Bigmetadata Documentation
Release 0.0.1

CARTO

Jul 02, 2018

Contents

Quickstart

1.1 Requirements v v i e
1.2 Clone & configure 0 i e e e e e e e e e e e e
L3 Start. . . . o e e e e e e e e e e
1.4 RUN . . o e e e e e e

Example ETL/metadata pipeline

2.1 L .Importlibraries e e e e
2.2 2. Downloadthedata. e e e e e e e e
2.3 3.Importdatainto PostgreSQL
2.4 4. Preprocess datain PostgreSQL L e e e
25 S.Writemetadata e e e e e e e
2.6 6. Populate outputtable e
Development

3.1 Utility Functions o o o o e e e e e e e e e e e e e e e
3.2 ADSHIAct Classes e e e e e e e e e e e e e e
3.3 Batteriesincluded L e e e
3.4 Running and Re-Running Piecesof the ETL
Convenience tasks

4.1 Makefile e e e e e
42 Tasks . .. e e e e e
4.3 Functions i e e e e e e e
Metadata model

5.1 Relational Diagram L e e
5.2 Manually generated entities oot e e e e e e e e e e e e e e e e e
5.3 Autogenerated entities oL e e e e e e e e e e e e e e e e

Validating your code

6.1 BeStPractiCes v v v v e e e e e e e e e e e e e e e e e
6.2 Making sure ETL code works right e
6.3 Making sure metadata works right oL
6.4 Regenerate and look at the Catalog e
6.5 Uploadtoatest CARTO Server ittt e e et e e e

Testing your data
7.1 ETLUnittests . . . o v o e o e

W W W W

19
19
19
19
20

21
21
22
22

23
23
24
25

29
29
32
33
36
36

37

7.2 Metadata integration testS oo Lo e e e e e e e e e e e e e e e e 37

7.3 APTUNIttestS o e e e e e e e e 37
T4 Integration tBSIS . . . v v v v e 38
7.5 Diagnosing common issues in integration tests L oL Lo e 38
8 Deploying the Observatory 39
9 Indices and tables 41

Bigmetadata Documentation, Release 0.0.1

All data for CARTO’s Data Observatory is obtained through tasks built subclassing Bigmetadata ETL classes.
The classes themselves are derived from Luigi tasks.
By performing the ETL using these classes, we gain a few guarantees:

* Reproduceability, and avoidance of duplicate work

* Generation of high-quality metadata consumable by the Observatory API

* Scalability across multiple processes

Contents:

Contents 1

https://carto.com/data-observatory/
http://luigi.readthedocs.org/

Bigmetadata Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Quickstart

Requirements

You’ll need:

e git

e docker 1.13.1+

¢ docker-compose 1.18.0+
You should also install make to get access to convenience commands, if you don’t have it already.
You’ll want at least 2GB of memory available on the host machine.

You’ll want at least 30GB of disk space available on the host machine to work comfortably with data and get everything
running. If you want to install an existing database dump, you will need more like 120GB of space. If you want to
install, say, the entire American Community Survey, you will want more like 1TB of space.

Clone & configure

Once your prerequisites are set up, clone the repo:

git clone https://github.com/cartodb/bigmetadata.git
cd bigmetadata
touch .env

The last line sets up an empty conviguration. If you want to upload to your CARTO account from the ETL, you’ll then
need to configure CARTODB_API_KEY and CARTODB_URL in the . env file.

If you’re on Linux instead of Mac, you may want to give your existing user docker (which is equivalent to root)
privileges:

’sudo gpasswd —a $(whoami) docker

Then log out, and log in.

Start

Before running tasks the first time, you’ll need to download and start the containers.

https://git-scm.com/
https://www.docker.com
https://docs.docker.com/compose/
https://www.gnu.org/software/make/

Bigmetadata Documentation, Release 0.0.1

’dockerfcompose up —-d

Once the containers are up, you need to confirm that the Postgres container has started.

’make psqgl

This will attempt to launch into an interactive session with the container Postgres. If it doesn’t work, wait a little bit
and try again. The database takes some time to get running initially.

Run

You now should be able to run a task.

’make —— run es.ine.FiveYearPopulation

Note: The first time you run it, that command will download a few Docker images. Depending on the speed of your
connection, it could take ten or fifteen minutes. Grab a coffee!

That will run FiveYearPopulation. This includes downloading all the source data files if they don’t already exist
locally, and generating all the metadata necessary to make this dataset work with observatory-extension functions.

