (*.h) are unresolved, biicode has not been able to detect them.
You can solve this by filling /paths] section in biicode.conf with the folders containing the
headers to let biicode find them.

You only need to specify your paths when your project has non-file-relative
#include (s).

For example:

[paths]
Local directories to look for headers in your block
include

/

 If there are references to external headers, look for the library you need in biicode.
You can use the search engine in https://www.biicode.com and search for the file typing
file:my_include.h

— Found the library in biicode? Just fill your [requirements] of biicode.conf as shown in
dependencies section. Re-run bii deps command to ensure the #includes are resolved.

— Didn’t find the library in biicode? You could be the first one adding it ;)

* If there are no unresolved dependencies or it seems your unresolved dependencies are system
dependencies, try to compile it (point 2).

1.6. Adapt your library 25

https://www.biicode.com

biicode docs Documentation, Release 3.0.2

2. Execute bii build

* There are compilation errors:

— Check if some compile definition is needed. You can use
TARGET_COMPILE_DEFINITIONS(${BIl_BLOCK_TARGET}
PUBLIC “MY_DEFINITION=1") in your CMakeLists after
ADD_BII_TARGETS ().

— Review the BII_LIB_SRC variable in CMakeLists.txt (and
BII_exe_name_SRC) and look for missing files.

If you detect a file is missing, add it to [dependencies] section in biicode.conf.
* If you receive linker errors, search in the code the missing symbols.

— If they are in you source code, maybe biicode is not finding some implementation and
the dependency graph wasn’t built correctly. You can use bii deps —files to inspect
how the code is connected. Use [dependencies] section in biicode.conf to specify the
missing source file.

— Can’t find them in your sources? Try to google them. You may need to link a sys-
tem library. You can use TARGET_LINK_LIBRARIES (${BII_LIB_TARGET}
PUBLIC pthread) in your CMakeLists.txt after ADD_BII_TARGETS ().

3. Test the libary’s reusability
At this point biicode knows how to build your code. But you are not done yet. You should check
that your library can be included and works fine.

* bii publish to publish a DEV version of your code.

* Open a new terminal and create a new biicode project with an example including your library.
You can check a lot of reuse examples in . Create a new folder and execute bii init -1 and bii
new -hello cpp. Replace main.cpp code with your example code.

Run bii configure to create biicode.conf and CMakeLists.txt files.

* Require your original block library in [requirements] section of biicode.conf

Execute bii deps to ensure your requirement is wired right.

Execute bii build to build the example

— If compilation fails because any files are missing, check bii/deps/ folder to review
the files biicode downloaded. If you notice some file are missing you probably need
to add them in /dependencies] section in biicode.conf. Fix the library and bii publish
again. Then execute bii build in your example folder again, this downloads the updated
library automatically. Check again the files downloaded.

26 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

— If compilation fails in cause of an error in your library’s CMakeLists.txt check that you
are not presuming that (key fact 1) all files are present. Fix CMakeLists.txt or wire a
dependency (if needed) in [dependencies] section in biicode.conf.

* You can build more examples including more headers from your library to ensure it works
well.

» Congrats! You have a full functional library in biicode! Execute bii publish —-tag STABLE
to freeze an stable version.

Got any doubts? Ask in or.

1.6.3 With a previous CMakeL.ists.txt

Option 1: Let biicode do its job in an isolated file

If you already have a CMakeLists.txt file there’s no need to replace it, just adapt it like this:

IF (BIICODE)
INCLUDE ("biicode.cmake")
RETURN ()
ENDIF ()
Your regular project configuration here

Now create a file named biicode.cmake an add the line ADD_BII_TARGETS(). Then read without
a previous CMakeLists.txt section knowing that biicode.cmake is now the file where you will write
the code needed.

Option 2: Build your own target library and link them to Bll_LIB_TARGET

Sometimes, when adapting big and complex libraries that already have a CMakeLists.txt building
its own library, the best approach is to link the resulting library to ${BII_LIB_TARGET}

* As you want to use your own library targets and these take for granted that all files are always
present, it’s violating key fact n°1. The way to proceed is wiring all your library files together
in [dependencies] section in biicode.conf.

EXAMPLE: [dependencies] section from .

[dependencies]
Nothing depend on tests, so do not include tests if nd
src/+ — tests/x*
lib/* - tests/=*
include/* - tests/=*

Lib doesn't depend on src

lib/*x - src/x*

1.6. Adapt your library 27

t needed

biicode docs Documentation, Release 3.0.2

Everything depends on libcurl

src/* + 1lib/x docs/MANUAL docs/curl.l src/mkhelp.pl
include/* + 1lib/=x

tests/*.h + src/* lib/% include/* tests/=«

Src module goes together
src/+.h + src/*.c

* Enable a plug for biicode (key fact n°2) at the end of your CMakeLists.txt (or before installa-
tion steps), assuming $ { LIB_NAME} is the name of the library you’ve built:

IF (BIICODE)
Clear biicode auto detected files.
BII_LIB_TARGET will be an interface target.
SET(BII_LIB_SRC)

ADD_BII_TARGETS ()

If you have configured some file, include the output directgry
TARGET_ INCLUDE_DIRECTORIES (${BII_LIB_TARGET} INTERFACE ${CMAKE_CURRENT

Apply biicode dependencies to my library
TARGET_LINK_LIBRARIES (${LIB_NAME} PUBLIC S${BII_LIB_DEPS})

Also the interface properties

TARGET LINK_LIBRARIES (${LIB_NAME} PUBLIC S${BII_BLOCK_ TARGET})
Wire your 1lib to S${BII_LIB_TARGET} so biicode can use it
TARGET_LINK_LIBRARIES (${BII_LIB_TARGET} INTERFACE S${LIB_NAME})

ENDIEF ()

* Don’t presume that targets are always present (key fact n’l):

EXAMPLE: tests folder is not present (because tests not depend on any header
of your library), so its not downloaded.

IF (BIICODE AND (EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/tests"))
Your code for generate examples targets
ENDIF ()

 If your CMakeLists.txt uses £ind_package directive and you want to replace these de-
pendencies and depend on biicode blocks:

— Let biicode handle requirements:

EXAMPLE: This library links OpenSSL library of the system. But we want
to link openssl from biicode:

28 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

if (NOT BIICODE) # Biicode uses OpenSSL as a dep, do not find
find_package (OpenSSL)
if (OPENSSL_FOUND)
set (USE_OPENSSL ON)
¥#
#
endif ()
else ()
set (USE_OPENSSL ON)
endif ()

+ Require your original block library in [requirements] section in bi-
icode.conf

« Execute bii deps to ensure your requirement is wired right.
There’s a complete example of Option 2 you can check here at and .

Option 2 is not “ideal” because is downloading, compiling and linking the whole library and some
files may be unnecessary. But if your library files are heavily connected and/or there are so many
files this is your best option.

Option 3: Adapt your CMakeLists.txt filtering files

There is a third option, a mix of the two previous options:

* Filter the files with the set of files detected by biicode ${BII_LIB_SRC}, not forcing all
source code to interconnect.

key fact 1 said not to presume all files exist in our CMakeLists.txt, but we know
which files has downloaded looking the BII_LIB_SRC variable, so you can
always compose your library with the intersection of your list of sources and
BII_LIB_SRC

EXAMPLE:

MACRO (INTERSECTION var_name listl list2)
Store the intersection between the two given lists in var_ng
SET (intersect_tmp "")

FOREACH (1 ${listl})
IF("S${1list2}" MATCHES " (~|;)S{1} (G I$)")
SET (intersect_tmp ${intersect_tmp} ${1})
ENDIF ("${1list2}"™ MATCHES " (~[;)${1}1(;I$)™)
ENDFOREACH (1)
SET (${var_name} ${intersect_tmp})
ENDMACRO (INTERSECTION)

1.6. Adapt your library 29

it in syst

me.

biicode docs Documentation, Release 3.0.2

Biicode detects that file2.cpp is not a dependency of the blo
So in BII_LIB_SRC there are only filel.cpp and file3.cpp
If we try to add_library using file2.cpp will fail, so lets f{

set (my_library_ files filel.cpp file2.cpp file3.cpp)
IF (BIICODE)

INTERSECTION (filtered_files "${my_library_files}" "S${BII_LIB_{
ELSE ()

set (filtered_files S${my_library_files})
END ()

k that inc

|lter it.

‘RC} ")

add_library (my_library S${filtered_files})

You can include from biicode/cmake block and reuse the macro
INTERSECTION. Check Publish, share and reuse CMake scripts section
for more information.

* Keep the way you build the library:

Following key fact 2, you can build your library and link to ${BIl_LIB_TARGET]),
or even change the value of BII_LIB_TARGET variable to match your library
name. The only thing important is that the variable BIT_LIB_TARGET contains
a cmake library.

SET(BII_LIB_TARGET my_library)

As you know we’re available at for questions and answers. You can also .

1.7 Advanced Usage

Here’s a few usage cases for understanding biicode in depth:

1.7.1 Custom Layouts

Blocks live in Biicode projects, each biicode project can have in it as many blocks as you want.

A project is a combination of meta-data and folders containing your blocks, dependencies and
files like policies.bii to apply when finding or updating your dependencies.

Use bii init -L or bii init —-layout command to use a different folder structure.

Simple Layout

Place your repo’s code directly in your project’s folder. Use bii init -L .

30

Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

~$ bii init myproject -L ‘

Creates a simple folder structure in which deps/, build/ and cmake/ folders - all auxiliary folders
but bin/ - are inside bii/ folder:

+-— myproject/

| +-—— bii/

| | +-— layout.bii

| | +—— policies.bii
| | +-— settings.bii

in which layout.bii content is:

Minimal layout, with all auxiliary folders inside "bii" and

The binary "bin" folder as is, and enabled code edition in the project
cmake: bii/cmake

lib: bii/lib

build: bii/build

deps: bii/deps

Setting this to True enables directly editing in the project root
instead of blocks/youruser/yourblock

the block will be named as your project folder

auto-root-block: True

For example, this is a project with simple layout :

+-— myproject/

+-— bii/

| +-— layout.bii

| +—-— policies.bii
| +-— settings.bii
| +-— build/
|
|

+-— cmake/
+-—— deps/
+-—— bin/
+-— src/
+-— biicode.conf

+—— CMakelists.txt

A project’s layout is fully customizable via layout.bii file, you can place the auxiliary folders
wherever you want, just specify the relative routes to the folders you want to use instead.

TMP Layout

Looking for an even cleaner layout? Use bii init -1 tmp.

1.7. Advanced Usage 31

root

biicode docs Documentation, Release 3.0.2

This layout option redirects deps/, build/ and cmake/ folders to the temporal folder of your system
tmp/myproject/ -all aux folders but bin/- and places your repo’s code directly in your project’s
folder.

Creates a folder structure in which deps/,build/ and cmake/ folders (all auxiliary folders but bin/
are inside bii/ folder:

+-— myproject/

| +—— bii/

| | +-— layout.bii

| | +-— policies.bii
| | +-— settings.bii

in which layout.bii content is:

Layout that redirect aux folders to your tmp/project folder
cmake: S$TMP/cmake

lib: S$TMP/1lib

build: $TMP/build

deps: S$TMP/deps

auto-root-block: True

For example, this is a project with TMP layout :

+-— myproject/

+—— biicode.conf
+—— CMakelists.txt

| +-— bii/

| | +-— layout.bii

| | +-— policies.bii
| | +-— settings.bii
| +—— bin/

| +-— src/

|

|

Classic Layout

bii init myproject creates a simple folder structure:

+-— myproject/

| +-—— bii/
| | +-— policies.bii
| | +-— settings.bii

And executing:

~$ cd myproject
~/myproject$ bii new username/blockname —--hello=cpp

32 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

creates this structure into myproject:

+-— myproject/
| +—— bii/

| | +—— policies.bii
| | +-— settings.bii
| +—— blocks/
|

|

|

| +—— username/
| | +—— blockname/
| | | +-— main.cpp

Each project follows the same standard structure, for example:

+-— myproject/

| +—— bii/

| +-— blocks/

| | +-— ownerl/

| | | +-— blocka/

| | | | +-— src/

| | | | +-— include/

| | | | +-— test/

| | | | +—-— biicode.conf

| | | | +-— CMakeLists.txt
| +-—— deps/

This structure empowers consistency between the blocks published in biicode, it also enables work-
ing with different owner/blocks at the same time:

+-— myproject/

+—— bii/
| +-— policies.bii
| +-— settings.bii
+-— blocks/
+-— ownerl/
+-—— blockA/
+-— src/
+—— include/

+-— biicode.conf
+—-— CMakelLists.txt
+—— blockB/
| +-— main.cpp
| +-—— biicode.conf
| +—-— CMakelists.txt
+-— owner2/
| +-— blockC/
| | +—— tool.h
| | +—— tool.cpp

|
|
|
|
|
| |
| | |

| | |

| | | +-—— test/
| | |

| | |

| |

| |

| |

| |

|

|

|

|

1.7. Advanced Usage 33

biicode docs Documentation, Release 3.0.2

| | | | +-— biicode.conf
| | | | +—— CMakeLists.txt
| +-—— deps/

CLion Layout
Use with biicode, just like the regular biicode layout but with a bii/layout.bii to integrate biicode
with the C/C++ IDE.

This layout places your repo’s code as usual, in your project_name/blocks/owner/blockname direc-
tory:

This working project looks like this:

+-— myproject/

+—— bii/
| +-— policies.bii
| +-— settings.bii

| +-— layout.bii
+-— blocks/

| +-— ownerl/

| | +-— blockA/

| | | +-— src/

| | | +-— include/

| | | +-— test/

| | | +—— biicode.conf
| |

|
+-— deps/

|
|
|
|
|
|
|
|
|
|
|
| +—-— CMakeLists.txt
|

in which layout.bii content is:

Layout for CLion IDE with root CMakelists at project root
This layout DOES NOT allow root-block, as it will overwrite the projec
cmake: /

t CMakeList

Here’s more info about working with CLion.

Check our and/or for questions and answers. You can also for suggestions and feedback.

1.7.2 Tests

Sometimes your library includes some tests to check your its functionality. Your biicode.conf
[tests] section is here to cover these tests.

Just write the test files specifically or the path to the folder that contains them like this:

34 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

[tests]

projects/SelfTest/*
tests/unit_test.cpp

This way, these files are not compiled executing bii build command.
Run bii test and you’re ready to go. Check bii test options here.

You can specify in your [mains] section that which tests aren’t mains. Here'’s more on [mains]
and [fests] sections.

1.7.3 Open multiple blocks
Working with your own blocks

In the Gerting Started guide we built a program and reused the sum function. Now it’s time to
add new functionality to your published myuser/math block, like a subtract function, and use it
in your block myuser/calc.

The layout is:

+—— mycalc

| +-— blocks

| | +—-— myuser

| | | +-- calc

| | | | +-— main.cpp

| +-— deps

| | +-— myuser

| | | +—— math

| | | | +-— operations.cpp
| | | | +-— operations.h

Opening your block

Open the block myuser/math for editing on the same project, execute:

‘~/mycalc$ bii open myuser/math

bii open command retrieves the complete block to your blocks folder, and deletes it from your deps
folder. In this case, it will open the specific version you depend on.

The resulting layout is:

+-— mycalc
| +-— blocks

1.7. Advanced Usage 35

biicode docs Documentation, Release 3.0.2

| | +—— myuser

| | | +-— calc

| | | | +-— main.cpp

| | | +-—— math

| | | | +-— main.cpp

| | | | +-— operations.cpp
| | | | +-— operations.h

| +-— deps

Now, add the new function, subtract and use it on your main.cpp

operations.h

#fpragma once
int sum(int a, int b);
int subtract (int a, int b);

operations.cpp

#include "operations.h"
int sum(int a, int b) {return a+b;}
int subtract (int a, int b) {return a-Db;}

main.cpp

#include "google/gtest/gtest.h"
#include "operations.h"

TEST (Sum, Normal) {
EXPECT_EQ (5, sum(2, 3));
}
TEST (Subtract, Normal) {
EXPECT_EQ (-1, subtract (2, 3));
}
int main (int argc, char *xargv) {
testing::InitGoogleTest (&argc, argv);
return RUN_ALL_TESTS () ;

}

Build, bii build and run your tests myuser_math_main to check everything is working.

Publishing updated code

Publish the math block again. As you now have 2 blocks opened (calc, math), specify the name of
the block you want to publish:

‘~/mycalc$ bii publish myuser/math

36 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

By default, bii publish uses the DEV tag. Check on your online biicode profile it’s been published.

Using DEV tag, the latest DEV version is overrided, so [parents] section of your biicode.conf
remains unmodified:

[parent]
myuser/math: 0

Closing edited block

You can now close myuser/math block, it and it will return, with the code already updated, to
your deps folder:

~/mycalc$ bii close myuser/math

Then you can modify the content of your myuser/calc:

main.cpp

#finclude <iostream>
#include "myuser/math/operations.h"

using namespace std;

int main() {
cout<<"2 + 3 "<< sum (2, 3)<<endl;
cout<<"2 - 3 = "<< subtract (2, 3)<<endl;

}

and build it, reusing also the new function:

~/mycalc$ bii build

~/mycalc$ bin\myuser_calc_main
2 + 3 =25

2 - 3 =-1

Congrats! You just edited your dependencies and updated the changes. You know that we are
available at for any problems. You can also for suggestions and feedback, they are always wel-
comed.

Working with any published block

To edit a published block, follow the steps below:

Open a block

Open a block locally to modify and publish a new version of a block.

1.7. Advanced Usage 37

biicode docs Documentation, Release 3.0.2

~/$ bii init myproject
~/$ cd myproject
~/myprojects bii open username/blockname:VERSION

Example

Let’s open (version=lastest by default) to edit it:

S bii open lasote/Jsonll

Then you can code on it as if it was yours and changes will be reflected in your code, at build time.

Suppose that you want to open version 1 instead of the latest lasote/jsonll version, you
should execute:

‘$ bii open lasote/Jjson:1

Publish the changes

Once your changes build, publish your own version of the block.
If the block in edition isn’t yours:
* Rename lasote folder with your username.
* Delete the [parents] section content in your biicode.conf file.
Remember to bii build before publishing!
And publish:

S bii publish

Check bii publish command to know more.

Close the block

Then you can close the block to remove it from your blocks folder:

‘$ bii close user_name/block_name ‘

If you’re following the Example, execute:

’$ bii close user_name/jsonll ‘

Depend on the block you’ve just published

Now, if you want to depend on the block you’ve just published:

38 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

» Update your #include (s) to the ones referring to your new published version

* If you didn’t publish it as STABLE, do it or update your policies.bii file to accept DEV
versions.

* Execute bii find and you’re ready to build as usual. Here’s bii find command documentation.
If you need more information about publish or close command:

* Publish command

* Close command
Here’s how to create a biicode block from a git repo.
Check our and/or for questions and answers. You can also for suggestions and feedback.

Got any doubts? Do not hesitate to contact us visit our forum and feel free to ask any questions.

1.7.4 Toolchains

When you build your projects, biicode automatically generates a default tool-chain to build it. To
use a custom tool-chain you need to place it in the bii folder of your project with the name
<your_toolchain_name>-toolchain.cmake.

To use it, just pass it as argument of bii configure -t your_toolchain_name.

For example, I want to write a program to my armv7 and I have a toolchain named armv7-
toolchain.cmake. First, copy my toolchain with the name armv7-toolchain.cmake into the bii
folder. Then, execute bii configure with -t or —toolchain flag with the name armv7:

bii init my_armv7_machine
cd my_armv7/_machine
#copy armv/-toolchain.cmake into init my_armv7_machine/bii

0 - 0 W

bii configure -t armv7

To change the toolchain you are using, just execute bii configure -t my_new_toolchain_name

If you want to use the native environment, execute bii configure -t without any toochain name or
use None as name.

There are two toolchains you can use by default, the arduino-toolchain.cmake and the rpi-
toolchain.cmake. If you want to use one of it, just use bii arduino:settings and bii configure
-t arduino or bii rpi:settings and bii configure -t rpi.

More information about toolchains is available in CMake’s docs .

We are available at for any issues. You can also for suggestions and feedback.

1.7. Advanced Usage 39

http://web.biicode.com/contact-us/
http://forum.biicode.com/
http://www.cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html

biicode docs Documentation, Release 3.0.2

1.7.5 Override a dependency

Let’s say you depend on:

* erincatto/box2d: 10 that depends on diego/glfw:O0.

And you’d rather depend on:

* erincatto/box2d:10 and diego/glfw:]1.

Write your preferred versions in your biicode.conf and biicode will use those versions in your
project:

biicode.conf

[requirements]
required blocks (with version)
erincatto/box2d: 10
diego/glfw:1l

Execute bii build and it’s updated.

Override a dependency with block tracks

Create a block track when you need a personalized fix over the original library.
Let’s create a block track from diego/glfw block:
* Open the block:

~$ bii init myproject
~$ cd myproject
~/myproject$ bii open diego/glfw

* Code, adjust it to your needs.

* Write the track name between brackets in the [parent] section of the biicode.conf file.
Specify version -1 because we want create a new block.

biicode.conf

40 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

[parent]
diego/glfw (myuser/glfw): -1

* Execute bii publish and enter your profile www.biicode.com/myuser to check the new track.
Depend on that new block track:
* Write in your biicode.conf file [requirements] :

biicode.conf

[requirements]
required blocks (with version)
diego/glfw (myuser/glfw): 1

* Execute bii build and it’s updated.
What if you want to get back again to the original library?

» Write in your biicode.conf file [requirements] :

[requirements]
required blocks (with version)
diego/glfw: 0

1.7.6 Advanced build configuration

Apart from all the building with CMake tips available in custom build configuration guide, there’s
also a few things that may come in handy while using biicode with CMake.

Publish, share and reuse CMake scripts

Now, biicode lets you publish, share and reuse CMake scripts. You can reuse other user’s CMake
macros/functions and apply any content in your CMakeLists.xt.

Reusing CMake code is as simple as #including libraries in C++ with biicode.

Edit your CMakeLists.txt file and include the CMake file from the block that you want:

INCLUDE (user/block/path_to_macros_file) # Without .cmake extension
MACRO_NAME_TO_USE () # Macro defined in My_macros.cmake

Actually create targets: EXEcutables and libraries.
ADD_BII TARGETS ()

And run bii find command:

1.7. Advanced Usage 41

biicode docs Documentation, Release 3.0.2

[$ bii find

All CMake dependencies will be downloaded into your project/deps/user/block folder

EXAMPLE: How to activate C++11 with a macro already programmed?

biicode featured user has a block named where you can find useful macros from the fools.cmake
file, like one to activate C++11 flags for any OS, or to link a OSX framework to a target, etc.

Just edit your CMakeLists.txt file, include INCLUDE (biicode/cmake/tools) and use the

Macros.

CMakeLists.txt

INCLUDE (biicode/cmake/tools)

ADD_BTII_TARGETS ()

Including tools.cmake from biicode/cmake user block
see https://www.biicode.com/biicode/cmake

Calling specific macro to activate c++11 flags
ACTIVATE_CPP11 (INTERFACE S${BII_BLOCK_TARGET})

Remember to run bii find to download the dependency.

[$ bii find

Overriding dependencies build options and configuration

Sometimes you need to override some configuration of how your dependency libraries are built.

This is the project layout when you have dependencies:

| -— my_project

| +-— blocks

| | +-— my_user

| | | +-— my_block

| | | | +-— biicode.conf
| | | | +-— CMakeLists.txt
| | | | +-— main.cpp

| +—— deps

| +—— lasote

| | +-— superlibrary

| | +-— biicode.conf
|

|

|
| | +-— CMakeLists.txt
| | +-- library.h

42

Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

| | +-— library.cpp
+-—- sara

+-— coollibrary

| +-—— biicode.conf

| +—— CMakelists.txt
| +-— tool.h
|

| |
| |
| |
| |
| |
| |
| | +—— tool.cpp

You should not edit the source code in deps directory because it will be overwritten by biicode. As
can’t change the CMakeLists.txt files of our dependencies directly, here’s a way to override their
build configuration.

How does it work?

Create a file named bii_deps_config.cmake in your block (my_user/my_block/) and write into it the
CMake code you need.

You can act upon dependency target following this naming rule:
[USER]_[BLOCK]_ interface

For example, if we have lasote/superlibrary block as a dependency, we can refer to it using this
interface name:

lasote_superlibrary_interface

* EXAMPLE: Activate C++ 11 in the dependency lasote/superlibrary block:

target_compile_options (lasote_superlibrary_interface INTERFACE -std=c++l1

* EXAMPLE: Change a compilation option:

SET (MY_OPTION OFF CACHE BOOL "MyCoolOption" FORCE)

We are available at for any issues. You can also for suggestions and feedback.

1.7.7 Publish a block track
Each block has an owner, name, version and tag. For example, the block has an owner (lasote) and
latest version is 4 DEV.

Use Block Tracks to publish different development versions of a block using the same block
name-space. This way, dependent blocks can keep the same #includes in their source code.

1.7. Advanced Usage 43

biicode docs Documentation, Release 3.0.2

Publish a new block Track

Write the track name between brackets in the [parent] section of the biicode.conf file. Specify
version -1 because we want create a new block.

[parent]
myuser/myblock (trackl): -1

Now you have configured a track of your block.

In case you need a personalized fix over the original library from other user, just indicate it in the
[parent] section like this:

[parent]
lasote/libuv (myuser/trackl): -1

This way, you have configured a track of other user whitout changing includes.
Execute bii publish and enter your profile www.biicode.com/myuser to check the new track.

Read a bit more about how tracks work, visit our post in the blog about .

1.7.8 Private blocks

Upgrade your account to Premium, , to use Private blocks. Store your code in private, choose who
can see or edit your blocks.

Create private blocks in our web page. Just press Add block button and choose private.

Got any doubts? or .

1.8 Examples

This doesn’t aim to be a comprehensive list of all the contents of biicode, just some examples of
already existing code that is ready for use.

1.8.1 Basic Compression Library

Basic Compression Library by Marcus Geelnardis a set of open source implementations of several
well known lossless compression algorithms, such as Huffman and RLE, written in portable ANSI
C. Currently, RLE (Run Length Encoding), Huffman, Rice, Lempel-Ziv (LZ77) and Shannon-Fano

compression algorithms are implemented.

The Basic Compression Library is completely independent of system functions, such as file I/O or
memory allocation routines. As such it can be used in almost any system, ranging from Windows,
Mac OS X and Linux-systems to embedded systems.

44 Chapter 1. Biicode

http://bcl.comli.eu/

biicode docs Documentation, Release 3.0.2

You can check the BCL documentation for more information.

BCL library is stored at marcus256/bcl an it is generated from this Github repository.

Simple Huffman Compression - Uncompression

This example demonstrates how to get started using BCL. You’ll learn to compress and uncom-
press a text file. It is simple to run.

Creating a new project

Create a new project and a main.cpp inside like this:

S bii init bcl_example -L
S cd bcl_example
$ # Create main.cpp

The code of the example is this one, it simply creates a new file myfile.txt and then it compresses
and uncompresses the file created. It also calculates the time it takes to compress it.

Copy the code in the main.cpp:

main.cpp

/* Standard libraries =x/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* Basic Compression Library =/
#include "huffman.h"

/* Timing =*/
#include "systimer.h"

/***
* GetFileSize ()

R AR b b A b b b b S b b S b b S b b b S b b S b b b S b b S b b S b b S b b b S b b S b b b S 2 b S b b A b b b 2 b b S b b b g b 3

long GetFileSize (FILE xf)
{
long pos, size;
pos = ftell(£);
fseek(£, 0, SEEK_END);
size = ftell(£);
fseek (£, pos, SEEK_SET);

1.8. Examples 45

http://bcl.comli.eu/index.php?media=manual
http://www.biicode.com/marcus256/bcl
https://github.com/MariadeAnton/bcl

biicode docs Documentation, Release 3.0.2

return size;

/***
* CompressFile()

IR R b b A b b d b b S b b S b b S b b A b S b b b S b I i b b S b b I b b S b b I b b b S b b b b d b b S 2 b b S b b b g b 3

int TestFile()
{
unsigned int insize, outsize, bufsize, =*work, k, err_count;
unsigned char xin, =*out, xbuf;
FILE ~f;
double t0, tl, t_comp, t_uncomp;

printf ("Compressing MyFile, ");

/* Open input file =/
f = fopen("myfile.txt", "rb");
if('f)
{
printf ("unable to open!\n");
return 0O;

/+ Get input size =/
insize = GetFileSize(£);
printf("File Size:",f);
if(insize < 1)
{
printf("empty file!\n");
fclose(£);
return O;

/* Worst case output buffer size x/
bufsize = (insize+«104+50) /100 + 384;

/* Allocate memory =/
in = (unsigned char x) malloc(insize + 2xbufsize);
if(!'in)
{
printf ("out of memory!\n");
fclose(£);
return 0O;

46 Chapter 1. Biicode

* *

biicode docs Documentation, Release 3.0.2

/* Pointers to compression buffer and output memory =/
buf = &in[insize];
out = &buf[bufsize 1;

/* Read and close input file =/
fread(in, 1, insize, f);
fclose(£);

/+ Compress and decompress =/

t0 = GetTime () ;

outsize = Huffman_Compress(in, buf, insize);
t_comp = GetTime () - tO0;

tl = GetTime () ;

Huffman_Uncompress (buf, out, outsize, insize);
t_uncomp = GetTime() - tl;

err_count = 0;
if (outsize > 0)
{
/* Show compression result =/
printf("\n Compression: %d/%d bytes (%.1f%%)", outsize, insize,
100x (float)outsize/ (float)insize)

14

/* Compare input / output data =*/
for(k = 0; k < insize; ++ k)

{

if(in[k] != out[k])
{
if(err_count == 0) printf("\n");
if(err_count == 30) printf(" ...\n");

else if(err_count < 30)
{

printf (" %$d: 3d != %d\n", k, out[k], in[k]);
}

++ err_count;

/+* Did we have success? x/

if(err _count == 0)
{
printf(" - OK!\n");
printf(" Compression speed: %.1f KB/s (%.2f ms)\n",
(double) insize / (1024.0 % t_comp), 1000.0 * t_comp);
printf(" Uncompression speed: %.1f KB/s (%.2f ms)\n",

(double) insize / (1024.0

*

t_uncomp), 1000.0 % t_uncomp)|;

1.8. Examples 47

biicode docs Documentation, Release 3.0.2

else

{
prj_ntf(" *******************************\n") ;
printf(" ERROR: %d faulty bytes\n", err_count);
prj_ntf(" *******************************\n") ;

/* Free all memory =*/
free(in);

return (outsize > 0) && (err_count == 0);

int main ()
{
FILE » pFile;
char buffer [100];

pFile = fopen ("myfile.txt" , "w+");

fprintf (pFile, "%s %s %s %d", "we", "are", "in", 2014);

if (pFile == NULL) perror ("Error opening file");
else
{
while (! feof (pFile))
{
if (fgets (buffer , 100 , pFile) == NULL) break;

fputs (buffer , stdout);

}
fclose (pFile);

}
TestFile () ;

Manage your dependencies

Check the dependencies of the project with bii deps:

S bii deps
your_user/bcl_example depends on:
system:
stdio.h
stdlib.h
string.h
unresolved:

48 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

huffman.h
systimer.h

Now, edit the biicode.conf file generated in the project folder. Add your [requirements]
depending on the version you want and map your [includes]:

[requirements]
marcus256/bcl: 2

[includes]
*.h: marcus256/bcl/src

Check again with bii deps to show all resolved dependencies.

Build the project

Now, build and run the huffman compression-uncompression example.

S bii build
S cd bin
S examples_bcl_main

Once you execute you should see an output like this one, it may vary depending on your computer:

Compressing MyFile, File Size:
Compression: 20/14 bytes (142.9%) - OK!
Compression speed: 1246.6 KB/s (0.01 ms)
Uncompression speed: 4778.7 KB/s (0.00 ms)

That’s all! You can try it with other files too.

Open and build

This example is already in biicode: examples/bcl.

To give it a try, create a new project and open the block:

S bii init bcl_example
S cd bcl_example
S bii open examples/bcl

Build the example and execute it:

S bii build
$ cd bin
S # Execute it
Compressing MyFile, File Size:

1.8. Examples 49

http://www.biicode.com/examples/bcl

biicode docs Documentation, Release 3.0.2

Compression: 20/14 bytes (142.9%) - OK!
Compression speed: 1246.6 KB/s (0.01 ms)
Uncompression speed: 4778.7 KB/s (0.00 ms)

Any doubts? Do not hesitate to contact us visit our forum and feel free to ask any questions.

1.8.2 Boost Libraries

Boost is a set of libraries for the C++ programming language that provide support for tasks and
structures such as linear algebra, multithreading, image processing, unit testing...

The examples below demonstrate how to use biicode to set up Boost-based projects.

First let’s configure the examples project:

S bii init boost-examples
S cd boost-examples

We will be using that project across all the examples.

Boost.Lambda

This is an example about the Boost.Lambda library, extracted from the Boost getting started
header-only section.

First create a block for the example:

S bii new your-account/boost-lambda

Create a source file:

blocks/your—account/boost—-lambda/example. cpp:

#include <boost/lambda/lambda.hpp>
#include <iostream>
#include <iterator>
#include <algorithm>

int main ()
{
using namespace boost::lambda;
typedef std::istream_iterator<int> inj;

std::for_each(
in(std::cin), in(), std::cout << (_1 * 3) << " ");

50 Chapter 1. Biicode

http://web.biicode.com/contact-us/
http://forum.biicode.com/
http://www.boost.org/
http://www.boost.org/doc/libs/1_57_0/more/getting_started/windows.html

biicode docs Documentation, Release 3.0.2

biicode sets up a Boost installation inside the biicode environment. This allows to support and
switch between multiple Boost versions easily.

Setting-up Boost

To enable Boost in your biicode project, just go to the block’s CMakeLists.txt and add the
following lines:

blocks/your—account/boost-lambda/CMakeLists.txt

#Include the biicode Boost setup script
include (biicode/boost/setup)

ADD_BII_TARGETS ()
#Setup Boost and build (if needed) the required Boost components
#Since lambda is header-only, there are no components to build and find

bii_ find_boost ()

#Add Boost headers to the block include directories
target_include_directories (${BII_BLOCK_TARGET} INTERFACE ${Boost_INCLUDE

| DIRS})

bii_find_boost () is intended to wrap find_package (Boost ...), with almost the
same input and ouput variables:

bii_find_lboost ([COMPONENTS componentl component2 ...] [REQUIRED])

It takes the Boost components you need, exactly as find_package (Boost), configures
the biicode boost installation, builds that components, and then calls £ind_package (Boost
COMPONENTS ...).

biicode uses the current cmake C++ compiler as Boost toolset, multiple toolsets are supported
inside the same Boost version installation. Also note that, except you delete the libraries at the
biicode environment, each Boost component will be built only once for each Boost version and
toolset.

Build and run project

To configure and build your project, run bii find to get the dependencies (The boost setup
block), and thenrun bii configure andbii build as usual:

S bii find
S bii configure
block your—-account/boost-lambda

—-— Setting up biicode Boost configuration...

1.8. Examples 51

biicode docs Documentation, Release 3.0.2

—— Boost version: 1.57.0

S bii build

Boost version

You may notice that the example above uses Boost 1.57.0. This is the default Boost version,
shipped by the biicode/boost master track. If you want other version, say Boost 1.56.0,
go to the block’s biicode.conf file and edit the requirements entry, explicitly asking for the
biicode/boost track you want:

blocks/your—account /boost-lambda/biicode.conf

[requirements]
biicode/boost (1.56.0)

Tip
You may want to support multiple tracks for your block depending on the Boost version it uses.
One way could be set different tracks for your block, matching the Boost version requested:

[requirements]
biicode/boost (1.56.0)

[parent]
your—account /boost-lambda(1.56.0): -1, 0, whatever version is availa

ble

Boost.Coroutine

Boost.Coroutine implements coroutines which can be useful to implement cooperative multitask-
ing, iterators, etc, in a more natural way.

Open the Boost.Coroutine example

S bii open examples/boost-coroutine

The example source code:

#include <boost/coroutine/all.hpp>
#include <iostream>

using namespace boost::coroutines;
void cooperative (coroutine<void>::push_type &sink)

{

std::cout << "Hello";

52 Chapter 1. Biicode

http://en.wikipedia.org/wiki/Coroutine
http://www.biicode.com/examples/boost-coroutine

biicode docs Documentation, Release 3.0.2

sink () ;
std::cout << "world";

int main ()
{
coroutine<void>: :pull_type source{cooperative};
std::cout << ", ";
source () ;
std::cout << "!\n";

}

In the code above, the string “Hello, world!” is written by writing “Hello”, going back tomain ()
which writes the comma, then calling the coroutine again to continue printing “world”, and finally
printing ”’!” onmain ().

You can visualize it as:

This is the CMakeLists.txt from the example:

include (biicode/boost/setup)
ADD BII TARGETS ()

set (Boost_USE_STATIC_LIBS ON)

bii_find_boost (COMPONENTS system coroutine context thread REQUIRED)
target_include_directories (${BII_BLOCK_TARGET} INTERFACE ${Boost_INCLUDE
target_link_libraries ($S{BII_BLOCK_TARGET} INTERFACE ${Boost_LIBRARIES})

if (MSVC)

set (CMAKE_EXE_LINKER_FLAGS "S${CMAKE_ EXE_LINKER_FLAGS} /SAFESEH:NO")
else ()

target_compile_options (${BII_BLOCK_TARGET} INTERFACE -std=c++11)
endif ()

| DIRS})

Besides Visual Studio specific configuration (See), the configuration is pretty straightforward:

1. Set the way you want to link against Boost libraries with Boost_USE_STATIC_LIBS as
usually when using Boost with CMake. biicode assumes static linking by default.

2. Setup and find the required Boost components withbii_find_boost (). Note the order
matters, since it’s the order the libraries are linked together.

1.8. Examples 53

https://msdn.microsoft.com/en-us/library/9a89h429.aspx

biicode docs Documentation, Release 3.0.2

3. Add Boost to your target include directories. Again as usual when using Boost with CMake,
viataget_include_directories () and Boost_INCLUDE_DIRS variable.

4. Link your target against Boost libraries using the Boost__LIBRARIES variable.

Now justrunbii configure, wait until the Boost components are built (If those were not used
previously), and then build your project withbii build.

Configure Generator

Generators recommended for this example:
* Windows: Visual Studio
* Linux & MacOS: Unix Makefiles

$ bii find
S bii configure -G "Unix Makefiles"

examples/boost-corutine
—— Setting up Biicode Boost...
—— Building Boost 1.57.0 components with toolset gcc-4.9.2...
—— Building system library...
—— Building coroutine library...
—— Building context library...
—— Building thread library...
—— Boost 1.57.0

Found the following Boost libraries
system
coroutine
context
thread

S bii build

Alternative setup call

bii_find_boost () sets up Boost and then calls find_package (Boost) with the compo-
nents passed to the former. While this setup works in 90% cases, there are some situations when
the Boost components you need do not correspond to Boost libraries directly.

If that’s the case, you can call bii_setup_boost () function passing the Boost libraries to
build, and then do the classic find_package (Boost COMPONENTS ...) with the compo-
nents you need.

54 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

Take Boost.LLog as an example:

examples/boost-log/CMakelLists.txt

include (biicode/boost/setup)
ADD_BII_TARGETS ()

set (Boost_USE_STATIC_LIBS OFF)
set (Boost_USE_MULTITHREADED ON)

bii_setup_boost (COMPONENTS system thread filesystem log REQUIRED)
find_package (BRBoost COMPONENTS system thread filesystem date_time log log

target_compile_options(${BII_BLOCK_TARGET} INTERFACE —-DBOOST_LOG_DYN_LIN
target_include_directories (${BII_BLOCK_TARGET} INTERFACE ${Boost_INCLUDE
target_link_libraries (${BII_BLOCK_TARGET} INTERFACE ${Boost_LIBRARIES})

|_setup REQI

K)
| DIRS})

Note how the components required by Log are not exactly the same libraries that should be built.

Extra configuration variables

The Boost setup scripts have some extra variables to debug and or customize Boost a bit:

* BII_BOOST_VERBOSE: When is set to on, the setup scripts print some internal info about
the current setup being run, and the different steps.

* BII_BOOST_LIBCXX: When using the Clang compiler, enables Boost build using LLVM’s
libc++ instead of the default GNU’s stdlibc++ standard library implementation.

e BIT_BOOST_BRUILD_J: Specifies the number of threads used when building Boost li-
braries. May be useful to speed up Boost builds in setups where the libraries are always
built, like continuous integration builds without cache. For example: bii configure
-DBII_BOOST_BUILD_J=16

* BIT_BOOST_GLOBAL_USE_STATIC_LIBS: Overrides the
Boost_USE_STATIC_LIBS values specified in each CMakeLists.txt and sets
a value globally. Useful when you depend on many Boost-related blocks and you may
experience issues related to different linkages against Boost in that blocks. Use this variable
carefully.

Contribute to the setup scripts

The setup scripts are maintained as an open source project on GitHub, you may want to ask about
new features, report bugs, etc.

1.8. Examples 55

http://www.biicode.com/examples/examples/boost-log/master
https://github.com/Manu343726/boost-biicode

biicode docs Documentation, Release 3.0.2

1.8.3 Box2D

is an open source C++ engine to simulate rigid bodies in 2D, it is also, AngryBirds’ motor engine.
You can check .

Box2D library is stored at erincatto/box2d, which is generated from this .

Bounces of a circle falling

In this example you will calculate whenever a circle falls from a certain height and bounces at a
defined lower limit in the created world.

Creating a new project

Create a new project and a main.cpp file:

S bii init box2d_example -L
S cd box2d_example
S # Create main.cpp

Now place the following code inside main.cpp:

main.cpp

#include "Box2D/Box2D.h"
#include <iostream>

using namespace std;

int main (int argc, charx*x argv)
{
B2_NOT_USED (argc) ;
B2_NOT_USED (argv) ;

[k ko ko kAR A AR AR RKAARARAAAAAA AR ARk kkhkkkkkkkkkkkkkkkk//
// Creating a World //

[k ko kA AR AR RAARAARAKAAAKAAA AR ARk kkkkkkkkkkkkkhkkkkkk//

// Define the gravity vector.
b2Vec2 gravity(0.0£,-10.0f);

// Construct a world object, which will hold and simulate the rigid
b2World world(gravity);

[k ko ko kAR AR AR AR AARAAAAAAAA AR A Ak kkkhkkkkkkkkkkkkkk//

lbodies.

56 Chapter 1. Biicode

https://www.biicode.com/erincatto/erincatto/box2d/master

biicode docs Documentation, Release 3.0.2

// Creating a Ground Box //

[k ko kR A AR AR AAARAARAAAAA AR A ARk hkhkkkkkkkkkkkkkkkkkkk//

// Define the ground body.
b2BodyDef groundBodyDef;
groundBodyDef .position.Set (0.0£,-10.0f);

// Call the body factory which allocates memory for the ground body
// from a pool and creates the ground box shape (also from a pool).
// The body is also added to the world.

b2Body* groundBody = world.CreateBody (&groundBodyDef) ;

// Define the ground box shape.
b2PolygonShape groundBox;

// The extents are the half-widths of the box.
groundBox.SetAsBox (50.0£, 10.0f);

// Add the ground fixture to the ground body.
groundBody->CreateFixture (&groundBox, 0.0f);

[k ko kA AR AR RAARARRARAAAAA AR ARk ko kkkkkkkkkkkkkkk//

// Creating a Circle Shape //

[k ko kR A AR A AKRAARAARAKRAAA AR AR Ak kkkkkkkkkkkkkkkkkkk//

b2BodyDef BodyDef;

BodyDef.type = b2_dynamicBody;
BodyDef.position = b2Vec2(0.0£f, 4.0f);
BodyDef.userData = (void x) "Circle";
b2Body* body = world.CreateBody (&BodyDef) ;

b2CircleShape circle;
circle.m_radius = 1.0f;

b2FixtureDef fixtureDef;
fixtureDef.density = 1.0f;
fixtureDef.friction = 2.0f;
fixtureDef.restitution = 0.5f;

fixtureDef.shape = &circle;
body—->CreateFixture (&fixtureDef);
[k ko kR kAR AR R AARAARKAAAAAAA AR ARk ko kkkkkkkkkkkkkk//

// Simulating the World (of Box2D) //

[k ko kR A AR A ARAARAARAAAAA AR AR Ak hkhkkkkkkkkkkkkkkkkkk//

1.8. Examples 57

biicode docs Documentation, Release 3.0.2

float32 timeStep = 1.0f / 60.0f;
int32 velocityIterations = 6;
int32 positionIterations = 2;

// This is our little game loop.
for (int32 i = 0; 1 < 100; ++1i)
{

// Instruct the world to perform a single step of simulation.

// It 1s generally best to keep the time step and iterations fixled.

world.Step (timeStep, velocitylterations, positionIterations);

// Now print the position and angle of the body.
b2Vec2 position = body->GetPosition();
float32 angle = body->GetAngle();

if (position.y - 1.00 <= 0.001)
cout<< "Ball hits the ground!!" << endl;
else
cout<<"X = " << position.x << " Y = " << position.y << endl;

Manage your dependencies

Check the dependencies of the project with bii deps:

$ bii deps
your_user/box2d_example depends on:
system:
iostream
unresolved:

Box2D/Box2D.h

Now, edit the biicode.conf file generated in the project folder. Add your [requirements]
depending on the version you want and map your [includes]:

[requirements]
erincatto/box2d: 10

[includes]
Box2D/Box2d.h: erincatto/box2d

Check again with bii deps and now all dependencies are resolved.

58 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

Build the project

Next, the only thing left is building the project:

S bii build

Execute the binary placed in bin directory and this is how output looks like:

~/box2d$ bin/myuser_box2d_example_main

X =0Y = 3.99722

X =0Y = 3.99167

X 0 Y 3.98333

X 0 Y 3.97222

X 0 Y 3.95833

X =0Y = 3.94167

X =0Y = 3.92222
Ball hits the ground!!
That’s it!

Open and build

This example is already in biicode: examples/box2d.

To give it a try, create a new project and open the block:

S bii init box2d_example
$ cd box2d_example
S bii open examples/box2d

Build the example and execute it:

S bii build
S cd bin
S # Execute it

X
X
X

o O O
KKK

3.95833

= 3.94167

3.92222

Ball hits the ground!!

Got any doubts? Do not hesitate to contact us, visit our forum and feel free to ask any questions.

1.8.4 C++ challenge

We have proposed a C++ challenge for showing the benefits of our technology. The goal is to build
a wrapper around two linear systems solver; one dense, and the other one sparse.

1.8. Examples 59

http://www.biicode.com/examples/box2d
http://web.biicode.com/contact-us/
http://forum.biicode.com/
https://github.com/biicode/challenge

biicode docs Documentation, Release 3.0.2

The source files have dependencies to 3 well known open source libraries:
* Eigen Library is headers-only.
» CSparse is very simple, just a *.h and some *.c files

* Google GTest is also very portable, independent and prepared to be integrated in other
projects.