You can take a look at the data:

make psqgl

gis=# select count (x) from observatory.obs_column;
count

gis=# select id, name, type, aggregate from observatory.obs_column where name ilike

— 'population®';

aggregate

sum
sum

es.ine.pop_0_4
es.ine.pop_5_9

Population age 0 to 4
Population age 5 to 9 Numeric
sum

es.ine.pop_15_19 Population age 15 to 19

\ \ |

+ + +

\ \ |

\ \ |
es.ine.pop_10_14 | Population age 10 to 14 | Numeric |

| | Numeric | sum
es.ine.pop_20_24 | Population age 20 to 24 | Numeric | sum
es.ine.pop_25_29 | Population age 25 to 29 | Numeric | sum
es.ine.pop_30_34 | Population age 30 to 34 | Numeric | sum
es.ine.pop_35_39 | Population age 35 to 39 | Numeric | sum
es.ine.pop_40_44 | Population age 40 to 44 | Numeric | sum
es.ine.pop_45_49 | Population age 45 to 49 | Numeric | sum
es.ine.pop_50_54 | Population age 50 to 54 | Numeric | sum
es.ine.pop_55_59 | Population age 55 to 59 | Numeric | sum
es.ine.pop_60_64 | Population age 60 to 64 | Numeric | sum
es.ine.pop_65_69 | Population age 65 to 69 | Numeric | sum
es.ine.pop_70_74 | Population age 70 to 74 | Numeric | sum
es.ine.pop_75_79 | Population age 75 to 79 | Numeric | sum
es.ine.pop_80_84 | Population age 80 to 84 | Numeric | sum
es.ine.pop_85_89 | Population age 85 to 89 | Numeric | sum

4 Chapter 1. Quickstart

https://github.com/CartoDB/observatory-extension

Bigmetadata Documentation, Release 0.0.1

es.ine.pop_90_94 | Population age 90 to 94 | Numeric | sum
es.ine.pop_95_99 | Population age 95 to 99 | Numeric | sum
es.ine.pop_100_more | Population age 100 or more | Numeric | sum
(21 rows)

gis=# select x from observatory.obs_column_to_column where source_id in (select id_,
—from observatory.obs_column where name ilike 'population$%');

source_id | target_id | reltype
,,,,,,,,,,,,,,,,,,,,,,,,, O
es.ine.pop_0_4 es.ine.tl_1 denominator
es.ine.pop_5_9 es.ine.tl_1 denominator
es.ine.pop_10_14 es.ine.tl 1 denominator
es.ine.pop_15_19 es.ine.tl_1 denominator
es.ine.pop_20_24 es.ine.tl_1 denominator
es.ine.pop_25_29 es.ine.tl_ 1 denominator
es.ine.pop_30_34 es.ine.tl_1 denominator
es.ine.pop_35_39 es.ine.tl_1 denominator
es.ine.pop_40_44 es.ine.tl_ 1 denominator
es.ine.pop_45_49 es.ine.tl_1 denominator

\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
es.ine.pop_50_54 | es.ine.tl_1 | denominator
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \

es.ine.pop_55_59 es.ine.tl_ 1 denominator
es.ine.pop_60_64 es.ine.tl_1 denominator
es.ine.pop_65_69 es.ine.tl_1 denominator
es.ine.pop_70_74 es.ine.tl_ 1 denominator
es.ine.pop_75_79 es.ine.tl_1 denominator
es.ine.pop_80_84 es.ine.tl_1 denominator
es.ine.pop_85_89 es.ine.tl_ 1 denominator
es.ine.pop_90_94 es.ine.tl_1 denominator
es.ine.pop_95_99 es.ine.tl_1 denominator
es.ine.pop_100_more es.ine.tl_ 1 denominator
(21 rows)

gis=# select id, name, type, aggregate from observatory.obs_column where id = 'es.ine.
—tl 1';

id | name | type | aggregate

————————————— s s
es.ine.tl_1 | Total population | Numeric | sum

(1 row)

1.4. Run 5

Bigmetadata Documentation, Release 0.0.1

6 Chapter 1. Quickstart

CHAPTER 2

Example ETL/metadata pipeline

This is a quick guide to building a full ETL pipeline, along with associated metadata, for the Data Observatory.

As an example, we will bring in the Quarterly Census of Employment and Wages (QCEW), a product of the Bureau
of Labor Statistics. This dataset tracks the number of employees, firms, and average wages across the full gamut of
North American Industry Classification System (NAICS) industries.

QCEW is, of course, a quarterly release, and counties are the smallest geography considered.

The process of building a Python module to bring a new dataset into the Data Observatory can be broadly divided into
Six steps:

 [. Import libraries

. Download the data

. Import data into PostgreSQL

. Preprocess data in PostgreSQL

. Write metadata

L]
QA L AW

. Populate output table

We use Luigi to isolate each step into a Task. A Task has well-defined inputs (other tasks) and outputs (files, tables
on disk, etc.) In a nutshell:

* atask cannot be run if it is complete

« if all of a Task ‘s outputs exist, then it is complete

* in order to run, all of a Task ‘s requirements must be complete
Each of the steps except (1) corresponds to a Task.

The actual flow of Task dependencies could be charted like this:

v

Download data > Import data > Preprocess data > Output table

Write metadata

http://www.bls.gov/cew/
http://www.census.gov/eos/www/naics/
https://luigi.readthedocs.io/en/stable/

Bigmetadata Documentation, Release 0.0.1

Name Description
Download data | DownloadUnzipTask, Task
Import data CSV2TempTableTask, Shp2TempTableTask, TempTableTask

Preprocess data | TempTableTask
Write metadata | ColumnsTask
Output table TableTask

Where each step should be a Task subclassed from the noted Bigmetadata utility class.
We use a set of utility classes to avoid writing repetitive code.

To get started, make sure you’re running the IPython notebook container.

’dockerfcompose up —-d ipython ‘

Then, get the port of the running IPython notebook container:

’make Ps

And navigate to it in your browser.

1. Import libraries

Import a test runner

from tests.util import runtask

We'll need these basic utility classes and methods

from tasks.util import underscore_slugify, shell, classpath

from tasks.base tasks import (TempTableTask, TableTask, ColumnsTask,
DownloadUnzipTask, CSV2TempTableTask)

from tasks.meta import current_session, DENOMINATOR

We like OrderedDict because it makes it easy to pass dicts

like {column name : column definition, ..} where order still
can matter in SQL

from collections import OrderedDict

from luigi import IntParameter, Parameter

import os

These imports are useful for checking the database

from tasks.meta import OBSTable, OBSColumn, OBSTag

We'll also want these tags for metadata

from tasks.tags import SectionTags, SubsectionTags, UnitTags

2. Download the data

The first step of most ETLs is going to be downloading the source and saving it to a temporary folder.

8 Chapter 2. Example ETL/metadata pipeline

Bigmetadata Documentation, Release 0.0.1

DownloadUnzipTask is a utility class that handles the file naming and unzipping of the temporary output for you.
You just have to write the code which will do the download to the output file name.

class DownloadQCEW (DownloadUnzipTask) :
year = IntParameter ()
URL = 'http://www.bls.gov/cew/data/files/ /csv/ _gtrly_singlefile.zip'

def download(self):
shell ('wget -0 .zip '.format (
output=self.output () .path,
url=self.URL. format (year=self.year)
))

Within the [Python environment, we can create and run the task within a sandbox.

We have to specify the year, since it’s specified as a parameter without a default.

download_task = DownloadQCEW (year=2014)
runtask (download_task)

Provided the output folder exists, the DownloadQCEW task for 2014 will not run again.

’download_task.output().path

"tmp/tmp/DownloadQCEWfZOl47cfabf27024'

’download_task.output().exists()

’True

3. Import data into PostgreSQL

A lot of processing can be done in PostgreSQL quite easily. We have utility classes to more easily bring both Shapefiles
and CSVs into PostgreSQL.

For CSV2TempTableTask, we only have to define an input_csv method that will return a path (or iterable of
paths) to the CSV(s). The header row will automatically be checked and used to construct a schema to bring the data
in.

The standard requires method of Luigi is used here, too. This requires that the DownloadQCEW task for the same
year must be run beforehand; the output from that task is now accessible as the input of this one.

class RawQCEW (CSV2TempTableTask) :
year = IntParameter ()

def requires(self):
return DownloadQCEW (year=self.year)

def input_csv(self):
return os.path.join(self.input () .path,’ .gql-g4.singlefile.csv'.format (self.
—year))

2.3. 3. Import data into PostgreSQL 9

Bigmetadata Documentation, Release 0.0.1

Run the task. If the table exists and has more than 0 rows, it will not be run again.

current_session () .rollback ()
raw_task = RawQCEW (year=2014)

runtask (raw_task)

Confirm the task has completed successfully.

raw_task.complete ()

’True

Session can be used to execute raw queries against the table.

The output of a TempTableTask can be queried directly by using its table method, which is a string with the
fully schema-qualified table name. We are guaranteed names that are unique to the module/task/parameters without

having to come up with any names manually.

’raw_task.output().table

""tmp".RanCEW_2014_cfabf27024'

session = current_session ()
resp = session.execute('select count (x) from
resp.fetchall ()

'.format (raw_task.output () .table))

[(14276508L,)]

4. Preprocess data in PostgreSQL

QCEW data has a lot of rows we don’t actually need — these can be filtered out in SQL easily.

For QCEW, the download files are annual, but contain quarterly time periods. Output tables should be limited to
a single point in time. We’re also only interested in private employment (own_code = '5'") and county level

aggregation by total (71), supersector (73), and NAICS sector (74).

class SimpleQCEW (TempTableTask) :

year = IntParameter ()
gtr = IntParameter()

def requires(self):
return RawQCEW (year=self.year)

def run(self):
session = current_session|()

session.execute ("CREATE TABLE AS "
"SELECT x FROM "
"WHERE agglvl_code IN ('74', '73'",
" AND year = ' v
" AND gtr = ' T
" AND own_code = '5" ". format (

input=self.input () .table,
output=self.output () .table,

v71|> n

10

Chapter 2. Example ETL/metadata pipeline

Bigmetadata Documentation, Release 0.0.1

year=self.year,
gtr=self.qtr,
))

Run the task and confirm it completed. We don’t have to run each step as we write it, as requirements guarantee
anything required will be run.

simple_task = SimpleQCEW (year=2014, gtr=4)
runtask (simple_task)
simple_task.complete ()

’True

’simple_task.output().table

""tmp".SimpleQCEW7472Ol4779152@4934'

resp = session.execute('select count (x) from '.format (simple_task.output () .table))
resp.fetchall ()

’[(97167L,)J

5. Write metadata

We have to create metadata for the measures we’re interested in from QCEW. Often metadata don’t take parameters,
but this one is, since we have to reorganize the table from one row per NAICS code to one column per NAICS code,
which is easiest done programmatically.