The challenge consists in building and running the code, in three different platforms: Windows,
Linux and Mac. Try solving it by your own means, and then solve the problem with biicode. You’ll
see how much easier and natural it is!

In this section we explain, step by step, how to solve this challenge with the help of biicode.

Create a new project

Open your console and create a new project named “challenge’:

S bii init challenge
$ cd challenge

Copy the code

Download the challenge sources from github or in zipped format from this link. Copy all the files
into challenge/blocks/your_user_name/challenge. If you got the sources from
github, you need to replace the #include directives as follows: (#include ‘“sparse/cs.h” => #in-
clude “tdavis/sparse/cs.h”, #include <eigen/Dense> => #include <eigen/eigen/Dense>, #include
“gtest/include/gtest/gtest.h” => #include “google/gtest/include/gtest/gtest.h’)

Now you can check for all the code dependencies of the current project using the bii deps
command. Please, note that while most of the dependencies are correctly solved, three of them are
not. Theses unresolved dependencies have been highlighted in the following figure:

S bii deps
Detected 5 files created, 0 updated
Processing project
Cell your_user_name/challenge/systemsolver.h is implemented by set ([\'

Find resources with include to gtest ['your_user_name/challenge/testl.cp

Adding resources to your_user_name/challenge/gtest_main.cc
Saving files on disk
DepTable:
Declarations:
Resolved
map

your_user_lI

']

60 Chapter 1. Biicode

https://github.com/biicode/challenge
http://eigen.tuxfamily.org
http://www.cise.ufl.edu/research/sparse/CSparse/
https://code.google.com/p/googletest/
https://github.com/biicode/challenge
https://biicorporateproduction.s3.amazonaws.com/media/uploads/challenge.zip

biicode docs Documentation, Release 3.0.2

vector
iostream
your_user_name/challenge/systemsolver.h
fstream

Unresolved
eigen/eigen/Dense
google/gtest/include/gtest/gtest.h
tdavis/csparse/include/cs.h

Files deps:

System
map
vector
iostream
fstream

Explicit
your_user_name/challenge/systemsolver.h

Implicit
your_user_name/challenge/testl.cpp
your_user_name/challenge/systemsolver.cpp

Find and retrieve dependencies

Now that we know that our project has some missing dependencies, we’ll show you how easily
biicode helps you to automatically retrieve all of them. You only need to write the bii find
command. You’ll be asked to provide your biicode password, and the client will find and retrieve
from our servers any missing dependencies:

$ bii find

Finding missing dependencies in server

Password for your_user_name:

Looking for eigen/eigen...
>> Block candidate: eigen/eigen (eigen/master)
>> Version eigen/eigen (eigen/master): 0 (STABLE) valid due your policy
Found blocks: eigen/eigen (eigen/master): 0

Looking for tdavis/csparse...
>> Block candidate: tdavis/csparse (tdavis/master)
>> Version tdavis/csparse (tdavis/master): 0 (STABLE) valid due your po
Found blocks: tdavis/csparse (tdavis/master): 0

Looking for google/gtest...
>> Block candidate: google/gtest (google/master)
>> Version google/gtest (google/master): 2 (STABLE) valid due your poli
>> Version google/gtest (google/master): 1 (STABLE) valid due your poli
>> Version google/gtest (google/master): 0 (DEV) discarded due your pol
Found blocks: google/gtest (google/master): 2
Found blocks: google/gtest (google/master): 1

Analyzing compatibility for found dependencies...

licy!

cy!
cy!
icy!

1.8. Examples 61

biicode docs Documentation, Release 3.0.2

Resolved block!
Resolved block!
Resolved block!

Dependencies resolved in server:

Find resolved new dependencies:
eigen/eigen (eigen/master): O
google/gtest (google/master): 2
tdavis/csparse (tdavis/master) :

All dependencies resolved

Saving files on disk

Computing dependencies

Retrieving resources from server

Retrieving resources from server

Retrieving resources from server

Retrieving resources from server

Saving dependences on disk

0

At this point, you’ll find some new folders and files in your challenge/dep folder. These are

the blocks that biicode considers as needed for compiling the project.

Build and run

The final step is to actually compile and run the app. You can accomplish this task with the bii

build command and run the executable inside the bin folder:

$ bii build

$ cd bin

$ #run solver executable

A hkkAkhkkhkrxhkkrxkArx*kx SPARSE **,rx*hkrkhhkxkkx*
0: 1

0.5
0.333333
0.25

0.2
0.166667
0.142857
0.125
0.111111
0.1

*
1
0
0

dAxkAhkrxkrxkkx* DENSE H**,**Axhkrxhkxkk**

N P O % O 00 J o U dbd W

w U1

33333

(22]
N

Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

.25

.2
.166667
.142857
.125
L111111
.1

OW 0 J o U » W
O O O O O o o

Running the tests is really easy too. Note that in this case one of the tests fails due to sparse solver
accuracy, but the execution of the test itself works just fine!.

S cd bin
S #run test executable
[==========] Running 2 tests from 1 test case.
[-———] Global test environment set-up.
[] 2 tests from Solver
[RUN] Solver.BasicDiagonalSparse
challenge/blocks/your_user_name/challenge/testl.cpp:21: Failure
Value of: 1./ (i+1)
Actual: 0.5
Expected: sol[i]
Which is: 0.5
challenge/blocks/your_user_name/challenge/testl.cpp:21: Failure
Value of: 1./ (i+1)
Actual: 0.333333
Expected: sol[i]
Which is: 0.333333

[FAILED] Solver.BasicDiagonalSparse (0 ms)

[RUN] Solver.BasicDiagonalDense

[OK] Solver.BasicDiagonalDense (1 ms)
[-—————————] 2 tests from Solver (1 ms total)
[——————————] Global test environment tear—-down
[==========] 2 tests from 1 test case ran. (1 ms total)
[PASSED] 1 test.

[FAILED] 1 test, listed below:

[FAILED] Solver.BasicDiagonalSparse

1 FAILED TEST

1.8.5 Cimg

The CImg Library is an open-source C++ toolkit for image processing. It consists of a single header
file “CImg.h” providing a minimal set of C++ classes and methods that can be used in your own
sources, to load/save, process and display images. Very portable (Unix/X11,Windows, MacOS
X, FreeBSD, ..), efficient, easy to use, it’s a pleasant library for developping image processing

1.8. Examples 63

20

21

22

23

24

25

biicode docs Documentation, Release 3.0.2

algorithms in C++.

The main CImg block is at tschumperle/cimg and contains several examples. Its generated from
this github repo.

Tron game

This is a classic Tron game that shows how to load and manipulate images with Cimg library in a
simple way.

Let’s try it out!

Create a new project

Init a new project and a new tron.cpp file inside and copy the code below:

S bii init tron_example -L
S cd tron_example
$ # Create tron.cpp and copy the code

tron.cpp

~
*

H o o H H H o H o H S H H H o H W K H

File : tron.cpp
(C++ source file)

Description : A clone of the famous (and very simple) Tron game.
This file is a part of the CImg Library project.
(http://cimg.sourceforge.net)

Copyright : David Tschumperle
(http://tschumperle.users.greyc.fr/)

License : CeCILL v2.0
(http://www.cecill.info/licences/Licence_CeCILL_V2-en

This software is governed by the CeCILL license under French law an
abiding by the rules of distribution of free software. You can use
modify and/ or redistribute the software under the terms of the CeCI
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".

As a counterpart to the access to the source code and rights to cop

modify and redistribute granted by the license, users are provided o
with a limited warranty and the software's author, the holder of t
economic rights, and the successive licensors have only limited

Y
nly
he

(2]
=9

Chapter 1. Biicode

https://www.biicode.com/tschumperle/cimg
https://github.com/lasote/cimg

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

biicode docs Documentation, Release 3.0.2

N FH o H H H H H H H S H S H

*

liability.

In this respect, the user's attention is drawn to the risks associat
with loading, wusing, modifying and/or developing or reproducing th
software by the user in light of its specific status of free softwar
that may mean that it is complicated to manipulate, and that als
therefore means that it is reserved for developers and experience
professionals having in-depth computer knowledge. Users are therefor
encouraged to load and test the software's suitability as regards th
requirements in conditions enabling the security of their systems an
data to be ensured and, more generally, to use and operate it in th
same conditions as regards security.

The fact that you are presently reading this means that you have had
knowledge of the CeCILL license and that you accept its terms.

#include "CImg.h"
using namespace cimg_library;

// Main procedure

int main (int argc, char xxargv) {

// Print usage, help and retrieve command line options

cimg_usage ("A very simple Tron game, using the CImg Library");
cimg_help("--— Quick help ——————"—"—-"-"—"—""—"""—"""—————— \n"

" Player 1 (blue) :\n"

" Use keys 'W' (up), 'S' (down), 'A' (left)\n"

" and 'D' (right) to control your player.\n"

" Right 'CONTROL' key enables turbospeed\n"

" Player 2 (red) : \n"

" Use arrow keys to control your player.\n"

u '"TAB' key enables turbospeed.\n"

const char xgeom = cimg_option("-g","300x300","Size of the game Db
const int delay = cimg_option("-s",10, "Game speed (lower value m
const bool twoplayers = !cimg_option("-1",false,"One player only");
const int zoom = cimg_option("-z",1, "Zoom factor");

const bool full = cimg_option("-f", false, "Fullscreen mode");

unsigned int W = 400, H = 400;
std::sscanf (geom, "susxcsu", &W, &H) ;

eir
d/or

ocard") ;
eans faster

1.8. Examples 65

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

biicode docs Documentation, Release 3.0.2

// Define game colors and variables

[/

const unsigned char blue[] = { 128,200,255}, red[] = { 255,0,0 }, whit
int scorel=0, score2=0, round_over=0, ixl=-1, iyl=-1, x1=0, y1=0, ul=0
bool start_round = true, turbol = false, turbo2 = false;

// Create background image

[/ ==
CImg<unsigned char> background, img;
background.assign(64,64,1,3,0) .noise (60) .draw_plasma () .resize (W, H) .blu

// Open display window
CImgDisplay disp (background, "+ CImg-Tron =");
if (zoom>1l) disp.resize (-100%xzoom,-100xzoom) ;
if (full) disp.toggle_fullscreen() .display (background);
// Start main game loop
while (!disp.is_closed() && !disp.is_keyESC()) {
// Init new game round if necessary

if (start_round) {

// Init game variables

round_over = 0;
ixl=-1; iyl=-1; x1 = 10; yl = 10; ul = 1; vl = 0; turbol = f4g
ix2=-1; iy2=-1; x2 = W-11; y2 = H-11; u2 = -1; v2 = 0; turbo2 = fa

img = background;
start_round = false;

// Display a simple pre-round page

CImg<unsigned char> logo, pressakey;

logo.draw_text (0,0," CImg-Tron ",white,0,1,33).resize(-100,-100,1,

CImg<unsigned char> tmp = (+background) .draw_image ((W-logo.width ()
draw_text (W/2-60,H/2+10, "Blue (%u)",blue,0,1,13,scorel).
draw_text (W/2+10,H/2+10,"Red (%u)",red,0,1,13, score?);

pressakey.draw_text (0,0, "x Press a key to start round x",white);

for (float i = 0; i<1l; i+=0.05f) ((+tmp)*=1i).display(disp.wait (20)

disp.flush();

for (unsigned long t = 0; !disp.key() && !disp.is_closed(); ++t) {

if (! (t%10)) { if (t%20) disp.display(tmp); else disp.display ((H
if (disp.wait (20).is_resized()) disp.resize(disp);
}
if (disp.is_keyESC()) disp.flush{();

e[] = { 25¢
, v1=0, ix’

r(2) .normal

lse;
lse;

tmp) .draw_:

66 Chapter 1. Biicode

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

biicode docs Documentation, Release 3.0.2

// Test collision between players and borders
if (x1<0 || x1>=img.width() || y1<0 || yl>=img.height () ||
img(x1,y1l,0) !'=background(x1,y1,0) ||
img(x1l,yl,1) !=background(x1l,vy1l,1) ||
img(x1,vy1l,2) !'=background(x1,y1,2) ||
((ix1>=0 || iyl>=0) && (img(ix1l,iyl,0) !=background(ixl,iyl1l,0) ||
img(ix1l,iy1l,1) !'=background(ix1l,iyl,1) ||
img (ix1,1iy1l,2) !=background (ix1l,iyl1,2))))
if (twoplayers) {

if (x2<0 || x2>=img.width() || y2<0 || y2>=img.height () ||
img (x2,y2,0) !'=background (x2,v2,0) ||
img (x2,y2,1) !=background (x2,y2,1) ||
img (x2,vy2,2) !'=background (x2,v2,2) ||
((1ix2>=0 || iy2>=0) && (img(ix2,iy2,0) !=background(ix2,iy2,0)

img(ix2,iy2,1) !=background (ix2,iy2,1)
img (ix2,1y2,2) !=background (ix2,iy2,2))

// Draw new players positions
img.draw_point (x1,vy1l,blue);
if (ix1>=0 && 1iy1>=0) img.draw_point (ix1l,iyl,blue);
if (twoplayers) {

img.draw_point (x2,y2,red);

if (ix2>=0 && iy2>=0) img.draw_point (ix2,iy2, red);
}
if (disp.is_resized()) disp.resize (disp);
img.display (disp);

// Update players positions
x1+=ul; yl+=vl;
if (turbol) { ixl = x1; iyl = yl; xl+=ul; yl+=vl; } else { ixl = iyl
if (twoplayers) {
xX2+=u2; y2+=v2;
if (turbo2) { ix2 = x2; iy2 = y2; x2+=u2; y2+=v2; } else { ix2 = i

// Test keyboard events
int nul = ul, nvl = vl, nu2 = u2, nv2 = v2;

if (disp.is_keyARROWLEFT ()) { nul = -1; nvl = 0; }

if (disp.is_keyARROWRIGHT()) { nul = 1; nvl = 0; }

if (disp.is_keyARROWUP ()) { nul = 0; nvl = -1; }

if (disp.is_keyARROWDOWN ()) { nul = 0; nvl = 1; }
(

turbol = disp.is_keyCTRLRIGHT () ;

if (twoplayers) {
if (disp.is_keyA()) { nu2 = -1; nv2 = 0; }
if (disp.is_keyD()) { nu2 = 1; nv2 = 0; }

{

1.8. Examples 67

// Colli:

round_ O

// Col]

{ round._

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

biicode docs Documentation, Release 3.0.2

if (disp.is_keyW()) { nu2 = 0; nv2 = -1; }

if (disp.is_keyS()) { nu2

Il
o

nv2 = 1; }

turbo2 = disp.is_keyTAB();

}

if (nul!=-ul && nvl!=-v1l) { ul = nul; vl = nvl; }
if (nu2!=-u2 && nv2!=-v2) { u2 = nu2; v2 = nv2; }

// Check 1f round is over.

if (round_over) {

const int xc = round_over==17xl:x2, ycC

round_over==1?yl:y2;

for (int r=0; r<50; r+=3) img.draw_circle (xc,yc,r,round_over==17bl

for (int rr=0; rr<50;

rr+=3)

((+img) »=(50-rr) /50.0f) .draw_circle (xc,yc, (50+rr), round_over==17?

start_round = true;

// Wait a small amount of time

disp.wait (delay);
}

return 0;

ue:red, r/3(

blue:red, 1,

Manage your dependencies

Check the dependencies of the project with bii deps:

S bii deps
INFO: Processing changes...

your_user/cimg_example depends on:

unresolved:
CImg.h

Now, edit the biicode.conf file generated in the project folder. Add your [requirements]
depending on the version you want and map your [includes]:

[requirements]
tschumperle/cimg: 4

[includes]

CImg.h: tschumperle/cimg

Now, checking again bii deps shows all resolved dependencies.

If you’re not using Windows OS, you might need the external X11 library dependency, check it!

Linux OS:

68

Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

‘$ sudo apt-get install libxll-dev

Mac OS:
Go to XQuartz home page, download the package and install it.

You might need to modify the CMakeLists.txt of your block in order to include the external X11
dependency in the linking process:

include (${CMAKE HOME_DIRECTORY}/biicode.cmake)
ADD BII TARGETS ()

IF (APPLE)
FIND_PACKAGE (X11)
TARGET_LINK_LIBRARIES (S$S{BII_BLOCK_TARGETS} PUBLIC ${X11_LIBRARIES})
INCLUDE_DIRECTORIES (/opt/X11/include)

ENDIF ()

IF (UNIX)
IF (NOT APPLE)
TARGET_LINK_LIBRARIES (${BII_BLOCK_TARGETS} PUBLIC X11)
ENDIF ()
ENDIF ()

Build the project

Now, build and run your Tron game!

S bii build
S cd bin
S # Run the executable

Open and build

This example is already in biicode: examples/cimg. Give it a try, just open a new project and open
the block.

bii init cimg_example

cd cimg_example

bii open examples/cimg

bii build

cd bin

Run the generated executable
./examples_cimg_tron # on linux

n U »r Lr U W - »

examples_cimg_tron.exe # on windows

1.8. Examples 69

http://xquartz.macosforge.org/landing/
http://www.biicode.com/examples/cimg

biicode docs Documentation, Release 3.0.2

Note that this example block already includes all required modifications above in both biicode.conf
and CMakeLists.txt.

Any doubts? Do not hesitate to contact us visit our forum and feel free to ask any questions.

1.8.6 Crypto++

Crypto++ is a C++ class library of cryptographic algorithms and schemes written by Wei Dai. For
more information about this library, visit their official website or wiki.

Crypto++ library is allocated and ready to use at cryptopp/cryptopp.

Encrypt a message

The following example shows how to encrypt a message with SHA1 code.

Create a new project

Start a new project and copy the code below:

S bii in

it cryptopp_example -L

S cd cryptopp_example
$ # Create main_cryptopp.cpp

S # Copy

the code

main_crypto.cpp

#include
#include
#include
#include
#include

"sha.h"
"filters.h"
"hex.h"
<iostream>
<string>

int main() {

CryptoPP::SHA1 shal;
std::string source = "Hello";
std::string hash = "";
CryptoPP::StringSource (source,
std::cout << hash;

//This will be randomly generated

true,

new CryptoPP::HashFilter (sh

Manage your dependencies

Check the dependencies of the project with bii deps:

70

Chapter 1. Biicode

somehow

al,

new Cry

http://web.biicode.com/contact-us/
http://forum.biicode.com/
http://www.cryptopp.com/
http://en.wikipedia.org/wiki/Crypto%2B%2B
https://www.biicode.com/cryptopp/cryptopp

biicode docs Documentation, Release 3.0.2

S bii deps
INFO: Processing changes...
your_user/cryptopp depends on:
system:
iostream
string
unresolved:
filters.h
hex.h
sha.h

Edit the biicode.conf file generated in the project folder. Add your [requirements] depending
on the version you want and map your [includes]:

[requirements]
cryptopp/cryptopp: 8

[includes]
*.h: cryptopp/cryptopp

Check again with bii deps to show all dependencies are now resolved.

Build the project

Now, build and run the encryption code.

S bii build

S cd bin

S # run executable
F7FFO9ES8B7BB2E09B70935A5D785E0CC5D9D0OARBFEFO

Open and build

You can find this example in the biicode crypto samples block. See how it works in a few steps
here.

Create a project:

S bii init cryptopp_example
S cd cryptopp_example
S bii open examples/cryptopp

You will see next console output after executing the command:

S ./bin/examples_cryptopp_main_crypto
F7FFOE8B7BB2E09B70935A5D785E0CC5D9D0OAREO

1.8. Examples 7

http://www.biicode.com/examples/cryptopp

biicode docs Documentation, Release 3.0.2

1.8.7 CSparse

CSparse is a C library which implements a number of direct methods for sparse linear systems, by
Timothy Davis.

Csparse libary can be used form , this block is generated from this .
Read a matrix and solve a linear system

With this example you can read a matrix saved in a file and solve a linear system.

You need cs_demo.h and cs_demo.c to encampsule some functions to use in the example and a
matrix file /. Then, cs_demo2.c implements the main function. Let’s do it!

Create a new project

S bii init csparse_example -L
S cd csparse_example

S # copy the files below

cs_demo.h

#include "cs.h"

typedef struct problem_struct
{
cs *A ;
cs *xC ;
csi sym ;
double x*x ;
double *b ;
double x*resid ;
} problem ;

problem xget_problem (FILE xf, double tol) ;
csi demo2 (problem *Prob) ;
csi demo3 (problem xProb) ;

problem xfree_problem (problem xProb) ;

cs_demo.c

#include "cs_demo.h"

#include <time.h>

/» 1 1if A is square & upper tri., -1 if square & lower tri., 0 otherwise
static csi is_sym (cs xA)

{

csi is_upper, is_lower, j, p, n = A->n, m = A->m, *Ap = A->p, *Ai =

A->1

72 Chapter 1. Biicode

4

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

biicode docs Documentation, Release 3.0.2

if (m !'= n) return (0) ;
is_upper =1 ;

is_lower ;

for (j =0 ; Jj < n ; J+t+)
{

Il
=

for (p = Ap [J] 7 p < Ap [J+1] ; pt++)
{

if (Ai [p] > J) dis_upper = 0 ;

if (Ai [p] < Jj) is_lower ;

}

return (is_upper ? 1 : (is_lower ? -1 : 0)) ;

/+ true for off-diagonal entries */
static csi dropdiag (csi i, csi j, double aij, wvoid *other) { return (i

/* C = A 4+ triu(a,1)"' =/
static cs xmake_sym (cs xA)
{

cs «AT, *C ;

AT = cs_transpose (A, 1) ; /* AT = A' %/
cs_fkeep (AT, &dropdiag, NULL) ; /+ drop diagonal entries from AT
C = cs_add (A, AT, 1, 1) ; /% C = A+AT =/

cs_spfree (AT) ;
return (C) ;

/* create a right—-hand side */
static void rhs (double *x, double x*b, csi m)

{

csi 1 ;
for (i =0 ; i <m; i++) b [1i] =1 + ((double) i) / m ;
for 1 =0 ; 1 <m ; i++) x [1i] = b [1i] ;
}
/* infinity-norm of x =/
static double norm (double *x, csi n)
{
csi 1 ;
double normx = 0 ;
< n ; i++) normx = CS_MAX (normx, fabs (x [i])) ;

for (i =0 ; i
)

return (normx) ;

/* compute residual, norm(Ax*x-b,inf) / (norm(A,1l)*norm(x,inf) + norm(b, i

static void print_resid (csi ok, cs xA, double xx, double x*b, double xre

*/

nt))
sid)

1.8. Examples 73

*/

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

biicode docs Documentation, Release 3.0.2

csi i, m, n ;
if (!ok) { printf (" (failed) \n") return ; }
m = A->m ; n = A->n ;
for (i =0 ; i <m ; i++) resid [1] = -b [i] ; /* resid = -b %/
cs_gaxpy (A, x, resid) ; /* resid = resid + A
printf ("resid: %8.2e\n", norm (resid,m) / ((n == 0) 2 1
(cs_norm (A) * norm (X,n) + norm (b,m)))) ;
}
static double tic (void) { return (clock () / (double) CLOCKS_PER_SEC) ;
static double toc (double t) { double s = tic () ; return (CS_MAX (0, s-

static void print_order (csi order)

{

switch (order)

{
case 0: printf ("natural ") ;, break ;
case 1: printf ("amd(A+A'") ") ; break ;
case 2: printf ("amd(S'=*S) ") , break ;
case 3: printf ("amd(A'=xA) ") ; break ;

/* read a problem from a file; use %g for integers

to avoid csi conflict

problem xget_problem (FILE xf, double tol)

{
cs «T, %A, *xC ;
csi sym, m, n, mn, nzl, nz2 ;
problem xProb ;
Prob = cs_calloc (1, sizeof (problem)) ;
if (!Prob) return (NULL) ;
T = cs_load (f) ; /+ load triplet matrix T from a
Prob->A = A = cs_compress (T) ; /* A = compressed-column form off
cs_spfree (T) ; /*x clear T x/
if (!cs_dupl (A)) return (free_problem (Prob)) ; /x sum up duplicate
Prob->sym = sym = is_sym (A) ; /+ determine if A is symmetric =
m = A->m ; n = A->n ;
mn = CS_MAX (m,n) ;
nzl = A->p [n] ;
cs_dropzeros (A) ; /+ drop zero entries */
nz2 = A->p [n] ;
if (tol > 0) cs_droptol (A, tol) ; /+ drop tiny entries (just to te
Prob->C = C = sym ? make_sym (A) A; /+ C=2A+ triu(A,1)', or Cs
if (!C) return (free_problem (Prob)) ;
printf ("\n-—-- Matrix: $g-by-%g, nnz: %g (sym: %g: nnz %g), norm: %8

(double) m, (double) n, (double) (A->p [n]), (double) sym,

*/

s x/

file %/
T x/

s x/

/

st) */

A x/

.2e\n",

74

Chapter 1. Biicode

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

biicode docs Documentation, Release 3.0.2

(
(nzl !
(nz2 !

(

if
if

Prob->b
Prob->x
Prob->res
return ((

/+ free a pro

problem xfree problem

{
if (!Prob
cs_spfree
if (Prob-
cs_free
cs_free
cs_free
return (

(
(
(
c

double) (sym ? C->p [n] 0), cs_norm (C)) ;
= nz2) printf ("zero entries dropped: %g\n", (double) (nzl
= A-—>p [n]) printf ("tiny entries dropped: %g\n",
double) (nz2 - A->p [n])) ;
cs_malloc (mn, sizeof (double)) ;
cs_malloc (mn, sizeof (double)) ;
id = cs_malloc (mn, sizeof (double)) ;
'Prob->b || !'Prob->x || !Prob->resid) ? free_problem (Prob)

blem %/

) return (NULL)
(Prob—>A) ;
>sym) cs_spfree
Prob->b) ;
Prob->x) ;
Prob—->resid) ;
s_free (Prob))

’

4

(P

(problem xProb)

rob->C) ;

/* solve a linear system using Cholesky, LU, and QR, with various orderi
csi demo2 (problem *Prob)
{
cs *A, *C ;
double *b, *x, #*resid, t, tol ;
csi k, m, n, ok, order, nb, ns, *r, *s, *rr, sprank ;
csd %D ;
if (!Prob) return (0) ;
A = Prob->A ; C = Prob—->C ; b = Prob->b ; x = Prob->x ; resid = Prob
m = A->m ; n = A->n ;
tol = Prob->sym ? 0.001 1 ; /* partial pivoting tole
D = cs_dmperm (C, 1) ; /* randomized dmperm ana
if (!D) return (0) ;
nb = D->nb ; r = D->r ; s = D->s ; rr = D->rr ;
sprank = rr [3] ;
for (ns = 0, k =0 ; k < nb ; kt++)
{
ns += ((r [k+1] == [k]1+1) && (s [k+1l] == [k]1+1)) ;
}
printf ("blocks: %$g singletons: %g structural rank: %g\n",
(double) nb, (double) ns, (double) sprank) ;
cs_dfree (D) ;
for (order = 0 ; order <= 3 ; order += 3) /* natural and amd (A'=x*A)
{
if (!order && m > 1000) continue ;

- nz2));

Prob)

ngs x/

->resid;

rance x/

lysis =/

*/

1.8. Examples

75

4

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

biicode docs Documentation, Release 3.0.2

printf ("QR ")
print_order (order) ;

rhs (x, b, m) ; /+ compute right-hand si
t = tic () ;
ok = cs_grsol (order, C, x) ; /* min norm(Ax—b) with Q
printf ("time: %8.2f ", toc (t)) ;
print_resid (ok, C, x, b, resid) ; /* print residual =/
}
if (m != n || sprank < n) return (1) ; /* return if rect. or si
for (order = 0 ; order <= 3 ; order++) /+ try all orderings =/

{
if (!'order && m > 1000) continue ;
printf ("LU ")
print_order (order) ;

rhs (x, b, m) ; /* compute right-hand si
t = tic () ;

ok = c¢s_lusol (order, C, x, tol) ; /* solve Ax=b with LU =/
printf ("time: %8.2f ", toc (t)) ;

print_resid (ok, C, x, b, resid) ; /* print residual =/

}
if (!Prob->sym) return (1) ;
for (order = 0 ; order <= 1 ; order++) /* natural and amd (A+A")
{
if (!'order && m > 1000) continue ;
printf ("Chol ") ;
print_order (order) ;

rhs (x, b, m) ; /* compute right-hand si
t = tic () ;

ok = c¢s_cholsol (order, C, x) ; /* solve Ax=b with Chole
printf ("time: %8.2f ", toc (t)) ;

print_resid (ok, C, x, b, resid) ; /* print residual =/

}

return (1) ;

/+ free workspace for demo3 «/

static csi done3 (csi ok, css %S, csn xN, double xy, cs %W, cs *E, csi =

{
cs_sfree (
cs_nfree (
cs_free (y) ;
cs_spfree (W) ;
cs_spfree (E) ;
cs_free (p) ;
return (ok) ;

S)
N) ;
)

de «/

R */

ngularx*/

de =/

de «/

sky */

76 Chapter 1. Biicode

195

196

197

198

199

200

201

202

203

204

205

206

207

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

biicode docs Documentation, Release 3.0.2

/* Cholesky update/downdate =*/

csi demo3

{

(problem =xProb)

cs xA, xC, *W = NULL, *WW, «WT, *E = NULL, W2 ;
csi n, k, *xLi, *Lp, *Wi, «Wp, pl, p2, *p = NULL, ok ;
double xb, xx, *resid, *y = NULL, *Lx, *Wx, s, t, tl ;
css *S = NULL ;
csn *N = NULL ;
if (!Prob || !'Prob->sym || Prob->A->n == 0) return (0) ;
A = Prob->A ; C = Prob—>C ; b = Prob-—>b ; x = Prob->x ; resid = Prob->resid;
n = A->n ;
if (!Prob->sym || n == 0) return (1) ;
rhs (x, b, n) ; /+ compute right-hand silde =/
printf ("\nchol then update/downdate ") ;
print_order (1) ;
y = cs_malloc (n, sizeof (double)) ;
t = tic () ;
S = cs_schol (1, C) ; /* symbolic Chol, amd(A+HA') */
printf ("\nsymbolic chol time %8.2f\n", toc (t)) ;
t = tic () ;
N = cs_chol (C, S) ; /* numeric Cholesky x/
printf ("numeric chol time %8.2f\n", toc (t)) ;
if (!sS || !N || !y) return (done3 (0, S, N, y, W, E, p)) ;
t = tic () ;
cs_ipvec (S->pinv, b, vy, n) ; /* y = Pxb x/
cs_lsolve (N->L, y) ; /* y = L\y */
cs_ltsolve (N->L, y) ; /x y = L'\y x/
cs_pvec (S->pinv, y, X, n) ; /* X = P'xy */
printf ("solve chol time %8.2f\n", toc (t)) ;
printf ("original: ")
print_resid (1, C, x, b, resid) ; /* print residual =/
k = n/2 ; /* construct W */
W = cs_spalloc (n, 1, n, 1, 0) ;
if (!W) return (done3 (0, S, N, y, W, E, p)) ;
ILp = N-—>L->p ; Li = N->L->i ; Lx = N->L->x ;
Wp = W-—>p ; Wi = W-—>1 ; Wx = W->x ;
Wp [0] = 0 ;
pl = Lp [k] ;
Wp [1] = Lp [k+1] - pl ;
s = Lx [pl] ;
srand (1) ;
for (; pl < Lp [k+1l] ; pl++)
{
p2 = pl - Lp [k] ;
Wi [p2] = Li [pl] ;
Wx [p2] = s * rand () / ((double) RAND_MAX) ;
}
1.8. Examples 77

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

278

279

280

281

282

283

284

285

286

287

biicode docs Documentation, Release 3.0.2

t = tic () ;

ok = cs_updown (N->L, +1, W, S->parent) ;
tl = toc (t) ;

printf ("update: time: %8.2f\n", tl) ;

if (!ok) return (done3 (0, S, N, y, W, E,

t = tic () ;

cs_ipvec (S->pinv, b, y, n) ;

cs_lsolve (N->L, vy) ;

cs_ltsolve (N->L, vy) ;

cs_pvec (S->pinv, y, X, n) ;

t = toc (t) ;

p = cs_pinv (S->pinv, n) ;

W2 = cs_permute (W, p, NULL, 1) ;

WT = cs_transpose (W2,1) ;

WW = cs_multiply (W2, WT) ;

cs_spfree (WT) ;

cs_spfree (W2) ;

E = cs_add (Cc, ww, 1, 1) ;

cs_spfree (WwW) ;

if (!'E || 'p) return (done3 (0, S, N, vy, W,
printf ("update: time: %8.2f (incl solve)
print_resid (1, E, x, b, resid) ;

cs_nfree (N) ;

t = tic () ;

N = cs_chol (E, S) ;

if (!N) return (done3 (0, S, N, y, W, E, p))
cs_ipvec (S—->pinv, b, y, n) ;

cs_lsolve (N->L, vy) ;

cs_ltsolve (N->L, vy) ;

cs_pvec (S->pinv, y, X, n) ;

t = toc (t) ;

printf ("rechol: time: %8.2f (incl solve)
print_resid (1, E, x, b, resid) ;

t = tic () ;

ok = cs_updown (N->L, -1, W, S->parent) ;
tl = toc (t) ;

if (!'ok) return (done3 (0, S, N, y, W, E,
printf ("downdate: time: %8.2f\n", tl) ;

t = tic () ;

cs_ipvec (S->pinv, b, y, n) ;

cs_lsolve (N->L, vy) ;

cs_ltsolve (N->L, vy) ;

cs_pvec (S->pinv, y, X, n) ;

t = toc (t) ;

printf ("downdate: time: %8.2f (incl solve)
print_resid (1, C, x, b, resid) ;

return (done3 (1, S, N, y, W, E, p)) ;

/ *

P))

/ *
/ *
/ *
/ *

/ *

E,

"
4

/ *
/ *

/ *
/ *
/ *
/ *
/ *

"
4

/ *

/ *

P))

/ *
/ *
/ *
/ *

/ *

update: LxL'+WAW' «/
y = Pxb */

y = L\y */

y = L'\y */

x = P'#y */

E=2C + (P'W *(P'W)"
p))

tl+t)

print residual =/

clear N =*/

numeric Cholesky x/

y = Pxb */

y = L\y */

y = L'\y */

x = P'*xy */

t)

print residual =/
downdate: LxL'-WxW' =

y = Pxb */

y = L\y =/

y = L'\y */

x = P'*xy */

tl+t)

print residual «/

78

Chapter 1. Biicode

289

biicode docs Documentation, Release 3.0.2

'}

cs_demo2.c

#include "cs_demo.h"

/* cs_demo2: read a matrix and solve a linear system =*/

int main (wvoid)

{
problem *xProb = get_problem (stdin, le-14) ;
demo2 (Prob) ;
free_problem (Prob) ;
return (0) ;

}

Place ¢/ file in a new folder called Matrix:

Matrix/t1

N O, W WwkEk O WwkRFDN
R O WkrEk OoOFDNWONDN
R > OO w D wkEk ww
Shommnono b o

Manage your dependencies

Create a biicode.conf file in the project folder. Add your [requirements] depending on
tdavis/csparse and map your [includes]:

[requirements]
tdavis/csparse: 1

[includes]
*.h: tdavis/csparse/Include

Check with bii deps to show all dependencies are resolved.

Build the project

Now, build and run the example

1.8. Examples 79

biicode docs Documentation, Release 3.0.2

nr U Ur Ur

bii build

cd bin

your_user_csparse_example_cs_demo2 < ../Matrix/tl
NOTE "your_user" should be your user's name

--— Matrix: 4-by-4, nnz: 10 (sym: O: nnz 0), norm:

blocks: 1 singletons: 0 structural rank: 4

QR natural time: 0.00 resid: 1.15e-017
OR amd (A' xA) time: 0.00 resid: 1.53e-017
LU natural time: 0.00 resid: 1.04e-017
LU amd (A+A") time: 0.00 resid: 4.94e-018
LU amd (S'«S) time: 0.00 resid: 4.94e-018
LU amd (A' xA) time: 0.00 resid: 4.94e-018

1.11e+001

Open and build

Yo

u can check all the csparse examples in .

Give it a quick try following the next steps.

Create a new project and open the examples.

~S
~S
~S
~S

bii init csparse_example
cd csparse_example

bii open examples/csparse
bii build

Execute any you want, for example, read a matrix saved in a file and solve a linear system:

$ cd bin

S examples_csparse_cs_demo2 < ../blocks/examples/csparse/Matrix/tl
—-—-— Matrix: 4-by-4, nnz: 10 (sym: O: nnz 0), norm: 1.11e+001
blocks: 1 singletons: 0 structural rank: 4

OR natural time: 0.00 resid: 1.15e-017

OR amd (A'*A) time: 0.00 resid: 1.53e-017

LU natural time: 0.00 resid: 1.04e-017

LU amd (A+A') time: 0.00 resid: 4.94e-018

LU amd (S'*S) time: 0.00 resid: 4.94e-018

LU amd (A'*A) time: 0.00 resid: 4.94e-018

1.8.8 cURL

cURL is a command line tool and library for transferring data with URL syntax, supporting DICT,
FILE, FTP, FTPS, Gopher, HTTP, HTTPS, IMAP, IMAPS, POP3, POP3S, SCP, SMTP, SMTPS,

80

Chapter 1. Biicode

http://curl.haxx.se/

biicode docs Documentation, Release 3.0.2

Telnet, TFTP... and supports SSL certificates, HTTP POST, HTTP PUT, FTP uploading, HTTP
form based upload...

You can check cURL documentation for more information.

cURL library is stored at lasote/curl generated from this github repo.

HTML page gatherer

This example demonstrates some basics using cURL. You’ll learn to open a website URL, show
and copy to a file its html’s code.

Creating a new project

Create a new project and a html-page.cpp inside like this:

S bii init curl_example -L
S cd curl_example
$ # Create html-page.cpp

The code of the example is this one, it goes to biicode’s docs website and copies the html code and
streams it (copies it to a file, copies it into a string and shows it in the terminal).

Copy the code in html-page.cpp:
html-page.cpp

#include <curl/curl.h>
#include <fstream>
#include <sstream>
#include <iostream>

using namespace std;
// callback function writes data to a std::ostream

static size_t data_write (voidx buf, size_t size, size_t nmemb, wvoidx use

{

if (userp)

{
std::ostream& os = *static _cast<std::ostreamx> (userp);
std::streamsize len = size * nmemb;

if (os.write(static_cast<charx> (buf), len))
return len;

return O;

1.8. Examples 81

http://curl.haxx.se/docs/
https://www.biicode.com/lasote/curl
https://github.com/lasote/curl
http://docs.biicode.com

biicode docs Documentation, Release 3.0.2

//timeout 1is in seconds
CURLcode curl_read(const std::string& url,
{

CURLcode code (CURLE_FAILED_INIT);

CURL~* curl

std::ostream& os, long timeou

curl_easy_init ();

if (curl)
{

if (CURLE_OK == (code = curl_easy_setopt (curl, CURLOPT_WRITEFUNCTION,
&& CURLE_OK == (code = curl_easy_setopt (curl, CURLOPT_NOPROGRESS, 1L
&& CURLE_OK == (code = curl_easy_setopt (curl, CURLOPT_FOLLOWLOCATION
&& CURLE_OK == (code = curl_easy_setopt (curl, CURLOPT_FILE, &o0s))

&& CURLE_OK == (code = curl_easy_setopt(curl, CURLOPT_TIMEOUT, timeo
&& CURLE_OK == (code = curl_easy_setopt (curl, CURLOPT_URL, url.c_str
{

code = curl_easy_perform(curl);

}

curl_easy_cleanup (curl);

}

return code;

int main ()

{
curl_global_init (CURL_GLOBAL_ALL);

std::ofstream ofs ("html-web-output.html");

if (CURLE_OK == curl_read("http://docs.biicode.com/", ofs))
{
cout<<"Web page successfully written to file!!"<<endl;
}
std::ostringstream oss;
if (CURLE_OK == curl_read("http://docs.biicode.com/", oss))

{
cout<<"Web page successfully written to string!!"<<endl;
std::string html oss.str();

if (CURLE_OK
{

curl_read ("http://docs.biicode.com/", std::cout))

cout<<endl<<"Web page successfully written to standard output!!"<<en

curl_global_cleanup();

30)

&data_writ

dl;

82 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

Manage your dependencies

Check the dependencies of the project with bii deps:

S bii deps
your_user/curl_example depends on:
system:
fstream
iostream
Sstream
unresolved:
curl/curl.h

Now, edit the biicode.conf file generated in the project folder. Add your [requirements]
depending on the version you want and map your [includes]:

[requirements]
lasote/curl: 2

[includes]
curl/+.h: lasote/curl/include

Check again with bii deps to show all resolved dependencies.

Build the project

Now, build and run the HTML page gatherer.

S bii build

$ cd bin

$ # execute it!

Web page successfully written to file!!

Web page successfully written to string!!

<!DOCTYPE html>

<!-—[if IE 8]><html class="no-js 1lt-ie9" lang="en" > <![endif]-->

Web page successfully written to standard output!!

Once you execute you should see an output like that one. Go to your bin folder and open html-
web-view.html in your browser to see biicode’s docs web page!

Open and build

This and other examples with cURL are already in biicode: examples/curl.

To give this one a try, create a new project and open the block:

1.8. Examples 83

http://www.biicode.com/examples/curl

biicode docs Documentation, Release 3.0.2

S bii init curl_example
$ cd bcl_example
S bii open examples/curl

Build the example and execute it:

S bii build

S cd bin

S examples_curl_html-page

Web page successfully written to file!!

Web page successfully written to string!!

<!DOCTYPE html>

<!——[if IE 8]><html class="no-js 1lt-ie9" lang="en" > <![endif]-->

Web page successfully written to standard output!!

Any doubts? Do not hesitate to contact us visit our forum and feel free to ask any questions.

1.8.9 Eigen

is a high-level C++ library of template headers for linear algebra, matrix and vector operations,
numerical solvers and related algorithms.

Eigen library is at , which is generated from this .

Middle rows from a matrix

This example shows the way to generate a random matrix, print it and then print only he middle
rOWS.

Create a project

Create a simple project and the following file inside it.

S bii init eigen_example -L
$ cd eigen_example
$ # copy DenseBase_middleRows_int.cpp

DenseBase_middleRows_int.cpp

#include <Eigen/Core>
#include <iostream>

using namespace Eigen;
using namespace std;

84 Chapter 1. Biicode

http://web.biicode.com/contact-us/
http://forum.biicode.com/

biicode docs Documentation, Release 3.0.2

int main (void)

{

int const N = 5;
MatrixXi A(N,N);

A.setRandom () ;

cout << "A =\n" << A << '"\n' << endl;

cout << "A(2..3,:) =\n" << A.middleRows (2,2) << endl;
return O;

Manage your dependencies

Check the dependencies of the project with bii deps:

S bii deps
INFO: Processing changes...
your_user/eigen_example depends on:
system:
iostream
unresolved:
Eigen/Core

Edit the biicode.conf file generated in the project folder. Add your [requirements] depending
on the version you want and map your [includes]:

[requirements]
eigen/eigen: 6

[includes]
Eigen/*: eigen/eigen

Check again with bii deps to show all dependencies are now resolved.

Build the project

Now, build and run the code.

S bii build

$ cd bin
$ # run executable
A =
-16343 -660 -10679 -15893 16007

2083 -4906 11761 -13389 -1780
-10050 12974 6897 4442 -12482
10116 10578 443 -11557 -16231

1.8. Examples 85

biicode docs Documentation, Release 3.0.2

2785 8080 -6423 -10948 -16092

A(2..3,:) =
-10050 12974 6897 4442 -12482
10116 10578 443 -11557 -16231

Open and build

You can check all the Eigen examples uploaded in biicode and execute any of them, just have to
open .

Create a project and open the examples:

~$ bii init eigen_example
~$ cd eigen_example

~$ bii open examples/eigen
~$ bii build

Execute any you want, for example, show the matrix’s middle rows:

~/eigen_sample$ bin/examples_eigen_DenseBase_middleRows_int
A =
-16343 -660 -10679 -15893 16007
2083 -4906 11761 -13389 -1780
-10050 12974 6897 4442 -12482
10116 10578 443 -11557 -16231
2785 8080 -6423 -10948 -16092

A(2..3,:) =
-10050 12974 6897 —-4442 -12482
10116 10578 443 -11557 -16231

1.8.10 Expression Parser

Expression Parser is a C++ library to parse a character sequence as an expression using Dijkstra’s
Shunting-yard algorithm which modifies Jesse Brown’s code.

The main block is at amalulla/cpp-expression-parser, which is generated from this github repo.
Simple form of mathematical expression parsing

In this example we’ll show a simple code to develop a mathematical expression parser, with ex-
pressions like “pi” or “gravity”.

86 Chapter 1. Biicode

http://en.wikipedia.org/wiki/Shunting-yard_algorithm
http://www.daniweb.com/software-development/cpp/code/427500/calculator-using-shunting-yard-algorithm
http://www.biicode.com/amalulla/cpp-expression-parser
https://github.com/MariadeAnton/cpp-expression-parser/

biicode docs Documentation, Release 3.0.2

Create a new project

Create a simple project and the code inside it:

S bii init exp-parser_example -L
S cd exp-parser_example
S # copy the code below

main.cpp

#include <iostream>
#include <limits>

#include <map>

#include <string>

#include "shunting-yard.h"

void calculation (const charx expr,

std: :map<std::string, double>* vars = 0) {
double result = calculator::calculate (expr, vars);
std::cout << "'" << expr << "' calculated result is: " <<
result << "." << std::endl;
}
int main () {
std::map <std::string, double> vars;
vars["gravity"] = 9.78;
vars["pi"] = 3.14;
calculation("-pi+l1l", &vars);

calculation("10xgravity", &vars);
return 0O;

Manage your dependencies

Check the dependencies of the project with bii deps:

$ bii deps
INFO: Processing changes...
your_user/expression_parser depends on:
system:
iostream
limits
map
string
unresolved:
shunting-yard.h

1.8. Examples

87

biicode docs Documentation, Release 3.0.2

Now, edit the biicode.conf file generated in the project folder. Add your [requirements]
depending on the version you want and map your [includes]:

[requirements]
amalulla/cpp—-expression-parser: 2

[includes]
shunting-yard.h: amalulla/cpp-expression-parser

Now, checking again bii deps shows all resolved dependencies.

Build the project

Just build the project and run this example!

S bii build
S cd bin
S # run executable

You can see the results of the parsed expressions in the output:

$ '-pi+l' calculated result is -2.14.
S 'lO0xgravity' calculated result is 97.8.

Open and build

This example is already in biicode at examples/expression_parser.

To give it a simple run, just open the block and build it like this:

bii init exp-parser_example

cd exp-parser_example

bii open examples/expression_parser
bii build

cd bin

run executable

o O »r »r U

Here is the output:

S '"-pi+l' calculated result is -2.14.
S 'lOxgravity' calculated result is 97.8.

Any doubts? Do not hesitate to contact us visit our forum and feel free to ask any questions.

88 Chapter 1. Biicode

http://www.biicode.com/examples/expression-parser
http://web.biicode.com/contact-us/
http://forum.biicode.com/

biicode docs Documentation, Release 3.0.2

1.8.11 fit

is a C++11 header-only library that provides utilities for functions and function objects. Fit is
divided into three components:

1. Function Adapters: These take functions and return a new function that provides an addi-
tional capability to the previous function.

2. Functions: These return functions that achieve a specific purpose.
3. Utilities: These are general utilities that are useful when defining or using functions.

The main block is , which is generated from this .

Tests
Calculate giving the coordinates, the angles and sides length of a polygon between 3 and 10 vertex.
To start, create a project, open the example and execute:

Note: If you are using CLANG you may need to use clang —-version to check it’s higher
than 3.5.

~5 bii init fit

~$ cd fit

~/£it$ bii open examples/fit

~/fit$ bii build

~/fit$ #execute the tests on bin folder

Now let’s check the code, open one of the test files (test/always.cpp) :

#include <fit/always.h>
#include <memory>
#include "test.h"

FIT TEST_CASE ()
{
static const int ten = 10;
FIT_STATIC_TEST_CHECK(fit::always(ten) (1,2,3,4,5) == 10);
FIT TEST_CHECK(fit::always(ten) (1,2,3,4,5) == 10);
}

Execute the binary and this is how the output looks like:

~/fit$ bin/examples_fit_test_always
**CORRECT*+ fit::always(ten) (1,2,3,4,5) == 10

The output is what always.cpp file is testing, if successes it writes CORRECT, if it doesn’t it
writes FAILED.

Didn’t work? No problem, read or contact us in .

1.8. Examples 89

biicode docs Documentation, Release 3.0.2

Any suggestion or feedback? It is very welcomed :)

1.8.12 Flatbuffers

is an efficient cross platform serialization library for C++, with support for Java and Go. It was
created at Google specifically for game development and other performance-critical applications.

The main block is , which is generated from this .
Charge a *.fbs file and generate a C++ header

You can check all the flatbuffers examples which are uploaded in biicode and execute any of them.
Then, create a new project and open the .

~$ bii init flatb_sample

~$ cd flatb_sample

~/flatb_sampleS$S bii open examples/flatbuffers
~/flatb_sample$ bii build

MinGW compiler bug

MinGW users may need to edit io.h to avoid building errors. Look for MinGW/include/io.h and
replace lines 301 and 302:

__ CRT_INLINE off64_t lseek64 (int, off64_t, int);
__ CRT_INLINE off64_t lseeko64 (int fd, off64_t offset, int whence)

with

__ CRT_INLINE _off64_t lseek64 (int, _off64_t, int);
__ _CRT_INLINE _off64_t lseek64 (int fd, _off64_t offset, int whence)

Now, you can charge the file “monster.fbs” and generate a C++ header for tables/structs:

~/flatb_sample$ cd bin

~/flatb_sample/bin$ examples_flatbuffers_flatc -c ../blocks/examples/fla

tbuffers/me

Now, you’ll see one single file “monster_generated.h” in your current folder that has been created
correctly.

1.8.13 Freeglut

This example demonstrates how to get started using OpenGL with biicode. Freeglut is an open
source alternative to the OpenGL Utility Toolkit (GLUT) library. It allows you to create and
manage windows containing OpenGL contexts on a wide range of platforms, and dealing with

90 Chapter 1. Biicode

http://freeglut.sourceforge.net/
http://freeglut.sourceforge.net/

biicode docs Documentation, Release 3.0.2

user input from mouse, keyboard and joystick devices. You can visit the following pages to learn

more about OpenGL and GLUT (and hence freeglut):
1. The Official Guide to Learning OpenGL v1.1
2. List of OpenGL methods
3. The Free OpenGL Utility Toolkit
4. List of GLUT methods

1. Create a new project

First, create a new project as described in the hello world example, using the following options:

~$ cd cpp_freeglut_project
~/cpp_~freeglut_project$ bii new anonymous/cpp_freeglut —--hello=cpp

2. Creating reusable code

This is some example code that makes use of GLUT functions. Note that you must include a
reference to a biicode GLUT wrapper library. This is the only information biicode needs to
fetch the required files when needed, taking into account your actual development platform. We’ll

see how this happens in the next step.

Now, simply put the following code into your cpp_freeglut block folder (you can also down-

load these files here: sphere—-glut . zip, unzip and copy them into your block folder):

sphere.h

#pragma once
#include "glui/glutwrapper/glut.h"

class Sphere({
public:

Sphere (float _radio=1.0, int _slices=20, int _stacks=20, bool

virtual ~Sphere(); //default virtual destructor

void draw () ;

void setPosition (float _x=0.0, float _y=0.0, float _z=0.0) {
X = X7 ¥ = Yy 2 = _Zy

}

void setColor (unsigned char r=255, unsigned char g=255, unsigned

red = r; green = g; blue = b;

private:
float radius;
int slices;

_s

olid=true) ;

char b=25¢

1.8. Examples

91

http://glprogramming.com/red/
http://www.talisman.org/opengl-1.1/Reference.html
http://freeglut.sourceforge.net/
http://www.opengl.org/documentation/specs/glut/spec3/node1.html

biicode docs Documentation, Release 3.0.2

int stacks;

unsigned char red, green, blue;
float x,vy,z;

bool solid;

}i

sphere.cpp

#include "sphere.h"

Sphere: :Sphere (float _radius, int _slices, int _stacks, bool _solid):
radius (_radius),slices(_slices), stacks (_stacks),solid(_solid) {
setPosition () ;
setColor();

Sphere: :~Sphere () {}

void Sphere: :draw () {
glColor3ub (red, green, blue);
glTranslatef (x,vy,2);
if (solid)
glutSolidSphere (radius, slices, stacks);
else
glutWireSphere (radius, slices, stacks);
glTranslatef (-x, -y, —2);
}

main.cpp

#include "sphere.h"

//Functions declarations
void Init ();
void OnDraw () ;

void Init () {

//Initialize GLUT windows manager
//Create the window
int argc=1;

charx argv[l]={"Glut Application"};

glutInit (&argc, argv);
glutInitWindowSize (800, 600) ;
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glutCreateWindow ("My World");

//enable lights and define perspective
glEnable (GL_LIGHTO) ;

92 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

glEnable (GL_LIGHTING) ;

glEnable (GL_DEPTH_TEST) ;

glEnable (GL_COLOR_MATERIAL) ;

glMatrixMode (GL_PROJECTION) ;

gluPerspective (40.0, 800/600.0£, 0.1, 150);

void OnDraw (void) {
//cleaning the screen

glClear (GL_COLOR_BUFFER_BIT GL_DEPTH_BUFFER_BIT) ;

\
//Define view

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity () ;

// eye position -> (0.0, 10, 20)

// target -> (0,0,0)

// define positive Y axis -> (0.0, 1.0, 0.0)
gluLookAt (0.0, 10, 20,

0.0, 0, 0.0,

0.0, 1.0, 0.0);

//Put your code here to draw objects
Sphere spherel;
spherel.draw () ;

//no delete this line
glutSwapBuffers();

int main (int argc, charxx argv) {
Init ();
//Enter the callbacks
glutDisplayFunc (OnDraw) ;

glutMainLoop (); // begin the loop
return O;

3. Find dependencies

Now is when the biicode magic takes place. The previous code needs to link with some library
implementing the drawing functions being used. You can resolve all missing dependencies for
your platform using the bii find command. From your project’s folder location execute:

1.8. Examples 93

biicode docs Documentation, Release 3.0.2

[$ bii find

This will find and retrieve all missing files from the biicode servers to your local filesystem,
under the deps folder of your project. You should see a success message confirming that all
dependencies have been resolved.

4, Build and run

Now it is time to see the result of the previous steps. You can build your main file with the bii
cpp: run command and and run the executable inside the bin folder.

S bii build
$ cd bin
$

That’s it! You should see a new window named “My World”, containing a single white sphere in
its center. Just like this!:

My World - O

If you experience any difficulties during the coding process, or get any errors during the program
execution, visit our forum and feel free to ask any questions.

1.8.14 GLFW

GLFW is a free, Open Source, multi-platform library for OpenGL and OpenGL ES application

94 Chapter 1. Biicode

http://forum.biicode.com/
http://www.glfw.org/

biicode docs Documentation, Release 3.0.2

development. It provides a simple, platform-independent API for creating windows and contexts,
reading input, handling events, etc.

It is a great library, if you want to build OpenGL applications it is highly recommended.
You can find GLFW library at diego/glfw.

Running the examples

It is very simple. Create a new project, open the examples, build and run them:

S bii init glfwexamples

S cd glfwexamples

S bii open examples/glfw

S bii build

S ./bin/examples_glfw_particles

Linux users may need to install some additional software

If you are using Ubuntu Linux, you may need to install some additional packages. To do so,
execute:

S sudo apt-get install mesa-common-dev libglul-mesa-dev libxi-dev

Depending on your linux setup you might need to install also libxinerama-dev lib libxrandr-dev
libxcursor-dev libxxf86vm-dev

If you are in RH - Fedora, you may need to install:

S sudo yum install 1ibGLU-devel libXrandr-devel libXinerama-devel libXcursor-devel

You should see in your screen:

1.8. Examples 95

http://www.biicode.com/diego/glfw

biicode docs Documentation, Release 3.0.2

EN rarticle Engine

There are also other examples that have been built! Enjoy them and GLFW!

Of course, you can also do your own GLFW programs from your own block:

S bii init myproject
S cd myproject
S bii new yourusername/yourblock

Then copy your source files to yourusername/yourblock folder, change your includes to:

#include <diego/glfw/deps/glad/glad.h>
#include <diego/glfw/include/GLFW/glfw3.h>

And then, find and retrieve dependencies, build and run your program:

S bii find
$ bii build

96 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

1.8.15 GLUI User Interface Library

GLUI is a GLUT-based C++ user interface library which provides controls such as buttons,
checkboxes, radio buttons, and spinners to OpenGL applications. It is window-system indepen-
dent, relying on GLUT to handle all system-dependent issues, such as window and mouse man-
agement.

For more information about this library, visit their official website.
This is the biicode library site.

Following, there is an example using this library with biicode technology.

GLUI Window Template
This example is a small modification of the code originaly programmed by Ali Bader Eddin, avali-
able from the Code Project. In words of the author:

“To avoid having to write the same code every time you want to create an OpenGL graphical
application with GUI components, this program code can be used as a template to get you directly
started’ .

You can explore the source code block for this example following this link. In order to try this
example, you only need to follow these steps:

Ubuntu users may need to install some additional software

If you are using Ubuntu Linux, you may need to install some additional packages. To
do so, execute:

sudo apt-get install mesa-common-dev libglul-mesa-dev libxi-dev

1. Create a new project:

S bii init <project_name>
$ cd <project_name>

2. Open “examples/glui_example” block. Download the examples/glui_example
block to your project’s blocks folder. Inside your project folder, execute the command:

‘<project_name>$ bii open examples/glui_example

3. Retrieve all missing dependencies using the bii find command. This way all missing
dependencies will be downloaded into the deps folder of your project.

<project_name>$ bii find

4. Finally, compile your program using the bii build command:

1.8. Examples 97

http://glui.sourceforge.net/
http://www.opengl.org/resources/libraries/glut/
http://glui.sourceforge.net/
https://www.biicode.com/glui/glui
http://www.codeproject.com/Members/Ali-BaderEddin
http://www.codeproject.com/Articles/20286/GLUI-Window-Template
https://www.biicode.com/examples/glui_example

biicode docs Documentation, Release 3.0.2

‘<project_name>$ bii build

If there were no errors during compilation, you’ll find a new executable file inside your project’s
bin folder. If you run this program, you should see something similar to this screen capture. If
you found any problems, please contact us at our forum.

Object Properties
Diran
Wireframe

Calar| ‘¥ hite
Chject Type =

Cube

Sphere

Cone

Torus
Daodecahedran
Octahedron
Tetrahedran
lcozahedron
Teapot

Transformation

c;\}> \E,

Translation X% Translation Z

v

Scale 1.0
Quit

Check more GLUI examples at this block and enjoy using GLUI library!

1.8.16 Google Mock (GMock)

is a C++ library for writing and using C++ mock classes.

The main block is , which is generated from this .

GMock Examples

All GMock samples are available in biicode: GMock samples block .

You can execute all of them locally just creating a new project and opening the block:

98 Chapter 1. Biicode

http://forum.biicode.com/category/c-c
http://www.biicode.com/examples/glui
https://www.biicode.com/glui/glui
https://www.biicode.com/google/gmocksamples

biicode docs Documentation, Release 3.0.2

~$ bii init gmock_sample

~$ cd gmock_sample

~/gmock_sample$ bii open google/gmocksamples
~/gmock_sample$S bii build

~/gmock_sample$ #execute any example

Mocking a simple function

Let’s run an example based in Google C++ Mocking Framework for Dummies sample. You can
execute it locally just creating a new project and opening the block: GMock example block .

~$S bii init samples

~$ cd samples

~/samples$ bii open examples/gmock

~/samples$ bii build

~/samples$ bin/examples_gmock_test_mock_turtle_test
[==========] Running 1 test from 1 test case.
[] Global test environment set-up.
[-————————] 1 test from PainterTest
[RUN] PainterTest.CanDrawSomething
[OK] PainterTest.CanDrawSomething (0 ms)
[-—————————] 1 test from PainterTest (0 ms total)

[—————] Global test environment tear—-down
[==========] 1 test from 1 test case ran. (2 ms total)
[PASSED] 1 test.

Here is the main code used in this example, you can navigate it on-line here: GMock example
block .

turtle.h

fpragma once

class Turtle {

public:
virtual ~Turtle () {}
virtual void PenUp () = 0;
virtual void PenDown () = 0;
virtual void Forward (int distance) = 0;
virtual void Turn (int degrees) = 0;
virtual void GoTo (int x, int y) = 0;
virtual int GetX () const = 0;
virtual int GetY () const = 0;

1.8. Examples 99

https://code.google.com/p/googlemock/wiki/ForDummies
https://www.biicode.com/examples/gmock
https://www.biicode.com/examples/gmock
https://www.biicode.com/examples/gmock

biicode docs Documentation, Release 3.0.2

}i

painter.h

#pragma once
#include "turtle.h"

class Painter

{
Turtlex turtle;

public:
Painter (Turtle* turtle)
turtle (turtle) {}

bool DrawCircle (int, int, int) {

turtle—->PenDown () ;
return true;

}i

mock_turtle.h

fpragma once

#include "turtle.h"
#include "google/gmock/gmock.h"™ // Brings in Google Mock

class MockTurtle : public Turtle {
public:

MOCK_METHODO
MOCK_METHODO

PenUp, wvoid());

PenDown, wvoid());
MOCK_METHOD1 (Forward, wvoid(int distance));
MOCK_METHODI1 (Turn, void(int degrees));
MOCK_METHOD2 (GoTo, wvoid(int x, int y));
MOCK_CONST_METHODO (GetX, int());
MOCK_CONST_METHODO (GetY, int());

}i

o~ o~ o~ —~

mock_turtle test.cc

#include "../mock_turtle.h"
#include "../painter.h"

#include "google/gtest/gtest.h"

using ::testing::AtLeast;
TEST (PainterTest, CanDrawSomething) {

100 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

MockTurtle turtle;
EXPECT_CALL (turtle, PenDown())
.Times (AtLeast (1)) ;

Painter painter (&turtle);

EXPECT_TRUE (painter.DrawCircle (0, 0, 10));

int main (int argc, charx* argv) {
// The following line must be executed to initialize Google Mock
// (and Google Test) before running the tests.
::testing::InitGoogleMock (&argc, argv);
return RUN_ALL_TESTS () ;

}

You can aggregate as many tests as you want and verify all the methods actions, returns, calls, etc.

1.8.17 Google Test (GTest)

is a C++ library for testing your projects.
The main block is at and it is generated from this .

You can check all the gtest examples which are uploaded in biicode and execute any of them.

Testing a factorial function: Simple test

There are two examples to build and execute, a simple test and a test suites. In this part, you’ll run
a simple test for a simple “math example code”.

Creating a new project

Create a new project and math_ext.h, math_ext.cpp files:

S bii init gtest_example -L
S cd gtest_example
S # Create files manually

Our math example is a simple function to calculate the factorial of an integer number, which
returns

* -1 if the number is negative,

¢ 1 if the number is zero, or

1.8. Examples 101

https://www.biicode.com/google/gtestsamples

biicode docs Documentation, Release 3.0.2

* The factorial if the number is positive: (num)*(num-1)*(num-2)*... *1.

Copy the code for each file:
math_ext.h

#pragma once
//Function returns the factorial of an integer number
int Factorial (int num);

math_ext.cpp

#include "math_ ext.h"
int Factorial (int num) {
if (!num)return 1;
if (num<0)return -1;
return num*Factorial (num-1);

}

Okay, now create a new directory simple_test with simple_test.cpp file and copy its content:

simple_test/simple_test.cpp

#include "../math_ext.h"
#include "gtest/gtest.h"
#include "stdio.h"
// Tests Factorial ()
// Tests factorial of negative numbers.
TEST (FactorialTest, Negative) {
// This test is named "Negative", and belongs to the "FactorialT,
// test case
EXPECT_EQ (-1, Factorial (-5));
EXPECT_EQ (-1, Factorial(-1));
EXPECT_LT (Factorial (-10), 0);
}
// Tests factorial of O.
TEST (FactorialTest, Zero) {
EXPECT_EQ (1, Factorial(0));
}
// Tests factorial of positive numbers.
TEST (FactorialTest, Positive) {
EXPECT_EQ (1, Factorial(1l)
EXPECT_EQ (
EXPECT_EQ (
EXPECT_EQ (40320, Factoria

)i
2, Factorial (2));
6, Factorial(3));

1(8));

102 Chapter 1. Biicode

est"

biicode docs Documentation, Release 3.0.2

}
int main(int argc, char *xargv) {
printf ("Running main () from samplel\n");
testing::InitGoogleTest (&argc, argv);
return RUN_ALL_TESTS () ;

Configure biicode.conf

Check the dependencies of the project with bii deps:

S bii deps
INFO: Processing changes...
your_user/gtest_example depends on:
system:
stdio.h
unresolved:
gtest/gtest.h

Now, edit the biicode.conf file generated in the project folder. Add your [requirements]

depending on the version you want and map your [includes]:

biicode.conf

[requirements]
google/gtest: 10

[includes]
gtest/*.h: google/gtest/include

Type bii deps again to check all dependencies are resolved.

To configure the simple_test.cpp you have to include it in [tests] section like this:

biicode.conf

[tests]
simple_test/simple_test.cpp

Build and run the test

Compile and execute the test, the convenient command for that is bii test:

S bii test
INFO: Processing changes...
INFO: Saving files from: google/gtest

1.8. Examples

103

biicode docs Documentation, Release 3.0.2

test 1

Start 1: examples_gtest_example_simple_test_simple_test
Running main () from samplel

[==========] Running 3 tests from 1 test case.
[—————————=] Global test environment set-up.

[] 3 tests from FactorialTest
[] FactorialTest.Negative
[] FactorialTest.Negative (0 ms)
[] FactorialTest.Zero
[OK] FactorialTest.Zero (0 ms)
[] FactorialTest.Positive
[] FactorialTest.Positive (0 ms)
[-———] 3 tests from FactorialTest (0 ms total)
[-——————————] Global test environment tear—-down
[==========] 3 tests from 1 test case ran. (1 ms total)
[PASSED] 3 tests.
/1 Test #1: examples_gtest_example_simple_test_simple_test ... Passed

e T e T = T = T e B R e N

100% tests passed, 0 tests failed out of 1

Total Test time (real) = 0.06 sec
[100%] Built target check

Great! Your math code passed the simple test.

Testing a factorial function: Test suites

To have multiple test classes and run them all together you don’t need to create multiple main
methods, you just have to indicate which tests you want to include in your suite.

For example, you can split the simple_test.cpp in the following three files.

Place these three files in a new directory called test_suites inside your project.

test_suites/test_factoriall.cpp

#include "../math_ext.h"
#include "gtest/gtest.h"
// Tests Factorial ()
// Tests factorial of negative numbers.
TEST (FactorialTest, Negative) {
// This test i1s named "Negative", and belongs to the "FactorialT

EXPECT_EQ (-1, Factorial(-5));
EXPECT_EQ (-1, Factorial(-1));
EXPECT_LT (Factorial (-10), 0)

// test case

4

104 Chapter 1. Biicode

est"

S€

biicode docs Documentation, Release 3.0.2

}
// Tests factorial of 0.

TEST (FactorialTest, Zero) {
EXPECT_EQ (1, Factorial(0));
}

test_suites/test_factorial2.cpp

#include "../math_ext.h"

#include "gtest/gtest.h"

#include "stdio.h"

// Tests Factorial ()

// Tests factorial of positive numbers.

TEST (FactorialTest, Positive) {
EXPECT_EQ (1, Factorial (
EXPECT_EQ (2, Factorial (
EXPECT_EQ (6, Factorial(
EXPECT_EQ (40320, Factoria

) ;
)
) ;

1(8));

1)
2)
3)

}

test_suites/test_suites.cpp

#include "gtest/gtest.h"

#include "stdio.h"

// Tests Factorial ()

int main (int argc, char *xargv) {
printf ("Running main() from samplel\n");
testing::InitGoogleTest (&argc, argv);
return RUN_ALL_TESTS () ;

Configure biicode.conf

You have to indicate in the [dependencies] section in your biicode.conf file that the main file
test_suites.cpp depends on those test files: rest_factoriall.cpp and test_factorial2.cpp.

Read more about [dependencies] section here.
And you have to indicate the new test in the [tests] section.
Edit your biicode.conf like this:

biicode.conf

[dependencies]
test_suites/test_suites.cpp + test_suites/test_factoriall.cpp
test_suites/test_suites.cpp + test_suites/test_factorial2.cpp

1.8. Examples 105

biicode docs Documentation, Release 3.0.2

[tests]
simple_test/simple_test.cpp
test_suites/test_suites.cpp

Build and run the tests

Now execute your tests and you’ll obtain the following output:

S bii test

INFO: Processing changes...

INFO:

test 1

Saving files from: google/gtest

Start 1: examples_gtest_example_simple_test_simple_test

[PASSED |

PR R R R R R R R R R R R R

test 2

Running main ()

/2 Test #1: examples_gtest_example_simple_test_simple_test

from samplel
Running 3 tests from 1 test case.
Global test environment set-up.

3 tests from FactorialTest
FactorialTest .Negative
FactorialTest.Negative
FactorialTest.Zero
FactorialTest.Zero

(0 ms)

(0 ms)
FactorialTest.Positive
FactorialTest.Positive
3 tests from FactorialTest

(0 ms)
(0 ms total)

Global test environment tear-down

3 tests from 1 test case ran. (0 ms total)

3 tests.

Passed|

Start 2: examples_gtest_example_test_suites_test_suites

2: Running main () from samplel

2: [==========] Running 3 tests from 1 test case.

2: [-—————————] Global test environment set-up.

2: [-————————] 3 tests from FactorialTest

2: [RUN] FactorialTest.Positive

2: [OK] FactorialTest.Positive (0 ms)

2: [RUN] FactorialTest.Negative

2: [OK] FactorialTest.Negative (0 ms)

2: [RUN] FactorialTest.Zero

2: [OK] FactorialTest.Zero (0 ms)

2: [-—————————] 3 tests from FactorialTest (0 ms total)
2:

2: [-—————————] Global test environment tear-down

106 Chapter 1. Biicode

0.04 sc

biicode docs Documentation, Release 3.0.2

2: [==========] 3 tests from 1 test case ran. (0 ms total)
2: [PASSED] 3 tests.
2/2 Test #2: examples_gtest_example_test_suites_test_suites ... Passe

100% tests passed, 0 tests failed out of 2

Total Test time (real) = 0.09 sec
[100%] Built target check

Congrats! Your math code passed both “simple_test” and “test_suites”.

You can aggregate as many tests as you want to a suite so you can organize your tests to fit your
needs.

Note: You can find more google test samples in the google/gtestsamples block.
Open and build

This example is already in biicode: examples/gtest.

To give it a try and see how it’s configured, create a new project and open the block:

S bii init gtest_example
$ cd gtest_example
S bii open examples/gtest

Have a look at the biicode.conf file:

biicode.conf

[requirements]
google/gtest: 10

[parent]

examples/gtest: 1
[paths]
[dependencies]

test_suites/test_suites.cpp + test_suites/test_factoriall.cpp
test_suites/test_suites.cpp + test_suites/test_factorial2.cpp

[mains]
[hooks]

[includes]
gtest/*.h: google/gtest/include

1.8. Examples 107

https://www.biicode.com/google/gtestsamples
http://www.biicode.com/examples/gtest

biicode docs Documentation, Release 3.0.2

[data]

[tests]
simple_test/simple_test.cpp
test_suites/test_suites.cpp

Read more about biicode.conf .

Now execute the tests:

$ bii test
100% tests passed, 0 tests failed out of 2

Total Test time (real) = 0.09 sec
[100%] Built target check

Got any doubts? Do not hesitate to contact us, visit our forum and feel free to ask any questions.

1.8.18 HTTP Server

You can write and extend your own multi-platform http server with the lasote/httpserver block.

How does it work?
It allows you to implement just a subclass of httpserver::HttpMiddleware to attend browsers or
other http client requests.

A method call from your subclass object will be called with a Request* object and a Response*
object.

Just modify the body and/or headers of Response object in your method and the server will do all
the work.

How can | use it?

* Just copy the files contained in the following section to a new block.

* Find the dependencies and execute your code:

$ bii find
S cd bin

S #run server executable

* Open your web browser and go to http.//localhost: 9000

108 Chapter 1. Biicode

http://web.biicode.com/contact-us/
http://forum.biicode.com/
https://www.biicode.com/lasote/httpserver

biicode docs Documentation, Release 3.0.2

The code

These are the files you will need in your block to have your HTTP Server up and running:
main_server.cpp

This file just instanciates the server and runs it with simple configuration parameters.

#include "lasote/httpserver/http_server.h"
#include "my_http_middle_ware.h"

using namespace httpserver;
using namespace gip;

int main () {

MyHttpMiddleware my_mmiddleware;
HttpServerConf conf (9000, 300, 60, 5);

HttpServer http_server;
http_server.run (&my_mmiddleware, &conf);

return O;

}

my_http_middle_ware.h

Defines your HttpMiddleware subclass.

#pragma once
#include "lasote/httpserver/http_middleware.h"
using namespace httpserver;

class MyHttpMiddleware : public httpserver::HttpMiddleware {
public:
MyHttpMiddleware () : HttpMiddleware (NULL) {}
MyHttpMiddleware (HttpMiddlewarex other_middleware) : Htt
}
virtual ~MyHttpMiddleware () ;
virtual void call (Requesté&, Response&);

}i

pPMiddleware

my_http_middle_ware.cpp

Implements HttpMiddleware subclass. You should implement the call method, read-
ing the header variables from the request, and modifying the response to return the

1.8. Examples 109

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

biicode docs Documentation, Release 3.0.2

output.

#include "my_http_middle_ware.h"
#include "sstream"
#include "iostream"

MyHttpMiddleware: : ~MyHttpMiddleware () {

void MyHttpMiddleware::call (Requesté& request, Response& response) {

ostringstream html;
html << "<!DOCTYPE html>\n<html>\n<body>\n";
if (request.get ("name") != ""){

html << "Hello " << request.get ("name")

//Build the html form
string form;
form = "\

<form name='form' action='/' method='POS

Name:
\n\

<input type='text' name='name'>
<input type='submit''/>\n\

</form>\n\

html << form << "</body>\n</html>\n";

// Set content type we are printing
response.content_type ("text/html") ;
// Set the body

response.body = html.str();

}

<< "

";

T'>\n\

\n\

Download: httpserver.zip

Supported Operating Systems

The previous code has been tested on:
* Linux with GCC

* Windows with Mingw

110

Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

e Windows with Visual Studio
* MacOS with Clang

More information

You can find more information in the readme.txt file of lasote/httpserver

List of dependencies

» melikyan/ptypes: PTypes (C++ Portable Types Library) is a simple alternative to the STL
that includes multithreading and networking. It defines dynamic strings, variants, character
sets, lists and other basic data types along with portable thread and synchronization objects,
IP sockets and named pipes. Its main ‘target audience’ is developers of complex network
daemons, robots or non-visual client/server applications of any kind.

* lasote/genericipserver: Generic and extensible IP server.

* lasote/thread_jobs: Execute your tasks in threads managed by a pool.

1.8.19 jsonii

Json11 is a tiny JSON library for C++11, providing JSON parsing and serialization.

The main block is here, which is generated from this github repo.

Simple convert data to json and vice versa

This example is already in biicode, it is very simple to build it, by just opening the block and

building it.

0 U Ur Ur

bii init jsonll

cd jsonll

bii open examples/jsonll
bii build

The code of the example is like this:

#include
#include
#include
#include
#include
#include
#include

<string.h>

<cstdio>

<iostream>

<sstream>
"lasote/jsonll/jsonll.hpp"
<cassert>

<list>

1.8. Examples 111

https://www.biicode.com/lasote/httpserver
https://www.biicode.com/melikyan/ptypes
https://www.biicode.com/lasote/genericipserver
https://www.biicode.com/lasote/thread_jobs
https://www.biicode.com/lasote/json11
https://github.com/lasote/json11
http://www.biicode.com/examples/json11

biicode docs Documentation, Release 3.0.2

#include <set>
#include <unordered_map>

using namespace jsonll;
using std::string;

int main (int argc, char *xargv) {

// STRING TO JSON
const string simple_test

Json to_json|()

}i

{ {1, 2
Json (points

std: :vector<Point> points
std::string points_json
printf ("%$s\n", points_json.c_str());

}

const { return Json::array { x,

R" ({"k1":"v1l", "k2":42, "k3":["a",123,true,false,null]l})";
string err;
auto json = Json::parse(simple_test, err);
std::cout << "kl: " << Json["kl1l"].string_value() << "\n";
std::cout << "k3: " << Json["k3"].dump () << "\n";
// JSON FROM LITERAL
Json obj = Json::object ({
{ "k1", "v1" 1},
{ "k2", 42.0 },
{ "k3", Json::array({ "a", 123.0, true, false, nullptr }) },
}) i
std::cout << "obj: " << obj.dump() << "\n";
// CUSTOM CLASS JSON ENCODE
class Point {
public:
int x;
int y;
Point (int x, int y) x(x), v(y) {}

y }; }

b, {10,
) .dump () ;

20 }, { 100, 200 } };

Now, run the example.

‘$ bin/examples_jsonll_test

As you can see, with this library you can create json objects from string literals, standard collec-

112

Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

tions and even custom classes in an easy way!

kl: vl
k3: ["a", 123, true, false, null]
obj: {"k1": "wv1", "k2": 42, "k3": ["a", 123, true, false, nulll]}

(r, 23, (10, 20J], [100, 200]]

1.8.20 json++

JSON++ i1s a light-weight JSON parser, writer and reader written in C++. JSON++ can also convert
JSON documents into lossless XML documents.

The main block is here, which is generated from this github repo.
Simple parser and converter from JSON to XML

This example is already in biicode, it is very simple to build it, by just opening the block and
building it.

~$ bii init Jsonxx

~$ cd jsonxx

~/jsonxx$S bii open examples/jsonxx
~/jsonxx$ bii build

The code of the example is like this:

#include "hjiang/Jjsonxx/jsonxx.h"
using namespace Jsonxx;
using namespace std;

int main () {
#define QUOTE(...) #__ VA _ARGS_
string input = QUOTE (
{

"name/surname" :"John Smith",
'alias': 'Joe',
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",

"postal-code": 10021,

Object o;

1.8. Examples 113

https://www.biicode.com/hjiang/jsonxx
https://github.com/davidsanfal/jsonxx
http://www.biicode.com/examples/jsonxx

biicode docs Documentation, Release 3.0.2

if(o.parse (input)) {
cout << o.xml (JSONx) << endl; // XML output, JSONx fllavor
cout << o.xml (JXML) << endl; // XML output, JXML flavor
cout << o.xml (JXMLex) << endl; // XML output, JXMLex fllavor
cout << o.xml (TaggedXML) << endl; // XML output, tagged XML flavor
}
return 0;
}
Now, run the hello example.
~/jsonxx$ bin/examples_jsonxx_Jjson_to_xml
You can see four diferent XML at the output:
<?xml version="1.0" encoding="UTF-8"?><!-- generated by jsonxx 0.22-a ——

<json:object xsi:schemalocation="http://www.datapower.com/schemas/json j
<json:object name="address">

<json:string name="city">New York</json:string>
<json:number name="postal-code">10021</json:number>
<json:string name="state">NY</Jjson:string>

<json:string name="streetAddress">21 2nd Street</json:st

</json:object>

<json:string name="alias">Joe</json:string>

<json:string name="name\/surname">John Smith</Jjson:string>
</json:object>

sonx.xsd" :

ring>

<?xml version="1.0" encoding="UTF-8"?><!-- generated by jsonxx 0.22-a —-
<j SOl’l:"O">

<j son="o:address">

<j son="s:city">New York</7j>

<j son="n:postal-code">10021</7j>

<j son="s:state">NY</ >

<j son="s:streetAddress">21 2nd Street</j>

</3j>

<j son="s:alias">Joe</j>

<j son="s:name\/surname">John Smith</j>
</3j>

Vv

<?xml version="1.0" encoding="UTF-8"?><!-- generated by Jjsonxx 0.22-a —--
<j SOl’lI"O">

<j son="o:address" address="">

<j son="s:city" city="New York">New York</j>

<j son="n:postal-code" postal_code="10021">10021</73>

<j son="s:state" state="NY">NY</j>

<j son="s:streetAddress" streetAddress="21 2nd Street">2

</ 3>
<j son="s:alias" alias="Joe">Joe</j>

1 2nd Strec

114 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

<j son="s:name\/surname" name_surname="John Smith">John Smith</]
</3j>

<?xml version="1.0" encoding="UTF-8"?><!-- generated by Jsonxx 0.22-a ——

<Jsonltem type="json:object">
<address type="json:object" name="address">
<city type="json:string" name="city">New York</city>

V

<postal_code type="json:number" name="postal-code">10021</postal_cc

<state type="json:string" name="state">NY</state>
<streetAddress type="json:string" name="streetAddress">2
</address>
<alias type="json:string" name="alias">Joe</alias>

1 2nd Strec

<name_surname type="json:string" name="name\/surname">John Smith</name_surr

</Jsonltem>

1.8.21 Miniutf

miniutf is a C++ implementation of several basic Unicode manipulation functions developed by
Dropbox.

The following example shows how to use miniutf to do some format conversions. You can find
this example in the biicode miniutf samples block.

miniutf.cpp

#include <cstdio>
#include <fstream>
#include <sstream>
#include <random>

#include <hithwen/miniutf/miniutf.hpp>
#include <hithwen/miniutf/miniutf_collation.hpp>
using namespace std;

void dump (const string & str) {

for (size_t i = 0; i < str.length();)
printf (i ? "%04X"™ : " %04X", miniutf::utf8_decode(str, 1));

int check_eqg(const char *test, const string & expected, const string & ¢
if (expected == got)
return 1;

printf ("%s: expected \"", test);

1.8. Examples 115

https://opensource.dropbox.com/
http://www.biicode.com/examples/miniutf

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

biicode docs Documentation, Release 3.0.2

dump (expected) ;
printf("\", got \"");
dump (got) ;

printf ("\"\n");
return O;

string match_key_ as_hex (const vector<uint32_t> & key) {
string out;
for (uint32_t c : key) {
char outc[10];
snprintf (outc, 10, "%08X ", (unsigned int)c);
out .append (outc) ;
}

return out.substr (0,out.size()-1);

template <class T> string string_as_hex(const T & s) {
string out;
for (size t i = 0; i < s.size(); i++) {
char outc[1l0];
snprintf (outc, 10, "%02X ", (unsigned int)s[i]);
out .append (outc) ;

}

return out.substr (0,out.size()-1);

bool check_match_key (const string & sl, const string & s2) {
vector<uint32_t> k1 = miniutf::match_key(sl);
vector<uint32_t> k2 = miniutf::match_key(s2);

if (k1 !'= k2) {
printf ("match_key (%s, %s) test failed\n", string_as_hex(sl).c_str
printf (" got %s, expected %$s\n", match_key_as_hex (kl) .c_str (),

return false;

}

return true;

int main (void) {

string utf8_test = { '"\x61l', '"\x00', '"\xFO', '"\x9F', '\x92', '\xA9'
ul6string utfl6_test = { 0x61, 0, 0xD83D, O0xDCA9 };

// We also have some tests of UTF-8 to UTF-16 conversion
string utf8 = miniutf::to_utf8(utfle6_test);
if (!check_eqg("1l6-to-8", utf8_test, utf8))

(), string.
match_key_:

116 Chapter 1. Biicode

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

biicode docs Documentation, Release 3.0.2

return 1;

uléstring utfl6 = miniutf::to_utfl6(utf8_test);
if (utfle !'= utflée_test) {
printf ("utf8-to-utfl6 test failed: got ");
for (size_t i = 0; 1 < utflé6.length(); i++) printf ("%04x ",
printf ("\n");
return 1;

// Test match_key function
if (!check_match_key (u8"gcg",

u8"ocaec")) { return 1; }
if (!check_match_key (ug8"asdaeééétion",
u8"aaaeeeeuon")) { return 1; }

printf ("OK\n") ;
return O;

}

(uin

t16_t)utfle

Create a block:

S bii init my_project
$ cd my_project
S bii open examples/miniutf

Now you can compile it:

$ bii build

You will see next console output after executing the command:

S ./bin/examples_miniutf_miniutf
OK

Any doubts? Do not hesitate to contact us visit our forum and feel free to ask any question.

1.8.22 Multivariate Splines

Multivariate Splines is a function approximation library implementing various multivariate splines

in C++.
You can find here the Multivariate splines original github page.

This example does not compile in Windows. Please, use Linux or MacOS instead.

The following example demonstrates the use of Multivariate Splines. Note that there are no re-

strictions to the dimension of x (except that it has to be >= 1, of course).

1.8. Examples

117

http://web.biicode.com/contact-us/
http://forum.biicode.com/
https://github.com/bgrimstad/multivariate-splines

20
21

2
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45

46

biicode docs Documentation, Release 3.0.2

main_muparser.cpp

#include <iostream>

#include "lasote/splines/include/datatable.h"
#include "lasote/splines/include/bspline.h"
#include "lasote/splines/include/pspline.h"
#include "lasote/splines/include/rbfspline.h"

using std::cout;
using std::endl;

using namespace MultivariateSplines;

// Six—hump camelback function
double f (DenseVector Xx)

{

assert (x.rows () == 2);

return (4 - 2.1xx(0)*xx(0)

+ (1/3.)*x(0)*x(0)*x(0)*x(0))+x(0) *x(0)
+ x(0)*x (1)

+ (-4 + 4xx(1)»x(1))*x(1)*x(1);

int main (int argc, char xargv[])

{

// Create new DataTable to manage samples
DataTable samples;

// Sample function

DenseVector x(2);

double y;

for(int i = 0; i < 20; i++)

{
for(int j = 0; j < 20; j++)
{

// Sample function at x

x(0) = ix0.1;
x (1) = 3x0.1;
y = £(x);

// Store sample
samples.addSample (x,V);

// Build B-splines that interpolate the samples
BSpline bsplinel (samples, BSplineType::LINEAR);
BSpline bspline3 (samples, BSplineType::CUBIC_FREE);

118

Chapter 1. Biicode

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65

biicode docs Documentation, Release 3.0.2

// Build penalized B-spline (P-spline) that smooths the samples
PSpline pspline (samples, 0.03);

// Build radial basis function spline that interpolate the samples

RBFSpline rbfspline (samples, RadialBasisFunctionType::THIN_PLATE_SPIL
// Evaluate the splines at x = (1,1)

x(0) =1; x(1) = 1;

COUL << T " << €
cout << "Function at x: \t\t\t" << f(x) << e
cout << "Linear B-spline at x: \t\t" << bsplinel.eval (x) << e
cout << "Cubic B-spline at x: \t\t" << bspline3.eval (x) << e
cout << "P-spline at x: \t\t\t" << pspline.eval (x) << @
cout << "Thin-plate spline at x:\t\t" << rbfspline.eval (x) << e
COUL << | " << €

return O;

}

Project should be compiled with C++11 so you also need the CMakeLists which specify it:
CMakeLists.txt

This CMakelists.txt file helps defining your block building and compil
Include the main biicode macros and functions

To learn more about the CMake use with biicode, wvisit http://docs.biic
Or check the examples below

include ($ {CMAKE_HOME_DIRECTORY}/biicode.cmake)

ACTIVATING C++11 FLAG
IF (APPLE)
SET (CMAKE_CXX_FLAGS "S${CMAKE_CXX_FLAGS} -std=c++11 —-stdlib=libcH
ELSEIF (WIN32 OR UNIX)
SET (CMAKE_CXX_FLAGS "S${CMAKE_CXX_FLAGS} —-std=c++11")
ENDIF (APPLE)

INE) ;

ndl;
ndl;
ndl;
ndl;
ndl;
ndl;
ndl;

+

ADD_BII_TARGETS ()

* This example is already in biicode, it’s simple to run, just open the block and build it like
this:

bii init my_project

cd my_project

bii open examples/multivariate_splines
bii build

Ur 0r U -

* Only if you want to do it manually, create a cpp file in your block, copy the code above

1.8. Examples 119

ing

ode.com/c+-

")

http://www.biicode.com/examples/multivariate_splines

biicode docs Documentation, Release 3.0.2

and resolve all the dependencies of the main.cpp. Create a CMakeLists.txt file with

the content above too. Then you can compile it:

bii init my_project
cd my_project

bii find
bii build

vr 0 Uy U 0 Uy

bii new my_user/my_block
Create a main.cpp file in my_user/my_block and copy the codg
Create a CMakelLists.txt file in my_user/my_block an copy thd

b

b code

You will see next console output after executing the command:

S cd bin

S bin $././examples_multivariate_

Computing B-spline control points
Computing B-spline control points
Computing B-spline control points
Computing RBF weights using dense
Error: 6.33755e-14

Function at x:
Linear B-spline at x:

P-spline at x:
Thin-plate spline at x:

3
3
Cubic B-spline at x: 3.
3
3

splines_splines_main
using dense solver.
using dense solver.
using dense solver.
solver.

1.8.23 libuv

libuv i a multi-platform library for asynchronous, event-driven style of programming. It offers
core utilities like timers, non-blocking networking support, asynchronous file system access, child

processes and more.

libuv libraries available at biicode are:
e libuv v0.10 at lasote/libuv (v0.10).
e libuv v0.11 at lasote/libuv (v0.11).
e libuv v1.x at lasote/libuv (v1.x).

Blocks are generated for this github repo.

Http client/server application

In this example we’ll show a Http client/server application.

120

Chapter 1. Biicode

https://github.com/joyent/libuv
https://www.biicode.com/lasote/lasote/libuv/v0.10
https://www.biicode.com/lasote/lasote/libuv/v0.11
https://www.biicode.com/lasote/lasote/libuv/v1.x
https://github.com/lasote/libuv-1

biicode docs Documentation, Release 3.0.2

Creating a new project

This example is already in biicode at examples/libuv(v0.11). So just open the block:

S bii init libuvproject
S cd libuvproject
S bii open examples/libuv(v.11)

Check dependencies

Let’s check the dependecies of this example:

$ bii deps
INFO: Processing changes...
examples/libuv depends on:
lasote/libuv(v0.11): 2
include/uv.h
system:
stdio.h
stdlib.h
string.h

Now take a look at biicode.conf file:

[requirements]
lasote/libuv (v0.11): 2

[parent]
examples/libuv(v0.11): 1

[includes]
uv.h: lasote/libuv/include

Note that the original [includes] are mapped, so you just have to #include "uv.h" to
add libuv to the project.

Build the project

Now execute bii build to build the project.

S bii build

Go to bin directory and execute:

S cd bin
S examples_libuv_network_server.exe

1.8. Examples 121

https://www.biicode.com/examples/examples/libuv/v0.11

biicode docs Documentation, Release 3.0.2

And in other terminal/console:

S cd bin
S examples_libuv_network_client.exe

And you’ll see the next output:

Server Client

Connection ok! Writing: Ping...
Received: Ping... Write ok!

Sending: Ping... Pong! Received: Ping... Pong!
Closed ok!

Hey! That’s your ping-pong client/server application!

Change libuv’s version

You can change among libuv’s versions with just a single mod in biicode.conf file:

* To depend on libuv v0.10:

[requirements]
lasote/libuv (v0.10): 3

* To depend on libuv v0.11:

[requirements]
lasote/libuv (v0.11): 2

* To depend on libuv v1.x:

[requirements]
lasote/libuv (vl.x): 7

Try the example above switching versions!

Got any doubts? Do not hesitate to contact us, visit our forum and feel free to ask any questions.

1.8.24 Little CMS

Little CMS is an Open Source Color Management Engine. This example demonstrates how to get
started using LittleCMS by Marti Maria with biicode.

Little CMS intends to be an OPEN SOURCE small-footprint color management engine, with
special focus on accuracy and performance. It uses the International Color Consortium standard
(ICC), which is the modern standard when regarding to color management. This examples have
been tested in Windows, OS X and Linux-systems. Check the Sources:

1. Original Little CMS Library.

122 Chapter 1. Biicode

http://web.biicode.com/contact-us/
http://forum.biicode.com/
http://www.littlecms.com//

biicode docs Documentation, Release 3.0.2

2. Biicode Little CMS block at martimaria/littlecms.
3. Github repository.
4. LittleCMS Documentation.

ICC Profile Examples

In this example we’ll create a devicelink that decodes TIFF8 Lab files using Little CMS. You only
have to write #include "lcms2.h" atthe top of your code.

Creating a new project

Create a new project and a Icms-main.c file:

S bii init lcms -L
$ cd lcms
S # Create lcms-main.c and copy the code

lems-main.c

// Little cms

// Copyright (C) 1998-2010 Marti Maria

//

// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation

// the rights to use, copy, modify, merge, publish, distribute, sublicen|se,

// and/or sell copies of the Software, and to permit persons to whom thel Software
// 1s furnished to do so, subject to the following conditions:
//

// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.