The ColumnsTask provides a structure for generating metadata. The only required method is columns. What
must be returned from that method is an OrderedDict whose values are all OBSColumn and whose keys are all
strings. The keys may be used as human-readable column names in tables based off this metadata, although that is not
always the case. If the 1d of the OBSColumn is left blank, the dict’s key will be used to generate it (qualified by the
module).

Also, conventionally there will be a requires method that brings in our standard tags: SectionTags,
SubsectionTags, and UnitTags. This is an example of defining several tasks as prerequisites: the outputs
of those tasks will be accessible via self.input () [<key>] in other methods.

from tasks.us.naics import (NAICS_CODES, is_supersector, is_sector,
get_parent_code)

class QCEWColumns (ColumnsTask) :
naics_code = Parameter ()

def requires(self):

requirements = {
'sections': SectionTags(),
'subsections': SubsectionTags(),
'units': UnitTags(),
}
parent_code = get_parent_code (self.naics_code)

if parent_code:

2.5. 5. Write metadata 11

Bigmetadata Documentation, Release 0.0.1

requirements|['parent'] = QCEWColumns (naics_code=parent_code)
return requirements

def columns (self):
cols = OrderedDict ()
code, name, description = self.naics_code, NAICS_CODES[self.naics_code], "'

This gives us easier access to the tags we defined as dependencies
input_ = self.input ()
units = input_['units']
sections = input_['sections']
subsections = input_['subsections']
parent = input_.get ('parent')
cols['avg_wkly_ wage'] = OBSColumn (
Make sure the column ID is unique within this module
If left blank, will be taken from this column's key in the output,_
—OrderedDict
id=underscore_slugify (u'avg wkly wage_{}'.format (code)),
The PostgreSQL type of this column. Generally Numeric for numbers and_,
—Text
for categories.
type='Numeric',

Human-readable name. Will be used as header in the catalog
name=u'Average weekly wage for {} establishments'.format (name),
Human-readable description. Will be used as content in the catalog.

description=u'Average weekly wage for a given quarter in the {name}_

—industry (NAICS {code})."
u' {name} is {description}.'.format (name=name, code=code,

—description=description),

Ranking of importance, sometimes used to favor certain measures in auto-—
—selection

Weight of 0 will hide this column from the user. We generally use_,
—between 0 and 10

weight=5,

How this measure was derived, for example "sum", "median", "average",

—etc.

In cases of "sum", this means functions downstream can construct,_,
—estimates

for arbitrary geographies

aggregate='average',

Tags are our way of noting aspects of this measure like its unit, the,,
—country

it's relevant to, and which section(s) of the catalog it should appear,
—1n.

tags=[units['money'], sections['united_states'], subsections['income']l],
)
cols['gtrly_estabs'] = OBSColumn (
id=underscore_slugify(u'qgtrly estabs_{/)'.format (code)),
type='Numeric',
name=u'kEstablishments in {/'.format (name),
description=u'Count of establishments in a given quarter in the {name}_
—industry (NAICS {code}).'
u' {name} is {description}.'.format (name=name, code=code,
—~description=description),
weight=5,
aggregate='sum',
tags=[units['businesses'], sections['united states'], subsections]|

] 117
— commerce __e€CoTon 17

12 Chapter 2. Example ETL/metadata pipeline

Bigmetadata Documentation, Release 0.0.1

targets={parent['gtrly_estabs']: DENOMINATOR} if parent else {},
)
cols['month3_emplvl'] = OBSColumn (
id=underscore_slugify (u'month3_emplvl_ {}'.format (code)),
type='Numeric',
name=u'Employees in {} establishments'.format (name),
description=u'Number of employees in the third month of a given quarter
—with the {name} '
u'industry (NAICS {code}). {name} 1is {description}.'.format (
name=name, code=code, description=description),
weight=5,
aggregate='sum',
tags=[units|['people'], sections['united states'], subsections['employment

cols['lg avg wkly_wage'] = OBSColumn (
id=underscore_slugify(u'lg avg wkly_wage_{}'.format (code)),
type='Numeric',
name=u'Average weekly wage location quotient for {} establishments'.
—format (name) ,
description=u'Location quotient of the average weekly wage for a given,,
—quarter relative to '
u'the U.S. (Rounded to the hundredths place) within the {name}
— industry (NAICS {code})."
u' {name} is {description}.'.format (name=name, code=code,
—description=description),
weight=3,
aggregate=None,
tags=[units['ratio'], sections['united_states'], subsections['income']],
)
cols['lg gtrly_estabs'] = OBSColumn (

id=underscore_slugify(u'lg gtrly_estabs_{}'.format (code)),
type='Numeric',
name=u'Location quotient of establishments in {}'.format (name),

description=u'Location quotient of the quarterly establishment count
—relative to !
u'the U.S. (Rounded to the hundredths place) within the {name}
— industry (NAICS {code})."
u' {name} is {description}.'.format (name=name, code=code,
—description=description),
weight=3,
aggregate=None,
tags=[units['ratio'], sections['united states'], subsections|['commerce_
—economy']1],

)

cols['"lg month3_emplvl'] = OBSColumn (
id=underscore_slugify(u'lg month3_emplvl_ {}'.format (code)),
type='Numeric',
name=u'Employment level location quotient in {} establishments'.