//

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO

// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS B
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

[

// Creates a devicelink that decodes TIFF8 Lab files

#include "lcms2.h"
#include <stdlib.h>
#include <math.h>

1.8. Examples 123

http://www.biicode.com/martimaria/littlecms
https://github.com/MariadeAnton/little-cms
http://sourceforge.net/projects/lcms/files/lcms/2.6/

biicode docs Documentation, Release 3.0.2

static
double DecodeAbTIFF (double ab)

{
if (ab <= 128.)

ab += 127.;
else
ab —= 127.;

return ab;

static
cmsToneCurvex CreateStep (void)
{
cmsToneCurvex Gamma;
cmsUIntloeNumber+ Table;
int i;
double a;

Table = calloc (4096, sizeof (cmsUIntlé6Number));
if (Table == NULL) return NULL;

for (i=0; i < 4096; i++) {

a = (double) i = 255. / 4095.;
a = DecodeAbTIFF (a);
Table[i1i] = (cmsUIntl6Number) floor(a *= 257. + 0.5);

}
Gamma = cmsBuildTabulatedToneCurvel6 (0, 4096, Table);

free (Table);
return Gamma;

static
cmsToneCurvex CreateLinear (void)
{
cmsUIntleoNumber Linear[2] = { 0, Oxffff };
return cmsBuildTabulatedToneCurvel6 (0, 2, Linear);

// Set the copyright and description
static
cmsBool SetTextTags (cmsHPROFILE hProfile)

{

124 Chapter 1.

Biicode

biicode docs Documentation, Release 3.0.2

cmsMLU *DescriptionMLU, xCopyrightMLU;
cmsBool rc = FALSE;

DescriptionMLU = cmsMLUalloc (0, 1);
CopyrightMLU = cmsMLUalloc (0, 1);
if (DescriptionMLU == NULL || CopyrightMLU == NULL) goto Error;
if (!cmsMLUsetASCII (DescriptionMLU, "en", "US", "Little cms Tiff8 C
if (!cmsMLUsetASCII (CopyrightMLU, "en", "US", "Copyright (c) Mart
if (!cmsWriteTag (hProfile, cmsSigProfileDescriptionTag, Description
if (!cmsWriteTag(hProfile, cmsSigCopyrightTag, CopyrightMIL
rc = TRUE;

Error:

if (DescriptionMLU)

cmsMLUfree (DescriptionMLU) ;
if (CopyrightMLU)

cmsMLUfree (CopyrightMLU) ;
return rc;

int main (int argc, char *argv[])

{
cmsHPROFILE hProfile;
cmsPipeline xAToRO;
cmsToneCurvex PrelLinear[3];
cmsToneCurve =xLin, xStep;

fprintf (stderr, "Creating lcmstiff8.icm...");

remove ("lcmstiff8.icm");
hProfile = cmsOpenProfileFromFile ("lcmstiff8.icm", "w");

// Create linearization
Lin = Createlinear();
Step = CreateStep();

PreLinear[0] = Lin;
PrelLinear[1l] = Step;
PrelLinear[2] = Step;

AToBO = cmsPipelineAlloc (0, 3, 3);
cmsPipelineInsertStage (AToBO,

cmsAT_BEGIN, cmsStageAllocToneCurves (0, 3, PrelLinear));
cmsSetColorSpace (hProfile, cmsSigLabData);

cmsSetPCS (hProfile, cmsSigLabData);

cmsSetDeviceClass (hProfile, cmsSigLinkClass);
cmsSetProfileVersion (hProfile, 4.2);

IELab")) gc
i Maria, 2(
MLU)) goto
U)) goto E:

1.8. Examples

125

biicode docs Documentation, Release 3.0.2

cmsWriteTag (hProfile, cmsSigAToBO0Tag, AToRO);
SetTextTags (hProfile);

cmsCloseProfile (hProfile);
cmsFreeToneCurve (Lin) ;
cmsFreeToneCurve (Step) ;

cmsPipelineFree (AToRO) ;

fprintf (stderr, "Done.\n");
return 0O;

Manage your dependencies

Check the dependencies of the project with bii deps:

INFO: Processing changes...
youruser/lcms depends on:
system:
math.h
stdlib.h
unresolved:
lcms2.h

Now, edit the biicode.conf file generated in the project folder. Map your [includes] to point
to martimatia/littlecms:

[includes]
lcms2.h: martimaria/littlecms/include/

Now do bii find and biicode will find the most recent version available of Little CMS library:

$ bii find
INFO: Processing changes...
INFO: Finding missing dependencies in server
INFO: Looking for martimaria/littlecms...
INFO: Block candidate: martimaria/martimaria/littlecms/master
INFO: Version martimaria/littlecms: 1 (STABLE) valid
INFO: Version martimaria/littlecms: 0 (STABLE) valid
INFO: Analyzing compatibility for found dependencies...
INFO: All dependencies resolved
Find resolved new dependencies:

martimaria/littlecms: 1
INFO: Saving files from: martimaria/littlecms

Have a look at your biicode.conf again to ensure Little CMS library was added to your project:

126 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

[requirements]
martimaria/littlecms: 1

[includes]

lcms2.h: martimaria/littlecms/include/

Check again with bii deps and now all dependencies are resolved.

Build the project

Next, the only thing left is building the project:

[$ bii build

Execute the binary placed in bin directory:

‘$ bin/youruser_lcms_lcms-main

Once you execute you should see an output like this one, and a the 1cmstiff8. icm file created
into your bin folder:

Creating lcmstiff8.icm...Done

You can find more examples at examples/littlecms, give them a try!

Open and build

This example is already in biicode at examples/littlecms.

It is simple to run, just open the block and build it like this:

S bii init lcms
S cd lcms
S bii open examples/littlecms

There are three different files in the project, note that all of them use Little CMS , simply by
including the library.

Build the block and execute any of them!

S bii build
S cd bin

S # Execute!

Any doubts? Do not hesitate to contact us visit our forum and feel free to ask any questions.

1.8. Examples 127

http://www.biicode.com/examples/littlecms
http://www.biicode.com/examples/littlecms
http://web.biicode.com/contact-us/
http://forum.biicode.com/

biicode docs Documentation, Release 3.0.2

1.8.25 Log4z

is an open source C++ lightweight & cross platform log library.
It provides in a C++ application log and trace debug function for 7#24h service program.
Support: 64/32 bits of debian, redhat, centos, suse, windows.

The main block is , which is generated from this .

Fast stream log strings test

Now, you can check all the log4z examples which are uploaded in biicode and execute any of them.
Then, create a new project and open the .

~$S bii init log4z_sample

~$ cd log4dz_sample

~/logdz_sample$ bii open examples/logdz
~/logdz_sample$ bii build

Windows Users

It is necessary to specify Visual Studio generator before building (it doesn’t work with MinGW)),
otherwise, you can skip this step.

bii configure -G "Visual Studio 12"

When all the examples are built, execute for fast stream log strings testing:

~/logdz_sample$ bin/examples_logdz_fast_test

2014-09-19 12:15:08.223 LOG_ALARM -———————————————— log4z thread started! — —————-
2014-09-19 12:15:08.223 LOG_ALARM logger i1d=0 path=./log/ name=examples_[logdz_fast_
2014-09-19 12:15:08.223 LOG_INFO Dbegin test stream log utf-16 string input.... ((

Any doubts? Do not hesitate to contact us visit our forum and feel free to ask any questions.

1.8.26 lwan Web Server

Lwan is a high-performance & scalable web server for glibc/Linux platforms. For more informa-
tion about this project, visit their official website.

Hello World Example

This example creates a very simple web service which greets you by your name.

128 Chapter 1. Biicode

http://web.biicode.com/contact-us/
http://forum.biicode.com/
http://lwan.ws/

20

21

22

23

24

25

26

biicode docs Documentation, Release 3.0.2

How to replicate

This example is already in biicode, it’s simple to run, just open the block and build it like this:

bii init 1lwan

cd lwan

bii open examples/lwan
bii build

0 0 »r U

This example needs three files, first one that defines the server configuration:

Iwan.conf

listener x:8080 {
prefix /hello {
handler = hello _world

}

The actual soruce code:

Iwan_example.c

#include "hithwen/lwan/common/lwan.h"

lwan_http_status_t
hello_world(lwan_request_t x*request,
lwan_response_t x*response,

void rdata __ _attribute__ ((unused)))
{
static lwan_key value_t headers[] = {
{ .key = "X-The-Answer-To-The-Universal-Question", .value = "42"

{ NULL, NULL }
}i
response—>headers = headers;
response—>mime_type = "text/plain";

const char xname = lwan_request_get_query_param(request, "name");
if (name)
strbuf_printf (response->buffer, "Hello, %s!", name);
else
strbuf_set_static(response->buffer, "Hello, world!", sizeof ("Hel

return HTTP_OK;

int
main (void)

{

by

Lo,

1.8. Examples 129

world!"

http://www.biicode.com/examples/lwan

27

28

29

30

31

32

33

34

biicode docs Documentation, Release 3.0.2

lwan t 1;

lwan_init (&1);
lwan_main_loop (&1);
lwan_shutdown (&1) ;

return O;

}

And the Cmake lists that copies config file to bin folder:
CMakeLists.txt

include (${CMAKE HOME_DIRECTORY}/biicode.cmake)
ADD BII TARGETS ()
MESSAGE ("Copying lwan.conf to ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}")

FILE (COPY ${CMAKE CURRENT SOURCE DIR}/lwan.conf DESTINATION ${CMAKE RUNT
FILE (RENAME ${CMAKE_ RUNTIME_OUTPUT_DIRECTORY}/lwan.conf ${CMAKE RUNTIME_|

IME_OUTPUT._
OUTPUT_DIRE

Now, run the hello example.

S cd bin
S ./examples_lwan_lwan_example

You can see the server running:

62528 lwan-job.c:76 lwan_job_thread _init () Initializing low priority job
62528 lwan-response.c:75 lwan_response_init () Initializing default respo
62528 lwan-tables.c:44 lwan_tables_init () Uncompressing MIME type table.
62528 lwan.c:58 lwan_module_init () Initializing module registry.

62528 lwan.c:73 lwan_module_register () Registering module "serve_files".
62528 lwan.c:73 lwan_module_register () Registering module "redirect".
62528 lwan.c:360 setup_from _config() Loading configuration file: example
62528 lwan.c:476 lwan_init () Initializing lwan web server.

62528 lwan.c:487 lwan_init () Using 2 threads, maximum 2048 sockets per t
62528 lwan-thread.c:393 lwan_thread_init () Initializing threads.

62528 lwan-socket.c:212 lwan_socket_init () Initializing sockets.

62528 lwan-socket.c:197 _setup_socket_normally() Listening on http://0.0
62528 lwan.c:561 lwan_main_loop () Ready to serve.

62531 lwan-thread.c:290 _thread_io_loop () Starting IO loop on thread #2.

Q Q Q Q

thread.
nse.

s_lwan_lwar

hread.

.0.0:8080.

62530 lwan-thread.c:290 _thread_io_loop() Starting IO loop on thread #1.

Now you can go to any browser and navigate to http://localhost:8080?name=fred

Any doubts? Do not hesitate to contact us visit our forum and feel free to ask any questions.

130 Chapter 1. Biicode

http://localhost:8080?name=fred
http://web.biicode.com/contact-us/
http://forum.biicode.com/

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

biicode docs Documentation, Release 3.0.2

1.8.27 MiLi

MiLi is a collection of useful C++ libraries, composed only by headers. For more information
about this library, visit their official website or wiki.

You can find here the MilLi biicode library site.

The following example shows a simple use for doing type-safe bitwise operations. You can find
this and other examples in the biicode MiLi samples block.

main_mili.cpp

/*bitwise_enums: A minimal library for doing type-safe bitwise operation
This file is part of the MiLi Minimalistic Library.

Copyright (C) Daniel Gutson, FuDePAN 2008-2009

Adrian Remonda FuDePAN 2011
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt in the root directory or
copy at http://www.boost.org/LICENSE_1_0.txt)

MiLi IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVEN
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABI
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWI
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OT|
DEALINGS IN THE SOFTWARE.

This is an example file.x/

#include <iostream>
#include "danielgutson/mili/mili.h"

using namespace mili;
using namespace std;

enum MasksSetl

{
kZero =
kOne
kTwo
kThree
kFour

~

~

~

|
0o s N PR O

}i
BITWISE_ENUM_ENABLE (MasksSetl)

[l

HER

enum MasksSet?2

1.8. Examples 131

https://code.google.com/p/mili/
https://code.google.com/p/mili/w/list
https://www.biicode.com/danielgutson/mili
https://www.biicode.com/danielgutson/milisamples

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

biicode docs Documentation, Release 3.0.2

kEight
kSixteen

|
00

16

}i
typedef bitwise_enum<MasksSetl> Ml;

void show bits (M1 b)
{

if (b.has_bits (kZero)) cout << "kZero turned on\n";
if (b.has_bits (kOne)) cout << "kOne turned on\n";
if (b.has_bits (kTwo)) cout << "kTwo turned on\n";
if (b.has_bits (kThree)) cout << "kThree turned on\n";
if (b.has_bits (kFour)) cout << "kFour turned on\n";

cout << endl;

int main()

{
//with bitwise nums
bitwise_enum<MasksSetl> myEnum(kOne | kTwo | kFour);

show_bits (myEnum) ;
//enum with bitwise enum
myEnum = kOne & myEnum;

show_bits (myEnum) ;

// 2 enums
show_bits (kOne | kThree);

// << operator
cout << "<< Operator test: 0x" << hex << (myEnum << 2)

//without bitwise nums (built-in types)
int normalEnum = kEight | kSixteen;

cout << "Normal Enum: 0x" << hex << normalEnum << endl;

normalkEnum = kEight << 2;
cout << "Normal Enum: 0x" << hex << normalEnum << endl;

return O;

<< endl;

Create a new project and open the example block:

132 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

S bii init mili_example
$ cd mili_example
S bii open examples/mili

Now build your project and run the executable:

S bii build
S cd bin
S # run executable

You will see next console output:

kOne turned on
kTwo turned on
kFour turned on

kOne turned on

kOne turned on
kThree turned on

<< Operator test: 0x4
Normal Enum: 0x18
Normal Enum: 0x20

Any doubts? Do not hesitate to contact us visit our forum and feel free to ask any questions.

1.8.28 MuParser

Many applications require the parsing of mathematical expressions. The main objective of this
library is to provide a fast and easy way of doing this. muParser is an extensible high performance
math expression parser library written in C++. It works by transforming a mathematical expression
into bytecode and precalculating constant parts of the expression. For more information about this
library, visit their official website.

You can find here the Muparser library site.
The following example is a math interactive interpreter.

main_muparser.cpp

//

//

// \ \

// / \ \ /N N\ __\/ /_/ A\ \
// 1YY\ /1 \ / _ N/ NN / I \/
/o D D B /] \ (. /

1.8. Examples 133

http://web.biicode.com/contact-us/
http://forum.biicode.com/
http://muparser.beltoforion.de//
http://www.biicode.com/ingoberg/muparser
http://www.biicode.com/examples/muparser

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

biicode docs Documentation, Release 3.0.2

//
//
//
//
//

(C)

#include

#1f defi
#defin
#inclu
#inclu
#defin

#endif

#1if defi
#error T
#endif

/*x \bri
#define

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#include

\/
2013 Ingo Berg

\/ \/ \/

examplel.cpp - using the parser as a static library

"ingoberg/muparser/include/muParserTest.h"

ned (_WIN32) && defined(DEBUG)
e _CRTDBG_MAP_ALLOC

de <stdlib.h>

de <crtdbg.h>

e CREATE_LEAKAGE_REPORT

ned(USINGDLL) && defined(_WIN32)
his sample can be used only with STATIC builds of muParser

*/

ef This macro will enable mathematical constants like M_PTI.

_USE_MATH_DEFINES

<cstdlib>
<cstring>
<cmath>
<string>
<iostream>
<locale>
<limits>
<ios>
<iomanip>
<numeric>

"ingoberg/muparser/include/muParser.h"

using namespace std;
using namespace mu;

(on w

#1f defined (CREATE_LEAKAGE_REPORT)

// Dumping memory leaks in the destructor of the static guard

// guarantees 1 won't get false positives from the ParserErrorMsg

// class wich is a singleton with a static instance.

struct DumpLeaks

{

134 Chapter 1. Biicode

in32)

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

biicode docs Documentation, Release 3.0.2

~DumpLeaks ()
{
_CrtDumpMemoryLeaks () ;
}

} static LeakDumper;
#endif

// Forward declarations
void CalcBulk () ;

// Operator callback functions

value_type Mega (value_type a_fVal) { return a_fVval % le6; }

value_type Milli (value_type a_fVval) { return a_fVal / (value_type)le3; }
value_type Rnd(value_type v) { return vxstd::rand()/(value_type) (RAND_MA|
value_type Not (value_type v) { return v==0; }

value_type Add (value_type vl, value_type v2) { return vli+v2; }
value_type Mul (value_type vl, value_type v2) { return vlxv2; }

value_type ThrowAnException (value_type)
{

throw std::runtime_error ("This function does throw an exception.");

value_type BulkFunl (int nBulkIdx, int nThreadIdx, value_type vl)
{
// Note: I'm just doing something with all three parameters to shut
// compiler warnings up!
return nBulkIdx + nThreadIdx + vl;

value_type Ping()
{

mu: :console () << "ping\n";
return 0;

value_type StrFunO (const char_type *szMsqg)

{
if (szMsqg)
mu: :console () << szMsg << std::endl;

return 999;

X+1.0);

1.8. Examples 135

}

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

biicode docs Documentation, Release 3.0.2

value_type StrFun2 (const char_type xvl, value_type v2,value_type v3)

{
mu: :console () << vl << std::endl;
return v2+v3;

value_type Debug(mu::value_type vl, mu::value_type v2)
{
ParserBase: :EnableDebugDump (v1!=0, v2!=0);
mu::console () << _T("Bytecode dumping ") << ((v1l!=0) ? _T("active")
return 1;

// Factory function for creating new parser variables
// This could as well be a function performing database queries.
value_typex AddVariable (const char_type *a_szName, wvoid xa_pUserData)
{
// I don't want dynamic allocation here, so i1 used this static buffer
// If you want dynamic allocation you must allocate all variables dyna
// in order to delete them later on. Or you find other ways to keep tr
// variables that have been created implicitely.
static value_type afvalBuf[100];

static int ival = -1;
++ival;
mu: :console () << _T("Generating new variable \"")
<< a_szName << std::dec << _T("\" (slots left: ")

<< 99-ival << _T(M™)

<< _T(" User data pointer is:")

<< std::hex << a_pUserData <<endl;
afvalBuf[ival] = 0;

if (ival>=99)

throw mu: :ParserError(_T("Variable buffer overflow."));
else

return &afvValBuf[iVall;

int IsHexValue (const char_type *a_szExpr, int *a_iPos, value_type xa_fVa

{
if (a_szExpr[l]==0 || (a_szExpr[0]!='0"' || a_szExpr[l]!='x"))

| T("inactix

mically
ack of

136 Chapter 1. Biicode

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

biicode docs Documentation, Release 3.0.2

{

return O;
unsigned ival (0);
// New code based on streams for UNICODE compliance:
stringstream_type: :pos_type nPos (0);
stringstream_type ss(a_szExpr + 2);
ss >> std::hex >> iVal;

nPos = ss.tellg();

if (nPos==(stringstream_type: :pos_type)0)
return 1;

*a_iPos += (int) (2 + nPos);
xa_fVal = (value_type)iVval;

return 1;

mu: :console () << _T(" -
mu: :console () << _T(" _ _\\ \\ .
mu::console() << _T(" / A\ T\ NN NN\ N\ /L
mu::console() << _T(" | Y Y A\\| | /I | V2R N W I T N W N W A N W N
mu: :console() << _T(" |_|_| /| a | (/I /_—— P \N_ >
mu::console() << _T(" \\/ \\/ \\/ \\
mu::console () << _T(" Version ") << Parser () .GetVersion (pviFULL) << _|T("\n");
mu: :console () << _T (" (C) 2013 Ingo Berg\n");
}
T s
value_type SelfTest ()
{
MU: :CONS0l e () << T (|t Ny ettt
mu::console () << _T("Running test suite:\n\n");
// Skip the self test if the value type is set to an integer type.
if (mu::TypelInfo<mu::value_type>::IslInteger())
{
mu: :console() << _T(" Test skipped: integer data type are not complatible wit!

else

mu: :Test::ParserTester pt;
pt.Run();

1.8. Examples 137

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

biicode docs Documentation, Release 3.0.2

{

ts\n")

ar_type>
ar_type>
ar_type>
ar_type>
ar_type>

mu::console() << _T("-———"-"——""""""""""""""""""""—"——(—(—(—(—
mu: :console() << _T("Commands:\n\n");
mu: :console() << _T(" 1list var - list parser variables\n")
mu::console() << _T(" 1list exprvar - list expression variables\n")
mu::console() << _T(" 1list const — list all numeric parser constan
mu::console() << _T(" opt on - enable optimizer (default)\n")
mu::console() << _T(" opt off - disable optimizer\n");
mu: :console() << _T(" locale de - switch to german locale\n");
mu::console() << _T(" locale en - switch to english locale\n");
mu::console() << _T(" locale reset - reset locale\n");
mu::console() << _T(" test bulk — test bulk mode\n");
mu::console() << _T(" quit - exits the parser\n")
mu: :console() << _T("\nConstants:\n\n");
mu::console () << _T(" \"_e\" 2.718281828459045235360287\n") ;
mu::console() << _T(" \"_pi\" 3.141592653589793238462643\n");
mu::console() << _T("-———-"--"""""""""""""""""""""
return 0;
}
[e e
/ *
void CheckLocale ()
{
// Local names:
// "C" - the classic C locale
// "de_ DE" - not for Windows?
// "en US"™ - not for Windows?
// "German_germany" - For MSVCS8
try
{
std::1locale loc ("German_germany");
console () << _T("Locale settings:\n");
console () << _T(" Decimal point: '") << std::use_facet<numpunct<ch
console () << _T("™ Thousands sep: '") << std::use_facet<numpunct<ch
console () << _T(" Grouping: '") << std::use_facet<numpunct<ch
console () << _T(" True is named: '") << std::use_facet<numpunct<ch
console () << _T(" False is named: '") << std::use_facet<numpunct<ch
console() << _T("-———"""""""""""""“"“""—"—"—"—"—"——————————
}
138 Chapter 1. Biicode

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

biicode docs Documentation, Release 3.0.2

catch(...)
{
console () << _T("Locale settings:\n");
console () << _T(" invalid locale name\n");
console() << _T("--7-"""""""""""""""""“"“"“"~"~"—~"~"~—"—"—"—~"—~"—"—"—"—"——"———————
t
}
=

volid CheckDiff ()
{
mu: :Parser parser;
value_type x = 1,
vl,
v2,
v3,
eps (pow (std: :numeric_limits<value_type>::epsilon(), O.
parser.DefineVar (_T ("x"), &x);
parser.SetExpr (_T("_e*—-x*xsin(x)"));

vl = parser.Diff (&x, 1),
v2
v3
mu::console () << parser.GetExpr () << _T("\n");

parser.Diff (&x, 1, eps);
cos ((value_type)1.0) /exp ((value_type)l) — sin((value_type)l.

0) /ex

mu::console() << _T("vl = ") << vl << _T("; v1-v3 = ") << v1-v3 << _T¢(
mu::console() << _T("v2 = ") << v2 << _T("; v2-v3 = ") << v2-v3 << _T(

void ListVar (const mu::ParserBase &parser)
{
// Query the used variables (must be done after calc)
mu: :varmap_type variables = parser.GetVar();
if (!variables.size())
return;

cout << "\nParser variables:\n";
cout << Demmm—m——eae——==== \n";
cout << "Number: " << (int)variables.size () << "\n";
varmap_type::const_iterator item = variables.begin();
for (; item!=variables.end(); ++item)
mu: :console() << _T("Name: ") << item—->first << _T (" Address:

void ListConst (const mu::ParserBase &parser)

[OX"

o ((value_ty

"\n") ;
"\n") ;

) << item—>

1.8. Examples

139

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

biicode docs Documentation, Release 3.0.2

mu: :console () << _T("\nParser constants:\n");
mu::console() << _T("-———————————————— \n");
mu: :valmap_type cmap = parser.GetConst () ;
if (!cmap.size())
{
mu: :console () << _T("Expression does not contain constants\n");
}
else
{
valmap_type::const_iterator item = cmap.begin();
for (; item!=cmap.end(); ++item)
mu: :console() << _T(" ") << item—->first << _T(" = ") << item—->se
}
}
=

void ListExprVar (const mu::ParserBase &parser)
{
string_type sExpr = parser.GetExpr();
if (sExpr.length()==0)
{
cout << _T("Expression string is empty\n");
return;

// Query the used variables (must be done after calc)

mu::console () << _T("\nExpression variables:\n");
mu: :console () << |V —————=—============== \n");
mu::console () << _T("Expression: ") << parser.GetExpr() << _T("\n");

varmap_type variables = parser.GetUsedVar();
if (!variables.size())

{

mu: :console () << _T("Expression does not contain variables\n");
}
else
{
mu: :console () << _T("Number: ") << (int)variables.size () << _T("\n")

mu: :varmap_type::const_iterator item = variables.begin();
for (; item!=variables.end(); ++item)
mu::console() << _T("Name: ") << item—->first << _T (" Address: [0

cond << _T

x") << iter

140 Chapter 1. Biicode

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

biicode docs Documentation, Release 3.0.2

/*% \brief Check for external keywords.

*/

int CheckKeywords (const mu::char_type xa_szLine, mu::Parser &a_Parser)

{

string_type sLine(a_szLine);

if (sLine == _T("quit")

{

return -1;

}

else if (sLine ==

{

ListVar (a_Parser);

return 1;

}

else if (sLine

{

= _T("opt on")

_T("list wvar"))

)

a_Parser.EnableOptimizer (true);

mu: :console ()
return 1;

}

else if (sLine == _T("opt off")

{

_T("Optimizer enabled\n");

)

a_Parser.EnableOptimizer (false);

mu: :console ()
return 1;

}

else if (sLine

{

ListConst (a_Parser);

return 1;

}

else if (sLine ==

{

ListExprVar (a_Parser);

return 1;

}

else if (sLine

{

ListConst (a_Parser);

return 1;

}

else if (sLine ==

{

mu: :console ()

_T("Optimizer disabled\n");

_T("list const"))

_T("list exprvar"))

_T("list const"))

_T("locale de"))

_T("Setting german locale: ArgSep=';' DecSep=',' Th
a_Parser.SetArgSep(';"');
a_Parser.SetDecSep (', ");

1.8. Examples

141

ousandsSep:s

384

385

386

387

388

389

390

391

392

393

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

biicode docs Documentation, Release 3.0.2

{

a_Parser.SetThousandsSep ('.");
return 1;

}

else if (sLine == _T("locale en"))

{

mu: :console () << _T("Setting english locale: ArgSep=',"

a_Parser.SetArgSep (', ");
a_Parser.SetDecSep('.");
a_Parser.SetThousandsSep () ;
return 1;

}

else if (sLine == _T("locale reset"))

{
mu: :console () << _T("Resetting locale\n");
a_Parser.ResetLocale();
return 1;

}

else if (slLine == _T("test bulk"))

{
mu: :console () << _T("Testing bulk mode\n");
CalcBulk () ;
return 1;

return 0;

DecSep="."

T

void CalcBulk ()

const int nBulkSize = 200;

value_type *x = new value_type[nBulkSize];
value_type *xy = new value_type[nBulkSize];
value_type x*result = new value_type[nBulkSize];

try
for (int i=0; i<nBulkSize; ++1)

x[1] = 1;
(value_type) 1/10;

<
Il

mu: :Parser parser;

parser.DefineVar (_T("x"), x);
parser.DefineVar (_T("y"), v);
parser.DefineFun (_T("funl"), BulkFunl);
parser.SetExpr (_T("funl (0) +x+y"));

housandsSer

142

Chapter 1. Biicode

431

432

433

434

435

436

437

438

439

440

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

biicode docs Documentation, Release 3.0.2

parser.Eval (result,

for (int 1=0;

{

mu:

i<nBulkSize;

:console () << _T("Egn.

}
catch(...)
{
delete []
delete []
delete []
throw;

Xy
Yi
result;

delete []
delete []
delete []

Xy
Yi
result;

mu: :Parser parser;

//
//
//
// thousands separator:
//#define USE_GERMAN_ LOCALE
#ifdef USE_GERMAN_LOCALE
parser.SetArgSep('; ") ;
parser.SetDecSep (', ") ;
parser.SetThousandsSep ('.");
#else
// this is the default,
//parser.SetArgSep (', ") ;
//parser.SetDecSep ('.");
//parser.SetThousandsSep ('");
#endif

function argument separator:
decimal separator:

// Add some variables
value_type vVarvall[] = { 1,
parser.DefinevVar (_T("a"),
parser.DefineVar (_T("b"),

parser.DefineStrConst (_T ("strBuf"),

parser.AddVallIdent (IsHexValue);

")

so 1 it's

2 };
&vVarval[0]);
&vVarvall[l]l);

nBulkSize) ;

++1)

<< 1 << _T(": x=") << x[1] <K<

Change locale settings if necessary

sum(2;3;4)
3,14
1000000

sum (2, 3,4)
vs. 3.14
vs 1.000.000

VS.

commented:

// Values of the parser variables
// Assign Variable names and

_T("hello world"));

=") << yl[i:

lbind them t

1.8. Examples

143

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

biicode docs Documentation, Release 3.0.2

// Add user defined unary operators
parser.DefinePostfixOprt (_T("M"), Mega);
parser.DefinePostfixOprt (_T("m"), Milli);
parser.DefineInfixOprt (_T("!"), Not);
parser.DefineFun (_T ("strfun0"), StrFun0);
parser.DefineFun (_T ("strfun2"), StrFun2);
parser.DefineFun (_T ("ping"), Ping);

T(
T(

parser.DefineFun (_T ("rnd"), Rnd); // Add an unoptimizeable functio
T(

parser.DefineFun (_T ("throw"), ThrowAnException);

parser.DefineOprt (_T ("add"), Add, O0);
parser.DefineOprt (_T ("mul"), Mul, 1);

// These are service and debug functions
parser.DefineFun (_T ("debug"), Debug);
parser.DefineFun(_T ("selftest"), SelfTest);
parser.DefineFun (_T ("help"), Help);

#ifdef _DEBUG
// parser.EnableDebugDump (1, 0);
#endif

// Define the variable factory
parser.SetVarFactory (AddVariable, &parser);

for (;;)
{
try
{
string_type sLine;
std::getline(mu::console_in (), sLine);

switch (CheckKeywords (sLine.c_str (), parser))
{

case 0: break;

case 1: continue;

case -1: return;

}

if (!sLine.length())
continue;

parser.SetExpr (sLine);
mu: :console () << std::setprecision(12);

144 Chapter 1.

Biicode

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

biicode docs Documentation, Release 3.0.2

//
//
//
//

mu:

//
in
if
{

}

There are multiple ways to retrieve the result...

1.) If you know there is only a single return value or in case
result of an expression consisting of comma separated subex
simply use:

:console () << _T("ans=") << parser.Eval() << _T("\n");

2.) As an alternative you can also retrieve multiple return val

t nNum = parser.GetNumResults () ;
(nNum>1)
mu::console() << _T("Multiple return values detected! Complete 1

// this is the hard way if you need to retrieve multiple subexpr
// results

value_type xv = parser.Eval (nNum) ;

mu::console () << std::setprecision(12);

for (int i=0; i<nNum; ++1)

{

mu::console() << v[i] << _T("\n")

catch (mu: :Parser: :exception_type &e)
{
mu: :console() << _T("\nError:\n")
mu: :console() << _T("—-————- \n")
mu::console () << _T("Message: ") << e.GetMsg () << _T("\n")
mu: :console () << _T("Expression: \"") << e.GetExpr() << _T("\"\n
mu: :console() << _T("Token: \"") << e.GetToken () << _T("\
mu: :console() << _T("Position: ") << (int)e.GetPos () << _T("\
mu: :console() << _T("Errc: ") << std::dec << e.GetCode ()
}
} // while running
}
T
int main(int, charxx)
{
Splash () ;
SelfTest () ;
Help () ;
// CheckLocale () ;
// CheckDiff ();
mu::console () << _T("Enter an expression or a command:\n")

you only ne
loressions

ues using t

ist:\n");

ession

<< _T (n\nn)

1.8. Examples 145

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

biicode docs Documentation, Release 3.0.2

try
{
Calc();
}
catch (Parser: :exception_type &e)
{
// Only erros raised during the initialization will end up here
// formula related errors are treated in Calc ()
console() << _T("Initialization error: ") << e.GetMsg () << endl;
console () << _T("aborting...") << endl;
string_type sBuf;
console_in () >> sBuf;
}
catch(std: :exception & /*excx/)
{
// there is no unicode compliant way to query exc.what ()
// so 1'll leave it for this example.
console () << _T("aborting...\n");

return 0;

}

Create a block and open the example block:

S bii init my_project
S cd my_project
S bii open examples/muparser

The main. cpp file is now in your block. Now you just have to build it and run the executable:

S bii build
S cd bin
S # run executable

You will see next console output after executing the command:

- _— _\ \
/ NN /N N\ _ N/ ___// N\ __\
Il Yyy NI | /] | /N NN NN N
11 /I /] | (/I />N >_|
\/ \/ \/ \/

Version 2.2.3 (20121222; SF; 64BIT; RELEASE; ASCII)
(C) 2013 Ingo Berg

Running test suite:

testing name restriction enforcement...passed

146 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

testing syntax engine...passed

testing postfix operators...
fail: 1000{m} (Unexpected token "1000" found at position 0.)
fail: 1000 {m} (Unexpected token "1000" found at position 0.)

fail: f1of1(1000) {m} (Unexpected token "1000" found at position 6.)

fail: -f1of1(1000) {m} (Unexpected token "1000" found at position 7.)
fail: -flofl(-1000) {m} (Unexpected token "1000" found at position 8.)
fail: f40f4(0,0,0,1000) {m} (Unexpected token "1000" found at position

fail: 2+ (ax1000) {m} (Unexpected token "1000" found at position 5.)

fail: 2+%3000meg+2 (Unexpected token "3000meg" found at position 2.)

failed with 8 errors
testing infix operators...passed
testing variable/constant detection...passed
testing multiarg functions...passed
testing expression samples...passed
testing if-then-else operator...passed
testing member functions...passed
testing binary operators...passed
testing error codes...passed
testing string arguments...passed
Test failed with 8 errors (527 expressions)

Commands:

list var - list parser variables

list exprvar - list expression variables

list const - list all numeric parser constants
opt on - enable optimizer (default)

opt off — disable optimizer

locale de - switch to german locale

locale en - switch to english locale

locale reset - reset locale

test bulk test bulk mode

quit - exits the parser

Constants:

e 2.718281828459045235360287
" pi" 3.141592653589793238462643

Enter an expression or a command:

You can now start typing mathematical expressions in the console.

Any doubts? Do not hesitate to contact us visit our forum and feel free to ask any questions.

1.8. Examples

147

12.

http://web.biicode.com/contact-us/
http://forum.biicode.com/

biicode docs Documentation, Release 3.0.2

1.8.29 OpenCV

OpenCV (Open Source Computer Vision Library) is a great open source computer vision and
machine learning software library. OpenCV was built to provide a common infrastructure for
computer vision applications and to accelerate the use of machine perception in the commercial

products.

The versions of OpenCV library at biicode are:
* OpenCV 2.4.10 at diego/opencv.
* OpenCV 3.0 beta at diego/opencv (beta).

Both versions are available at biicode using the /iooks feature generated from this github repo.

In this example we’ll show how to get started with OpenCV using two features: showing an image

and detecting faces with the object detection module.

Showing an image and detecting faces

In this example we’ll show how to get started with OpenCV using two features: showing an image

and detecting faces with the object detection module.

Creating a new project

Create a project and place the source files and images inside:

S bii init opencv_sample -L
$ cd opencv_sample
S # copy all following files inside

* Showing an image:

main.cpp

1 #include "opencv/cv.h"

2 #include "opencv/highgui.h" //include it to use GUI functions.

4 int main(int argc, charxx argv)

5

// include it to used Main OpenCV functi

6 IplImagex img = cvLoadImage ("examples/opencv_sample/bii.png") ;
7 cvNamedWindow ("Examplel", CV_WINDOW_AUTOSIZE
8
9 cvShowImage ("Examplel", img);
10 cvMoveWindow ("Examplel", 0, 0);
1 cviWaitKey (0) ;
12 cvReleaseImage (&img);
13 cvDestroyWindow ("Examplel");
148 Chapter 1. Biicode

ons.

//NOTE

"

e

http://opencv.org/
http://www.biicode.com/diego/opencv
http://www.biicode.com/diego/diego/opencv/beta
https://github.com/drodri/opencv-biicode
http://docs.opencv.org/ref/master/d2/d64/tutorial_table_of_content_objdetect.html
http://docs.opencv.org/ref/master/d2/d64/tutorial_table_of_content_objdetect.html

biicode docs Documentation, Release 3.0.2

return O;

Download file: bii.png.

* Object detection example uses a CascadeClasifier class and a xml file with the algorithm to

detect faces.

mainface.cpp

20

21

22

23

24

25

26

27

28

29

30

32

33

35

36

37

38

#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"

#include <iostream>
#include <stdio.h>

using namespace std;
using namespace cv;

/%% Function Headers =/
void detectAndDisplay(Mat frame);

/** Global variables x/

String face_cascade_name = "examples/opencv_sample/haarcascade_frontalface_al

String eyes_cascade_name = "examples/opencv_sample/haarcascade_eye|

CascadeClassifier face_cascade;
CascadeClassifier eyes_cascade;

string window_name = "Capture - Face detection";
RNG rng(12345);

/*x @function main =*/
int main(int argc, const charx* argv)

{

CvCapturex* capture;

//-— 1. Load the cascades

tree_eyegl

if(!face_cascade.load(face_cascade_name)){ printf("--(!)Error loading\n
if(!eyes_cascade.load(eyes_cascade_name)){ printf("--(!)Error loading\n

// Read the image file
Mat frame = imread("examples/opencv_sample/hugh.png"); //NOTE "4
// Apply the classifier to the frame

if (!frame.empty())
detectAndDisplay (frame) ;
else/
printf (" —-—-(!) No captured frame —- Break!");

examples" s

1.8. Examples 149

biicode docs Documentation, Release 3.0.2

39

% int ¢ = waitKey();

41

2 return O;

43 }

44

s /++ @function detectAndDisplay =*/

4 void detectAndDisplay(Mat frame)

a7 A

48 std: :vector<Rect> faces;

49 Mat frame_gray;

50

51 cvtColor (frame, frame_gray, COLOR_BGR2GRAY) ;

52 equalizeHist (frame_gray, frame_gray);

53

54 //—— Detect faces

55 face_cascade.detectMultiScale (frame_gray, faces, 1.1, 2, 0 | CASCADE_SCALE_T
56

57 for(size t i = 0; i < faces.size(); i++)

58 {

59 Point center(faces[i].x + faces[i].widthx0.5, faces[i].y + faces[i].heigh
60 ellipse(frame, center, Size(faces[i].widthx0.5, faces[i].height*x0.5), O,
61

62 Mat faceROI = frame_gray(faces[i]);

63 std: :vector<Rect> eyes;

64

65 //—=— In each face, detect eyes

66 eyes_cascade.detectMultiScale (faceROI, eyes, 1.1, 2, 0 | CA$CADE_SCALE
67

68 for(size_t j = 0; j < eyes.size(); Jj++)

69 {

70 Point center(faces[i].x + eyes[j].x + eyes[]].widthx0.5, fages[i].y +

71 int radius = cvRound((eyes[j].width + eyes[j].height)*0.25);

7 circle(frame, center, radius, Scalar(255, 0, 0), 4, 8, 0);

73 }

74 }

75 // Show what you got

76 imshow (window_name, frame);

77 }

Download files: hugh.png, haarcascade_eye_tree_eyeglasses.xml,
haarcascade_frontalface_alt.xml.

Manage your dependencies

Check the dependencies of the project with bii deps:

150 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

S bii deps
INFO: Processing changes...
examples/mycvproject depends on:
system:
iostream
stdio.h
unresolved:
opencv/cv.h
opencv/highgui.h
opencv2/highgui/highgui.hpp
opencv2/imgproc/imgproc.hpp
opencv2/objdetect/objdetect.hpp

Edit biicode.conf file generated in the project folder. Add your [requirements] depending on
the version you want and map your [includes] and your [data]:

[requirements]
diego/opencv: 2

[includes]
opencv/*: diego/opencv
opencv2/+: diego/opencv

[data]
main.cpp + bii.png
mainface.cpp + haarcascade_frontalface_alt.xml haarcascade_eye_tree_¢g

Now, checking bii deps, your dependencies are resolved.

Build the project

Now execute bii build to build the project.

Windows users need Visual Studio. Execute:

yeglasses.:

‘$ bii configure -G "Visual Studio 12"

|5 bii build |

Go to bin directory and execute the binaries:

S cd bin
$./youruser_opencv_sample_main

1.8. Examples 151

biicode docs Documentation, Release 3.0.2

17 Exampiel | el é

Y Y
—

'
\ " 4

’ S./youruser_opencv_sample_mainface

W] Capture - Face detection = | E %

Open and build

This example is already in biicode at examples/opencv_sample, so you can give it a try.

152 Chapter 1. Biicode

http://www.biicode.com/examples/opencv_sample

biicode docs Documentation, Release 3.0.2

Create a new project and open the block:

S bii init mycvproject
S cd mycvproject
$ bii open examples/opencv_sample

Just build and run both examples:

S bii build
S./youruser_opencv_sample_main
S./youruser_opencv_sample_mainface

Got any doubts? Do not hesitate to contact us visit our forum and feel free to ask any questions.

1.8.30 OpenSSL

OpenSSL is a robust, commercial-grade, full-featured, and Open Source toolkit implementing the
Secure Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS) protocols as well as a
full-strength general purpose cryptography library.

The versions of OpenSSL library at biicode are:
* OpenSSL 1.0.1 at lasote/openssl.
* OpenSSL 1.0.2 at lasote/openssl (v1.0.2).

Both versions are generated from this github repo.

Encrypting with MD5 and SHA1

This example shows how to use the cryptography feature of OpenSSL using a MD5 and SHA1
algorithm to encrypt a string.

Creating a new project

Create a new simple layout project with the name of your block and copy the code below:

S bii init mysslproject -L
S cd mysslproject
$ # Copy both files inside

The MD5 example encrypts a string “happy’’:
mdS.cpp

1.8. Examples 153

http://web.biicode.com/contact-us/
http://forum.biicode.com/
https://www.openssl.org/
http://www.biicode.com/lasote/openssl
http://www.biicode.com/lasote/lasote/openssl/v1.0.2
https://github.com/lasote/openssl

biicode docs Documentation, Release 3.0.2

#include "openssl/md5.h"
#include <stdio.h>
#include <string.h>

int main ()
{
unsigned char digest [MD5_DIGEST_LENGTH];
char string[] = "happy";
MD5 ((unsigned charx) &string, strlen(string), (unsigned charx) &digest

char mdString[33];

for(int i = 0; 1 < 16; i++)
sprintf (&mdString[ix2], "%02x", (unsigned int)digest[i]);

printf ("md5 digest: %s\n", mdString);

return O;

}

Next, we’ll use a similar code to encrypt a “hello world!” string with SHA1:

shal.cpp

#include "openssl/sha.h"
#include <string.h>
#include <stdio.h>

int main () {
// The data to be hashed
const unsigned char data[] = "Hello, world!";
size_t length = sizeof (data);
unsigned char hash[SHA_DIGEST_LENGTH];
SHA1 (data, length, hash);

char mdString[SHA_DIGEST_LENGTH];

for(int 1 = 0; 1 < (SHA_DIGEST_LENGTH/2) - 1; i++)
sprintf (&mdString[i*2], "%$02x", (unsigned int)hash[i]);

printf ("shal digest: %$s\n", mdString);

return O;

154 Chapter 1. Biicode

e
.

biicode docs Documentation, Release 3.0.2

Manage your dependencies

Take a look at the # include pointing to OpenSSL. Type bii deps to see unresolved dependencies:

S bii deps
INFO: Processing changes...
your_user/mysslproject depends on:
system:
stdio.h
string.h
unresolved:
openssl/md5.h
openssl/sha.h

Let’s edit now the biicode.conf file generated in the project folder. Add your [requirements]
depending on the version you want and map your [includes]:

[requirements]
lasote/openssl: 3

[includes]
openssl/x.h: lasote/openssl/include

Retrieve your unresolved dependencies:

$ bii find

INFO: Processing changes...

INFO: Downloading files from: lasote/openssl
INFO: Downloading files from: biicode/cmake
INFO: Saving files from: lasote/openssl

Build the project

Now execute bii build.

S bii build

Go to /bin directory and execute the binaries:

S cd bin
S./examples_openssl_md5
md5 digest: 56ab24cl5b72a457069c5ead2fcfc640

That output is the MDS5 hash value of your encrypted string.

1.8. Examples 155

biicode docs Documentation, Release 3.0.2

S./examples_openssl_shal
shal digest: 2d5ec68b0d061c75db

And that is the SHAT1 hash value for the “hello world!” string.

Develop your project
You can develop your own project with OpenSSL. Choose your version or switch between them
using the block track feature.

Just modify the [requirements] section in the biicode.conf file of your block’s folder:

* To depend on OpenSSL 1.0.1:

[requirements]
lasote/openssl: 2

* To depend on OpenSSL 1.0.2:

[requirements]
lasote/openssl(v1.0.2): 1

Open and build

This example is already in biicode: examples/openssl.
Just open and build it to give it a quick try.

Create a new project and open the block:

S bii init mysslproject
S cd mysslproject
S bii open examples/openssl

Now build and run the examples:

S cd bin
S./examples_openssl_md5
md5 digest: 56ab24cl5b72a457069c5ead2fcfc640

$./examples_openssl_shal
shal digest: 2d5ec68b0d061c75db

Got any doubts? Do not hesitate to contact us, visit our forum and feel free to ask any questions.

156 Chapter 1. Biicode

http://www.biicode.com/examples/openssl
http://web.biicode.com/contact-us/
http://forum.biicode.com/

biicode docs Documentation, Release 3.0.2

1.8.31 POCO

POCO POCO is an open-source third-party library, which contains a collection of C++ class li-
braries that simplify and accelerate the development of network-centric, portable applications in
C++. With POCO you can develop network- and internet-based applications that run on desktop,
server, mobile and embedded systems.

POCO C++ libraries available at biicode are:
* Poco (develop) at fenix/poco (develop).
* Poco v1.6.0 at fenix/poco (v1.6.0).
* Poco v1.5.4 at fenix/poco (v1.5.4).
* Poco v1.4.7p1 at fenix/poco (v1.4.7p1).

There are so many things you can try with POCO. This example shows a PDF conversion example
from strings.

PDF example

This example is already in biicode. So just open the block:

$ bii init pocoproject
S cd pocoproject
S bii open examples/poco_pdf

On Windows, configure Visual Studio.