—format (name) ,
description=u'Location quotient of the employment level for the third_
—month of a given quarter '
u'relative to the U.S. (Rounded to the hundredths place)
—within the {name} '
u'industry (NAICS f{code}). {name} is {description}.'.format (
name=name, code=code, description=description),
weight=3,
aggregate=None,

2.5. 5. Write metadata 13

Bigmetadata Documentation, Release 0.0.1

tags=[units['ratio'], sections['united_ states'], subsections|['employment

return cols

We should never run metadata tasks on their own — they should be defined as requirements by TableTask, below —
but it is possible to do so, as an example.

NAICS code ‘1025’ is the supersector for eduction & health.

education_health_columns = QCEWColumns (naics_code='1025")
runtask (education_health_columns)
education_health_columns.complete ()

’True

Output from a ColumnsTask is an OrderedDict with the columns wrapped in ColumnTargets, which allow
us to pass them around without immediately committing them to the database.

’education_health_columns.output()

OrderedDict ([('avg _wkly_wage', <tasks.targets.ColumnTarget at Ox7fl2a40eead0>),
('"gtrly_estabs', <tasks.targets.ColumnTarget at 0x7f12a5831c50>),
("month3_emplvl', <tasks.targets.ColumnTarget at 0x7f£12a5831090>),
("lg avg wkly wage', <tasks.targets.ColumnTarget at 0x7£12a4338b10>),
("lg gtrly_estabs', <tasks.targets.ColumnTarget at 0x7f12a4dl1fb50>),
('lg_month3_emplvl',
<tasks.targets.ColumnTarget at 0x7£f12a4525390>)1])

‘We can check the OBSColumn table for evidence that our metadata has been committed to disk, since we ran the task.

[(col.id, col.name) for col in session.query (OBSColumn) [:5]]

[(u'tmp.avg_wkly_wage_10"'",
u'Average weekly wage for Total, all industries establishments'),
(u'tmp.gtrly_estabs_10', u'Establishments in Total, all industries'),
(u'tmp.month3_emplvl_10"',
u'Employees in Total, all industries establishments'),
(u'tmp.lqg _avg_wkly_wage_10",
u'Average weekly wage location quotient for Total, all industries establishments'),
(u'tmp.lg gtrly_estabs_10",
u'Location quotient of establishments in Total, all industries')]

6. Populate output table

Now that we have our data in a format similar to what we’ll need, and our metadata lined up, we can tie it together
with a TableTask. Under the hood, TableTask handles the relational lifting between columns and actual data,
and assigns a hash number to the dataset.

Several methods must be overriden for TableTask to work:

* version (): a version control number, which is useful for forcing a re-run/overwrite without having to track
down and delete output artifacts.

14 Chapter 2. Example ETL/metadata pipeline

Bigmetadata Documentation, Release 0.0.1

* table_timespan () : the timespan (for example, 2014°, or ‘2012Q4’) that identifies the date range or point-
in-time for this table.

e columns (): an OrderedDict of (colname, ColumnTarget) pairs. This should be constructed by pulling the
desired columns from required ColumnsTask classes.

* populate (): a method that should populate (most often via) INSERT the output table.

Since we have a column ('area_fips') that is a shared reference to
geometries ('geom ref') we have to import that column.
from tasks.us.census.tiger import GeoidColumns

class QCEW (TableTask) :

year = IntParameter ()
gtr = IntParameter()

def version(self):
return 1

def requires(self):
requirements = {
'data': SimpleQCEW (year=self.year, gtr=self.gtr),
'geoid_cols': GeoidColumns (),
'naics': OrderedDict ()

for naics_code, naics_name in NAICS_CODES.iteritems() :
Only include the more general NAICS codes
if is_supersector (naics_code) or is_sector (naics_code) or naics_code ==
—'10":
requirements|['naics'] [naics_code] = QCEWColumns (naics_code=naics_code)
return requirements

def table_timespan (self):
return get_timespan (' {vearQ{gtr}'.format (year=self.year, gtr=self.qgtr))

def columns (self):
Here we assemble an OrderedDict using our requirements to specify the
columns that go into this table.
The column name

input_ = self.input ()
cols = OrderedDict ([
('area_fips', input_['geoid_cols']['county_geoid'])
1)
for naics_code, naics_cols in input_['naics'].iteritems() :

for key, coltarget in naics_cols.iteritems():
naics_name = NAICS_CODES[naics_code]
colname = underscore_slugify(u'{}_{)_{}'.format (
key, naics_code, naics_name))
cols[colname] = coltarget
return cols

def populate(self):
This select statement transforms the input table, taking advantage of our
new column names.
The session is automatically committed if there are no errors.

session = current_session|()
columns = self.columns ()
colnames = columns.keys ()

2.6. 6. Populate output table 15

Bigmetadata Documentation, Release 0.0.1

select_colnames = []

for naics_code, naics_columns in self.input () ['naics'].iteritems{() :
for colname, coltarget in naics_columns.iteritems() :
select_colnames.append('' 'MAX (CASE
WHEN industry_code = ' ' THEN ELSE NULL
END) : :Numeric'''.format (naics_code=naics_code,

colname=colname

))

insert = '''INSERT INTO ()

SELECT area_fips,

FROM

GROUP BY area_fips '''.format (
output=self.output () .table,
input=self.input () ['data'].table,
colnames=', '.Jjoin(colnames),
select_colnames="', '.join(select_colnames),

)

session.execute (insert)

On a fresh database, this should return False Will not run if it has been run before for this year & quarter combination.

table_task = QCEW(year=2014, gtr=4)
runtask (table_task)
table_task.complete ()

True

The table should exist in metadata, as well as in data, with all relations well-defined.

Unlike the TempTableTasks above, the output of a TableTask is a postgrse table in the observatory schema,
with a unique hash name.

table = table_task.output ()
table.table

"observatory.ob573dc49b70f7led9bbf5b4a48773c860519af7Oele'

It’s possible for us to peek at the output data.

’session.execute('SELECT * FROM LIMIT 1'.format (table.table)) .fetchall()

[(u'01001', None, None, None, None, None, None, Decimal ('395'), Decimal('5'), Decimal (
—"'144"), Decimal('0.65"), Decimal('0.52'"), Decimal('0.68"), Decimal('609'"), Decimal (
—'80"), Decimal('1024'), Decimal('0.96"), Decimal('0.66"), Decimal('0.74"), Decimal (
'364"'"), Decimal('68'), Decimal('368'"), Decimal('0.79'), Decimal('0.95"), Decimal('1l.
—~13"), Decimal('917'"), Decimal('3'), Decimal('66'), Decimal('0.68'"), Decimal('0.94
"), Decimal('1.00'"), Decimal('2317"'"), Decimal('5'), Decimal('103'"), Decimal('1.89

'y, Decimal('3.26"), Decimal('2.45'), Decimal('914'"), Decimal('77'"'), Decimal ('426
'), Decimal('1.17"), Decimal('1.16"), Decimal('0.90'"), Decimal ('1231'), Decimal('33
—"'), Decimal (' 157), Decimal('1.26"), Decimal('0.60"), Decimal('0.35"), Decimal ('925
"), Decimal (' 'y, Decimal('198'"), Decimal('1.14'), Decimal('1.66"), Decimal('1l.30
—"'), Decimal (' 914), Decimal('77'), Decimal('426'"), Decimal('1.17'), Decimal('1l.16
"), Decimal('0.90"), Decimal('1225"), Decimal('30'"), Decimal('1347'"), Decimal ('1.45
'), Decimal('1.01'"), Decimal('1.44"'), Decimal('584'), Decimal('85'), Decimal('1168
"), Decimal('0.93"), Decimal('0.65"'"), Decimal('0.73"), Decimal ('904'"), Decimal('91
"), Decimal ('3

80"), Decimal('0.98"), Decimal('0.61"), Decimal('0.25'), None, None,
—None, None, None, None, Decimal ('433'), Decimal('149'"), Decimal('1935'"), Decimal ('l
13"y, Decimal ("1 63"y Decimal ('l 57") Decimal ('1225") Decimal('30'") Decimal(

—'1347"), Decimal('1.45"), Decimal('1.01'), Decimal('1l. 44 , Decimal (274), Decimal (
567), Decimal(14327), Decimal (' 1.10"), Decima L T3 ecim DeCImaJ.I
"301'), Decimal('8'), Decimal('66'), Decimal (Rtergé E%ﬁ"? Eegfg/mg ta pipeline
')y, Decimal ('620'"), Decimal('15'), Decimal('127'), Decimal ('0.97"), Decimal('0.73

'), Decimal('0.36'), None, None, None, None, None, None, De01mal(929"), Decimal ('1l7
'y, Decimal('132'"), Decimal('2.13'"), Decimal('1.91"), Decimal('1.53'), Decimal('677

1

T ol

Bigmetadata Documentation, Release 0.0.1

2.6. 6. Populate output table

17

Bigmetadata Documentation, Release 0.0.1

18 Chapter 2. Example ETL/metadata pipeline

CHAPTER 3

Development

Writing ETL tasks is pretty repetitive. In tasks.util are a number of functions and classes that are meant to make
life easier through reusability.

» Utility Functions

» Abstract classes

* Batteries included

* Running and Re-Running Pieces of the ETL
— Using ——force during development

— Deleting byproducts to force a re-run of parts of ETL

— Update the ETL & metadata through version

Utility Functions

These functions are very frequently used within the methods of a new ETL task.

tasks.meta.current_session()
Returns the session relevant to the currently operating Task, if any. Outside the context of a Task, this can

still be used for manual session management.

Abstract classes

These are the building blocks of the ETL, and should almost always be subclassed from when writing a new process.

Batteries included

Data comes in many flavors, but sometimes it comes in the same flavor over and over again. These tasks are meant to
take care of the most repetitive aspects.