S bii configure -G "Visual Studio 12"

Choose your PDF output name, the font and size, the page of the document, the content of the
string and the margins from the pdf page you want to generate:

pdf.cpp

#include "Poco/PDF/Document.h"
#include "Poco/Path.h"
#include "Poco/File.h"

const std::string fileName = "Text.pdf";

using Poco: :PDF::Document;
using Poco::PDF::Font;
using Poco: :PDF: :Page;
using Poco: :Path;

using Poco::File;

using namespace std;

1.8. Examples 157

http://pocoproject.org/
https://www.biicode.com/fenix/fenix/poco/develop
https://www.biicode.com/fenix/fenix/poco/v1.6.0
https://www.biicode.com/fenix/fenix/poco/v1.5.4
https://www.biicode.com/fenix/fenix/poco/v1.4.7p1
http://www.biicode.com/examples/poco_pdf

20

21

22

23

24

25

26

27

28

29

30

31

32

biicode docs Documentation, Release 3.0.2

int main(int argc, charxx argv)

{

}

File file(Path::expand(fileName));
if (file.exists()) file.remove();

Document document (file.path());
Font helv = document.font ("Helvetica");

Page page = document[0];
page.setFont (helv, 24);

std::string mystring = "PDF generated using POCO C++ Libraries";
float tw = page.textWidth (mystring);
page.writeOnce ((page.getWidth() - tw) / 2, page.getHeight () - 50

document.save () ;
cout<<fileName<<" saved correctly"<<endl;
return O0;

Note that the original [includes] are mapped in the biicode.conf file of the block.

Biicode configuration file

[requirements]

fenix/poco (develop): O

[includes]

Poco/PDF/x.h: fenix/poco/PDF/include

Poco/*.h: fenix/poco/Foundation/include

Generate the PDF

Now execute bii build to build the project.

S bii build

Go to bin directory and execute:

$ cd bin

$./examples_poco_pdf_pdf
Text.pdf saved correctly

Your pdf file is ready! Look for it in your /bin folder.

158

Chapter 1. Biicode

14

mystring)

biicode docs Documentation, Release 3.0.2

Using NetSSL_OpenSSL or NetSSL_Win library

Making a project using NetSSL_OpenSSL and NetSSL_Win libraries is a special use case of
original includes. Both libraries have the same relative include headers, so, the only way to resolve
successfully your dependencies is writing the full path for them.

For example:

#include "Poco/URIStreamOpener.h"
#include "Poco/StreamCopier.h"
#include "Poco/Path.h"

#include "Poco/URI.h"

#include "Poco/SharedPtr.h"
#include "Poco/Exception.h"

/* headers in Net library x/
finclude "Poco/Net/HTTPStreamFactory.h"
#include "Poco/Net/FTPStreamFactory.h"

/* headers in NetSSL_OpenSSL library =*/

#include "fenix/poco/NetSSL_OpenSSL/include/Poco/Net/HTTPSStreamFactory.
//Instead of #include "Poco/Net/HTTPStreamFactory.h" again.

#include "fenix/poco/NetSSL_OpenSSL/include/Poco/Net/SSLManager.h"
//Instead of #include "Poco/Net/SSLManager.h"

#include "fenix/poco/NetSSL_OpenSSL/include/Poco/Net/KeyConsoleHandler.h
//Instead of #include "Poco/Net/KeyConsoleHandler.h"

#include "fenix/poco/NetSSL_OpenSSL/include/Poco/Net/ConsoleCertificateH
//Instead of #include "Poco/Net/ConsoleCertificateHandler.h"

#include <memory>
#include <iostream>

/* Main code =/

The biicode.conf would be:

[includes]
Poco/Net/+.h: fenix/poco/Net/include
Poco/*.h: fenix/poco/Foundation/include

n

andler.h"

Warning: take care with Poco/+.h: fenix/poco/Foundation/include because it
should always be at the end of [includes] section for being a really wide search pattern.

Got any doubts? Do not hesitate to contact us, visit our forum and feel free to ask any questions.

1.8. Examples 159

http://web.biicode.com/contact-us/
http://forum.biicode.com/

biicode docs Documentation, Release 3.0.2

1.8.32 PTypes

PTypes is a simple alternative to the STL that includes multithreading and networking. It defines
dynamic strings, character sets, lists and other basic data types along with threads, synchronization
primitives, named pipes and IP sockets.

The following example demonstrates how to use PTypes streams to write to a file .

stream.cpp

/% %

* Simple example to write to a file

*/
#include <melikyan/ptypes/include/pstreams.h>
#include <melikyan/ptypes/include/pport.h>

using namespace pt;

int main() {
const charx fname = "stmtest.txt";
outfile f (fname, false);
f.set_bufsize (1024); // the default value in this version 1is 81
try {
f.open();
f.put ("This is a test file.\n");
f.close();
} catch (estreamx e) {
perr.putf (e->get_message ());
delete e;
}

return O;

}

Create a block:

92

$ bii init my_project
$ cd my_project
S bii open examples/ptypes

Compile st ream. cpp file:

S bii build

Now you can run it and check it generates a file:

$ cd bin

S ./examples_ptypes_stream

This creates a stmtest . txt file with something written inside. Just open it and you’ll see its
content:

160 Chapter 1. Biicode

http://www.biicode.com/examples/ptypes

biicode docs Documentation, Release 3.0.2

‘This is a test file

Any doubts? Do not hesitate to contact us visit our forum and feel free to ask any questions.

1.8.33 SDL

SDL: Simple DirectMedia Layer is a cross-platform development library designed to provide low
level access to audio, keyboard, mouse, joystick, and graphics hardware via OpenGL and Direct3D.

SDL library is available in biicode at miguel/sdl2.

Graphical window interface

In this example you will open a new graphical window and load a background texture.

Creating a new project

Create a new project and a main_sdl.cpp file:

S bii init sdl_example -L
S cd sdl_example
$ # Create main_sdl.cpp

Now place the following code inside main_sdl.cpp:

main_sdl.cpp

#include "SDL.h"
#include <iostream>

int main (int argc, char xargv([])

{
if (SDL_Init (SDL_INIT_VIDEO) != 0)
{

return 1;

SDL_Surface xbmp

SDL_Texture xtex

SDIL_Renderer *ren = SDIL_CreateRenderer (win,

std::cout << "SDL_Init Error: " << SDL_GetError ()

-1,

SDL_Window #*win = SDL_CreateWindow ("Hello World!"™, 100, 100,

SDL_RENDERER_ACCELERAT

SDL_CreateTextureFromSurface (ren, bmp);

<< std::endl;

640,

480,

SDL_LoadBMP ("examples/sdl_example/media/sdl.bmp") ;

SDL_WINDOV

ED

1.8. Examples

161

SDL_RE

http://web.biicode.com/contact-us/
http://forum.biicode.com/
http://www.libsdl.org/
https://www.biicode.com/miguel/sdl2/master

biicode docs Documentation, Release 3.0.2

SDL_FreeSurface (bmp) ;

if (tex == nullptr)

{
SDL_DestroyRenderer (ren) ;
SDI_DestroyWindow (win) ;

std::cout << "SDIL_CreateTextureFromSurface Error: " << SDL_GetError (

SDL_Quit ();
return 1;

//Wait for 3 seconds and render and present the screen each time
for (int 1 = 0; 1 < 3; ++1i)
{
//First clear the renderer
SDL_RenderClear (ren);
//Draw the texture
SDL_RenderCopy (ren, tex, NULL, NULL);
//Update the screen
SDL_RenderPresent (ren) ;
//Take a quick break
SDL_Delay (3000) ;

SDL_DestroyTexture (tex) ;
SDL_DestroyRenderer (ren) ;
SDL_DestroyWindow (win) ;
SDL_Quit ();

}

Now, add a cool background .bmp like this one to a new folder “media” and link it with your

main_sdl.cpp file in biicode.conf [data] section like this:

[data]
main_sdl.cpp + media/sdl.bmp

Now, change your path to the file in your code:

SDL_Surface xbmp = SDL_LoadBMP ("your_user/sdl_example/media/sdl.bmp") ;

/

Manage your dependencies

Check the dependencies of the project with bii deps:

162 Chapter 1. Biicode

) << std::¢

/Replace

"

3

http://squarebitstudios.tk/files/0002/sdl.bmp

biicode docs Documentation, Release 3.0.2

S bii deps
your_user/sdl_example depends on:
system:
iostream
unresolved:
SDL.h

Now, edit the biicode.conf file generated in the project folder. Add your [requirements]
depending on the version you want and map your [includes] to point to
miguel/sdl2/include/SDL.h:

[requirements]
miguel/sdl2: 3

[includes]
SDL.h: miguel/sdl2/include

Check again with bii deps and now all dependencies are solved.

Activating C++11

Building your project like this throws the next error:

S bii build

C:\...\sdl_example\main_sdl.cpp:21:13: error: 'nullptr' was not declare
if (tex == nullptr)

A

d in this

So we have to activate C++11 support. With biicode you can reuse cmake macros, so we’ll use
this one: biicode/cmake/tools.cmake. It is very easy.

e Edit CMakeLists.txt and write:

Including tools.cmake from biicode/cmake user block
INCLUDE (biicode/cmake/tools)

ADD_BII_TARGETS ()

Calling specific macro to activate c++11 flags
ACTIVATE_CPP11 (INTERFACE S${BII_BLOCK_TARGET})

* Type bii find and all is done!

S bii find

INFO: Processing changes...

INFO: Finding missing dependencies in server
INFO: Looking for biicode/cmake...

1.8. Examples 163

I<
K

https://www.biicode.com/biicode/biicode/cmake/master/4/tools.cmake

biicode docs Documentation, Release 3.0.2

INFO: Saving files from: biicode/cmake

Build the project

The only thing left is building the project:

S bii build

Execute the binary placed in bin directory and this is how output looks like:

S cd bin
S ./your_user_sdl_example_main_sdl

Here is the result:

i Hello World! = p— S

That’s it!

164 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

Open and build

This example is already in biicode: examples/sdl_example.

To give it a try, create a new project and open the block:

$ bii init sdl_project
$ cd sdl_project
S bii open examples/sdl_example

Build the example and execute it:

S bii build
S cd bin
S # Execute it

You will see your the above graphical window with SDL background texture.

Got any doubts? Do not hesitate to contact us, visit our forum and feel free to ask any questions.

1.8.34 SQLite

SQLite is a software library that implements a self-contained, serverless, zero-configuration, trans-
actional SQL database engine. SQLite is the most widely deployed SQL database engine in the
world.

For more information about this library, visit their official website.

You can find SRombauts® C++ SQLite3 wrapper library at sqlite/sqlite and plain SQLite is at
fenix/sqlite.

Shopping list database

This example uses SQLiteC to create a database called LIST in which stores information about
your shopping list. Take a deep look into the code in order to understand how it works and make
your own one soon!

Creating a project

Create a new project with a simple layout and place the code inside.

$ bii init sglite_basic -L
$ cd sglite_basic
S # create shopping_db.cpp and copy its content

shopping_db.cpp

1.8. Examples 165

https://www.biicode.com/examples/sdl_example
http://web.biicode.com/contact-us/
http://forum.biicode.com/
http://www.sqlite.org/
https://github.com/SRombauts/SQLiteCpp
http://www.biicode.com/sqlite/sqlite/sqlite/master/5
https://www.biicode.com/fenix/sqlite

biicode docs Documentation, Release 3.0.2

<stdlib.h>
<sqglite3.h>
<string>
<stdio.h>

#include
#include
#include
#include

using namespace std;

static int select_callback (void =*data, int argc, char xxargv, char
int i;
for (i=0; i<argc; i++){
printf ("%$s = %$s\n", azColName[i], argv[i] ? argv[i] "NULL") ;

}
printf ("\n");
return O0;
}
void execute_sql (sglite3 =*db,

int rc;

char *pzErrMsg = 0;

rc sglite3_exec (db,

if(SQLITE_OK) {

fprintf (stderr, "SQL error:
sqglite3_free (pzErrMsqg) ;

zSgl.c_str (),
| =

rc
%$s\n",

void connect (sglite3 *xdb) {

int rc;

rc = sqglite3_open("test.db", db);

if(rc){
fprintf (stderr, "Can't open database:
exit (0);

lelse{

fprintf (stdout,

int main (int argc,

{

charx argv|[])
sglite3 xdb;
sqglite3_callback void_callback;

string query;

/* Open database x/
connect (&db) ;

query =

string zSql,

"CREATE TABLE IF NOT EXISTS LIST

sglite3_callback xCallba

xCallback, pArg, &pzErrMsg)

pzErrMsqg) ;

%$s\n", sglite3_errmsg

"Opened database successfully\n");

(STORE CHAR(50),NAME T

**azColName

ck, woid x*t

(xdb));

EXT NOT NUI

166

Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

execute_sqgl (db,

query = "INSERT

query, void_callback, 0);

OR REPLACE INTO LIST (STORE, NAME, NUMBER) VALU

"INSERT OR REPLACE INTO LIST (NUMBER, STORE, NAME) VALUES
"INSERT OR REPLACE INTO LIST (NAME, STORE, NUMBER) VALUES

execute_sql (db,

query, void_callback, 0);

printf ("\nSELECT, List Veggies\n\n");

query = "SELECT
execute_sqgl (db,

x from LIST where STORE='Veggies'";
query, select_callback, 0);

printf ("\nSELECT, List Drinks\n\n");

query = "SELECT
execute_sqgl (db,

query = "UPDATE
execute_sqgl (db,

query = "DELETE
execute_sqgl (db,

* from LIST where STORE='Drinks'";
query, select_callback, 0);

LIST set NUMBER = 2 where NAME='Coffee'";
query, void_callback, 0);

from LIST where NAME='Spinach';";
query, void_callback, 0);

printf ("\nSELECT, Updated Lists:\n\n");
query = "SELECT x from LIST";

execute_sqgl (db,

query, select_callback, 0);

/* Close database x/
sglite3_close (db);

fprintf (stdout,

return O;

"Closed database successfully\n");

(
(

Manage your dependencies

Check the dependencies of the project with bii deps:

S bii deps

INFO: Processing changes.

your_user/sglite_basic depends on:

system:
stdio.h
stdlib.h
string

unresolved:

1.8. Examples

167

ES ('Veggice
7, 'Drinks’',

'Onion',

"\

biicode docs Documentation, Release 3.0.2

sglite3.h

Edit the biicode.conf file generated in the project folder. Add your [requirements] depending
on the version you want and map your [includes]:

[requirements]
sglite/sglite: 8

[includes]
sglite3.h: sqglite/sqglite/sglite3

Check again with bii deps to show all dependencies are now resolved.

Build the project

Build the shopping_db.cpp and execute it.

S bii build
S cd bin
S # execute it!

You can see the results of the queries at the output:

SELECT, List Veggies

STORE = Veggies
NAME = Spinach
NUMBER = 3

STORE = Veggies
NAME = Onion
NUMBER = 1

SELECT, List Drinks
STORE = Drinks

NAME = Coffee

NUMBER = 7

SELECT, Updated Lists:
STORE = Drinks

NAME = Coffee
NUMBER = 2

168 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

STORE = Veggies
NAME = Onion
NUMBER = 1

Closed database successfully

SQLite++ Wrapper

The following example from SRombauts, explains how-to use the SQLite++ wrapper. Following
the previous example, we’ll develop this in the same project’s folder.

Jus place main.cpp, example.db3 and logo.png files inside:

sqlite_basic/main.cpp

/ * %

* @file main.cpp

*

@brief A few short examples in a row.
* Demonstrate how-to use the SQLite++ wrapper
* Copyright (c) 2012-2014 Sebastien Rombauts (sebastien.rombauts@gmail.

* Distributed under the MIT License (MIT) (See accompanying file LICENS
* or copy at http://opensource.org/licenses/MIT)
*/

#include <iostream>

#include <cstdio>

#include <cstdlib>

#include <cstdlib>

#include <SQLiteCpp/SQLiteCpp.h>

#ifdef SQLITECPP_ENABLE_ASSERT_HANDLER

namespace SQLite

{

/// definition of the assertion handler enabled when SQLITECPP_ENABLE_AS

void assertion_failed(const charx apFile, const long apline, const charx

{
// Print a message to the standard error output stream, and abort th
std::cerr << apFile << ":" << aplLine << ":" << " error: assertion fa
std: :abort () ;

}

}
#endif

/// Example Database

com)

E.txt

SERT_HANDLE
apFunc, c«

e program.
iled (" <<

1.8. Examples 169

https://github.com/SRombauts/SQLiteCpp/tree/master/examples/example1

biicode docs Documentation, Release 3.0.2

static const char+ filename_example_db3 = "examples/sglite_basic/examplel.db3"; //N(
/// Image
static const charx filename_logo_png = "examples/sglite_basic/logo.png"; //NOTE

/// Object Oriented Basic example
class Example
{
public:
// Constructor
Example ()

mDb (filename_example_db3), // Open a datal

mQuery (mDb, "SELECT *» FROM test WHERE weight > :min_weight")// C
{
}
virtual ~Example ()
{
}

ompile a S¢

/// List the rows where the "weight" column is greater than the provjided aParar

void ListGreaterThan (const int aParamValue)

{

std::cout << "ListGreaterThan (" << aParamValue << ")\n";

// Bind the integer value provided to the first parameter of the
mQuery.bind (":min_weight", aParamValue); // same as mQuery.bind

// Loop to execute the query step by step, to get one a row of 1
while (mQuery.executeStep())
{

std::cout << "row (" << mQuery.getColumn(0) << ", \"" << mQu

// Reset the query to be able to use it again later
mQuery.reset () ;

private:

SQLite: :Database mDb; ///< Database connection

SQLite: :Statement mQuery; ///< Database prepared SQL query
bi

int main ()
{
// Basic example (1/6)

SQL query
1, aParamV:

esults at ¢

ery.getColt

170 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

try

// Open a database file in readonly mode

SQLite: :Database db (filename_example_db3); // SOLITE_OPEN_READONLY

std::cout << "SQLite database file '" << db.getFilename () .c_str(

// Test if the 'test' table exists
bool bExists = db.tableExists ("test");
std::cout << "SQLite table 'test' exists=" << bExists << "\n";

// Get a single value result with an easy to use shortcut
std::string value = db.execAndGet ("SELECT value FROM test WHERE
std::cout << "execAndGet=" << value.c_str () << std::endl;

// Compile a SQL query, containing one parameter (index 1)
SQLite: :Statement query (db, "SELECT id as test_id, value as te
std::cout << "SQLite statement '" << query.getQuery () .c_str() <<
// Bind the integer value 2 to the first parameter of the SQL qu
query.bind (1, 2);

std::cout << "binded with integer value '2' :\n";

// Loop to execute the query step by step, to get one a row of 1
while (query.executeStep())
{

// Demonstrate how to get some typed column value (and the e

) << M ope

id=2");

st_val, we:
"' compile
ery

esults at ¢

quivalent e

int id = query.getColumn (0); // = query.getColumn (0).getTr

//const char* pvalue = query.getColumn(1l);

i/

// = query.getColumn (1) .getTe

(1)
std::string value2 = query.getColumn (1) = query.getColumn (1) .getTe¢
int bytes = query.getColumn (1) .getBytes();
double weight = query.getColumn(2); // = query.getColumn (2).getT1

static bool bFirst = true;
if (bFirst)
{

// Show how to get the aliased names of the result colum
std::string nameO = query.getColumn (0) .getName () ;
std::string namel = query.getColumn (1) .getName () ;
std::string name2 = query.getColumn (2) .getName () ;
std::cout << "aliased result [\"" << nameO.c_str() << "\

#ifdef SQLITE_ENABLE_COLUMN_ METADATA
// Show how to get origin names of the table columns fro
// Requires the SQLITE_ENABLE_COLUMN_METADATA preprocess
// also defined at compile times of the SQLite library i

name0 = query.getColumn (0) .getOriginName () ;
namel = query.getColumn (1) .getOriginName () ;
name2 = query.getColumn (2) .getOriginName () ;
std::cout << "origin table 'test' [\"" << nameO.c_str ()

ll, \ull << 1
m which the

Or macro tc
tself.

<< "\u, \Hl

1.8. Examples 171

biicode docs Documentation, Release 3.0.2

#endif
bFirst = false;
}
std::cout << "row (" << id << ", \"" << value2.c_str() << "\
}
// Reset the query to use it again
query.reset () ;
std::cout << "SQLite statement '" << query.getQuery () .c_str() <<
// Bind the string value "6" to the first parameter of the SQL ¢
query.bind (1, "6");
std::cout << "binded with string value \"6\" :\n";
while (query.executeStep())
{
// Demonstrate that inserting column value in a std:ostream
std::cout << "row (" << query.getColumn(0) << ", \"" << quer
}
}
catch (std::exception& e)

{

L1777 77 7070777777777 7777777777777 7777777777777 7777777777777 77777777
// Object Oriented Basic example

try
{

}

catch

{

// The execAndGet wrapper example

try
{

A

std::cout << "SQLite exception: << e.what () << std::endl;

return EXIT_FAILURE; // unexpected error

(2/6)

// Open the database and compile the query
Example example;

exit the example prog

won

<< byt

"' resetec

uery

is natural
y.getColumr

ram

/1171777

// Demonstrate the way to use the same query with different parameter value

example.ListGreaterThan (8);
example.ListGreaterThan (6) ;
example.ListGreaterThan (2);

(std::exceptioné& e)

"

std::cout << "SQLite exception: << e.what () << std::endl;

return EXIT_FAILURE; // unexpected error

(3/6)

// Open a database file in readonly mode

exit the example proq

ram

172

Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

SQLite: :Database db (filename_example_db3); // SQLITE_OPEN_RERADONLY
std::cout << "SQLite database file '" << db.getFilename ().c_str() << "' ope

// WARNING: Be very careful with this dangerous method: you havel to
// make a COPY OF THE result, else it will be destroy before thel next line
// (when the underlying temporary Statement and Column objects are destroye
std::string value = db.execAndGet ("SELECT value FROM test WHERE [id=2");
std::cout << "execAndGet=" << value.c_str () << std::endl;

}

catch (std::exceptioné& e)

{
std::cout << "SQLite exception: " << e.what () << std::endl;
return EXIT_FAILURE; // unexpected error : exit the example program

L1717 0077 7777777777777 7777777707777 7777777777777777777777777777777770/ 7777777

// Simple batch queries example (4/6)

try

{
// Open a database file in create/write mode
SQLite: :Database db ("test.db3", SQLITE_OPEN_READWRITE|SQLITE_|OPEN_CREATI
std::cout << "SQLite database file '" << db.getFilename ().c_str() << "' ope

// Create a new table with an explicit "id" column aliasing the junderlying
db.exec ("DROP TABLE IF EXISTS test");
db.exec ("CREATE TABLE test (id INTEGER PRIMARY KEY, value TEXT)");

// first row
int nb = db.exec ("INSERT INTO test VALUES (NULL, \"test\")");
std::cout << "INSERT INTO test VALUES (NULL, \"test\")\", returned " << nb

// second row
nb = db.exec ("INSERT INTO test VALUES (NULL, \"second\")");
std::cout << "INSERT INTO test VALUES (NULL, \"second\")\", returned " << 1

// update the second row
nb = db.exec ("UPDATE test SET value=\"second-updated\" WHERE id='2'");
std::cout << "UPDATE test SET value=\"second-updated\" WHERE id='2', retur:

// Check the results : expect two row of result
SQLite: :Statement query (db, "SELECT x FROM test");
std::cout << "SELECT * FROM test :\n";

while (query.executeStep())

{

std::cout << "row (" << query.getColumn(0) << ", \"" << querly.getColumnr

1.8. Examples 173

biicode docs Documentation, Release 3.0.2

db.exec ("DROP TABLE test");
}
catch (std::exceptioné& e)
{
std::cout << "SQLite exception: " << e.what () << std::endl;
return EXIT_FAILURE; // unexpected error : exit the example program
}
remove ("test.db3");
L1770 7 7777707777777 7 7777777777777 7777777777777 77777777777777777770/ 7777777
// RAII transaction example (5/6)
try
{
// Open a database file in create/write mode
SQLite: :Database db ("transaction.db3", SQLITE_OPEN_READWRITE |[SQLITE_OPE!
std::cout << "SQLite database file '" << db.getFilename () .c_str() << "' ope
db.exec ("DROP TABLE IF EXISTS test");
// Exemple of a successful transaction
try
{
// Begin transaction
SQLite::Transaction transaction (db);
db.exec ("CREATE TABLE test (id INTEGER PRIMARY KEY, value TEXT)");
int nb = db.exec ("INSERT INTO test VALUES (NULL, \"test\")")|;
std::cout << "INSERT INTO test VALUES (NULL, \"test\")\", returned " <«
// Commit transaction
transaction.commit () ;
}
catch (std::exceptioné& e)
{
std::cout << "SQLite exception: " << e.what () << std::endl;
return EXIT_FAILURE; // unexpected error : exit the example program
}
// Exemple of a rollbacked transaction
try
{
// Begin transaction
SQLite::Transaction transaction (db);
int nb = db.exec ("INSERT INTO test VALUES (NULL, \"second\")");
std::cout << "INSERT INTO test VALUES (NULL, \"second\")\", |returned "
174 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

nb db.exec ("INSERT INTO test ObviousError");
std::cout << "INSERT INTO test \"error\", returned " << nb <

return EXIT_FAILURE; // unexpected success exit the exampl
// Commit transaction
transaction.commit () ;

}

catch

{

(std: :exceptioné& e)

std::cout << "SQLite exception: " << e.what () << std::endl;

// expected error, see above

// Check the results (expect only one row of result, as the secq
SQLite: :Statement query (db, "SELECT = FROM test");
std::cout << "SELECT * FROM test :\n";
while (query.executeStep())
{
std::cout << "row (" << query.getColumn(0) << ", \"" << quer

}
catch

{

(std::exceptioné& e)

n

<< e.what () << std::endl;
exit the example

std::cout << "SQLite exception:
return EXIT_FAILURE; // unexpected error prog
}

remove ("transaction.db3");

L1777 7770707777777 7077777777777 7777777777777 777777777777 77777777777
// Binary blob and in-memory database example (6/6)
try
{
// Open a database file in create/write mode
SQLite: :Database db (" :memory:", SQLITE_OPEN_READWRITE|SQLITE_|
std::cout << "SQLite database file '" << db.getFilename () .c_str(

db.exec ("DROP TABLE IF EXISTS test");

db.exec ("CREATE TABLE test (id INTEGER PRIMARY KEY, value BLOB)"

< std::end]

e program

nd one has

y.getColumr

ram

/1177777

OPEN_CREATE
) << mwr OpE

FILEx fp = fopen(filename_logo_png, "rb");
if (NULL !'= fp)
{
char buffer[16+10247;
void* blob = &buffer;
int size = static_cast<int> (fread(blob, 1, 16x1024, fp));
1.8. Examples 175

biicode docs Documentation, Release 3.0.2

buffer[size] = '\0';
fclose (fp);
std::cout << "blob size=" << size << " :\n";

// Insert query

SQLite::Statement query (db, "INSERT INTO test VALUES (NULL
// Bind the blob value to the first parameter of the SQL que
query.bind(1l, blob, size);

std::cout << "blob binded successfully\n";

// Execute the one-step query to insert the blob
int nb = query.exec ();

std::cout << "INSERT INTO test VALUES (NULL, ?)\", returned |" << nb <<
}
else
{

std::cout << "file " << filename_logo_png << " not found !'\n/";

return EXIT_FAILURE; // unexpected error : exit the example program

fp = fopen ("out.png", "wb");
if (NULL !'= fp)
{
const voidx blob = NULL;
size_t size;
SQLite: :Statement query (db, "SELECT x FROM test");
std::cout << "SELECT * FROM test :\n";
if (query.executeStep())
{
SQLite::Column colBlob = query.getColumn (1) ;
blob = colBlob.getBlob ();
size = colBlob.getBytes ();
std::cout << "row (" << query.getColumn(0) << ", size="
size_t sizew = fwrite(blob, 1, size, fp);
SQLITECPP_ASSERT (sizew == size, "fwrite failed"); // S
fclose (fp);
}
}
else
{
std::cout << "file out.png not created !\n";
return EXIT_FAILURE; // unexpected error : exit the example
}
}
catch (std::exception& e)

{

<< size <<

ce SQLITECE

[orogram

176

Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

std::cout << "SQLite exception: " << e.what () << std::endl;

return EXIT_FAILURE; // unexpected error : exit the example program

}

remove ("out.png") ;
std::cout << "everything ok, quitting\n";

return EXIT_SUCCESS;
}

Download: example.db3, logo.png.

Manage your dependencies

Check again with bii deps and edit the biicode.conf file.

[requirements]
sqlite/sglite: 8

[includes]
sglite3.h: sqglite/sglite/sglite3
SQLiteCpp/*: sqglite/sqglite/include

[data]
main.cpp + examle.db3 logo.png

Build the example

Compile it and run the executable by doing:

S bii build
S cd bin
S # run executable

You will see next console output:

SQLite database file 'examples/sqglite/example.db3' opened successfully
SQLite table 'test' exists=1

execAndGet=second line

SQLite statement 'SELECT id as test_id, wvalue as test_val, weight as tes
binded with integer value '2'

aliased result ["test_id", "test_val", "test_weight"]

row (1, "first word" 10 bytes, 2.3)

row (2, "second line" 11 bytes, 6.7)

row (3, "and a last one" 14 bytes, 9.5)

t_weight FTI

1.8. Examples 177

biicode docs Documentation, Release 3.0.2

row (4, "" 0 bytes, 18)

Open and build

This examples are already in biicode at examples/sqlite_basic and examples/sqlite.
This is a way to give them a quick look and check how it works.

Both examples are simple to run, just open the blocks and build them like this:

bii init sglite_project

cd sglite_project

bii open examples/sglite_basic
bii open examples/sqglite

bii build

nr »r U»r Ur

Any doubts? Do not hesitate to contact us visit our forum and feel free to ask any questions.

1.8.35 TinyThread++

TinyThread++ is a minimalist, portable, threading library for C++, intended to make it easy to
create multi threaded C++ applications. The library is closesly modeled after the C++11 standard,
but only a subset is implemented at the moment. Need portable threads for your C++ app? Use
TinyThread++!

The main block is here, which is generated from this github repo.

Open and build the examples

This example is already in biicode. It is very simple to build it, by just opening the block.

bii init tinythread

cd tinythread

bii open examples/tinythread
bii build

o U 0 W

Simple Hello World with a thread

Now, run the hello example.

‘$ bin/examples_tinythread_hello

178 Chapter 1. Biicode

http://www.biicode.com/examples/sqlite_basic
http://www.biicode.com/examples/sqlite
http://web.biicode.com/contact-us/
http://forum.biicode.com/
http://tinythreadpp.bitsnbites.eu/
https://www.biicode.com/david/david/tinythread/master
https://github.com/davidsanfal/tinythread
http://www.biicode.com/examples/tinythread

biicode docs Documentation, Release 3.0.2

You should see how a thread say “Hello world!”

This Hello World just defines the thread method

void HelloThread (void * aArg)
{

cout << "Hello world!" << endl;

}

and then, launch the thread and wait for it.

thread t (HelloThread, 0);
t.join();

You can see all the code here.

Draw a fractal

If you run the fractal example, a set of threads will be launched to generate a fractal image. You
can see how to launch diferent threads to do a distributed task.

// Start calculation threads (we run one thread on each processor core)

cout << "Running " << numThreads << " calculation thread(s)..." << flush
list<thread x> threadList;
for(int 1 = 0; i < numThreads; ++ 1)

{
thread * t = new thread(CalcThread, (void x) &dispatcher);
threadList.push_back(t);

// Wait for the threads to complete...

for(list<thread *>::iterator i = threadlList.begin(); i != threadList.end

{
thread » t = *1i;
t-=>join();
delete t;

}

cout << "done!" << endl;

// Write the final image to a file

cout << "Writing final image..." << flush;
img.WriteToTGAFile ("fractal.tga");
cout << "done!" << endl;

You can see all the code here.

‘$ bin/examples_tinythread_fractal ‘

1.8. Examples 179

0

++ 1)

https://www.biicode.com/examples/examples/tinythread/master/1/hello.cpp
https://www.biicode.com/examples/examples/tinythread/master/1/fractal.cpp

20

21

22

23

24

25

26

27

28

29

30

biicode docs Documentation, Release 3.0.2

1.8.36 Zlib

Zlib is a software library written in C language used for data compression. For more information
about this library, visit its official website or Documentation.

This is the biicode library site and this is the biicode library examples.

Usage example (difficulty: medium)

To check this library, we’re using an example to compress and decompress a single file. We will
use a *.h and a *.cpp file named infdef.h (inflate and deflate) and a zpipe.cpp.

The following code would be in each one.

infdef.h

#pragma once

#include <stdio.h>
#include <assert.h>
#include "zlib/zlib/zlib.h"

/hkkkkkkkkkk Methods declarabLions *xxxxxxxxrxxx*x/

/+ Compress from file source to file dest until EOF on source.
def () returns Z_OK on success, Z_MEM_ERROR i1if memory could not be
allocated for processing, Z_STREAM _ERROR if an invalid compression
level is supplied, Z_VERSION_ERROR if the version of zlib.h and the
version of the library linked do not match, or Z_ERRNO if there is
an error reading or writing the files. «/

int def (FILE *source, FILE xdest, int level);

/+ Decompress from file source to file dest until stream ends or EOF.
inf () returns Z_OK on success, Z_MEM_ERROR if memory could not be
allocated for processing, Z_DATA_ERROR if the deflate data is
invalid or incomplete, Z_VERSION_ERROR if the wversion of zlib.h and
the version of the library linked do not match, or Z_ERRNO if there

is an error reading or writing the files. */

int inf (FILE +source, FILEx dest);

/* report a zlib or i/o error =/

void zerr (int ret);

infdef.cpp

180 Chapter 1. Biicode

http://www.zlib.net/
http://www.zlib.net/manual.html
https://www.biicode.com/zlib/zlib
https://www.biicode.com/examples/zlib
https://www.biicode.com/examples/zlib

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

biicode docs Documentation, Release 3.0.2

#include "infdef.h"
#define CHUNK 20000

int def (FILE *source, FILE xdest, int level)
{
int ret, flush;
unsigned have;
z_Stream strm;
unsigned char in[CHUNK];
unsigned char out [CHUNK];

/+ allocate deflate state «/
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
ret = deflatelInit (&strm, level);
if (ret != Z_OK)

return ret;

/* compress until end of file «*/
do {
strm.avail_in = fread(in, 1, CHUNK, source);
if (ferror (source)) {
(void)deflateEnd (&strm) ;
return 7Z_ERRNO;

}
flush = feof (source) ? Z_FINISH : Z_NO_FLUSH;

strm.next_in = in;
/+ run deflate() on input until output buffer not full, finish
compression if all of source has been read in */
do {
strm.avail_out = CHUNK;
strm.next_out = out;
ret = deflate(&strm, flush); /+ no bad return value =*/
assert (ret != Z_STREAM_ERROR); /* state not clobbered */
have = CHUNK - strm.avail_out;
if (fwrite(out, 1, have, dest) != have || ferror (dest))
(void)deflateEnd (&strm) ;
return Z_ERRNO;
}
} while (strm.avail_out == 0);
assert (strm.avail_in == 0); /+ all input will be used */

/+ done when last data in file processed =/

{

1.8. Examples

181

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

biicode docs Documentation, Release 3.0.2

} while (flush != Z_FINISH);
assert (ret == Z_STREAM_END); /+* stream will be complete =/

/+ clean up and return =*/
(void)deflateEnd (&strm) ;
return 7Z_O0K;

int inf (FILE *source, FILEx* dest)
{
int ret;
unsigned have;
z_Stream strm;
unsigned char in[CHUNK];
unsigned char out [CHUNK];

/+ allocate inflate state «/
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = 0;
strm.next_in = Z_NULL;
ret = inflateInit (&strm);
if (ret !'= Z_OK)

return ret;

/* decompress until deflate stream ends or end of file =/
do {
strm.avail_in = fread(in, 1, CHUNK, source);
if (ferror (source)) {
(void) inflateEnd (&strm) ;
return 7Z_ERRNO;
}

if (strm.avail_in == 0)
break;
strm.next_in = in;

/* run inflate () on input until output buffer not full =/

do {
strm.avail_out = CHUNK;
strm.next_out = out;
ret = inflate(&strm, Z_NO_FLUSH);
assert (ret != Z_STREAM ERROR); /* state not clobbered =/

switch (ret) {
case Z NEED DICT:
ret = Z_DATA_ERROR; /* and fall through =/
case Z DATA ERROR:

182 Chapter 1. Biicode

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

biicode docs Documentation, Release 3.0.2

case Z MEM ERROR:
(void) inflateEnd (&strm) ;
return ret;
}
have = CHUNK - strm.avail_out;
if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
(void) inflateEnd (&strm) ;
return Z_ERRNO;
}

} while (strm.avail_out == 0);
/* done when inflate() says it's done «/
} while (ret != 7Z_STREAM _END);

/+ clean up and return =*/
(void) inflateEnd (&strm) ;
return ret == Z_STREAM_END ? Z_OK : Z_DATA_ERROR;

/+ report a zlib or i/o error x/
void zerr (int ret)
{
fputs ("zpipe: ", stderr);
switch (ret) {
case Z ERRNO:
if (ferror(stdin))
fputs ("error reading stdin\n", stderr);
if (ferror (stdout))
fputs ("error writing stdout\n", stderr);
break;
case Z_ STREAM ERROR:
fputs ("invalid compression level\n", stderr);
break;
case Z_DATA ERROR:
fputs ("invalid or incomplete deflate datal\n", stderr);
break;
case Z MEM ERROR:
fputs ("out of memory\n", stderr);
break;
case Z VERSION ERROR:
fputs ("zlib version mismatch!\n", stderr);

Zpipe.cpp

1.8. Examples 183

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

biicode docs Documentation, Release 3.0.2

#include "infdef.h"
#include <iostream>

using namespace std;

/* compress or decompress */
int main (void)
{
int ret;
string request="";

while (true)
{
cout<<"Do you want to compress or decompress a file
cin>>request;
if (request=="comp" || request=="decomp")
break;

string name_file_source = "";
string name_file_dest = "";
float size_src=0.0, size_dest=0.0;

/ %

Enter or path to file, for example:
C:/Users/User/file.txt

Or

If you save the file in the bin folder, where

you will have the x.exe file, you Jjust need write
name and extension file:

file.txt
*/
cout<<"Enter file source name: "<<endl;
cin>>name_file_source;
cout<<"Enter file destination name: "<<endl;

cin>>name_file_dest;

FILE xsource=NULL;//original file
FILE+ dest=NULL; //file to compress or decompress

/+ do compression if "comp" specified =/
if (request == "comp") {
try
{
source = fopen(name_file_source.c_str(),"r");
if (!source)

(to exit

CTRL+C") ?

184 Chapter 1. Biicode

<

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

biicode docs Documentation, Release 3.0.2

throw O;
}
catch (int n)
{
cout << "File does not exist, method return with " << n
return 0;

dest = fopen(name_file_dest.c_str(),"wb");//wb because write t
ret = def(source, dest ,Z_DEFAULT_COMPRESSION) ;
if (ret !'= Z_OK)

zerr (ret);
else
{
/+* Calculate size file to see the difference =/
size_src = ftell (source);
size_dest = ftell (dest);

cout<<"The original file size is: "<<size_src<<endl;
cout<<"The file size after being compressed is: "<<size_|
}
return ret;
}
/+ do decompression if "decomp" specified x/
else {
try
{
source = fopen(name_file_source.c_str(),"rb");//rb beca
if (!source)
throw O0;
}
catch (int n)
{
cout << "File does not exist, method return with " << n

return 0O;

dest = fopen(name_file_dest.c_str(),"w");
ret = inf (source, dest);
if (ret != Z_OK)

zerr (ret);
else
{
/+ Calculate size file to see the difference «/
size_src = ftell (source);
size_dest = ftell (dest);

<< endl;

o binary f«

dest<<endl;

use read f1

<< endl;

1.8. Examples 185

95

96

97

98

99

100

101

102

biicode docs Documentation, Release 3.0.2

cout<<"The original file size is: "<<size_src<<endl;
cout<<"The file size after being decompressed is: "<<siz
}
return ret;
}
return 1;

}

e _dest<<enc

Create a new project and open the example block:

S bii init zlib_example
S cd zlib_example
S bii open examples/zlib

Next, you can build and run the code:

S bii build
S cd bin
S #run executable

Then you’ll be requested to select compression or decompression any file, and the file source name
and file destination name.

This will be the output if you would want to compress a file.txt which is in your desktop di-
rectory and the compressed name file would be file.gz. The last one will be created in your
~/project_directory/bin/ directory

Do you want to compress or decompress a file (to exit 'CTRL+C')? <comp|d
comp

Enter file source name:

C:\Users\Usuario\Desktop\file.txt

Enter file destination name:

file.gz

The original file size is: 16944

The file size after being compressed is: 5152

ecomp>

In this case file.txt had a size of 16944 bytes and file.gz 5152 bytes.

Now, if you want to decompress the file.gz to check all is correct, run the code again and the output
will be the next

Do you want to compress or decompress a file (to exit 'CTRL+C')? <comp|d
decomp

Enter file source name:

file.gz

Enter file destination name:
myfile.txt
The original file size is: 5152

ecomp>

186 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

‘The file size after being decompressed is: 16944

Finally, you can see that the new file, myfile.txt, has been created in the ~/project_directory/bin/
directory and it’s exactly like the file.txt in terms of size and content.

1.8.37 ZMQ

ZMQ is a multiplatform high level socket library (sockets with steroids), that implements many
paradigms as multicast, broadcast, client-server, etc. in a new and brilliant way. It is very actively
developed, with a great community and used in many real projects. Are you thinking in building
your own distributed application? Don’t think more, use ZMQ.

The main block is here, which is generated from this github repo.

You can read a post about this example and the ZMQ project in our blog.

Simple client-server with C++ binding
This example uses the C++ binding, published in this block which in turn depends on the main
libzmq block explained above.

Of course it is possible to just copy the source code files as explained in the blog post, if you want
to check that running them is as simple as copying the code inside a biicode project.

But as this example is already in biicode, it is very simple to build it, by just opening the block.

S bii init clientserver
S cd clientserver

S bii open examples/zmg_ cpp

If in windows, it is necessary to specify VS (it doesnt work with MinGW), otherwise, you can skip
this step.

‘$ bii configure -G “Visual Studio 12”

Then build and run, first the server, then the client (you need to open another console, in the same
folder).

S bii build
S bin/examples_zmg_cpp_hwserver
// another console

$ bin/examples_zmg_cpp_hwclient

You should see how the client send “Hello”’s to the server and the server respond back “World”.

1.8. Examples 187

http://zeromq.org/
http://www.biicode.com/diego/libzmq
https://github.com/drodri/libzmq
http://blog.biicode.com/zeromq-cpp-biicode/
http://www.biicode.com/diego/zmqcpp
http://blog.biicode.com/zeromq-cpp-biicode/
http://www.biicode.com/examples/zmq_cpp

biicode docs Documentation, Release 3.0.2

1.8.38 ZMQ with Google Protocol Buffers Serialization

See previous example for more information about ZMQ.

An aspect that ZMQ does not cover is the serialization of messages, how to convert from classes
to a flat string (possibly binary for efficiency) and viceversa.

Protocol Buffers from Google is a serialization framework, that can be used for example for storing
and retrieving back information from disk. In this example we will use it for sending information
over a ZMQ socket.

Protocol buffers can be found in this block which was very easily published from this github repo.

We will first create a project and open the protocol buffers block:

bii init zmg_protobuf

cd zmg_protobuf

bii open google/protobuf
bii build

wnr - 0 W

This will build the Protocol Buffers compiler (protoc or protoc.exe). Note that this is an optional
step, you can of course download manually this binary from the web.

Lets open now the examples block. As usual you can also create an empty block and copy-paste
your files there. We can also close the google/protobuf block, we have already compiled the “pro-
toc” application, and we no longer need it (it will be partly used as a dependency).

S bii open examples/zmg protobuf
S bii close google/protobuf

In protocol-buffers, messages are defined in ”.proto” files, that are converted into source code files
by the protoc generator. In this example we use the “message.proto” file used in the original
tutorial:

package tutorial;

message Person {

required string name = 1;
required int32 id = 2;
optional string email = 3;

enum PhoneType {
MOBILE 0;
HOME =
WORK

|
N =l
~.

~.

message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default = HOME];

188 Chapter 1. Biicode

http://www.biicode.com/google/protobuf
https://github.com/drodri/protobuf

biicode docs Documentation, Release 3.0.2

repeated PhoneNumber phone = 4;

}

Creating the code is simple, move to the folder where this file is located and run the generator:

S cd blocks/examples/zmg _protobuf
S ../../../bin/protoc message.proto —--cpp_out="."

This will generate 2 files: “message.pb.h” and “message.pb.cc”. These two files can be used from
the client and server in the following way:

hwclient.cpp

#include "diego/zmgcpp/zmg.hpp"
#include "message.pb.h"
#include <string>

#include <iostream>

int main ()
{
GOOGLE_PROTOBUF_VERIFY_VERSION;

tutorial::Person person; //fill a person data
person.set_i1d(1234);

person.set_name ("john");

person.set_email (" john@mycompany.com") ;

tutorial::Person: :PhoneNumberx phone_number = person.add_phone();
phone_number->set_number ("1234567") ;

phone_number->set_type (tutorial::Person::MOBILE) ;

phone_number = person.add_phone();

phone_number->set_number ("7654321") ;
phone_number->set_type (tutorial: :Person: :HOME) ;

// Prepare our context and socket

zmg: :context_t context (1);

// Note we use here a PAIR socket, only 1 way message
zmq: : socket_t socket (context, ZMQ_ PAIR);

std::cout << "Connecting to server" << std::endl;
socket.connect ("tcp://localhost:5555");

std::string msg_str;

person.SerializeToString (&msg_str);

// create a zmg message from the serialized string
zmq: :message_t request (msg_str.size());

1.8. Examples 189

biicode docs Documentation, Release 3.0.2

memcpy ((void %) request.data (), msg_str.c_str (), msg_str.size());
std::cout << "Sending Person data ..." << std::endl;
socket.send (request);

// Optional: Delete all global objects allocated by libprotobuf.
google: :protobuf::ShutdownProtobufLibrary () ;
return O;

hwserver.cpp

#include "diego/zmgcpp/zmg.hpp"
#include <string>

#include <iostream>

#ifndef _WIN32

#include <unistd.h>

felse

#include <windows.h>

#endif

#include "message.pb.h"
#include <google/protobuf/text_format.h>

int main () {
// Prepare our context and socket
zmq: :context_t context (1);
zmqg: :socket_t socket (context, ZMQ_ PAIR);
socket.bind ("tcp://*:5555");

while (true) {
zmqg: :message_t request;
// Wait for next request from client
socket.recv (&request);
std::cout << "Received" << std::endl;
tutorial::Person person;
std::string msg_str (static_cast<char*> (request.data()), request.
person.ParseFromString (msg_str);
std::string text_str;
google: :protobuf::TextFormat::PrintToString (person, &text_str);
std::cout << text_str << std::endl;
}

return O;

To resolve and retrieve dependencies, we just run the command:

190 Chapter 1. Biicode

size())

biicode docs Documentation, Release 3.0.2

S bii find

If in windows, it is necessary to specify VS (it doesnt work with MinGW), otherwise, you can skip
this step

’$ bii configure -G “Visual Studio 12”

Then build and run, first the server, then the client (you need to open another console, in the same
folder)

S bii build
S bin/examples_zmg_protobuf_hwserver
// another console
$ bin/examples_zmg protobuf_hwclient
//in the server console:
Received
name: "Jjohn"
id: 1234
email: "john@mycompany.com"
phone {
number: "1234567"
type: MOBILE
}

phone {
number: "7654321"
type: HOME

}

1.9 Integrations

Biicode integrates with other technologies and tools. We’re already working with the services
below:

1.9.1 Generators and IDEs

Use CMake generators to create biicode projects for many IDEs and platforms. By default, bi-
icode configures your projects with no IDE and MinGW (Windows) and UNIX Makefiles (MacOS
and Linux).

Execute cmake —--help to see the full list of CMake generators available in your system:

S cmake —-help

Choose yours, and tell biicode to configure your project for that IDE:

1.9. Integrations 191

biicode docs Documentation, Release 3.0.2

S bii configure -G "CMake generator name"

bii configure admits any other CMake directives. For example, to enable the Debug build
configuration,(e.g. Visual Studio, Eclipse):

S bii configure -G "CMake generator name" -DCMAKE_BUILD_TYPE=Debug

Note: When you are working with an IDE (Visual, Eclipse, CLion), and you change your project
structure, add/remove files or dependencies, you might need to run bii configure again.

Eclipse CDT

To create an Eclipse CDT project, run:

S bii configure -G "Eclipse CDT4 - Unix Makefiles"

Windows users might configure it like this:

S bii configure -G "Eclipse CDT4 - MinGW Makefiles"

Now, import your project into the Eclipse IDE.
1. From the main Eclipse menu choose: File > import...
2. Now, select general > Existing Projects into Workspace, and click next.
3. Select the root directory as the root folder of your project.
4. You should see a project already selected in the projects box. Click finish.

If you want to add new files to your block, just right-click on the folder of your block and create a
new file.

You can build your application in Project > Build project

If you are using Eclipse with Mac OS X, you will need some additional setup to execute your
binaries within this IDE. Read this troubleshooting section for more information.

Visual Studio

Generate a Microsoft Visual Studio 12 (2013) project:

S bii configure -G "Visual Studio 12"

Open your project with Visual Studio. Just double-click on the .sIn file inside the build folder
of your project and a VS project will open.

192 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

CLion

Use - the intelligent cross-platform C/C++ IDE - with biicode.

Get into your project’s folder and execute:

‘$ bii init myproject —-l=clion

And configure your project to set the changes:

‘$ bii configure

Open the biicode project with CLion (File -> Open).

Use biicode’s commands from the embedded Terminal in CLion, open it with: Alt+F12 or View
-> Tool Windows -> Terminal.

Here’s more info about CLion’s project layout

1.9.2 IDEs and VCS

Eclipse or CLion IDEs need the classic biicode folder layout (can’t handle your code directly in
the root folder). Next steps cover how to use them when importing a project from a git repo. Just
clone/checkout the code at the corresponding folder.

* CLion:
$ bii init myproject -l=clion
$ cd myproject
$ git clone https://github.com... blocks/username/blockname
$ bii configure

* Eclipse CDT projects:

bii init myproject

cd myproject

git clone https://github.com... blocks/username/blockname
bii configure -G "Eclipse CDT4 - MinGW Makefiles" (or Unix)

nr U U»r Ur

If you have any questions, we are available at and/or . You can also for suggestions and feedback.

1.9.3 Git (GitHub, Bitbucket, etc.)

and are notorious Git (Bitbucket works with Mercurial too) repository web-based hosting service
which offers the distributed revision control and source code management (SCM) functionality of
Git as well as add their own features.

1.9. Integrations 193

biicode docs Documentation, Release 3.0.2

Biicode does not intend to be version control system. We recommend you using a control version
system so you can keep your code safe and versioned. You can use also SVN or CVS.

With a new repository

Just init the git repository in your block folder. As in the example:

bii init my_block -L

cd my_block

git init

git add

git commit -m "my very first commit"

0 0 U Uy

You can also add a remote repository:

‘$ git remote add origin https://github.com/user/repo.git

Create a block from a git repository

The code

Put your code into a biicode block, as usual:

~$ git clone https://Your_Repo_URL.git
~$ cd your_repository
~/your_repository$ bii init -L

And follow this guide to adapt your library to biicode.

biicode status badge

The biicode satus badge is a dynamically generated image displaying your block’s latest published
version in biicode.

s (-0 fenix/poco(develop) w0:STABLE

This badge lets developers know your code is available to reuse at biicode. It is something deter-
minant in the use of a dependency manager and you can place it in the readme files of your VCS
repository and in the biicode block.

Get your badge in your block’s settings.

Let people know your code can be reused easily!

194 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

Publish from git commit

bii publish -rorbii publish —--remote uses the git info within your block to pub-
lish it to biicode along with your block. This way everyone knows “who is” the git repo mantaining
the biicode block and the specific commit creating each block version.

$ bii publish -r

This is how publishing with bii publish --remote looks like:

/oscpack

Description: Ross B

TAGS: CC

examples @® k' B
ip

osc

tests

appveyor.yml

biicode.conf

You can mix bii publish parameters, for example: bii publish -r --tag STABLE
--versiontag v1.0.2

Check our and/or for questions and answers. You can also for suggestions and feedback.

1.9.4 Continuous Integration
AppVeyor

provides Continuous Integration and Deploy for Windows and it is compatible with both and .

Place an appveyor . yml file in your repository and each time you push to your Github repository
it will kick-off a new build in Windows, executing your tests and publishing it as a biicode block
into your biicode user account.

Login AppVeyor and click on + NEW PROJECT and choose the repository you want to deploy
with. Create an appveyor.yml file in your local project to automatically publish your block to
biicode, including your version tags, here’s an example file:

1.9. Integrations 195

biicode docs Documentation, Release 3.0.2

version: 1.0.{build}

install:
- cmd: cinst cmake -version 3.0.2 -y
— cmd: cmake —--version
- cmd: echo "Downloading biicode..."
- ps: wget http://www.biicode.com/downloads/latest/win -OutFile bii-wi
- cmd: bii-win.exe /VERYSILENT
- cmd: set PATH=%PATH%;C:\Program Files (x86)\BiiCode\bii
- cmd: bii -v
— cmd: del bii-win.exe

before_build:
- cmd: bii init -L
- cmd: bii cpp:configure -G "Visual Studio 12"

build_script:
- cmd: bii build

test_script:
- cmd: cd bin
— cmd: amalulla_cpp-expression-parser_test-shunting-yard.exe

deploy_script:
— cmd: bii user %block_user%$ -p %$secured_passwd$
- cmd: bii publish -r

environment:
block_user:
"amalulla"
secured_passwd:
secure: ENCRYPTED_BIICODE_PASSWORD_HERE

n.exe

Encrypt your biicode password and your access token using , copy the values generated and
put them it in your environment like secured_password: secure:. Use your own
test_script and environment values to start deploying with it.

Here’s an appveyor guide about how to . Following this Appveyor Guide we’re using it as creden-
tials with Git commands. Use this GitHub guide to create your . This is a full appveyor.yml file to
automatically publish to biicode DEV and STABLE versions:

version: 1.0.{build}

install:
— cmd: cinst cmake -version 3.0.2 -y
- cmd: cmake —--version

— cmd: echo "Downloading biicode..."

196 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

- ps: wget http://www.biicode.com/downloads/latest/win —-OutFile bii-wi
- cmd: bii-win.exe /VERYSILENT

— cmd: set PATH=%PATH%;C:\Program Files (x86)\BiiCode\bii

- cmd: bii -v

— cmd: del bii-win.exe

before_build:
- cmd: bii init -L
— cmd: bii cpp:configure -G "Visual Studio 12"
— cmd: bii user %block_user%

build_script:
- cmd: bii build

test_script:
- cmd: cd bin
- cmd: amalulla_cpp-expression-parser_test-shunting-yard.exe

deploy_script:
— cmd: bii user %block_user$%$ -p %secured_passwd$
- if defined APPVEYOR_REPO_TAG_NAME set VERSION=%APPVEYOR_REPO_TAG_NAM
— if defined APPVEYOR_REPO_TAG_NAME bii publish -r —--tag=STABLE --vers
— if not defined APPVEYOR_REPO_TAG_NAME bii publish -r

on_success:
- cmd: cd /%$project_name%/blocks/%block_user%/%$block_name%

- ps: |
Snew_biiconf = get-content biicode.conf
Sorig_biiconf = get-content "$env:APPVEYOR_BUILD_FOLDER\biicode.
if (diff S$new_biiconf Sorig_biiconf) {
'different, updating biicode parents'
git checkout "S$Senv:APPVEYOR_REPO_BRANCH"
git config —--global core.autocrlf true
git config --global credential.helper store
Add-Content "$env:USERPROFILE\.git-credentials" "https://$(Se
git remote add neworigin "S$env:github_repo"
git config —--global user.email "Senv:github_email"
git config --global user.name "Senv:github_user"
git add biicode.conf
git commit -m "Updated biicode parents [skip ci]"
git push neworigin "S$env:APPVEYOR_REPO_BRANCH"
}Write—-Host "Updated biicode parents" else {
'equal, no parents update needed'
}
environment:

project_name:

n.exe

E%
iontag=%VE!

conf"

nv:access_t

1.9. Integrations 197

biicode docs Documentation, Release 3.0.2

"myproject"
block_user:
"amalulla"
block_name:
"cpp-expression-parser"
secured_passwd:
secure: ENCRYPTED_BIICODE_PASSWORD_HERE
access_token:
secure: ENCRYPTED_GITHUB_PASSWORD_HERE
github_user:
"MariadeAnton"
github_email:
"maria.deanton@biicode.com"
github_repo:
"git@github.com:MariadeAnton/cpp—-expression-parser.git"

What’s going on the appveyor.yml file?
* install: This part installs all tools required to deploy your biicode projects in AppVeyor.

* before_build: Moves your project’s files into the biicode project and configures it to
use Visual Studio 12 viabii configure. Check biicode docs and your project’s settings
in Appveyor to use other build configurations. Also note that there’s a commented line here
you should also write if your project contains folders.

* test_script: cd bin and execute your project. Ensure about your project’s executable,
build and execute it locally withbii build.

* deploy_script: This script publishes your block to biicode, including your version tag
only when it’s tagged.

* on_success: If your biicode.conf file is updated commit its changes to github without
launching a new build. Else do nothing.

* environment: Replace all environment variables here with your values: project_name,
tag, default version tag value... Also your encrypted variables.

You can see this example live:
* in GitHub
* in AppVeyor
 with its automatically published releases
Learn more about AppVeyor visiting their docs.
* Here’s a blog-post about using Appveyor CI and Deploy for Windows.

* MinGW compiler is already installed in Appveyor, just include it in the Path at install
section: set PATH=%PATH%; C:\MinGW\bin and bii configure “MinGW Makefiles”
at before_build section.

198 Chapter 1. Biicode

http://www.appveyor.com/docs
http://blog.biicode.com/appveyor-ci-windows-biicode/

biicode docs Documentation, Release 3.0.2

Travis CI

takes care of running your tests and deploying your apps. Like we work with VCS, many of the
blocks published in our web have their . travis.yml files, that lets us pushing to our repository,
and automatically build in Linux, execute and publish this project with your biicode user account
thanks to this excellent service.

If you’re working with it, the . travis.yml file format will help to automatically publish to your
biicode account with DEV tag:

language: cpp

compiler:
- clang
- gcc

before _install:
— if ["SCXX" == "g++"]; then sudo add-apt-repository -y ppa:ubuntu-t
- 1if ["S$SCXX" == "clang++"]; then sudo add-apt-repository -y ppa:h-ra
- sudo apt-get update —-qgg

— if ["SCXX" == "g++"]; then sudo apt-get install -gqg g++-${GCC_VERS

- 1f ["SCXX" == "g++"]; then sudo apt—-get install -gqgq gcc-${GCC_VERS

— if ["SCXX" == "g++"]; then sudo 1ln -s -v —-f $(which g++-${GCC_VERS

- 1if ["SCXX" == "g++"]; then sudo 1ln -s -v -f $(which gcc-${GCC_VERS
install:

- wget http://apt.biicode.com/install.sh && chmod +x install.sh && ./1

- bii —--version

- wget https://s3.amazonaws.com/biibinaries/thirdparty/cmake-3.0.2-Lin
- tar -xzf cmake-3.0.2-Linux-64.tar.gz

- sudo cp —-fR cmake-3.0.2-Linux-64/* /usr

- rm —-rf cmake-3.0.2-Linux-64

— rm cmake-3.0.2-Linux-64.tar.gz

script:
- cmake —--version
- bii init -L
— 1if ["SCXX" == "clang++"]; then export CXX="clang++" && bii build;
- 1f ["SCXX" == "g++"]; then export CXX="g++" && bii build;

#HHHH A A A S E 4 # 444 CHANGE WITH YOUR CUSTOM CHECKS OR TEST EXECUTION #
- ./bin/amalulla_unit_test_main
st E s LT EEE LTS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE:
after_success:
- bii user S$SUSER -p $BII_PASSWORD
- bii publish
env:
global:
— GCC_VERSION="4.9"
— USER=amalulla

ocolchain-r,
vflood/1l1lvr

ION}; fi
ION}; fi
ION}) /usr,
ION}) /usr,

nstall.sh

ux—-64.tar.c

fi
fi
HHEHEH R A

HHEFEH R A

- secure: Z1IrvEQFr/poZNXRWAVPXB7eDIUwQWXMgk jMWNTJuXAs jKHTXazd5Sa0c8

1.9. Integrations 199

8Fd6ajUSZy.

biicode docs Documentation, Release 3.0.2

Here’s a way to automatically publish to your biicode account with DEV tag unless your github
repository is tagged, in this case, imports the tag and publishes as STABLE to biicode:

language: cpp
compiler:

gcc

before_install:

export TRAVIS_COMMIT_MSG="$ (git log —--format=%B —--no-merges -n 1)"

if [["$TRAVIS_COMMIT MSG" = "SCOMMIT_IGNORE_BUILD"]1]; then exit 0
if ["SCXX" == "g++"]; then sudo add-apt-repository -y ppa:ubuntu-t
sudo apt—-get update —-gg

git config —--global user.email "SUSER_EMAIL"

git config --global user.name "SUSER_NAME"

git config —--global push.default simple

git checkout S$TRAVIS_BRANCH

install:
— if ["SCXX" == "g++"]; then sudo apt-get install -gg g++-4.8; fi
- 1if ["SCXX" == "g++"]; then sudo update—-alternatives —--install /usr

wget http://www.biicode.com/downloads/latest/ubuntu64

mv ubuntu64 bii-ubuntu64.deb

sudo dpkg —-i bii-ubuntu64.deb && sudo apt-get —-f install

rm bii-ubuntu64.deb

wget https://s3.amazonaws.com/biibinaries/thirdparty/cmake-3.0.2-Lin
tar —xzf cmake-3.0.2-Linux-64.tar.gz

sudo cp —-fR cmake-3.0.2-Linux—-64/* /usr

rm —rf cmake-3.0.2-Linux—64

rm cmake-3.0.2-Linux-64.tar.gz

export TRAVIS_CXX=$CXX

script:

cd /tmp

bii init -L

shopt —-s dotglob && mv S$STRAVIS_BUILD_DIR/* ./

if ["S$CXX" == "clang++"]; then export CXX="clang++" && bii build;
if ["SCXX" == "g++"]; then export CXX="g++" && bii build;
cd /tmp/biicode_project

$H#HH4HHHH 44444444 CHANGE WITH YOUR CUSTOM CHECKS OR TEST EXECUTION #

1ls ./bin/lasote_docker_client_example_main

EE st R R
after_success:

bii user SUSER -p S$BII_PASSWORD

if [[-n S$TRAVIS_TAG]]; then bii publish -r --tag STABLE --versiont
if [[-z $TRAVIS_TAG]]; then bii publish -r || echo "Ignored publis
If there are changes, commit them

cd /tmp/biicode_project/blocks/$USER/$BLOCK_NAME

git config credential.helper "store —--file=.git/credentials"

echo "https://${GH_TOKEN}:@github.com" > .git/credentials

git add -A

; fi
ocoolchain-r/

/bin/g++ g-

ux—-64.tar.c

fi
fi

AR A

HHEFEH R A

ag STRAVIS.
h output...

git commit -m "$COMMIT_IGNORE_BUILD"

200

Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

- git remote -v
- git remote set-url origin https://github.com/S$STRAVIS_REPO_SLUG.git
- git push
env:
global:
— USER_EMAIL=lasote@gmail.com
- USER_NAME="Luis Martinez de Bartolome"
— COMMIT_IGNORE_BUILD="Promoted version.**xtravisx*xx*"
— BLOCK_NAME=docker_client
— USER=lasote
BII_PASSWORD: Biicode USER's password. > travis encrypt BII_PASSWO
— secure: ENCRYPTED_BIICODE_PASSWORD_HERE
GH_TOKEN: Github token > travis encrypt GH_TOKEN=XXXXXX —--add

— secure: NCRYPTED_GITHUB_PASSWORD_HERE

RD=XXXXXX -

What’s going on the . travis.yml file?

* language and compiler are totally clear (this is where you choose the language and
compiler that Travis CI will use).

* before_installing, stablishes our automatic commit must be ignored and configures
git to push later, on the after_success part.

* install provides the tools necessary to test our code with BIICODE.
* script, creates, builds and runs the project and checks if the project successes.

* after_success part is to publish your project to biicode as STABLE with VER-
SION_TAG if tagged in github, otherwise it publishes as DEV. Also, if your biicode.conf
file is updated, this commits its changes to github without launching a new build.

* env: replace all environment values with your own ones. Don’t delete the *travis* text, as
it is the one needed to specify that commit should skip build, avoiding entering an endless
build loop.

To learn more about Travis using C++ language, visit its documentation.

Here’s how to automatically build and publish via Travis CI and Github. You can also deploy
directly with biicode.

Check our and/or for questions and answers. You can also for suggestions and feedback.

1.9.5 Koding

gives you the necessary environment to start developing your apps, run them, collaborate and
share with the world. This amazing development tool helps you to work with a great environment
everywhere, without installing or executing difficult commands, you’ve already all the necessary
prepared in your Koding account.

1.9. Integrations 201

http://docs.travis-ci.com/user/languages/cpp/
http://blog.biicode.com/automatically-build-publish-via-travis-ci-github/
http://docs.travis-ci.com/user/deployment/biicode/
http://docs.travis-ci.com/user/deployment/biicode/

biicode docs Documentation, Release 3.0.2

If you’re signed here and you wish to use biicode in your VMs, then execute:

~$ wget http://apt.biicode.com/install.sh && chmod +x install.sh && ./inlstall.sh
~$ bii -h

Then, you’d ready to start using biicode and building all the projects you wish.

1.9.6 Doxygen

is the standard tool for generating documentation from annotated C++ sources. You can download
it from its .

* It can generate an on-line documentation browser (in HTML) and/or an off-line reference
manual (in LaTeX) from a set of documented source files. There is also support for generat-
ing output in RTF (MS-Word), PostScript, hyperlinked PDF, compressed HTML, and Unix
man pages. The documentation is extracted directly from the sources, which makes it much
easier to keep the documentation consistent with the source code.

* You can configure doxygen to extract the code structure from undocumented source files.
This is very useful to quickly find your way in large source distributions. Doxygen can also
visualize the relations between the various elements by means of include dependency graphs,
inheritance diagrams, and collaboration diagrams, which are all generated automatically.

Create a Doxyfile template

~$ cd /blocks/[USER]/ [BLOCK]
~/blocks/[USER]/[BLOCK]S$ mkdir docs
~/blocks/[USER]/[BLOCK]S cd docs
~/blocks/ [USER]/[BLOCK] /docs$ doxygen —g

Edit your Doxyfile

The minimal info that you need to change in your Doxyfile is the following tags:

PROJECT_NAME

"My Project"
OUTPUT_DIRECTORY =
INPUT = ../

FILE_PATTERNS = .c \
.cc \
.cxx \
.cpp \
.ct++ \

L S

202 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

.h \
.hh \
Lhxx \

.hpp \
Lh++ N\

L S

Generate the Documentation

~/docs$ doxygen Doxyfile

#O0pen the /docs/html/index.html with your web browser.

All the info of the previous examples have been written taking as reference a docs folder inside
your block.

However, you can create your Doxyfile where you want changing the INPUT tag in your Doxyfile.

For example, to generate the docs folder in you project, you need to specify: INPUT =
../blocks/ [USER]/ [BLOCK_NAME] /.

Read more info about doxygen in the official documentation.

If you want to make your own main page, you can create a DoxygenMainpage.h in the docs
folder with the following sections:

/%%
@mainpage TITLE_OF_YOUR_HOME_PAGE

@author YOUR_USER_NAME and all the info about the author

Description of you block

@section TITLE

Section info

*/

A good example is :

1.9. Integrations 203

http://www.stack.nl/~dimitri/doxygen/manual/index.html

biicode docs Documentation, Release 3.0.2

libfreenect o.1-bet
Classes | Files |

libfreenect

Author
The OpenKinect Community - hitp://www.github.com/openkinect

Cross-platform driver for the Microsoft Kinect Camera

Website: http:/fwww.openkinect.org

Introduction

libfreenect is an open source, cross platform development library for the Microsoft Kinect camera. It provides basic functionality to connect to the
camera, set configuration values, retrieve (and in some cases decompress) images, and provides functionalty for the LED and Motor.

Design Overview
libfreenect provides access to devices via two structs:

« A context, which manages aspects of thread safety when using multiple devices on multiple threads.
« A device, which talks to the hardware and manages transfers and configuration.

Either or both of these structs are passed to the functions in order to interact with the hardware. The USB access is handled by libusb-1.0, which
should work in a mostly non-blocking fashion across all platforms (see function documentation for specifics).

Should You Use libfreenect?

The main design goal of libfreenect is to provide a simple, usable reference implementation of the Kinect USB protocol for access via non-Xbox
hardware. With this in mind, the library does not contain any algorithms relevant to computer vision usages of the camera.

If you are looking for machine vision algorithms, we recommend the OpenCV library, available at

http:/fwww.opencv.org

If you are looking to use the kinect in a larger framework that may involve other depth sensors, we recommend the OpenNI framework, available at
http://www.openni.org

Note that libfreenect can be used as a hardware node in Openhl.

Generated on Tue Feb 24 2015 15:02:18 for libfreensct by @]@m@m 1891

/% *
@mainpage libfreenect
@author The OpenKinect Community — http://www.github.com/openkinect
Cross—-platform driver for the Microsoft Kinect Camera
Website: http://www.openkinect.org

@section libfreenectIntro Introduction

libfreenect is an open source, cross platform development library fo

=

the Microsoft Kinect camera. It provides basic functionality to
connect to the camera, set configuration values, retrieve (and in some

cases decompress) images, and provides functionalty for the LED and

204 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

*/

Motor.

@section libfreenectDesignOverview Design Overview

libfreenect provides access to devices via two structs:

- A context, which manages aspects of thread safety when using
multiple devices on multiple threads.

— A device, which talks to the hardware and manages transfers and co

Either or both of these structs are passed to the functions in order

to interact with the hardware. The USB access is handled by

libusb-1.0, which should work in a mostly non-blocking fashion acros

all platforms (see function documentation for specifics).

@section libfreenectShouldIUseIt Should You Use libfreenect?

The main design goal of libfreenect is to provide a simple, usable

reference implementation of the Kinect USB protocol for access via

non-Xbox hardware. With this in mind, the library does not contain 4

algorithms relevant to computer vision usages of the camera.

If you are looking for machine vision algorithms, we recommend the
OpenCV library, available at

http://www.opencv.org

If you are looking to use the kinect in a larger framework that may
involve other depth sensors, we recommend the OpenNI framework,
available at

http://www.openni.org

Note that libfreenect can be used as a hardware node in OpenNI.

nfiguratior

ny

Check our and/or for questions and answers. You can also for suggestions and feedback.

1.10 Reference

Biicode offers you a set of configuration files across your projects and blocks. These files empower
you with full control of how biicode treats your code and dependencies.

1.10. Reference 205

biicode docs Documentation, Release 3.0.2

1.10.1 biicode.conf: configure your biicode projects

biicode.conf is a configuration file to —wait for it— configure your biicode projects.

Place it into your block, next to your source code:

| -— my_project/

+-—— bii/
+—— bin/
+-— blocks

| +-—— my_block

|

|

|

| | +-— myuser
| |

| | | | | -— main.cpp
| |

| | | —— biicode.conf

biicode.conf has 9 different sections to configure your project.

Here’s a biicode.conf example:

Biicode configuration file
[requirements]

Blocks and versions this block depends on e.qg.
user/depblockl: 3
user2/depblock2 (track) @tag

[parent]

The parent version of this block. Must match folder name. E.g.
user/block # No version number means not published yet

user/block (track): 7

[paths]

Local directories to look for headers (within block)
/
include

[dependencies]

Manual adjust file implicit dependencies, add (+), remove (-), or
hello.h + hello_imp.cpp hello_imp2.cpp
«.h + *x.cpp

[mains]
Manual adjust of files that define an executable
!'main.cpp # Do not build executable from this file
main2.cpp # Build it (it doesnt have a main() function, but maybe

[tests]

Manual adjust of files that define a CTest test
test/x pattern to evaluate this test/ folder sources like tests

You can change it to publish to a different track, and change versjion,

e.g.

overwrite

it includes

206 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

[hooks]
These are defined equal to [dependencies], files names matching bii
will be launched as python scripts at stage = {post_process, clean

CMakeLists.txt + bii/my_post_processl_hook.py bii_clean_hook.py

[includes]
Mapping of include patterns to external blocks

hellox.h: user3/depblock # includes will be processed as user3/de
[data]
Manually define data files dependencies, that will be copied to bi

By default they are copied to bin/user/block/... which should be t
when loading from disk such data
image.cpp + image.jpg # code should write open ("user/block/image.

*stagexhool

}

pblock/hell

n for exect
aken into ¢

jpg")

[requirements]

[requirements] section is fullfiled after executing bii find with the blocks and versions your
block depends on.

You can manually specify the block to depend on with its corresponding version or override a
dependency just writing the version you want and executing bii build after that.

[requirements]
required blocks (with version)
erincatto/box2d: 10

Take a look at the docs about dependencies to know more.

[parent]

[parent] section tells you “who is your parent version”. Indicates the version of the remote
block being edited and looks like this:

[parent]
myuser/myblock: O

This section is fullfilled automatically when publishing or opening a block and comes in handy
while publishing take a look at it.

When publishing a new block this section should be blank or referenced as -1 version:

[parent]
Comments like this are ignored

or

1.10. Reference 207

biicode docs Documentation, Release 3.0.2

[parent]
myuser/my_new_block: -1

[paths]

Use [paths] section to tell biicode in which folders it has to look for the local files specified in
your #includes. You only need to specify this when your project has non-file-relative #include (s).

Common use case example

Libraries usually have a folder structure like this one

| -— library
| +—— include
| |-— tool.h

|
| +—— test
| | |-— mainl.cpp (#include "tool.h")

In which mainl.cpp includes: #include "tool.h" thatitis truly located into /include folder.
The proper #include would be #include "../include/tool.h"

If we execute bii deps on this example, we’ll see #include "tool.h" as unresolved. Why is
this happening? Biicode can’t find the tool.h file unless we specify where they can find it.

Let’s fix this write into the [paths] section:

[paths]
Local directories to look for headers (within block)
/include

Root directory example

Let’s imagine now that we have a folder with the following structure into it

|-— mylib.h

|-— mylib.cpp

| +—— examples

| | |-— main.cpp (#include "mylib.h")

If we execute bii deps on this example, we’ll see mylib.h as unresolved. Why is this happening?
Biicode, considers the #include (s) relative to their location. So if there isn’t a root folder they
can refer to, when looking for mylib.h they will search it in the examples folder and they won’t be
able to find it.

What should we write on the [paths] section?

208 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

[paths]
Local directories to look for headers (within block)

/

Write / in [paths] section and biicode will know that it has to include the root directory on its
search.

[dependencies]

Biicode knows how the source code files connect to each other. It parses the source code files and
deduces some things. But sometimes, this mechanism can detect non existent dependencies or can
fail detecting existent dependencies.

Use [dependencies] section to manually define rules to adjust file implicit dependencies.

[dependencies] rules match the following pattern:

#dependent_file_name [operator] NULL|[[!]dependency_file]

The Operator establishes the meaning of each rule:

» — operator to delete all specified dependencies from their dependent file.

* + operator to add all specified dependencies to their dependent file.

» = operator to overwrite all specified dependencies with existing dependencies.
You can declare that a file has no dependencies using the NULL keyword.

Mark a dependency with a ! symbol to declare a dependency, but excude it from the building
process. This is sometimes used to define license files that must be downloaded along with your
code, but shouldn’t be included in the compilation process.

The dependent_file_name may be defined using Unix filename pattern matching.

Pattern | Meaning

* Matches everything
? Matches a single character
[seq] Matches any character in seq

[!'seq] | Matches any character not in seq

Examples

Let’s see a few examples:

* matrix32.h is dependency of the main.cpp file.

1.10. Reference 209

biicode docs Documentation, Release 3.0.2

[dependencies]
main.cpp + matrix32.h

* Delete matrix16.h dependency to main.cpp.

[dependencies]
main.cpp - matrixl6.h

* test.cpp depends on both example.h and LICENSE. And LICENSE will be excluded from the
compilation process.

[dependencies]
test.cpp + example.h !LICENSE

» All files with .cpp extension depend on the README file, but this dependency won’t be
compiled.

[dependencies]
*.cpp + !README

* example.h = NULL tells biicode that example.h has no dependencies (even if it truly
has).

[dependencies]
example.h = NULL

* Both solver.h and type.h are the only dependencies of calculator.cpp, overwriting any exist-
ing implicit dependencies.

[dependencies]
calculator.cpp = solver.h type.h

[mains]

Use [mains] section to define entry points in your code.

Biicode automatically detects entry points to your programs by examining which files contain a
main function definition. But when that’s not enough you can explicitly tell biicode where are
your entry points.

[mains] has the following structure:

[[[!]1file]

An example:
* Write the name of the file you want to be the entry point.

* Exclude an entry point writing an exclamation mark, ! before the name of the file.

210 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

[mains]
funct.cpp
'no_main.cpp

[tests]

Tests section is useful to define specific tests for your code. Adjust files manually that define a
CTest test.

Indicate the patter to your test files:

[tests]
test/~*
test/simple_test.cpp

Those test are excluded from the normal building and are built and executed only when doing bii
test.

[hooks]

Use [hooks] section to link to certain python scripts that will be executed, for example, before
building your project. They can be used to download and install a package needed.

This scripts have ”.py” extension and name matches:

* biixpost_process*hook.py: For scripts that will be launched before project build-
ing (bii build or bii configure)

* biixcleanxhook.py: For scripts that will be launched before a bii clean command.
These are defined like [dependencies].

In the following example we define that CMakeLists.txt depends on two hooks:

[hooks]
CMakeLists.txt + bii/my_post_processl_hook.py bii_clean_hook.pyw

Use bii variable inside hook scripts to:

¢ Print text:

bii.out.debug("error_msg")
bii.out.info("error_msg")
bii.out.warn("error_msg")
bii.out.error ("error_msg")

¢ Download files:

1.10. Reference 211

biicode docs Documentation, Release 3.0.2

‘bii.download(url, tmp_path)

* Read your project settings:

’bii.settings.cpp.cross_build

Check an example in this block: .

[includes]

Enables mapping include patterns to external blocks.

* For example you can tell biicode: Whenever you read uv.h in my code, it means
lasote/libuv/include/uv.h:

[requirements]
lasote/libuv(v1l.0): 0

[includes]
uv.h: lasote/libuv/include

In the previous example, the [requirements] section has a line specifying a dependency to

lasote/libuv (v1.0): 0 version, so, lasote/libuv #includes will be matched against these
block.
* You can also specify complex patterns. To process hellox.h #includes as

user3/depblock/hello*.h

[includes]
hellox.h: user3/depblock

This is pretty useful when using already existing libraries and you don’t want to change all the
includes.

[data]

Use [data] to specify a link with any file (.h, .cpp, ...) with any data (.txt, .jpg, ...) in your block.

Once [data] section is specified and the code is built (bii build), the data files will be saved, by
default, in your project/bin/user/block folder.

Example:
You have in your main code this line:

main.cpp

212 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

CImg<unsigned char> image ("phil/cimg_example/lena. jpg")

Then, add to your configuration file:

[data]
main.cpp + lena.jpg

This will copy lena.jpg to project/bin/user/block/ when main.cpp is built.

Any doubts? Do not hesitate to contact us visit our forum and feel free to ask any questions.

1.10.2 Commands

These are the commands available in biicode. You can:
* manage your project and blocks locally, on your computer,
 determine their internal and external dependencies,

* retrieve any missing code dependencies from the biicode servers,

publish your code, and

¢ reuse from other user’s code.

bii build: build your project

This command invokes the C++ compiler to build your project.

S bii build
Building: cmake —--build

[100%] Built target myuser_myblock_main

You can build your projects with the parameters, depending on your OS, that CMake offers us.

S cmake —--build

Usage: cmake —--build <dir> J[options] [—-—- [native-options]]
Options:
<dir> = Project binary directory to be built.

—-—target <tgt> = Build <tgt> instead of default targets.
—-—-config <cfg> For multi-configuration tools, choose <cfg>.
—--clean-first Build target 'clean' first, then build.

1.10. Reference 213

http://web.biicode.com/contact-us/
http://forum.biicode.com/

biicode docs Documentation, Release 3.0.2

(To clean only, use —--target 'clean'.)

Don't merge stdout/stderr output and pass the
original stdout/stderr handles to the native
tool so it can use the capabilities of the
calling terminal (e.g. colored output).

- = Pass remaining options to the native tool.

—-—use-stderr

Now, using biicode, for example:

S bii build —--use-stderr

Building in a Linux or Mac OS X system or MinGW (with make). You can probably speed up
your builds using multiple jobs (threads, cores):

Execute bii build -jN to run Makefile with this option and use the N cores of your machine:

’$ bii build -j4 == cmake --build . -- -7j4

This also works with Visual Studio compiler:

]$ bii build -34 == cmake —-build . —— /m:4

You can also use the -jN make option where N is the number of concurrent jobs desired (please
note the - - before - jN):

$ bii build —— - j4

Building with Visual Studio compiler (even in the command line), the equivalent option is /m:N,
SO you can:

[$ bii build -- /m:4

bii buzz: init, find and build
bii buzz is an all-in-one purpose command that combines different actions: initialize project, find
dependencies and build the block.
bii buzz automates the following commands:
* bii init -L: Initializes biicode project with simple layout.
* bii find: Finds external dependencies of your block.
* bii build: Builds your project.
It is useful for a quick getting started of a new project or after cloning a git repository.

To use it, go to your normal project directory and bii buzz:

214 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

S cd my_project
$ bii buzz

Wirte your biicode.conf file before doing bii buzz to let biicode find your right dependencies.

bii clean: delete meta-information

bii clean command cleans most of biicode internal project meta-information, keeping the minimum
required to reconstruct everything in a subsequent command.

It’s an all purpose command, especially useful to restore your default project settings or when
upgrading to a major release.

bii clean also restores your project’s settings to no IDE and MinGW (Windows) or Unix Makefiles
with no IDE (MacOS and Linux).

‘$ bii clean

You can delete user cache too:

’$ bii clean —--cache

Deleting cache is useful to ensure a clean reconfiguration of biicode. It is used when experiencing
troubles with temporal and build files in your projects.

Got any doubts? Ask in our forum
bii close: finish editing published blocks

You can use bii close command to close a block under edition in blocks directory. Usually, to close
a block you’ve bii open to edit.

S bii close USER_NAME/BLOCK_NAME

Got any doubts? Ask in our forum

bii configure: configure your project
This command analyzes your project and process dependencies, then creates or updates the re-
quired project CMake files. You can use it to specify which CMake generator you want to use.

This command accepts all CMake directives, you could say this command is basically a cmake
invocation within the project build folder.

* Use bii configure to configure a project for your IDE.

* You can also delve into specifics about building with biicode.

1.10. Reference 215

http://forum.biicode.com
http://forum.biicode.com

biicode docs Documentation, Release 3.0.2

bii clean command restores your project’s minimum settings, here’s more about bii clean com-
mand.

Passing variables to cmake

You can define a variable in your CMakeLists.txt and pass the value from command line. To do
this, just pass the value as a parameter of bii configure.

Imagine you have defined a variable name FOO in your CMakeList.txt and you want to define it
with TRUE or FALSE.

IF (FOO)

message (STATUS "FOO Enabled!!™)
ELSE ()

message (STATUS "FOO Disabled!!"™)
ENDIF ()

Define the value of FOO with the flag -DFOO=TRUE or ~-DFOO=FALSE:

S bii configure -DFOO=TRUE
Running: cmake -G "MinGW Makefiles" -Wno-dev -DFOO=TRUE ../cmake

FOO Enabled!!

Define a tool-chain

bii configure —toolchain command define the tool-chain to use, here’s more about the custom
tool-chains.

bii deps: show block dependencies

bii deps checks your project’s dependencies. It gives a general idea of which are your code’s
depenencies. You can use several arguments and filters.

S bii deps

bii deps

Show the files your blocks depend on (with their corresponding blocks and versions), also shows
system and unresolved dependencies:

216 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

S bii deps
phil/math depends on:
phil/math_lib: 4
algorithm.h
lib.h
system:
iostream
unresolved:
fake lib.h
phil/hello_world depends on:
system:
stdio

Include the name of an specific block to see only that block’s dependencies:

$ bii deps phil/hello_world
phil/hello_world depends on:
system:
stdio

bii deps —detail

Use bii deps —detail but to show the origin files where dependencies are used.

$ bii deps —--detail
phil/math_example depends on:
phil/math_lib: 4
algorithm.h
phil/math/main.cpp
lib.h
phil/math/main.cpp
system:
iostream
phil/math/main.cpp
unresolved:
fake lib.h
phil/math/main.cpp
phil/hello_world depends on:
system:
stdio
phil/hello_world/hello.cpp

1.10. Reference 217

biicode docs Documentation, Release 3.0.2

bii deps —detail [FILTER]

Enter a filter to see something specific. For example, you can see just a file or a dependency with
its origins:

S bii deps —--detail fake_lib.h
phil/math_example depends on:

phil/math_lib: 4

system:

unresolved:

fake_lib.h
phil/math/main.cpp

phil/hello_world depends on:

system:

bii deps —files

Use bii deps —files to know all block files (together with their types) and their dependencies.

$ bii deps --files
phil/math_example
CMakeLists.txt [TEXT]
biicode.conf [TEXT]
phil/math/main.cpp [CPP] [M]
phil/math_lib/algorithm.h (E)
phil/math_lib/adafruit_sensor.h (E)
iostream (S)
fake_lib.h (U)
phil/hello_world
CMakeLists.txt [TEXT]
phil/hello_world/hello.cpp [CPP] [M]
stdio (S)

Type of dependency information showed in files:

* E: explicit file

I: implicit file
D: data file

S: system file
e U: unresolved file

Got any doubts? Ask in our forum

218 Chapter 1. Biicode

http://forum.biicode.com

biicode docs Documentation, Release 3.0.2

bii diff: compare block versions

Compare files and show their differences with bii diff command. You can compare your current
local project against a previously published version or compare between published versions.

S bii diff [—--short] [block_name] [v1it] [v2]

Usage

fenix user has an armadillo block in a local project and 4 different published versions.
Let’s see the different possibilities:

* Compare the local block against the latest published version:

| S bii diff

* Compare the local block against a specific version:

| S bii diff fenix/armadillo 2

* Compare two specific published versions (2 and 3) of your local block:

‘ S bii diff fenix/armadillo 2 3

» Show just a short diff in any of the previous examples:

| S bii diff —-short

Got any doubts? Ask in our forum

bii find: find your external dependencies

Retrieve any code dependencies from biicode’s servers.

Biicode analyzes your code, and finds missing dependencies that cannot be resolved searching in
your project contents. After that, biicode tries to find the code you need in our serves, and retrieves
the best matching version according with your policies.bii.

$ bii find

Update your dependencies

Update your dependencies and find new unresolved ones in one step:

1.10. Reference 219

http://forum.biicode.com

biicode docs Documentation, Release 3.0.2

|$ bii find --update

Biicode uses policies.bii to resolve your dependencies. You can find policies.bii in your project’s
bii folder.

Note: policies.bii defines the way bii find command retrieves dependencies. For example, if you
only want STABLE versions and there’s a newer DEV version, this version will only retrieved if
you say so in your policies.bii.

Find compatible downgrades:

‘$ bii find --downgrade

Got any doubts? Ask in our forum
* Visit [requirements| section.
bii init: creates a new project

Use bii init command to create new project.

One step- Create a folder project_name and init your project inside:

S bii init project_name

Also use bii init inside a folder to init a biicode project:

~5 mkdir math_project
~$ cd math_project
~/math_project$ bii init

Got any doubts? Ask in our forum

bii new: creates new blocks

bii new command creates a new biicode block inside your project.

Use it inside a biicode project folder like this:

S bii new USER_NAME/BLOCK_NAME

Take a look at the Getting Started guide to know more.

bii new user_name/block_name command creates new folders in your blocks folder:

220 Chapter 1. Biicode

http://forum.biicode.com
http://forum.biicode.com

biicode docs Documentation, Release 3.0.2

+-— myproject

+-—— bii

+—— blocks

| +—— user_name

| | +—— block_name
+-— deps

It’s useful to create a block with a default “Hello World” main file into it:

S bii new USER_NAME/BLOCK_NAME --hello LANGUAGE

For example:

S bii new fenix/first_block —--hello cpp

Successfully fenix/first_block folder created in your blocks directory!
Successfully main.cpp file created in PROJECT_DIR/blocks/fenix/first_blo

Resulting layout:

+-— myproject

+-—— bii

+—— blocks

| +-—— fenix

| | +—— first_block

| | | +-— main.cpp
+—— deps

Got any doubts? Ask in our forum

bii open: edit published blocks

Use bii open command to use and edit any published block locally.

You can use this command to edit any block you’ve seen on the web and you want to edit. Just
create a new project and once in it, open the block:

S bii init myproject
S cd myproject

~/myproject$ bii open USER_NAME/BLOCK_NAME

You can find the block you just opened in the blocks folder within your project.

Take a look at Workflows section to learn how to modifify its source files and publish a new version.

If you are updating or creating a block from another service, check the integration guide to know
how to proceed.

1.10. Reference

221

http://forum.biicode.com

biicode docs Documentation, Release 3.0.2

bii publish: publish your blocks

bii publish publishes your code to biicode.

’$ bii publish

Once you’ve succesfully published your code to our servers, command line prompt will show a
info message about your block name user_name/block_name and the version ID number:

INFO: Publishing block: myuser/myblock
INFO: ***x*,xkkhkkhdkhkdrkhkhhkxhdhkhxh* kK **
INFO: xxxxx Publishing public xxxx
INFO: **k*,xkkhkhdhkrkhdhdkrhdhkhkxh* kK **

INFO: Successfully published myuser/myblock: 1

Available publishing options:

Tag’s default value is DEV, but all release life-cycle tags are available:

* DEV: Code is under development.

e ALPHA: It’s usually code ready to shared with close friends or colleagues.

* BETA: Code ready for BETA testers!

e STABLE: Tested and ready to reuse.
These tags define the development state of your code.

policies.bii file holds your policies about what kind of code tags you allow for each the blocks you
use.

Publish your blocks with different tags:

$ bii publish --tag STABLE \

Here’s a full guide about publishing to biicode.

222 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

Publish from a git commit

When working with a block cloned from a git repository, use bii publish -r or bii publish —-remote
to publish git info along with your block:

$ bii publish -r

This way your reference to the repo and commit will be saved and shown in your block header.

You can also use tags:

$ bii publish -r --tag STABLE

Check Git integration to know more about working with git repositories.

Publish one of your project’s blocks

If there’s more than one block within your project, specify which one you want to publish:

$ bii publish USER_NAME/BLOCK_NAME

An Example fenix user is editing two blocks, fenix/vector and fenix/matrix. He
wants to publish just fenix/vector using DEV tag:

’$ bii publish fenix/vector

After a while, he’s sure about publishing fenix/vector as STABLE version:

‘$ bii publish fenix/vector --tag STABLE

Got any doubts? Ask in our forum.

Visit the section: bii update command

bii setup: install necessary tools

This command helps you setting up all the tools necessary to start using biicode.

C++ tools

Install C++ third party tools:

S bii setup:cpp

1.10. Reference 223

http://forum.biicode.com

biicode docs Documentation, Release 3.0.2

Arduino tools

Install C++ third party tools and Arduino SW:

S bii setup:arduino

Rasperry Pl tools

Install cross compiler tools for Raspberry Pi (Linux only):

$ bii setup:rpi

Got any doubts? Ask in our forum

bii test: test your code

bii test uses the patterns defined in the [tests] section of the biicode.conf to execute tests your
block’s tests.

S bii test

bii test command wraps bii build and ctest. Now your tests are fully configurable with CTest
CMake options.

S bii test -E _main -R test_

Check to know more.

bii test command truly runs:

‘$ bii test -VV (ctest extra verbose option)

But when using Visual Studio, bii test is truly executing:

‘$ bii test -VV -C Debug

Note that bii test command supports CMake and CTest options, like:

’$ bii test —-C Release

Also enables -jx option to launch build and/or tests with this flag (they’ve got different effects):

[$ bii test -32 == $ bii build -32 + § bii test -3j2

If you got any questions left, you can ask them at our forum.

224 Chapter 1. Biicode

http://forum.biicode.com
http://forum.biicode.com/

biicode docs Documentation, Release 3.0.2

bii update: update a block

Use bii update command to get the latest version of a local block you’re working on.

Update an outdated block (get into your project’s or block’s folder):

$ cd my_project
S bii update

Got many blocks in a project? Get into your projects folder and update any of the blocks in it:

~$ cd myproject
~/myproject$S bii update my_user/my_block

Got any doubts? Ask in our forum

bii user: specify your username

Show or change your current biicode user.