19

Bigmetadata Documentation, Release 0.0.1

Running and Re-Running Pieces of the ETL

When doing local development, it’s advisable to run small pieces of the ETL locally to make sure everything works
correctly. You can use the make —- run helper, documented in Run any task. There are several methods for
re-running pieces of the ETL depending on the task and are described below:

Using ——force during development

When developing with abstract-classes that offer a force parameter, you can use it to re-run a task that has
already been run, ignoring and overwriting all output it has already created. For example, if you have a
tasks.base_tasks. TempTableTask that you’ve modified in the course of development and need to re-run:

from tasks.base_tasks import TempTableTask
from tasks.meta import current_session

class MyTempTable (TempTableTask) :

def run(self):

session = current_session|()
session.execute ('’
CREATE TABLE AS SELECT 'foo' AS mycol;
T)
Running make —-- run path.to.module MyTempTable will only work once, even after making changes to

the run method.

However, running make -— run path.to.module MyTempTable —-force will force the task to be run
again, dropping and re-creating the output table.

Deleting byproducts to force a re-run of parts of ETL

In some cases, you may have a luigi.Task you want to re-run, but does not have a force parameter. In such cases,
you should look at its output method and delete whatever files or database tables it created.

Utility classes will put their file byproducts in the tmp folder, inside a folder named after the module name. They will
put database byproducts into a schema that is named after the module name, too.

Update the ETL & metadata through version

When you make changes and improvements, you can increment the ver s i on method of tasks.base_tasks.TableTask,
tasks.base_tasks.ColumnsTask and tasks.base_tasks.TagsTask to force the task to run again.

20 Chapter 3. Development

CHAPTER 4

Convenience tasks

There are a number of tasks and functions useful for basic, repetitive operations like interacting with or uploading
tables to CARTO.

* Makefile
— Run any task
— Other tasks

e Tasks

e Functions

Makefile

The Makefile makes it easier to run tasks.

Run any task

Any task can be run with:

’make —-— run path.to.module ClassName --param-name-1 valuel --param-name-2 value2 ‘

For example:

’make —— run us.bls QCEW --year 2014 —-gtr 4 ‘

Other tasks

* make dump: Runs DumpS3

e make restore <path/to/dump>: Restore database from a dump.
* make sync-meta: Runs SyncMetadata

* make sync-data: Runs SyncAllData

* make sh: Drop into an interactive shell in the Docker container

21

Bigmetadata Documentation, Release 0.0.1

make
make
make

make

Tasks

psal: Drop into an interactive psql session in the database
kil1l: Kill all Docker processes
docs: Regenerate all documentation

catalog: Regenerate the HTML catalog

Functions

22

Chapter 4. Convenience tasks

CHAPTER 5

Metadata model

Our metadata is contained in six highly related tables, which are defined using SQLAlchemy classes.

* Relational Diagram

* Manually generated entities

* Autogenerated entities

Relational Diagram

obs_column > obs_column_table il — obs_table

— obs_column_to_column

b obs_column_tag + obs_tag
Name Description
obs_column OBSColumn
obs_column_table OBSColumnTable
obs_column_to_column | OBSColumnToColumn
obs_column_tag OBSColumnTag
obs_table OBSTable
obs_tag OBSTag

23

http://docs.sqlalchemy.org/en/latest/

Bigmetadata Documentation, Release 0.0.1

Manually generated entities

class tasks.meta.OBSColumn (**kwargs)

Describes the characteristics of data in a column, which can exist in multiple physical tables.

These should only be instantiated to generate the return value of ColumnsTask.columns (). Any other
usage could have unexpected consequences.

id
The unique identifier for this column. Should be qualified by the module name of the class that created it.
Is automatically generated by ColumnsTask if left unspecified, and automatically qualified by module
name either way.

type
The type of this column — for example, Text, Numeric, Geometry, etc. This is used to generate a
schema for any table using this column.

name
The human-readable name of this column. This is used in the catalog and API.

description
The human-readable description of this column. THis is used in the catalog.

weight
A numeric weight for this column. Higher weights are favored in certain rankings done by the API.
Defaults to zero, which hides the column from catalog.

aggregate
How this column can be aggregated. For example, populations can be summed, so a population column
should be sum. Should be left blank if it is not to aggregate.

tables
Iterable of all linked :class:‘~.meta.OBSColumnTable ‘s, which could be traversed to find all tables with
this column.

tags
Iterable of all linked :class:‘~.meta.OBSColumnTag‘s, which could be traversed to find all tags applying
to this column.

targets
Dict of all related columns. Format is <OBSColumn>: <reltype>.

version
A version control number, used to determine whether the column and its metadata should be updated.

extra

Arbitrary additional information about this column stored as JSON.

catalog_lonlat ()
Return tuple (longitude, latitude) for the catalog for this measurement.

denominators ()
Return the OBSColumn denominator of this column.

geom_timespans ()
Return a dict of geom columns and timespans that this measure is available for.

has_catalog_image ()
Returns True if this column has a pre-generated image for the catalog.

has_children ()
Returns True if this column has children, False otherwise.

24

Chapter 5. Metadata model

Bigmetadata Documentation, Release 0.0.1

has_denominators ()
Returns True if this column has no denominator, False otherwise.

is_cartographic ()
Returns True if this column is a geometry that can be used for cartography.

is_geomref ()
Returns True if the column is a geomref, else Null

is_interpolation ()
Returns True if this column is a geometry that can be used for interpolation.

license_tags ()
Return license tags.

source_tags ()
Return source tags.

summable ()
Returns True if we can sum this column and calculate for arbitrary areas.

unit ()
Return the OBSTag unit of this column.

class tasks.meta.OBSTag (**kwargs)
Tags permit arbitrary groupings of columns.