A quick tip: Runbii user your_username before getting started, this way biicode knows
you’re the one winning a badge.

You’re now ready to ger started.
Execute bii user to show the current user.

Note: It can be None (anonymous).

S bii user
INFO: Current user: None (anonymous)

Make sure you’ve got an user name <https://www.biicode.com/> and use it:

S bii user phil
INFO: Change user from None to phil

You can enter it together with your password:

S bii user phil -p myp@sswOrd

Got any doubts? Ask in our forum

1.10.3 Configuration Files

Biicode offers you a set of configuration files across your projects and blocks. These files empower
you with full control of how biicode treats your code and dependencies.

1.10. Reference 225

http://forum.biicode.com
http://forum.biicode.com

biicode docs Documentation, Release 3.0.2

layout.bii: define your project layout

Specify your project layout config with layout.bii file.

With layout.bii you can place the auxiliary folders (cmake/ build/ deps/ and lib/) wherever you
want, just specify the relative routes to the folders you want to use instead.

bii init -1 simple creates a default layout.bii content that places all auxiliary folders in your project’s
bii/ folder:

Minimal layout, with all auxiliary folders inside "bii" and

The binary "bin" folder as is, and enabled code edition in the project
cmake: bii/cmake

lib: bii/lib

build: bii/build

deps: bii/deps

Setting this to True enables directly editing in the project root
instead of blocks/youruser/yourblock

the block will be named as your project folder

auto-root-block: True

Parent blockname (if exists)

root

But you can customize it anyway you want.

Check our and/or for questions and answers. You can also for suggestions and feedback.

policies.bii: defining the policies for the code you want to reuse
Policies are rules bii find applies when finding or updating external dependencies. Configure
them in your_project/bii/policies.bii

policies.bii default value accepts all your DEV versions and other user’s STABLE versions. It has
this format as self-documented::

he form:

This file configures your finds of dependencies.

#

It is an ordered list of rules, which will be evaluated in order, of t
block_pattern: TAG

#

For each possible block that could resolve your dependencies,

only versions with tag >= TAG will be accepted

your_username/* : DEV

* : STABLE

Notes:

* block_pattern fits the owner/block_name pattern.

* TAG can be STABLE, BETA, DEV or ALPHA.

226 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

Changing your policies

Accept all your DEV versions as well as all DEV versions from ownerl and owner2 write:

policies.bii file

your_username/* : DEV
ownerl/% : DEV
owner2/+ : DEV

* : STABLE

Unleash the tester in you, accept all latest DE'V versions:

policies.bii file

* : DEV

Don'’t forget to update your dependencies according to your new policies.bii:

S bii find —--update

Got any doubts? Ask in our forum.

ignore.bii: filtering your files

Specify in ignore.bii which files you want biicode to ignore when processing and publishing your
blocks. It’s a similar approach to .gitignore files in a git repository, and allows you to define which

local files will be excluded from publication to our servers.

Here’s the general ignore.bii file biicode generates by default, you can find it in your .biicode folder

which is in your user folder.

You can edit this file to add accepted and ignored file extensions

The format is similar to gitignore files.

Rules are evaluated in order.

#

Format is as follows:

<pattern>

pattern: conforms Unix Filename Pattern Matching, if preceded by ! it
instead of ignoring (previously ignored by a precedent rule
#

Compiled source

*.com

*.class

*x.dll

*.exe

*.0

1.10. Reference

227

is negated,

)

http://forum.biicode.com
http://git-scm.com/docs/gitignore

biicode docs Documentation, Release 3.0.2

.s0
.obj

.pyc
.dir

* % X

Editor backups

Hidden files
L *

*/ .

OS generated files
Thumbs.db
ehthumbs.db
.DS_STORE

Place additional ignore.bii files insider any block folder or subfolder to ignore specific files and/or
override the general ignore rules.

Any doubts? Do not hesitate to contact us visit our forum and feel free to ask any questions.

settings.bii: defining your tools and preferences
The settings.bii file defines your preferred tools and specific configurations for one given project.
This file is created when you create a new project, inside the bii/ folder of the project.

A project’s settings.bii file stores preferences for any given project (language, compiler and other
tools and configurations for that particular scenario). It is important to keep the file yaml format
for correct interpretation.

You don’t usually need to manually edit this file. Each language or platform provides its own
command for settings customization (except C/C++ language).

 See the section How fo configure your IDE (C/C++)
* bii arduino:settings for Arduino projects

* Dbii rpi:settings for Raspberry Pi projects

Got any doubts? Ask in our forum.

228 Chapter 1. Biicode

http://web.biicode.com/contact-us/
http://forum.biicode.com/
http://forum.biicode.com

biicode docs Documentation, Release 3.0.2

types.bii: configuring non-standard file extensions

This is a special configuration file that allows you to specify how your files are interpreted
and processed by biicode. In some cases, we find projects containing —for some reason— non-
standard extensions for certain file types.

Consider, for instance, a block containing c++ code in files with a non-standard file extension, such
as .mycpp, or without extension. In this case, you must explicitly indicate biicode to process those
files as c++ files. This is as simple as placing a types.bii file in the root of your block folder:

my special c++ files extension:

*.mycpp Ccpp
NOEXT cpp

As you can see, this file contains rules of the form:

<pattern> <desired_extension>

Where <pattern> is a wild-card for the file types you desire to apply the rule, and
<desired_extension> is the corresponding standard file extension for that particular type.

In the previous example, we are telling biicode that all files with . mycpp extension contained in
the source folder (and that includes the current folder, and all its descendants) must be interpreted
as cpp files.

Note: The <desired_extension> expression contains only the desired extension string,
without the dot symbol.

These rules are always applied hierarchically. So you can override your type settings using
additional types.bii place in descendant folders (this is, however, a more exceptional scenario, but
illustrates the powerful capabilities biicode offers to the programmer).

The default file extensions understood by biicode are:
e CPP: .h, .hh, .hpp, .c, .cc, .cpp, .CXX, .inl, .ino, .ipp
e TEXT: .txt, .bii, .md
e XML: . xml
e HTML: .html, .htm
* SOUND: .wav
* IMAGE: . jpeq, . jpg, .gif, .png, .bmp
* JSON: . json
* PYTHON: .py
« JS: .Js, .node
* JAVA: . java

1.10. Reference 229

biicode docs Documentation, Release 3.0.2

* FORTRAN: .90, .for, .f
Got any doubts? Ask in our forum.

Check our and/or for questions and answers. You can also for suggestions and feedback.

1.11 Release notes

3.2 (19-May-2015)
* Fixed problem with cmake Eclipse generator overwriting every time the project config

* Dependencies are managed as SYSTEM for include_directories, to avoid compilation warn-
ings, both for absolute and relative includes

* Opt-out for handling include_directories as system dependencies
* Fixed bug in migration of old .bii files
* Fixed bug in publish not upgrading properly user profiles

3.1.1 (29-Apr-2015)

* Optimized complete internal workflow, avoiding slow and unnecessary serializations to
project DB

* Files not modified in disk, removed problems with CRLF conversions

* Fixed behavior of “bii test” in XCode: https://github.com/biicode/client/issues/12
3.0 (15-Apr-2015)

* Open source release of client and common repositories, dev infraestructure re-made

* Release of premium accounts for private blocks

* Enabled OAuth with Github and Google

* Fixed bug in C++ parser for using statements

* Fixed bug in [tests] pattern that incorrectly affected dependencies

* New Terms of Service, clarifying source code licenses and accounting for premium accounts
and open source contributions

* Fixed bug in user folder ”.biicode” path, some config files were stored out of it
2.8 (7-Apr-2015)

* Better computation of binary targets, if an executable does not depend on its own block
library, it will not be linked

* Removed automatic creation of cmake_dummy.cpp to avoid problems with header only li-
braries

230 Chapter 1. Biicode

http://forum.biicode.com
https://github.com/biicode/client/issues/12

biicode docs Documentation, Release 3.0.2

Removed automatic handling of system deps (math, pthread, winsock), that created problems
in new toolchains. Now users directly specify in CMakeLists their libs.

ADD_BIICODE_TARGETS() has been superseded by ADD_BII_TARGETS(), which will
admit a biicode version number, this is done to achieve backwards compatibility while intro-
ducing new build behavior.

Fixed bug of include paths missing in [tests] targets

Fixed extra verbose message of warning about full path #includes

Optimized performance of ignore.bii for large number of patterns, that was incredibly slow
Now published blocks show publisher’s user name

Security fixes

2.7 (23-Mar-2015)

New [tests] section improved, working fine in Visual Studio

“bii test” now allows parameters (-jN for parallel builds/runs, and CTest other parameters -R
-E -C Debug, etc)

Simpler “policies.bii” configuration, old ones will be automatically migrated

Now “bii find” works also with [includes], so it is not necessary to fill both the [includes]
and the [requirements]

Search in web for file names with the “file:” label inside the search box

Issue warning when using absolute #include paths within the current block, as this wouldn’t
work in simple layouts

Fixed bug with “bii publish -1’ in simple layout

Renamed custom target “check™ associated with “bii test” to “biitest”, as the check target
might collide with user ones

2.6.1 (11-Mar-2015)

New [tests] section in biicode.conf. Automatically define your tests, and build and run them
with “bii test”

New simplified alias “bii build”, “bii configure”, “bii test” for “bii cpp:xxx”” commands

New “bii buzz” command. It “bii init -L” + “bii find” + “bii build” for quick getting started
for newbies, or after a git clone

New project layout fixes, the default block at root is named after its biicode.conf [parents] if
existing

Added layout variables to CMakeLists.txt, so cmake can account for variable layouts. Also
added CMake variable to indicate a block is a dependency or not.

Added layout variables to hooks (bii.paths.deps, bii.paths.bin, etc)

1.11.

Release notes 231

biicode docs Documentation, Release 3.0.2

* New command options for arduino:settings (—board=uno, —port=auto, etc), so interactive
mode can be avoided. Same for rpi:settings

* Automatic handling of PATH, sh.exe is removed from mingw builds, as cmake-mingw builds
doesnt work well with it in the path

» Updated supported arduino SDKs to 1.6

* New —hello=c (<stdio>, printf) for pure C projects

* Fixed broken Eclipse project generation

* Fixed changing [requirements] when several blocks are simultaneously opened

* Fixed incorrect warning about bad filenames of files which were in ignore.bii
2.5.2 (3-Mar-2015)

» New custom project layouts available, with layouts.bii.

Enabled edition in the project root folder

Fixed problems with paths with spaces

Changed arduino toolchains, now use cpp:configure -t=arduino, and cpp:build
* Fixes to windows installer, shortcuts load biicode path even if not in system path
* Free accounts have collaborators now too
* Fix in noderunner script

2.4.1 (18-Feb-2015)

* Improved windows installer, more user options for path, icons, uninstaller, and fixed
readme.txt linefeeds

Improved cmake installation, with option —interactive “$bii setup:cpp -i”’, now not adding it
to path, so can coexist with 2.8 installs

Recovered colored output of cmake builds

Enabled blocks linked with symlinks in linux, so 2 different projects can link to the same
block

Fixed problem of cached badges

Fixed biicode.cmake issues for CLion, now CLion can be used with biicode
2.3 (9-Feb-2015)
* Better toolchain system for cross-compiling

* Added —remote option to “bii publish” to publish github, bitbucket etc remotes info (remote,
branch, tag and commit).

¢ Web: Block view with visible VCS remote information.

232 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

2.2 (27-Jan-2015)

Fixed errors with local cache and DEV version updates.

Web: New biicode badges.

2.1.1 (12-Jan-2015)

Fixed problem with biicode.conf [includes] of the form block/file.h: username

Arduino automatic reset for certain boards, those using the “catarina” uploader (leonardo,
yun)

bii open better handling of versions and tracks

upgraded cmake minimum required version to 3.0

fixed security issue of token not discarded after changing password
improved error messages when biicode.conf incorrect

Website: Better block page header, reuses in Block requirements.

2.0.1 (17-Dic-2014)

Premium accounts to store code privately and share alike.

New and simpler configuration in a single “biicode.conf” file, instead of several tiny files,
and with more flexibility.

System for reusing CMake scripts. Now, CMakeLists.txt can automatically depend on exist-
ing CMake scripts, they will be automatically retrieved, versioned, shared, exactly as other
source code files

Improved and simpler, CMake and build system, with Interface targets. Possibility of setting
options to and configuring blocks you depend on.

Possible to specify #include mappings to blocks, so no modification at all is necessary in
code.

Support for Arduino 1.5 for Yun board

Python hooks for custom tasks. Examples of hooks that automatically retrieve and configure
system-wide some popular and large frameworks as OpenCV or Boost.

Blocks can use different variants, called “tracks” to choose and switch between lib versions
or flavours. For example, can be used to maintain several development branches simultane-
ously as lasote/libuv(v1.0) and lasote/libuv(v0.10), and changing from one to the other does
not require any change to code.

Web: See which blocks depend on your block in the requirements tab
Binary support to WXwidgets

New doc style and contents

1.11.

Release notes 233

biicode docs Documentation, Release 3.0.2

1.11 (19-Nov-2014)

Block tracks.

Client hooks.

Improved client output messages.

Faster processing of large projects.

Improved setups (arduino).

Bug of with Publish STABLE after DEV cache invalidating solved.

Bug of target_compile_options quotes solved.

Web: Block permissions and admin management for premium accounts (for friends).
Web: Improved Search Engine: by tag, user name, block name...

Web: Block tagging.

Web: Fixed bug with some passwords patterns.

1.10.1 (3-Nov-2014)

Create blocks on web interface

Lowercase on usernames and blocknames restriction removed
Removed branches functionality

Fixed RAW code for images

Fixed ZIP download for images

1.9 (20-Oct-2014)

Support any Arduino compatible board

Improved information messages

CMake now defines BIICODE to support biicode and non biicode includes
Web: Show achievements in user profile

Web: Raw file visualization

1.8.5 (10-Oct-2014)

Fedora and Arch package

CMake updated to 3.0.2 and improved setup:cpp command
Fixed errors with ignore.bii behaviour

Custom tool-chain for CMake

Web: Download blocks as ZIP

234

Chapter 1. Biicode

http://blog.biicode.com/improved-search-engine-elastic-search/

biicode docs Documentation, Release 3.0.2

* Web: Delete blocks
1.7.3 (24-Sept-2014)
* Solved bug in merge.
* dependencies.bii now accepts file patterns.
* New apt server for debian based distributions including wheezy.
* Better and cleaner deb packaging for debian based distributions.
1.6 (16-Sept-2014)
* Solved bug in cpp parser
* Added a new filter with patterns in mains.bii file
1.5.4 (09-Sept-2014)
* Deleted “bii status” command
* Largely improved “bii diff” command
* Solved some bugs with CMake
* biicode is now case sensitive
1.4.1 (04-Sept-2014)
* Minimum CMake version updated to 2.8.12 (it was 2.8, but 2.8.12 was indeed required)

* Added -p (—password) option to “bii user” so biicode can be scripted (e.g. travis-ci) without
interactivity

* Largely improved “bii deps” command

» New structure and data of “xxx_vars.cmake” files, allowing choosing to build or not in block
library (both static and shared), with better embedded comment string docs

* CMake printing of built targets
* CMake path inserted for upgrades to cmake 3.0 in bii setup:cpp
* Files in web user profile ordered alphabetically
* Bug of web navigation back-forth solved
1.3.3 (21-08-2014)
* Bugfix: colored output
1.3.2 (13-08-2014)
* Bugfix: login not required anymore when not really needed
* Web performance improvements

1.2.1 (07-08-2014)

1.11. Release notes 235

biicode docs Documentation, Release 3.0.2

* Bugfix for recursive system dependencies compilation
1.2 (06-08-2014)

* Bugfix Open command computed deps incorrectly

Bugfix Incorrect find policies for DEV versions

Bugfix Solved transitivity problems in cmake for complex deps

Rpi cmake pre-built custom package

UX Improvements

Web fixes:

Files tree alphabetically ordered

Show pictures in blocks

* Fixed log in and password recovery
1.1.1 (25-07-2014)

* Bugfixes

* UX Improvements

* Web Bugfixes, dependencies and deps graph
1.0.4 (25-07-2014)

* Bugfixes

* UX Improvements
1.0.1 (15-07-2014)

* No sign up required

* No more workspaces, any folder can hold a project

Plain configuration files

Simplified project settings

Relative includes allowed
* Configuration options with CMake (extensible)
* Bugfixes
* Improved web-page
0.17.3 (28-06-2014)
* Bugfixes in arduino build (bad transitive dependencies)

* Bugfixes in Raspberry Pi commands

236 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

* Reduced Arduino.cmake and CMakelists.txt for arduino projects
* Bugfixes in deps command
0.16 (24-04-2014)
* Improved project graph visualization
* Bugfixes in publish command
0.15.3 (11-04-14)
* Now work, find and upload can be done from arduino monitor GUI
* Output information improvements

* Auto remove empty dep folders

* Improved readme.md layout

 Relative imports within the same block allowed
0.14.1 (03-04-14)

* Fixed Ubuntu 64b installation issues

* Arduino serial monitor (GUI) improvements

* Bugfixes

* Node integration improvement

* Improved block deletion support
0.13.1 (28-03-14)

* Bugfixes in arduino build

* Now you can upload to the arduino from the serial monitor

* Better Node.js support

* bii clean command now deletes the build folder

¢ Removed main and class creation wizards

Removed bii cpp:exe command

* Projects and Blocks can now be deleted from your user profile web page
0.12 (21-03-14)

* Allow to define MS Visual version from cpp:settings

* Arduino bugfixes

* Git support improvements

Arduino selection improvements, now you can select among different connected devices

1.11. Release notes

237

biicode docs Documentation, Release 3.0.2

0.11.1 (14-03-14)

New installation wizards for C++, Arduino, and Raspberry Pi

Arduino port automatic detection. The bii arduino:usb command is deprecated
Removed environment .bii config file

Add direct access icon for Windows biicode client

Fix find bug

Fix local cache bug

Nicer bii arduino:monitor in MacOS

Removed ——default option in bii init and bii new. New parameters for bii
new command.

Enry points automatic detection in files with setup and 1oop functions

Adding import as valid preprocessor directive.

0.10 (21-02-14)

Removed the workspace default_settings.bii file. Now, new projects’ settings are
obtained from the workspace environment .bii file.

Node.js support
Debian wheezy support

Fix a bug that caused open to fail if the block was already in edition

0.09 (13-02-14)

There is a brand new visualization in browser of projects and dependencies with “$bii deps
—graph”

minor bugfixes
improved open command, now any block can be open inside a project
improved performance of finds in server and connections pools

setup totally new. Only setup:cpp working now experimentaly. Also rpi:setup moved to
setup:rpi
apt-get repository for debian based (ubuntu, raspbian) distributions

new “bii info”” command

0.08 (5-Feb-14)

Merge bugfixes

Project download bugfixes

238

Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

* Size and performance optimizations in macos and linux clients
0.07.2 (31-Jan-14)

* Merge bugfixes

* Various bugfixes

* Deps output improved
0.06.2 (28-Jan-14)

* Added arduino support

* Created raspbian native client

* Improved python native libraries

* Improved virtual cells management

* Policies made easier and now user find their own DEV (in master branches) versions by
default

* Bugfixes
* Added new tagging system comments_tags.
* Added cpp:exe command that allows executing an already compiled binary w/o recompiling
* Improved renaming support
* Adding OpenGL ES for RPI project generation
* Improved cpp wizard
0.05 (10-Jan-14)
* Raspberry now using rsync instead of scp
* Wizard rpi:setup for automatic install of cross compilers

* New breadcrumb navigation bar for blocks in browser

Reduced computation by an order of magnitude, especially noticeable in large projects

Fixed bugs in parsers, that kept old state even the file was modified

* Improved normalization of endlines, for handling also \r

* Fixed bug of not finding new dependencies of files in already dependents blocks
0.04 (20-Dec-13)

* Improved wizards behavior

* Added cookies announcement in web as dictated by law

0.03.4 (17-Dec-13)

1.11. Release notes 239

biicode docs Documentation, Release 3.0.2

Init and new configuration wizards

Improved Eclipse support. You can read about it /iere
Improved Raspberry Pi support.

Changed project structure. It’s now easier.

User can edit cmakes.

0.02.3 (2-Dec-13)

Experimental upload-download of projects to biicode, so it is not necessary to publish to
keep working in other computer.

Navigation of uploaded projects in the web
Updated exe creation to pyinstaller2.1, as 2.0 had some problems in some windows installs.

Creation (experimental) of dynamic libraries from C code. Integration from python code
with cffi.

Improved use of biicode for C/C++ dev with RaspberryPI (linux only)

0.01.11 (28-Oct-13)

Fixed bug in Eclipse Cmake generated project with empty targets

Fixed bug that failed when trying to reuse just a data file from another published block (not
reusing sources)

Fixed bug of virtual cells in fortran, due to the “include” does not require to build source file
Improved NMake support, launching vevarsall in a .bat file to include environment variables

Web loads much improved, loading of files with Ajax, rendering of color syntax highlighting
with JS, client side and paginated to handle large files

Web styles improvements, back and forward buttons
Solved bug of project with multiple src blocks, that was overwriting references to dep blocks
WxWidgets binary support improved

Improved handling of python imports, solved bug that didnt renamed properly to absolute
imports

Ctrl+C when init bug fixed (it created empty, wrong workspace)

Applied some limits and constraints to block sizes, file sizes, number of files in a block and
in a project

0.01.10.1

Fixed bug of crash when dep folder had connected cpp_rules files

0.01.10

240

Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

Setup & install in windows problem with setting PATH of biicode solved
Defined C++0x as default, with possibility of changing it in settings

Changed “find” command, now with parameters “update”, “downgrade”, “modify”

Block referencing in client changed from full “owner/creator/block/branch” to “cre-
ator/block (owner/branch)”

Improved setup tools, mainly setup:cpp and setup:node, they update the Environment.bii
Improved cpp:wizard to create classes and mains
“dependencies.bii” now able to add, remove and redefine dependencies manually

SyntaxHighligher done in browser instead of server to avoid timeouts while browsing large
code files

Solved some bugs in renaming files

Transitive propagation of cpp_rules from libraries to executables requiring those libraries.
Solved bugs for user login camelcase

checkout —deps —force flow improved

Use system proxy

0.01.9

Added check of client version, so clients are informed about new releases and deprecated
versions, with a download URL

bii deps —detail command improved showing data dependencies and type of file
Solved bugs in virtual resources that didn’t let reuse published virtual resources

cpp_rules files now can accept multiple statements per rule as well as rules without condition
and else clauses

Improved merge, but still very experimental

Solved bug that allowed to “find” dependencies with cycles to own project blocks
bii deps —graph now working, showing project block graph in browser

Fixed problem with renaming files.

Solved bug with user login upper-lower case mismatch

Improved possibility of editing directly in dep folder, but still discouraged practice.
Improved detection of implicit implementations in CPP with static class variables.

Added preliminary support for fortran, and improved java and node; still experimental lan-
guages

1.11.

Release notes 241

biicode docs Documentation, Release 3.0.2

* Changed folders in node, now using NODE_PATH variable so they dont have to be named
node_modules

1.12 FAQs

1.12.1 Is biicode free?

Yes, and it will be free forever for open source projects. As long as you share your code, you
will enjoy all the functionality and benefits of biicode totally free. However, if you prefer to keep
your code private and only accessible to you and your collaborators, you’ll have to upgrade to a
premium account.

1.12.2 Is biicode an editor in the cloud?

No. In biicode you develop as usual, with your favourite platform and tools. We provide a
software tool that, once installed in your system, and using a very simple project layout (bin, build,
src), is able to manage your source code in a powerful manner. Biicode allows you to reuse any
single source file from any given project in any other project. So you can use your favourite IDE,
builder, debugger... Now we have some fixed settings, that allow to define some tools as Visual,
Eclipse, Mingw, CMake, but it will be soon generalized to all settings, and in any case, you have
always the source code very well structured in your project.

1.12.3 Is biicode a VCS?

No. If you need real version control for your projects, you can still use any available solution
(git, svn, plasticscm). However, biicode does track and manage versions of the published code in
order to provide a powerful, deterministic and scalable dependency manager that also allows easy
collaboration on the platform without relaying on other tools.

1.12.4 Can | use biicode with my favourite VCS?

Yes, it supports common Git web-based repositories such as GitHub or Bitbucket. You can use any
git repository with biicode just doing git clone in your blocks folder and the using your VCS
as usual.

We recommend to work with Git and develop taking care of your project’s version, then you
can build your project with biicode, publish your useful code and just let biicode manage your
dependencies.

It also supports Continuous Integration with Appveyor and Travis CI. Moreover you can download
zip blocks in the web view.

242 Chapter 1. Biicode

biicode docs Documentation, Release 3.0.2

1.12.5 Which languages are supported?

We have released our beta with a strong focus on C++, which lacks a multiOS dependency man-
ager. We are experimenting with other languages as Python, Node, Java or Fortran. The support
for these languages will mature during the next months, and new languages will enter the pipeline
too.

1.12.6 How does biicode relate to Maven, NPM, PyPL...?

Biicode manages your code dependencies and retrieves the missing files from a central repository
to your local machine. However, there are some differences with these services:

* Biicode always retrieves source code. If necessary, artifacts (libs, jars) will be built locally
for efficiency, but all the management is done with source code. In this way it is easier to
develop, debug and collaborate on that source code if necessary.

* Furthermore, it only retrieves the strictly necessary files. There is no concept of package
in biicode. If you need just one file of biicode, just one file is retrieved. Obviously if that
particular file has its own dependencies to other files, those files are also retrieved. The
retrieved files are always managed at the project level, thus, it is very easy to have and
develop with different versions of dependencies in different projects, in a similar way to a
virtualenv compared with a global dependency (as packages with apt-get or similar).

* Moreover, biicode makes a strong effort on determinism and compatibility. As the ver-
sion of each file is tracked, we know when an upgrade is totally safe because it does not
affect the specific files you are depending on. Biicode can even handle different versions of
the same block (repo) if the dependency tree reaches such different versions but the affected
files are not altered in such versions, i.e. we do not have to opt for the (typically) latest
version (that can break code that rely on previous versions), but we can even mix in certain
cases contents from different versions. In that way, the code that was published depending
on specific versions of other code, is always compiled using exactly those versions, achiev-
ing fully determinism. Although upgrading version usually does not break code in case of
mature libraries and packages, this is not true for more young and dynamic code. In this
way, biicode works more as a CI system, in which developers quickly move forward their
dependencies.

All that said, biicode does not try to compete against the power of such established systems nor
tries to replace them, but to coexist with them as another source, and we are working hard with
that purpose.

1.13 Troubleshooting

In this section you will find information and helpful resources, in case you encounter any problem
while using our service. Don’t panic, and try to find a solution for your problem bellow. If you

1.13. Troubleshooting 243

biicode docs Documentation, Release 3.0.2

can’t find a solution, please contact us at our forum and describe your problem.

1.13.1 Eclipse projects: “Launch failed. Binary not found” (OS X)

If you are using OS X as development platform, you will need some aditional setup for executing
your biicode projects within Eclipse IDE. It could happen that after building your project, you
cannot execute the binaries from the IDE toolbar, getting the following error:

800 Application Launcher

o Launch failed. Binary not found.

If you are getting this error, please proceed as follows:
1. Right-click on your project and select Properties.
2. Select C/C++ Make project and click on the Binary Parser subsection tab.
3. Unselect Mach-O Parser (deprecated).
4. Select Mach-O 64 Parser.
5. Click OK.

You can read more in this section about configuring an IDE with your C/C++ projects.

1.13.2 g++ doesn’t compile simple code, using thread header

If you have a block that links to pthread library and you’re using Ubuntu 13.10 or 14.04, you’ll
find this bug in g++ compiler:

S ./executable file
terminate called after throwing an instance of 'std::system error'

Create a CMakelists.txt inside your block that fails and copy the following content:
CMakeLists.txt

244 Chapter 1. Biicode

http://forum.biicode.com

biicode docs Documentation, Release 3.0.2

HHH#H#H#H#H##H#H#BIICODE MACROSHH#H#H#H#HHHHHFHFHHHH
include ($ {CMAKE_ HOME DIRECTORY}/biicode.cmake)

ADD_BII_TARGETS ()
FHEFHHH AR AR F AR H AR H AR F SRS EH

set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,--no—-as—needed")

1.13.3 Default Build Configuration with bii build not working

Sometimes the default configuration when installing biicode does not detect the compiler you are
using, bii build does not work and it is necessary to configure your compiler with biicode.
Windows Users

This can be a problem due to your path configuration. Please, check it out and ensure everything
is right to use the build configuration by default.

Type inside your project directory:

S bii configure -G "CMake generator name"

If you want to check the generators available in your platform:

$ cmake —--help

To configure your project as default just type:

¢ Windows:

$ bii configure -G "MinGW Makefiles"

¢ Linux & MacOS:

S bii configure -G "Unix Makefiles"

Note: You can also type bii clean to restore default configuration.
Now doing bii build should work properly.
Check for more information about generators /ere.

Check our forum and Stackoverflow tag for questions and answers.

1.13. Troubleshooting 245

http://forum.biicode.com
http://stackoverflow.com/questions/tagged/biicode?sort=newest

biicode docs Documentation, Release 3.0.2

246 Chapter 1. Biicode

CHAPTER 2

Arduino

Develop C and C++ projects with Arduino and biicode. Your Arduino with batteries included:
1. Save your project in different folders for a better organization.
2. Reuse yours and other user’s code, just # include the file you need.
3. compile and upload your code in your Arduino.

4. We are hosting adafruit, sparkfun and many other libraries.

2.1 Installation

Biicode is a file-oriented Dependencies Manager for C and C++ developers. Install both Biicode
and the Arduino tools to get started.

2.1.1 Install Biicode

Download Biicode Installer and double-click the downloaded package to install it.

Open the terminal and make sure biicode is installed:

~S bii —--version

Check alternative installations for:
e Debian based distrobutions

e Arch based distrobutions

2.1.2 Install Arduino tools

To start, install required tools like CMake or GCC:

247

https://www.biicode.com/adafruit
https://www.biicode.com/sparkfun
https://www.biicode.com/search?words=arduino&search=Search
https://www.biicode.com/downloads

biicode docs Documentation, Release 3.0.2

S bii setup:arduino

Avoid Arduino’s SDK installation if you’ve got it installed already. Re-run bii
setup:arduino command to verify everything is installed.

Any issues, contact us at our forum, and feel free to ask any questions.

2.1.3 Install Arduino tools manually

Install, set up and verify some tools to build Arduino projects with biicode.

Follow these steps if something failed during the automatic installation explained before. If you
experience any issues, please contact us at our forum, we’ll try to solve your problem as soon as
possible. Linux

Install the required development tools as root:

S sudo apt-get install build-essential cmake

That’s all! MacOS
You need to get installed both XCode Developer Tools and CMake:
1. The XCode Developer Tools

S xcode—-select —-install

2. Download and install CMake for your Mac OSX.
Windows
1. Download and install CMake. You can download the latest version of CMake here.

3. Add to your user PATH environment variable the path to CMake. We recommend Rapid
Environment Editor for editing environment variables. Otherwise, go to My Computer,
click Properties, click Advanced System Settings and in the System Properties window
click the Environment Variables button. then you will see a new window and in User
Variables you’ll find the variable PATH:

248 Chapter 2. Arduino

http://forum.biicode.com/category/arduino
http://forum.biicode.com/category/client
http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org/cmake/resources/software.html
http://www.rapidee.com/
http://www.rapidee.com/

biicode docs Documentation, Release 3.0.2

Variables de entorno x|

—Variables de usuario para drodri

Mueva... Editar... | Elirinar |
—Variables del sistema
Variahle | Valor | -
ComSpec C:\Windows\system32\omnd. exe s
configsetroot Cr\Windows\ConfigSetRoot
EMC_AUTOPLAY C:YProgram Files (x86)\Common Files'R...
FP_MO_HOST C... NO -
Mueva... | Editar... | Eliminar |

Aceptar I Cancelar |

Add CMake binaries folders (i.e. C: \Program Files (x86)\CMake\bin).

You might need to close and open again any cmd windows in order to load the new value for the
PATH variable.

Now, you can check CMake is working properly. Open a terminal window and run the following
command:

‘$ cmake —-version

If the output message looks similar to this, CMake is successfully installed.

‘cmake version [version]

Install Arduino SDK manually

Download the Arduino software first, it is important to choose a SDK compatible with your board.
If you need more info visit the official Arduino website.

If you have any questions, we are available at . You can also for suggestions and feedback.

2.1. Installation 249

http://arduino.cc/en/Main/Software
http://arduino.cc

biicode docs Documentation, Release 3.0.2

2.2 Getting started

This section shows the first steps to use biicode with your Arduino.
Here we will learn:

* How to install biicode.

* Code your first “blink”.

* Code a “non blocking blink” reusing from the blink library.

You don’t need to install the blink library, biicode will download and configure it automati-
cally for you,

2.2.1 Installing biicode and Arduino tools

First and install biicode.

Then, open the console and type:

~$5 bii setup:arduino

This will help you to install a group of external tools (Arduino SDK, CMake and MinGW or GCC).

If any problem installing the Arduino tools, check how fo install Arduino tools manually.

2.2.2 Create your project

First, create a project:

‘~$ bii init myproject

Then we can use the convenience new command to create some folders and a “Simple Blink”
Arduino main file. Of course, you can do it manually too.

~$ cd myproject
~/myproject$ bii new myuser/myblock —--hello=arduino

You can directly type myuser, there’s no need to register an account to use biicode, only to upload
and share contents. You can use other name too. If you have already registered you might want to
replace myuser with your real biicode username.

This should be the resulting layout:

+-— myproject
| +—— bii
| +-— blocks

250 Chapter 2. Arduino

biicode docs Documentation, Release 3.0.2

| +—— myuser

| | +—— myblock

| | | +-— main.cpp
+—— deps

2.2.3 Define your board

Just, define your Arduino board using the arduino: settings command. In this example we
use an Arduino Uno, but you can use another like Mega2560.

~/myproject$ bii arduino:settings

Enter SDK path (/../biicode_env/arduino-1.0.6): [ENTER]
Enter board (/o list supported options) :uno

Using arduino port: COM4

2.2.4 Build and upload your program

Let’s specify the toolchain to use, build and check that everything is fine by building and uploading
the blink application to your Arduino.

~/myproject$ bii configure -t arduino
~/myproject$ bii build

iiéo%] Built target myuser_myblock_main

~/myproject$ bii arduino:upload

Wéiting | #H##HFHAFHHHFHHFH AR A AR AR AR A SRS S S S S SEHHE | 1003 0.00
avrdude.exe: 0 bytes of eeprom written

avrdude.exe: safemode: Fuses OK

avrdude.exe done. Thank you.

[100%] Built target myuser_myblock_main-upload
Upload finished

2.2.5 Depending on Fenix Blink

Now we’re going to implement a non blocking blink in arduino. Copy the following code contain-
ing the new blink into the main.cpp file:

2.2. Getting started 251

[0)]

biicode docs Documentation, Release 3.0.2

main.cpp

#include "Arduino.h"
#include "fenix/blink/blink.h"
Blink my_blink;
void setup () {
//pin = 13, interval = 1000 ms
my_blink.setup (13, 1000);
}
void loop () {
my_blink.loop();
}

This code requires the fenix’s blink.h file (You can see it in the include section).

If you try to build you will get a build error, that’s because your project doesn’t have the
fenix/blink/blink.h dependency.

Execute the following command to find unresolved dependencies and retrieve necessary files
from servers:

‘~/myproject$ bii find

2.2.6 Build and upload

Now can now build your firmware and upload it to your Arduino:

~/arduino_hello_project$ bii build
[100%] Built target myuser_myblock_main
~/arduino_hello_project$ bii arduino:upload

Writing | ########F4#HHHHFHFAHFHFHHHHFEHAHFHFFHHHFESEHHFESE#HE | 1005 0.00

[9)]

avrdude.exe: 0 bytes of eeprom written
avrdude.exe: safemode: Fuses OK
avrdude.exe done. Thank you.

[100%] Built target myuser_myblock_main-upload
Upload finished

That’s it! If you see that output it means that fenix’s blink.h was downloaded and uploaded in
your project.

Now your Arduino board should be blinking! You have just reused a non blocking blink!

252 Chapter 2. Arduino

https://www.biicode.com/fenix/blink

biicode docs Documentation, Release 3.0.2

You can also check the deps folder, the blink.h code is there.

Didn’t work? No problem, read or contact us in . Any suggestion or feedback? It is very welcomed

)

2.3 Arduino commands

This section summarizes the Arduino commands available to be used with the biicode client
program. You can see these tools if you execute:

S bii -h arduino

SYNOPSIS:
S bii COMMAND [options]
For help about a command:
$ bii COMMAND --help
To change verbosity, use options —--quiet —--verbose

arduino:monitor Open serial monitor

arduino:settings Configure project settings for arduino

arduino:test Build only the tests declared into your biicode.conf
arduino:upload Upload a firmware in Arduino

Note: You need to have arduino correctly set up.

2.3.1 bii configure -t arduino: configure your project

If you have configured your project as a C/C++ project and you want to develop in arduino lan-
guage, this command helps you! Enter it and configure your project like an arduino project. It
invokes arduino cross compiler and you are ready to start with your arduino.

S bii configure -t arduino

invoking cmake -G "MinGW Makefiles" -Wno-dev ../cmake

—— The C compiler identification is GNU 4.3.2

—— The CXX compiler identification is GNU 4.3.2

—— Arduino SDK version 1.0.5: [YOUR_SDK_PATH]

—— Check for working C compiler: [YOUR_PATH]/avr—-gcc.exe

—— Check for working C compiler: [YOUR_PATH]/avr—-gcc.exe —-— works
—— Detecting C compiler ABI info

—— Detecting C compiler ABI info - done

—— Check for working CXX compiler: [YOUR_PATH]/avr-g++.exe

—— Check for working CXX compiler: [YOUR_PATH]/avr—-g++.exe —-- works
—— Detecting CXX compiler ABI info

2.3. Arduino commands 253

'"[tests]'

<
w

biicode docs Documentation, Release 3.0.2

—— Detecting CXX compiler ABI info - done

—-— Configuring done

—-— Generating done

—— Build files have been written to: [YOUR_BII_WORKSPACE/YOUR_PROJECT] /b

uild

Execute cmake —-help to check all generators available. Here’s how to configure Eclipse for
Arduino.

2.3.2 bii build: build your project

This command uses the cross compiler of Arduino (C compiler -> avr-gcc and CXX compiler
-> avr-g++) to build and compile the project via the toolchain you configure it with bii
configure -t arduino.

S bii build

invoking cmake -G "MinGW Makefiles" -Wno-dev ../cmake

—-— The C compiler identification is GNU 4.3.2

—— The CXX compiler identification is GNU 4.3.2

—— Arduino SDK version 1.0.5: [YOUR_SDK_PATH]

—— Check for working C compiler: [YOUR_PATH]/avr—-gcc.exe

—— Check for working C compiler: [YOUR_PATH]/avr—-gcc.exe —— works
—— Detecting C compiler ABI info

—— Detecting C compiler ABI info - done

—— Check for working CXX compiler: [YOUR_PATH]/avr—g++.exe

—— Check for working CXX compiler: [YOUR_PATH]/avr-g++.exe —- works

[100%] Built target your_user_name_block_firmware

2.3.3 bii arduino:upload: send your code into the Arduino

When you want to deploy your code into the arduino, this command sends your previously built
firmware to the arduino.

This command also builds your code in case it was not previously built.

S bii arduino:upload

[100%] Built target [USER]_my_block_main

254 Chapter 2. Arduino

biicode docs Documentation, Release 3.0.2

Writing | ########H4HFHHFAHFFHHAFRASAHEAAFAESFSFFESAFAFSHSES | 1005 0.00

avrdude.exe: 0 bytes of eeprom written

avrdude.exe: safemode: Fuses OK

avrdude.exe done. Thank you.

[100%] Built target [USER]_my_block_main-upload

If you are using an Arduino Yun, you can upload your firmware by ssh with the parameter —ssh.
To use it, specify the IP of your Arduino.

bii arduino:upload —--ssh 192.168.0.1
Or don’t especify anyone and use the default IP (192.168.240.1).

bii arduino:upload --ssh

2.3.4 bii arduino:settings: configure your Arduino settings

This command updates your settings with the info about your board and the IDE, if you want
to use one.

$ bii arduino:settings

Enter SDK path (/../biicode_env/arduino-1.0.6): [ENTER]
Enter board (/o list supported options): mega2560
Using arduino port: COM13

Set your own settings manually. When using non official arduino boards, add the board support to
your IDE (if using one), and type the board on bii arduino:settings.

2.3.5 bii arduino:monitor: start a serial monitor

This command opens a serial monitor to read the serial port of your Arduino board.

’$ bii arduino:monitor

2.3.6 bii configure —toolchain=arduino: enable, disable or change the
Arduino cross compilation

Use this command to enable Arduino Cross Compilation.

2.3. Arduino commands 255

biicode docs Documentation, Release 3.0.2

‘$ bii configure --toolchain=arduino

If you need the default arduino-toolchain.cmake, execute bii arduino:settings first.

S bii arduino:settings

S bii configure —--toolchain=arduino

If you want to disable it, use this command.

S bii configure —--toolchain=None

To use a custom tool-chain you need to place it in the bii folder of your project with the name
<my_toolchain_name>-toolchain.cmake.

To use it, just pass it as argument of bii configure -t my_toolchain_name.

S bii configure --toolchain=my_toolchain_name

If you use a custom toolchain, remember that you need to use the bii build to compile your
projects.

You can read more info about toolchains in the C++ section

2.4 How to

Here are some useful Arduino use cases:

2.4.1 Eclipse IDE configuration

Biicode offers integration with Eclipse for Arduino.

First of all, you need to configure your project for arduino and Eclipse IDE for C/C++:

S bii arduino:settings

Enter SDK path (/../biicode_env/arduino-1.0.6): [ENTER]
Enter board (/o list supported options): uno

Arduino detected on port COM14

S bii configure -G "Eclipse CDT4 - Unix Makefiles"

A new Eclipse project has been generated for you.
Open eclipse, select "File > Import > General > Existing project into Wo

Depending on your OS and desired compiler you can use different Eclipse generators:

e "Eclipse CDT4 - MinGW Makefiles" Generate with MinGW Makefiles.

256 Chapter 2. Arduino

rkspace"

ar

https://www.eclipse.org/downloads/

biicode docs Documentation, Release 3.0.2

e "Eclipse CDT4 - Unix Makefiles" Generate with Unix Makefiles.

Now you are ready to import your project into the Eclipse IDE. It is important that you use a
version of Eclipse that contains the C/C++ Toolkit. So we recommend using Eclipse IDE for
C/C++ Developers.

How to import your project

1.
2.
3.
4.

From the main Eclipse menu choose: File > import...
Now, select general > Existing Projects into Workspace, and clic next.
Select the root directory as the root folder of your project.

You should see a project already selected in the projects box. Click finish.

If you want to add new files to your block, just right-click on the folder of your block and create a
new file.

Note: If you add new dependencies to your project you’ll need to manually invoke bii find.

You can build your application in Project > Build project if you don’t have automated builds set.

If you are using Mac as developing platform, you will need some aditional setup:

1.

Right-click on your project and select Properties.

2. Select C/C++ Make project and click on the Binary Parser subsection tab.
3. Unselect Mach-O Parser (deprecated).

4.

5. Click OK.

Select Mach-O 64 Parser.

How to fix “Unresolved inclusion: Arduino.h”

1.
2.

Open the project settings and go to C/C++ General -> Paths and Symbols
Click “Add external include path” and add:

¢ For Arduino IDE installed with biicode:

- MAC: ~/.biicode_env/arduino-1.0.6/Arduino.app/Contents/Resources/Jav
— Linux: ~/ .biicode_env/arduino-1.0.6/hardware/arduino/cores/arduino

— Windows: C:\biicode env\arduino-1.0.6\hardware\arduino\cores\arduino

* For manually installed Arduino IDE, just add the equivalent route.

And this is all you need to work as usual with the Eclipse IDE. Any doubts? Do not hesitate to
contact us visit our forum and feel free to ask any questions.

2.4. How to 257

https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
http://web.biicode.com/contact-us/
http://forum.biicode.com/

biicode docs Documentation, Release 3.0.2

2.4.2 Configure your SDK, port and board

| changed my Arduino’s port, what happens now?

Port detection is automatic, execute bii arduino:upload to ‘re-detect’ the board.

If you experience problems changing your port or your arduino board, just execute bii
arduino:settings

How can | change my Arduino project properties?

Execute bii arduino:settings to define your Arduino SDK, board and port:

$ bii arduino:settings

Enter SDK path (/../biicode_env/arduino-1.0.6): [ENTER]
Enter board (/o list supported options): mega2560
Using arduino port: COM13

bii arduino:settings options

SDK path

Press enter to choose the Arduino SDK path in brackets. To use a different Arduino SDK, write
the path where it is located.

Want to install Arduino SDK? execute bii setup:arduino.

Boards

Type your Board model, just make sure it’s compatible with the Arduino SDK v. 1.0.5 and your
IDE supports it. This is a list of the boards supported by default, even though any board is wel-
comed!

* uno: Arduino Uno

* zum: bq ZUM BT-328

* yun: Arduino Yun

* atmega328: Arduino Duemilanove w/ ATmega328

* diecimila: Arduino Diecimila or Duemilanove w/ ATmegal68
* nano328: Arduino Nano w/ ATmega328

* nano: Arduino Nano w/ ATmegal68

258 Chapter 2. Arduino

http://www.bq.com/gb/products/zum.html

biicode docs Documentation, Release 3.0.2

* mega2560: Arduino Mega 2560 or Mega ADK

* mega: Arduino Mega (ATmegal280)

* leonardo: Arduino Leonardo

* esplora: Arduino Esplora

* micro: Arduino Micro

* mini328: Arduino Mini w/ ATmega328

* mini: Arduino Mini w/ ATmegal68

* ethernet: Arduino Ethernet

e fio: Arduino Fio

* bt328: Arduino BT w/ ATmega328ad

* bt: Arduino BT w/ ATmegal 68

* LilyPadUSB: LilyPad Arduino USB

* 1ilypad328: LilyPad Arduino w/ ATmega328

* 1ilypad: LilyPad Arduino w/ ATmegal68

* pro5v328: Arduino Pro or Pro Mini (5V, 16 MHz) w/ ATmega328
* pro5v: Arduino Pro or Pro Mini (5V, 16 MHz) w/ ATmegal 68
* pro328: Arduino Pro or Pro Mini (3.3V, 8§ MHz) w/ ATmega328
* pro: Arduino Pro or Pro Mini (3.3V, 8 MHz) w/ ATmegal68

* atmegal68: Arduino NG or older w/ ATmegal68

* atmega8: Arduino NG or older w/ ATmega8

* robotControl: Arduino Robot Control

e robotMotor: Arduino Robot Motor

USB port

Biicode automatically detects the USB port your Arduino board is connected. Manual USB Port
configuration varies from one operating system to another, so look for your USB port and then
type it on the command line after executing bii arduino:settings:

Linux/Unix

For Linux/Unix type 1s /dev/ttyUSB« or 1s /dev/ttyACM~ into a terminal
window. You should see a device called like these:

e /dev/ttyUSBX

2.4. How to 259

biicode docs Documentation, Release 3.0.2

e /dev/ttyACMX

Where /dev/ttyACMX is for the new Uno and Mega Arduino’s and
/dev/ttyUSBX is for the old ones. X is the device number.

MacOS

Under Mac, in the Terminal window, type 1s /dev/cu. =/ which should give you
a name like this one:

e /dev/cu.usbserialXXX
In which XXX is an unique ID.
Windows

If using Windows, go to the Device Manager and look for an entry under Ports (COM
& LPT) that says USB Serial Port (COMX) specifying the serial port name on Win-
dows, in which X is the device number:

* COM1, COM2, etc.

2.4.3 How to adapt your code

Adapt your current Arduino projects and sketches to biicode. Next steps depend on whether
your project contains one single . ino file, or multiple . ino files. Just follow the guide that suits
best your current project:

1. Projects with one single .ino file

This is the simplest case. Adaptation is almost immediate:
General rules
1. Put your code into a biicode block .

2. Change .ino file extensions to .cpp. For example, sweep.ino file would be
sweep.cpp.

3. Include the Arduino.h library in the very beginning of your code:

#include "Arduino.h"

4. Declare all function prototypes at the beginning of your code. For example: void
servo_loop () ;.

5. If you’re using 3rd party (external) libraries, search for them in biicode and rewrite the
library includes to the ones available on biicode. Usually, all included files in biicode projects
follow this pattern: <username>/<blockname>/<path_to_file>.

260 Chapter 2. Arduino

http://docs.biicode.com/arduino/gettingstarted.html#create-your-project

biicode docs Documentation, Release 3.0.2

For example, if you are using Tiny GPS Library , tinygps.h , you should
update the include directive like this:

#include "mikalhart/tinygps/tinygps.h"

Full . ino file adaptation Sample:

Original sweep.ino file

#include <Servo.h>

void setup () {
}

void loop () {
servo_loop (9);

void servo_loop (int pin) {
Servo myservo;
myservo.attach (pin);
for (int pos = 0; pos <= 180; pos += 1) {
myservo.write (pos);
delay (15);

}

Adapted sweep.cpp file

#include "Arduino.h"
#include <Servo.h>

void servo_loop();

void setup () {
}

void loop () {
servo_loop (9);

void servo_loop (int pin) {
Servo myservo;
myservo.attach (pin);
for (int pos = 0; pos <= 180; pos += 1) {
myservo.write (pos);
delay (15);

2.4. How to 261

http://www.biicode.com/mikalhart/tinygps

biicode docs Documentation, Release 3.0.2

2. Projects with multiple .ino files

General rules
1. Put your code into a biicode block.

2. Change . ino main file extension to . cpp. Also, change the extension of the other . ino
files to . h.

For example, if your project has the following layout, being sweep.ino your
main file:

+-— sweep
| +-— sweep.ino
| +—— servo_functions.ino

Rename sweep.ino to sweep.cpp, and servo_functions.ino

to servo_functions.h. Put them into your
project/blocks/username/biicode_block_name directory like
this:

+—— <biicode_block_name>

| +—— sweep.cpp

| +-— servo_functions.h

3. Include the Arduino.h library in the very beginning of your code:

#include "Arduino.h"

4. If you’re using 3rd party (external) libraries, search for them in biicode and rewrite the
library includes to the ones available on biicode. Usually, all included files in biicode projects
follow this pattern: <username>/<blockname>/<path_to_file>.

For example, if you are using Tiny GPS Library , tinygps.h , you should
update the include directive like this:

#include "mikalhart/tinygps/tinygps.h"

5. Declare all function prototypes at the beginning of your code. For example void
servo_loop() ;.

Find below a full multiple . ino files adaptation sample. Easy adaptation is the one described be-
fore and advanced adaptation is the one biicode recommends for complex projects o nice practice:

Original sweep Arduino project

sweep.ino

void setup () {
}

262 Chapter 2. Arduino

http://docs.biicode.com/arduino/gettingstarted.html#create-your-project
http://www.biicode.com/mikalhart/tinygps

biicode docs Documentation, Release 3.0.2

void loop () {
servo_loop (9);

}

servo_functions.ino

#include <Servo.h>

void servo_loop (int pin) {
Servo myservo;
myservo.attach (pin);
for (int pos = 0; pos <= 180;
myservo.write (pos);
delay (15);

}

pos += 1) {

Easy adaptation

sweep.cpp

#include "servo_functions.h"

void setup () {
}

void loop () {
servo_loop(9);

}

servo_functions.h

#include "Arduino.h"
#include <Servo.h>

void servo_loop (int pin) {
Servo myservo;
myservo.attach (pin);
for (int pos = 0; pos <= 180;
myservo.write (pos);
delay (15);

}

pos += 1) {

Advanced adaptation

This is an alternative way to adapt your code to biicode. It is recommended as a best practice
that splits your code into declarations, or interface, and implementations. This separation between

interface (contained in header files, with

. h extension) and implementation (contained in . cpp

2.4. How to

263

biicode docs Documentation, Release 3.0.2

files) provides many benefits:

* The header declares what the code does, while the implementation contains how to do it.
This is somehow a nice way of structuring your code.

» Compilation times are reduced, and also the need to recompile all your code when only some
parts of the implementation have changed.

sweep.cpp

#include "servo_functions.h"

void setup () {
}

void loop () {
servo_loop (9);

}

servo_functions.h

#include "Arduino.h"

void servo_loop (int pin);

servo_functions.cpp

#include "servo_ functions.h"
#include <Servo.h>

void servo_loop (int pin) {
Servo myservo;
myservo.attach (pin);
for (int pos = 0; pos <= 180; pos += 1) {
myservo.write (pos);
delay (15);

2.4.4 How to use the Arduino Yun

Download Arduino 1.5

Download the Arduino zip file from Arduino download page and unzip it.

264 Chapter 2. Arduino

http://arduino.cc/en/Main/Software

biicode docs Documentation, Release 3.0.2

Configure your settings

Do bii arduino:settings to configure the new SDK path and the board as yun.

In this example we have unziped our SDK into c: /biicode_env/arduino-1.5.8.

S bii arduino:settings
Enter SDK path (/../biicode_env/arduino-1.0.6): c:/biicode_env/arduino-1[.5.
Enter board (/o list supported options): yun
Using arduino port: COM13

And that’s all. Now you can use your Yun with biicode.

2.5 Examples

Here you will find some code examples showing the advantages of using biicode with your arduino
projects. You can find additional examples on the Arduino official website.

2.5.1 Arduino Serial Monitor

This example shows you how to run biicode’s Arduino Serial Monitor Interface and turn
ON/OFF one LED easily.

If you don’t know how to start using Arduino with biicode, check out our getting started guide for
Arduino.

C++ code

Put the following file in your ~/project_name/blocks/your_user_name/block_name/
or just open the example block.

monitor_led.cpp

#include "Arduino.h"

// Pin 13 has an LED connected on most Arduino boards
int led = 13;

void setup () {
pinMode (led, OUTPUT); // initialize the digital pin as an output
Serial.begin (9600) ;
Serial.print ("Send '1l' or 'O' to turn ON/OFF the led in Pin ");
Serial.println(led, DEC);

2.5. Examples 265

http://arduino.cc/en/Tutorial/HomePage
https://www.biicode.com/examples/serial_monitor

biicode docs Documentation, Release 3.0.2

void loop () {
//checking data has been sent

if (Serial.available() > 0) {
char msg = Serial.read(); //read a message
if(msg == "1") {

digitalWrite(led, HIGH); // turn the LED on
Serial.println("LED -> ON");

}

else if (msg == '0") {
digitalWrite (led, LOW); // turn the LED off
Serial.println("LED -> OFE");

}

Download: monitor_led.cpp

Turn ON/OFF one LED

First, configure your arduino settings and toolchain:

S bii arduino:settings

S bii configure -toolchain=arduino

Sencond, build your project:

S bii build

Now upload this firmware to your Arduino with the following command:

S bii arduino:upload

[100%] Built target [your_user_name]_monitor_led main-upload

You shouldn’t get any erros but if you do, please check that your Arduino is correctly connected,
and check your settings (using the bii arduino:settings command).

If you still have any issues please contact us at our forum.

Now, open the Arduino monitor. You only need to execute the following command:

S bii arduilno:monitor

266 Chapter 2. Arduino

http://forum.biicode.com/category/arduino

biicode docs Documentation, Release 3.0.2

Arduino detected on port [YOUR_PORT]

You’ll see a window with an interface that allows you to communicate with the Arduino Serial
Port. Here you can send 1 or O to turn the led ON or OFF, respectively.

Send '1' or '0' to turn ON/OFF the led in Pimn 13

2.5.2 Servo and LCD 2x16

With this example you will display the angle of a servo into a LCD 2x16. It uses the Servo,
servo.h, library to control the servo and the Liquidcrystal, 1iquidcrystal.h, library to
display the angle on the LCD.

2.5. Examples 267

biicode docs Documentation, Release 3.0.2

What do we need?

¢ One standard servo.
* One display lcd 2x16.

* One potentiometer.

Scheme

e o 0 o o
e o o o o
e o o o o
e o o o o
e e 0 0o o

fritzing

The code: Display the servo angle into a LCD

This example is already in biicode. You can create your project and open the block or copy the
code into a .cpp file:

268 Chapter 2. Arduino

https://www.biicode.com/examples/servolcd

biicode docs Documentation, Release 3.0.2

S bii init my_arduino_project
$ cd my_arduino_project
S bii open examples/servolcd

Check the code inside your block’s folder:

led_and_servo.cpp

#include <Arduino.h>
#include <LiquidCrystal.h>
#include <Servo.h>

LigquidCrystal led(12, 11, 5, 4, 3, 2);
Servo myservo;

void write_angle_lcd(int pos) {
lcd.setCursor (0, 1);
lcd.print (pos);
led.print (" ");

void setup () {
myservo.attach (10);
lcd.begin (16, 2);
lcd.print ("SERVO ANGLE") ;
lcd.setCursor (0, 1);
}
void loop () {
int pos;
for (pos = 0; pos <= 180; pos += 1) {
myservo.write (pos);
write_angle_lcd (pos);
delay (50) ;
}
for (pos = 180; pos >= 0; pos —= 1) {
myservo.write (pos);
write_angle_lcd(pos);
delay (50);
}

Build and upload the code

First, we have to configure the settings and select the arduino toolchain:

S bii arduino:settings

2.5. Examples 269

biicode docs Documentation, Release 3.0.2

S bii configure -toolchain=arduino

Secondly, build this c++ example for arduino:

[bii build |

And upload it to your board:

‘$ bii arduino:upload ‘

You are done! You’ll see your servo moving and the angle into the LCD.

Any doubts? Do not hesitate to contact us, visit our forum and feel free to ask any questions.

2.5.3 Arduino Serial Interface
With this serial interface you’ll be able to send commands from a console in your PC to the arduino.
You can also define your own commands for the arduino.

In this example we use a desktop console app and an arduino program to move a servo attached
to the Arduino.

Send the “servo” command from our desktop app to the arduino program, and type the desired
angle. The arduino board connected via USB will do the rest!

How does it work?
Just need to use the methods read and write to communicate with the device through se-

rial port. Those functions and the whole API definition are defined in david/serial_arduino and
david/serial_cpp libraries.

How do | use it?

* You need to create two projects arduino_app and cpp_app, one will contain the code that
will be uploaded to arduino and the other one the client application that will run in your PC.

’ S bii init cpp_app

‘ S bii init arduino_app ‘

* Open the examples: C++ app code goes into your pc project and arduino code goes into the
arduino’s project.

$ cd cpp_app
S bii open examples/serial_interface_cpp

270 Chapter 2. Arduino

http://web.biicode.com/contact-us/
http://forum.biicode.com/
https://www.biicode.com/david/serial_arduino
https://www.biicode.com/david/serial_cpp
http://www.biicode.com/examples/serial_interface_cpp
http://www.biicode.com/examples/serial_interface_arduino

biicode docs Documentation, Release 3.0.2

$ cd arduino_app
S bii open examples/serial_interface_arduino

C++ code

Change the Serial Port ID in the main_cpp.cpp file with the one you are using with the arduino.

main_cpp.cpp

#include "david/serial_cpp/serial.h"
#include <string>
#include <iostream>

using namespace std;

int main ()

{
string incomingData = "";
string input = "";
serial serialport ('#', ';', "COM8", 9600); //Change the serial port ID!!

while (1) {
input = serialport.read(); //read a message
if (input != "") cout << input << "\n";
else/{
cout << "Enter: ";
cin >> incomingData;
incomingData = "#" + incomingData;
incomingData += ";";

serialport.writeString (incomingData); //send a message

return O0;

Arduino code

main_arduino.cpp

#include <Arduino.h>

#include <Servo.h>
#include "david/serial arduino/serial.h"

2.5. Examples 271

biicode docs Documentation, Release 3.0.2

serial serialport('#', ';', 9600);
String msg = "";

String premsg = "";

Servo myservo;

void setup () {
myservo.attach(9);
serialport.init ();

// bii:#entry_point ()
void loop () {

msg = serialport.read(); //read a message

if (msg != "")

{
serialport.writeOpen();
serialport.writeString(msg); //send a message
serialport.writeEnd();

if (premsg=="servo") {
int n;
n = atoi(msg.c_str());
myservo.write (n);

}

premsg = msg;

Build and run!

Execute following commands in each project:

Arduino App

$ bii arduino:settings
$ bii configure -t arduino
S bii build

S bii arduino:upload

C++ App

272 Chapter 2. Arduino

biicode docs Documentation, Release 3.0.2

S bii build

$ cd bin

$ #run solver executable
Enter: servo

servo

Enter: 180

180

Enter: servo

servo

Enter: 90

Now you can start hacking your own commands!

2.6 Troubleshooting

2.6.1 Launching Arduino IDE, | get an error ./arduino: 22: ./arduino:

java: not found in Ubuntu

You can do it this way:

’$ sudo apt-get install openjdk-7-jre librxtx-java

Then you shouldn’t have problems executing the IDE.

Check our forum and Stackoverflow tag for questions and answers.

2.6. Troubleshooting

273

http://forum.biicode.com
http://stackoverflow.com/questions/tagged/biicode?sort=newest

biicode docs Documentation, Release 3.0.2

274 Chapter 2. Arduino

CHAPTER 3

Raspberry Pi Cross Compilation

A C and C++ dependency manager with cross compilation integrated for Raspberry Pi.

3.1 Installation

Biicode is a file-oriented Dependencies Manager for C and C++ developers. Install both Biicode
and the cross compiling tools for Raspberry PI to get started.

3.1.1 Install Biicode

Download Biicode Installer and double-click the downloaded package to install it.

Open the terminal and make sure biicode is installed:

~S bii —--version

Check alternative installations for:
e Debian based distrobutions

e Arch based distrobutions

3.1.2 Install RPI tools

To start, install required tools like CMake or GCC:

‘ $ bii setup:rpi

Re-runbii setup:rpi command to verify everything is installed.

Any issues, contact us at our forum, and feel free to ask any questions.

275

https://www.biicode.com/downloads
http://forum.biicode.com/category/arduino

biicode docs Documentation, Release 3.0.2

3.1.3 Install RPI cross-compiling tools manually
Manually install the cross-compiling tools. Go through this section if something failed during the

automatic installation explained before. Any issues, please contact us at our forum, and we’ll try
to solve it as soon as possible.

C++ tools installation

Install the required development tools as root:

‘$ sudo apt-get install build-essential cmake

If your are using a 64-bit version of Linux as development environment, follow the next steps.
Install 1lib32z1 (only for 64-bit linux versions)
To find if your Linux is 32 or 64 bits, just type:

S uname -m

This command may throw one of the following outputs:
e x86_64 ==> 64-bit kernel
* 1686 ==> 32-bit kernel

If you are using a 64-bit OS, you need to install the support for 32 bit applications. These libraries
are required to use the cross compilers supplied by Raspberry Pi from their Github repository.

$ sudo apt-get install 1ib32z1

It is possible that you encounter some of the following errors:

* If it does not find the package, you may need to add a 32-bits architecture to your package

list:
S sudo dpkg —--add-architecture 1386
$ sudo apt—-get update
$ sudo apt—get install ia32-1libs
* If you get:

The following packages have unmet dependencies:
ia32-1ibs : Depends: ia32-libs-multiarch
E: Unable to correct problems, you have held broken packages.

execute:

S sudo apt-get install libgll-mesa-dri:i386
$ sudo apt—-get install ia32-libs-multiarch:1386

276 Chapter 3. Raspberry Pi Cross Compilation

http://forum.biicode.com/category/raspberry-pi

biicode docs Documentation, Release 3.0.2

S sudo apt-get install ia32-libs-multiarch
$ sudo apt—-get install ia32-libs

* If you get:

Some packages could not be installed.
This may mean that you have requested an impossible situation the followin
ia32-1ibs : Depends: ia32-libs-multiarch

just install the dependencies manually like any other package:

$ sudo apt-get install ia32-libs-multiarch
$ sudo apt—get install ia32-1libs

Raspberry Pi tools installation

One essencial step for cross-compiling your programs is downloading the Raspberry Pi tools from
this Github repository. You’ll need Git installed on your Linux system. You can install an existing
package on your Ubuntu platform with the following command:

‘$ sudo apt-get install git

Now, you need to clone this Git repo in this folder:
~/.biicode_env/raspberry_cross_compilers. To do so, execute the follow-
ing command:

’$ git clone https://github.com/raspberrypi/tools.git ~/.biicode_env/raspkerry_cross

After a while, the RPi cross-compiling tools will be available in your system. To verify that biicode
is able to find and use the compilers, run the following command, and check that you receive a
success output message:

S bii setup:rpi
INFO: The arm gnu is already downloaded

If you have any questions, we are available at . You can also for suggestions and feedback.

3.2 Getting started

This example shows how to install biicode, code a C++ led blink with , make the cross compi-
lation and send the executable to your Raspberry Pi.

You don’t need to have WiringPi installed in your computer or the rpi. Biicode will download and
configure it automatically for you, !

3.2. Getting started 277

https://github.com/raspberrypi/tools/
https://github.com/raspberrypi/tools/

biicode docs Documentation, Release 3.0.2

3.2.1 1. Installing biicode and C/C++ cross-building tools

Debian linux distribution required

You need to use a native debian linux or in a virtual machine to use the cross compilation tools.

First, and install biicode.

Then, open the console and type:

~5 bii setup:rpi

If any problem installing the C/C++ cross-building tools, you can see how fo install RPi cross-
compiling tools manually

3.2.2 2. Create your project

First, create a project:

‘~$ bii init myproject

Then we can use the convenience new command to create some folders and a “Hello World” C++
main file. Of course, you can do it manually too.

~5 cd myproject
~/myproject$ bii new myuser/myblock —--hello=cpp

You can directly type myuser, there’s no need to register an account to use biicode, only to upload

and share contents. You can use other name too. If you have already registered you might want to
replace myuser with your real biicode username.

This should be the resulting layout:

+-— myproject

| +—— bii

| +-— blocks

| | +—-— myuser

| | | +-— myblock

| | | | +-— main.cpp
| +-— deps

3.2.3 3. Build and run your program (cross-compiling)

Configure your project to the cross compiling running bii rpi:settings:

~$ cd myproject
~/myproject$ bii rpi:settings

278 Chapter 3. Raspberry Pi Cross Compilation

biicode docs Documentation, Release 3.0.2

Define RPI settings for external C/C++ cross-building
If you are working on board the RPI, you don't need these settings:

RPI username (pi): [ENTER]

RPI IP Address: 192.168.1.44

RPI directory to upload (bin): [ENTER] #This folder must exist into your
Creating toolchain for Raspberry PI

Run "$bii cpp:configure --toolchain=rpi" to activate it

Run "$bii cpp:configure —--toolchain=None" to disable it

Raspberry

Activate the toolchain for Raspberry Pl withbii cpp:configure --toolchain=rpi:

bii configure —--toolchain=rpi

Lets check that everything is fine by building and trying to run the hello world aplication. It could
fail the execution because it is compiled to Raspberry PI.

~/myproject$ bii build

~/myprojects ./bin/user_myblock_main
./bin/user_myblock_main: cannot execute binary file

3.2.4 4. Send your executable to your Raspberry Pi

To send the binary to your Raspberry Pi, you just need to execute the bii rpi:send com-
mand and the file will be sent using rsync to the address provided in your settings.

$ bii rpi:send
Sending with rsync —-Pravdtze ssh [PROJECT_DIRECTORY]/bin/+ [RPI_USER]QI[R

[RPI_USER]@[RPI_IP]'s password:

PI_TIP]:[DII

The Raspberry Pi user’s password will be asked. If you have not changed your password, for
Raspbian the default one is raspberry.

Finally, to execute your program on your Raspberry Pi, you need to establish a connection. You
can use the rpi: ssh command if you want remote access. You'll find your program deployed in
the path configured in your settings:

$ bii rpi:ssh

Connecting with ssh <rpi_user>@<rpi_ip>
<rpi_user>@<rpi_ip>'s password:

pi@raspberrypi ~ $ cd hello_rpi
pi@raspberrypi ~/hello_rpi $ 1s
myuser_myblock_main

3.2. Getting started 279

http://en.wikipedia.org/wiki/Rsync

biicode docs Documentation, Release 3.0.2

pi@raspberrypi ~/hello_rpi $./user_myblock_main
Hello world!

3.2.5 5. Depending on WiringPi

Copy the following code containing a simple sum function and a test into the main.cpp file

#include "drogon/wiringpi/wiringPi/wiringPi.h"
#define LED O
int main (void) {
wiringPiSetup () ;
pinMode (LED, OUTPUT) ;
digitalWrite (LED, HIGH) ; // On
}

Execute the following command to find unresolved dependencies and retrieve necessary files from
servers:

~/myproject$ bii find

Now you are ready to compile and deploy your new application. First, cross-compile your pro-
gram and make sure the binary is generated running bii build from your project location:

S bii build
Configuring cross compiler for ARM architecture:

[100%] Built target myuser_myblock_main

The binaries are created in bin folder.

Remember that you cannot run this program locally, as it has been compiled for a different
architecture using the cross-compiling tools. You need to send the binary to your Raspberry Pi
before executing it.

Didn’t work? No problem, read or contact us in .
Any suggestion or feedback? It is very welcomed :)

Visit the section: Upload and reuse code (C/C++)

3.3 RPi commands

This section summarizes the Raspberry Pi commands available to be used with the biicode
client program. You can see these tools if you execute:

280 Chapter 3. Raspberry Pi Cross Compilation

biicode docs Documentation, Release 3.0.2

$ bii -h rpi

SYNOPSIS:
S bii COMMAND [options]
For help about a command:
$ bii COMMAND --help
To change verbosity, use options —--quiet —--verbose

rpi:send Send by scp the bin folder into the specified director
rpi:settings Configure Raspberry Pi project settings
rpi:ssh Connect by ssh with the Raspberry Pi

3.3.1 bii rpi:send: send a bin folder

Send your binaries automatically to your Raspberry Pi from your PC.

$ bii rpi:send
Sending with rsync -Pravdtze ssh [HIVE_DIRECTORY]/bin/* [RPI_USER]@[RPI_|

[RPI_USER]@[RPI_IP]'s password:

The Raspberry Pi user’s password will be asked. If you have not changed your password, for
Raspbian the default one is raspberry.

3.3.2 bii rpi:settings: configure your Raspberry Pi settings

This command provides an easy way to configure your Raspberry Pi settings.

$ bii rpi:settings

Define RPI settings for external C/C++ cross-building

If you are working onboard the RPI, you don't need these settings

RPI username (pi): [RPI_USER]

RPI IP Address: [RPI_IP] #example 192.168.1.44

RPI directory to upload (bin): [RPI_FOLDER] #This folder must exist intog

* RPI username (pi): Raspberry Pi user name. Default value is p1i.

* RPI IP Address: Raspberry Pi local IP address. Write here your Raspberry Pi network
address, that you can find out executing the i fconfig in a console inside the RPi.

* RPI directory to upload (bin): Raspberry Pi directory where you want your programs to
be saved. Default value is the bin user home folder.

Alternatively you can pass your configuration directly into the settings command.

3.3. RPi commands 281

IP]: [DIREC]

your Raspt

biicode docs Documentation, Release 3.0.2

‘$ bii rpi:settings —-user USER —--ip IP —-directory DIRECTORY

3.3.3 bii rpi:ssh: connect by ssh with the Raspberry Pi

If you want a remotely access to your Raspberry Pi you can get it with this command.

$ bii rpi:ssh

Connecting with ssh <rpi_user>Q@<rpi_ip>
<rpi_user>@<rpi_ip>'s password:

pi@raspberrypi ~ $

3.3.4 bii configure —toolchain=rpi: enable, disable or change the
Raspberry Pi cross compilation.

Use this command to enable Raspberry Pi Cross Compilation.

’$ bii configure --toolchain=rpi

If you need the default rpi-toolchain.cmake, execute bii rpi:settings first.

S bii rpi:settings

S bii configure --toolchain=rpi

If you want to disable it, use this command.

S bii configure —--toolchain=None

To use a custom tool-chain you need to place it in the bii folder of your project with the name
<my_toolchain_name>-toolchain.cmake.

To use it, just pass it as argument of bii configure -t my_toolchain_name.

S bii configure --toolchain=my_toolchain_name

You can read more info about toolchains in the C++ section

‘Passwordless secure SSH access is possible by following the instructions on
the raspberry pi help section<https://www.raspberrypi.org/documentation/remote-
access/ssh/passwordless.md>¢_

282 Chapter 3. Raspberry Pi Cross Compilation

biicode docs Documentation, Release 3.0.2

3.4 How to

3.4.1 Installing the biicode package from downloads page is too slow

You can do it this alternative way:

[$ sudo dpkg -i bii-ubuntu[ARCH]_[VERSION].deb |

For example, you want to install the new release biicode package, for example, 0.7.2 in your
Ubuntu 12.10 64 bits version, then you have to enter:

[$ sudo dpkg -i bii-ubuntu64_0_7_2.deb |

If you would have the 32 bits version:

[$ sudo dpkg -i bii-ubuntu32_0_7_2.deb |

3.4.2 Output selection and volume control
You can force the RPi to use a specific interface using the command amixer cset numid=3
N, where the N parameter can take the following values:

* 0 for auto selection

* 1 for analog output

* 2 for hdmi output

Therefore, to force the Raspberry Pi to use the analog output, you can use the following command:

‘$ amixer cset numid=3 1 ‘

If you want to change the volume level:

‘$ amixer cset numid=l —-- 20% ‘

3.4.3 Raspberry Pi GPIO Pin Layout

The definitive Parspberry Pi pinout by pighixxx

3.4. How to 283

http://pighixxx.tumblr.com/

biicode docs Documentation, Release 3.0.2

THE DEFINITIVE

RASPBERRY
PI PINOUT

iringPI ALTS ALT4 ALT3 Revl m- 3 - ALT3 ALT4 ALTS WiringPl
X, {cero @ H soa Heero 2 —{El-+ —
&3 {GeroaHscL Heeio 3 HscLIEl- —ET
ARM_TOI } {eeicxe Hpio & Howo [l 15 [0 ™0 fouars_moo—{35]
- ~—EAR0HERD 15H R0} fors_wa——{16)
B aca—{wRs——— @l W HER10 a8 pon_cik———{o 1 —(EaN—{)
23 fon SCLK: {6P10 21H ;= DOUTHGPT0 27Howo: JEM-= —ETH
B cprkr —aam asT—{ama CLK ——————{Geio 22H= [l 4 B2 {ar_RTCK]
Sommm s 00 (e 100
(12 { MoST_Hgp1o 18}-+os1[EER -~ e "0 |
(a3} MISO I 13 o o O 51 DATA|—{ AR _TCX.
[1a} { scLx Hepro 11}-scuc Tl cEeH GrIO 8
s 11 [43) CE1 {11]
A absolute max Sema for all 3v3 pins!
WiringPI ALTS ALT3 ALT2 o ALT2 ALT3 ALTS WiringPl
s 0o W]
(17} {rox CLK} {SoA” Heeo 28+ [EER-+ (eNe) Tl [SCL_}—{ w5 |
(28— €7S—{oure €TS}—{ o DIN ——————————{6p10 36-==u TR+ (oNe] «—{EFY - -{EPT0 31 (vcn DOUT —{uasre RTS—fuars RTS——{20
o0 | 00 a0 |

H e e

»
=
1]
s
e
[=
=
1]
o
]
=

(NN RN

o5
Gy

{Om

PRREERE R

) voltage between 4.75 and 5.25 volts

R

22 NV e
OSMI“t to ground to reset the BOM2B3S ver 1 rev 3

3.5 Examples

In this section you will find some examples, showing the benefints of using biicode technology
with your Raspberry Pi C++ projects. All examples make use of well-known libraries, uploaded
to the biicode platform and available for eveyone to use.

284 Chapter 3. Raspberry Pi Cross Compilation

© o N AW N =

biicode docs Documentation, Release 3.0.2

You can compile these projects directly on your Raspberry Pi. However, for performance reasons,
we suggest using the cross compilation feature built in biicode. Cross compilation only works on
Linux systems at this moment.

3.5.1 WiringPi: C GPIO library

WiringPi is a C library that provides easy access to the Raspberry Pi GPIO system. It’s designed
to provide similar functionality to the Wiring package, core of the Arduino input/ouput system. The
library supports the UART port, SPI, I2C and PWM. In the project page you will find additional
information.

Author: Gordon Henderson
biicode library site

WiringPi library reference page
WiringPi home page

Now we present some examples using this library with biicode projects. The first one is a simple
blinking LED. The second one shows how to use the PWM output to control a motor.

How to make a LED blink with Raspberry Pi

With this example we will have a LED flashing every half second using the WiringPi pin 0 (or
RPi GPIO-17; it’s physical location is pin 11 on the GPIO connector). You can learn more about
the Raspberry Pi GPIO pin layout in this documentation, or reading the Embedded Linux Wiki.

You must create a new pro ject and a new empty block, as explained in the biicode RPi getting
started guide. Then, place the following source file inside your block, and execute the bii
find command. All needed source files will be downloaded to the deps folder of your project
(you can also read the reference for the bii find command).

Example: blink.c

#include <stdio.h>
#include <drogon/wiringpi/wiringPi/wiringPi.h>

// LED Pin - wiringPi pin 0 is BCM_GPIO 17.
#define LED 0

int main (void)

{

printf ("Raspberry Pi blink\n") ;

wiringPiSetup () ;
pinMode (LED, OUTPUT) ;

3.5. Examples 285

http://wiringpi.com/reference/
https://projects.drogon.net/
https://www.biicode.com/drogon/wiringpi
http://wiringpi.com/reference/
http://wiringpi.com/
http://elinux.org/RPi_Low-level_peripherals

biicode docs Documentation, Release 3.0.2

for (;;)

{

digitalWrite (LED, HIGH) ; // On
delay (500) ; // mS
digitalWrite (LED, LOW) ; // Off

delay (500) ;
}

return 0 ;

}

Download: blink.c

Note that the previous file includes the main header file of drogon’s WiringPi library, available
from biicode. Now you are ready to build your program using the bii build command, and
send it to your board using the bii rpi:send command, as described in the biicode RPi getting
started guide.

You must execute this program on your Raspberry Pi with the sudo command, because it
needs to gain access to the board hardware. All needed hardware and wiring setup is explained in
this example available at the WiringPi creator’s projects page.

How to use the RPi PWM output to control a motor

With this example we will have a PWM sawtooth function on WiringPi pin 0 (GPIO-10). You need
to set pin 1 as PWM whit the pinMode function: pinMode (1, PWM_OUTPUT) . Once again,
create a new project with an empty block, as described in the biicode RPi getting started
guide. Place the following example file inside your block, execute the bii find command to
retreive all dependencies, and build and deply your program using the bii build and bii
rpi: send commands.

Example: pwm.c

#include <drogon/wiringpi/wiringPi/wiringPi.h>

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

int main (wvoid)
{
int bright ;

printf ("Raspberry Pi wiringPi PWM test program\n")

if (wiringPiSetup () == -1)
exit (1) ;

286 Chapter 3. Raspberry Pi Cross Compilation

https://www.biicode.com/drogon/drogon/wiringpi/master/1/wiringpi/wiringpi.h
https://www.biicode.com/drogon/drogon/wiringpi/master/1/wiringpi/wiringpi.h
https://projects.drogon.net/raspberry-pi/gpio-examples/tux-crossing/gpio-examples-1-a-single-led/

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

biicode docs Documentation, Release 3.0.2

pinMode (1, PWM_OUTPUT) ;

for (;;)
{
for (bright = 0 ; bright < 1024 ; ++bright)
{
pwnWrite (1, bright) ;
delay (1) ;

for (bright = 1023 ; bright >= 0 ; —--bright)
{

pwmWrite (1, bright) ;

delay (1) ;

return 0 ;

}

Download: pwm.c

Note that in this example we only need to include the WiringPi main header file. You must execute
the binary on your Raspberry Pi using the sudo command.

How to use softServo to control a Servo

In this example we make use of the WiringPi softservo.h header to control a servo. WiringPi
provides two basic functions to control servos:

e softServoSetup (int p0, int pl, int p2, int p3, int p4, int
p5, int p6, int p7). With this function we provide the number of pins to be used
as controllers. For more information about the GPIO go to: Raspberry Pi GPIO Pin Layout.

* softServoWrite (int servoPin, int wvalue). With this function we assign
to a pin configured previously the value that we want to move. The values that support has a
range of -250 to 1250. In order to understand this range, we must analyze how this function
works: the function adds 1000 to the value that is passed as a parameter, so the final range
is from 750 to 2.250 and the average stay in 1500, which is the default value that the library
gives servo 90 degrees.

With this example we set a servo in its central position using the WiringPi pin 0 (GPIO-17) as a
control signal. Place the following example source file inside an empty block of a new project, and
execute the bii find (command info) to retrieve all dependencies.

The generated binary only works on your Raspberry Pi and must be run as sudo because it works
on the hardware.

3.5. Examples 287

https://www.biicode.com/drogon/drogon/wiringpi/master/2/wiringPi/wiringPi.h
https://www.biicode.com/drogon/drogon/wiringpi/master/2/wiringPi/softServo.h

20

21

22

23

24

25

26

27

28

29

30

31

32

biicode docs Documentation, Release 3.0.2

Example:

S€rvo.c

#include
#include
#include

#include
#include

int main

<stdio.h>
<errno.h>
<string.h>

<drogon/wiringpi/wiringPi/wiringPi.h>
<drogon/wiringpi/wiringPi/softServo.h>

0

{
if
{
fprintf (stdout,
return 1 ;

}

(wiringPiSetup () ==

"oops: %s\n", strerror (errno))

softServoSetup (0, 1, 2, 3, 4, 5, 6, 7) ;

softServoWrite (0, 500) ;
/ *

softServoWrite (1, 1000) ;

softServoWrite (2, 1100) ;

softServoWrite (3, 1200) ;

softServoWrite (4, 1300) ;

softServoWrite (5, 1400) ;

softServoWrite (6, 1500) ;

softServoWrite (7, 2200) ;
*/

for (;;)

delay (10) ;

}

’

Download: servo.c

3.5.2 HTTP Server: how to control a led by web

This example use the HTTP Server library to control a LED.

How can i use it?

* Just copy the following files to a new block.

* Find the dependencies and execute your code:

288

Chapter 3. Raspberry Pi Cross Compilation

biicode docs Documentation, Release 3.0.2

Once you have the code, invoke bii find toresolve external dependencies. Then, build and run
in your Raspberry Pi as usual. Remember, the generated binary only work on your Raspberry Pi
and have to run as sudo because it works on the hardware:

S bii find

é.gii configure —-toolchain=rpi
é'gii build

g-gii rpi:send

é-gii rpi:ssh

éiéraspberrypi ~ $ cd [project_name]
pi@raspberrypi ~/[project_name] $ 1s

[binary_name]
pi@raspberrypi ~/[project_name] $ sudo ./[binary_name]

* Open your web browser and go to http.//localhost: 9000

Led Mode (on/off):
 On
Off

Enviar consulta

main_server.cpp

This file just instances the server and run it with a simple configuration parameters.

#include "lasote/httpserver/http_server.h"
#include "my_http_middle_ware.h"

using namespace httpserver;
using namespace Jgip;

int main () {
MyHttpMiddleware my_mmiddleware;
HttpServerConf conf (9000, 300, 60, 5);

HttpServer http_server;

http_server.run (&my_mmiddleware, &conf);

3.5. Examples 289

biicode docs Documentation, Release 3.0.2

return O;

my_http_middle_ware.h

Defines your HttpMiddleware subclass.

#pragma once

#include "lasote/httpserver/http_middleware.h"
#include "led.h"

namespace httpserver {

class MyHttpMiddleware : public HttpMiddleware {

public:
MyHttpMiddleware () : HttpMiddleware (NULL) {}
MyHttpMiddleware (HttpMiddlewarex other_middlewar
}
virtual ~MyHttpMiddleware () ;
virtual void call (Requesté&, Response&);

private:

Led myLed;
bi

e)

} /* namespace httpserver =/

my_http_middle_ware.cpp

Implements HttpMiddleware subclass. With the call method you can turn on or turn off a LED
using the request info of the request.

#include "my_http_middle_ware.h"

#include "lasote/httpserver/exception.h"
#include "lasote/httpserver/model/method.h"
#include "sstream"

#include "iostream"

namespace httpserver {

MyHttpMiddleware: : ~MyHttpMiddleware () {

290 Chapter 3. Raspberry Pi Cross Compilation

HttpM:

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

biicode docs Documentation, Release 3.0.2

void MyHttpMiddleware::call (Requesté&

ostringstream html;
string checkedOn = "",
html <<

if (request.get ("mode")
if (request.get ("mode")

//Build the html form

string form;
form = "\
html << form <<

// Set content type we are printing
response.content_type ("text/html");

// Set the body
response.body =

} /* namespace httpserver =/

checkedOff =

"<!DOCTYPE html>\n<html>\n<body>\n";

"</body>\n</html>\n";

html.str();

request, Response& response)) {

mwmw.
r

"on") { myLed.on(); checkedOn = "checked";}
"off"){ myLed.off(); checkedOff = |"checked";]

<form name='formulary' action='/helllp' method='
Led Mode (on/off):
\n\
<input type='radio' name='mode' value=!
<input type='radio' name='mode' value=
<input type='submit''/>\n\
</form>\n\

"w.
4

led.h

Defines a Led class for turn on/off the light.

#pragma once

#include <drogon/wiringpi/wiringpi/wiringpi.h>

class Led

{
public:

Led();

//default constuctor

3.5. Examples

291

o - N T U SR S B,

biicode docs Documentation, Release 3.0.2

virtual ~Led(); //default virtual destructor
void on () ;
void off ();

private:
int pin;

}i

led.cpp

Implements the Led class

#include "led.h"

Led: :Led ()
{
pin = 0;
wiringPiSetup () ;
pinMode (pin, OUTPUT) ;
}

Led::~Led ()
{

}

void Led::on ()
{

digitalWrite (pin, HIGH);
}

void Led::o0ff ()
{

digitalWrite (pin, LOW);
}

Download: httpserver.zip

3.5.3 A funny moving doll with Raspberry Pl and biicode

Surprise your friends and family with a moving doll, just follow these few simple steps.

292 Chapter 3. Raspberry Pi Cross Compilation

20

21

22

23

24

25

26

27

28

29

30

31

biicode docs Documentation, Release 3.0.2

You just need paper, scissors, a servo, a Raspberry Pi and biicode!

Sing up to biicode

Install biicode in a few easy steps.

Get here all the info you need to use your Raspberry Pi with biicode.

To move the servo, just use the WiringPi library, ready to be used at biicode.

#include <stdio.h>

#include <errno.h>

#include <string.h>

#include <drogon/wiringpi/wiringpi/wiringpi.h>
#include <drogon/wiringpi/wiringpi/softservo.h>

int main ()

{

if (wiringPiSetup () == -1)
{
fprintf (stdout, "oops: %s\n", strerror (errno));
return 1 ;
}
softServoSetup (0, 1, 2, 3, 4, 5, 6, 7) ;
softServoWrite (0, 500);
int range = 500;
int vel = 10;
for (;;){
softServoWrite (0, range);

range += vel;

if (range > 1250 ||
vel = -vel;
delay (10);

}

range < —-250)

Download: main. cpp

Choose the paper doll you like most

As fans of the TV Show we chose to move Heisenberg paper doll for our little experiment. Feel

free to be creative making your own doll:

3.5. Examples

293

https://www.biicode.com/
http://www.cubeecraft.com/cubee/heisenberg

biicode docs Documentation, Release 3.0.2

294 Chapter 3. Raspberry Pi Cross Compilation

biicode docs Documentation, Release 3.0.2

Putting it all together!

Stick the head to the servo and put the servo in the body

In the following pictures you can see how we built our doll:

3.5. Examples 295

biicode docs Documentation, Release 3.0.2

296 Chapter 3. Raspberry Pi Cross Compilation

biicode docs Documentation, Release 3.0.2

3.5. Examples 297

biicode docs Documentation, Release 3.0.2

298 Chapter 3. Raspberry Pi Cross Compilation

biicode docs Documentation, Release 3.0.2

3.5. Examples

biicode docs Documentation, Release 3.0.2

300 Chapter 3. Raspberry Pi Cross Compilation

biicode docs Documentation, Release 3.0.2

3.5. Examples

biicode docs Documentation, Release 3.0.2

Connect the servo to the 5v, GPIO17 and Ov pins

If you need more information about the GPIO Reference follow this link.

Signal | GPIO17

+ Sv

- Ov

GPIO Rev.1 GPIO Pin Layout GPIO Rev.2

left

bottom top

F1-01 0z
wirower | [0] SV Power

ranozson © @ sveowr

NI © O cem

m o -@ GPIG 14 (TXD)

e (PCM_CLK
RIS @ O o
oz @ @ oo
sirewer (3) @) oo
cro1owosy (@) @ crouns
criossoy (@) @ crozs

wonsan @ @ cosco

coumd @) @ croricen

P1-25 P1-26
bottom top

Rifveny ™

302 Chapter 3. Raspberry Pi Cross Compilation

biicode docs Documentation, Release 3.0.2

HfeC poq(s FUIADA g

/ Black (-) \Eﬂmk t)
— . :
Yellow [5% White fSlg__ml}‘_a .

JR Radios ., AIITroNICs .y 4,

IB___Eir:.:n.'.fn (-] Black (-)
Crange (Signa Yellow (Signal) ,

Have fun with the moving doll!

Now that your doll is moving, share it with your friends and family, make them laugh. We would
also be happy to see other videos online. Feel free to show us your most creative doll :)

3.6 Troubleshooting

In this section you will find information and helpful resources, in case you encounter any problem
while using our service. Don’t panic, and try to find a solution for your problem bellow. If you
can’t find a solution, please contact us at our forum and describe your problem.

3.6.1 Is it possible to change the version of gcc used for cross-
compiling to the Raspberry Pi?

Sure! Check the docs about how to use a custom toolchain.

Check our forum and Stackoverflow tag for questions and answers.

3.6. Troubleshooting 303

http://forum.biicode.com
http://forum.biicode.com
http://stackoverflow.com/questions/tagged/biicode?sort=newest

biicode docs Documentation, Release 3.0.2

304 Chapter 3. Raspberry Pi Cross Compilation

CHAPTER 4

Node.js

Node.js support is experimental. We're playing and trying to fit our dependency management
model developed for C/C++ to the node.js ecosystem. If you’re curious about our technology you
can easily use it, but for production environments and real development we recommend to use the
standard approach with NPM package manager. Also, we’re open to suggestions and feedback, so
if you have some ideas, please tell us!

4.1 Getting started

This example shows how to install biicode and code a node.js redis client. You don’t need to have
installed redis, biicode will download for you,

4.1.1 1. Installing biicode and node.js

First and install biicode

Then, download and install on your system the appropriate version of Node.js .

4.1.2 2. Create your project

First, create a project:

‘~$ bii init myproject

Then we can use the convenience new command to create some folders and a “Hello World”
Node.js main file. Of course, you can do it manually too.

~$ cd myproject
~/myproject$ bii new myuser/myblock —--hello=node

305

http://nodejs.org/
http://forum.biicode.com/category/nodejs
http://nodejs.org/download

biicode docs Documentation, Release 3.0.2

You can directly type myuser, there’s no need to register an account to use biicode, only to upload
and share contents. You can use other name too. If you have already registered you might want to
replace myuser with your real biicode username.

This should be the resulting layout:

+-— myproject

| +-— bii

| +—— Dblocks

| | +-— myuser

| | | +-— myblock

| | | | +-— main.js
| +—— deps

4.1.3 3. Run your program

Lets check that everything is fine by running the hello world aplication.

~/myproject/$ cd blocks
~/myproject/blocks$ noderunner
myuser/myblock/main. js

4.1.4 4. Depending on redis

Copy the following code containing a simple redis client into the main.js file:

main.js
var redis = require ("mranney/node_redis");
client = redis.createClient ();

client.set ("str key","str val", redis.print);
client.quit (function (err, res) {

console.log ("Exiting from quit command.");

P

[~/myprojects bii find |

Run a redis server. If you need to install redis,

’~/myproject$ redis server ‘

Now, execute your script main.js.

~/myproject/$ cd blocks
~/myproject/blocks$ noderunner myuser/myblock/main.js

306 Chapter 4. Node.js

biicode docs Documentation, Release 3.0.2

Reply: OK
Exiting from quit command.

That’s it, if you see that output redis was downloaded and configured in your project! You can
check the deps folder, the redis code is there.

Didn’t work? No problem, read or contact us in

Any suggestion or feedback? It is very welcomed :)

4.2 How to

4.2.1 Run your node programs

You can run your scripts as usual. However, biicode has a script to execute node.js programs, just

execute noderunner <username/block_name>/<script_name> inside the blocks
folder:

~/PROJECT_DIRS cd blocks
~/PROJECT_DIR/blocks$ noderunner <username/block_name>/<script_name>

4.2. How to 307

	Biicode
	Installation
	Getting started
	Dependencies
	Publishing
	Custom build configuration
	Adapt your library
	Advanced Usage
	Examples
	Integrations
	Reference
	Release notes
	FAQs
	Troubleshooting

	Arduino
	Installation
	Getting started
	Arduino commands
	How to
	Examples
	Troubleshooting

	Raspberry Pi Cross Compilation
	Installation
	Getting started
	RPi commands
	How to
	Examples
	Troubleshooting

	Node.js
	Getting started
	How to