They should only be created as part of a tags () implementation.

id
The unique identifier for this table. Is always qualified by the module name of the TagsTask that created
it, and should never be specified manually.
name
The name of this tag. This is exposed in the API and user interfaces.
type
The type of this tag. This is used to provide more information about what the tag means. Examples are
section, subsection, license, unit, although any arbitrary type can be defined.
description
Description of this tag. This may be exposed in the API and catalog.
columns
An iterable of all the :class:‘~.meta.OBSColumn ‘s tagged with this tag.
version

A version control number, used to determine whether the tag and its metadata should be updated.

Autogenerated entities

class tasks.meta.0OBSColumnToColumn (**kwargs)
Relates one column to another. For example, a Text column may contain identifiers that are unique to geome-
tries in another Geomet ry column. In that case, an OBSColumnToColumn object of reltype GEOM_REF
should indicate the relationship, and make relational joins possible between tables that have both columns with
those that only have one.

These should never be created manually. Their creation should be handled automatically from specifying
OBSColumn.targets.

These are unique on (source_id, target_id).

5.3. Autogenerated entities 25

Bigmetadata Documentation, Release 0.0.1

source_id
ID of the linked source OBSColumn.

target_id
ID of the linked target OBSColumn.

reltype
required text specifying the relation type. Examples are GEOM_REF and ~.meta. DENOMINATOR.

source
The linked source OBSColumn.

target
The linked target OBSColumn.

class tasks.meta.0OBSColumnTable (**kwargs)
Glues together OBSColumn and OBSTable. If this object exists, the related column should exist in the related
table, and can be selected with colname.

Unique along both (column_id, table_id) and (table_id, colname).

These should never be created manually. Their creation and removal is handled automatically as part of
targets.TableTarget.update_or_create_metadatal().

column_id
ID of the linked OBSColumn.

table_id
ID of the linked OBSTable.

colname
Column name for selecting this column in a table.

column
The linked OBSColumn.

table
The linked OBSTable.

extra
Extra JSON information about the data. This could include statistics like max, min, average, etc.

class tasks.meta.OBSTable (**kwargs)
Describes a physical table in our database.

These should never be instantiated manually. They are automatically created by output (). The unique key is
:attr:~.meta.OBSTable.id:.

id
The unique identifier for this table. Is always qualified by the module name of the class that created it.
columns
An iterable of all the OBSColumnTable instances contained in this table.
tablename
The automatically generated name of this table, which can be used directly in select statements. Of the
format obs_<hash>.
timespan
An OBSTimespan instance containing information about the timespan this table applies to. Obtained from
timespan().
the_geom

A simple geometry approximating the boundaries of the data in this table.

26 Chapter 5. Metadata model

Bigmetadata Documentation, Release 0.0.1

description
A description of the table. Not used.

version
A version control number, used to determine whether the table and its metadata should be updated.

geom_column ()
Return the column geometry column for this table, if it has one.

Returns None if there is none.

geomref column ()
Return the geomref column for this table, if it has one.

Returns None if there is none.

class tasks.meta.OBSColumnTag (**kwargs)
Glues together OBSColumn and OBSTag. If this object exists, the related column should be tagged with the
related tag.

Unique along (column_id, tag_id).

These should never be created manually. Their creation and removal is handled automatically as part of
targets.TableTarget.update_or_create_metadatal().

column_id
ID of the linked OBSColumn.

tag_id
ID of the linked OBSTag.

column
The linked OBSColumn.

tag
The linked OBSTag.

5.3. Autogenerated entities 27

Bigmetadata Documentation, Release 0.0.1

28

Chapter 5. Metadata model

CHAPTER 6

Validating your code

* Best practices

Proper use of utility classes

Clearly documented command that runs a WrapperTask to create everything
— Use parameters only when necessary

Use default parameter values sparingly

Keep fewer than 1000 columns per table

Each geometry column should have a unique geom_ref column with it

Specify section, subsection, source tags and license tags for all columns
— Specify unit tags for all measure columns
* Making sure ETL code works right
— Results and byproducts are being generated
— Delete old data to start from scratch to make sure everything works
* Making sure metadata works right
— Regenerate the obs_meta table

* Regenerate and look at the Catalog

* Upload to a test CARTO server

Best practices

Writing ETL code is meant to be open-ended, but there are some standards that should be followed to help keep the
code clean and clear.

Proper use of utility classes

There are extensive abstract-classes available for development. These can do things like download and un-
zip a file to disk (tasks.base_tasks.DownloadUnzipTask) and import a CSV on disk to a temporary table

29

Bigmetadata Documentation, Release 0.0.1

(tasks.base_tasks.CSV2TempTableTask). These classes should be used when possible to minimize specialized ETL
code. In particular, these tasks save output to well-known locations so as to avoid redundantly running the same tasks.

Clearly documented command that runs a WrapperTask to create everything

Oftentimes an ETL will have to loop over a parameter to get all the data — for example, if a dataset is available online
year-by-year, it may make sense to write a single task that downloads one year’s file, with an parameter specifying
which year.

luigi.WrapperTask is a way to make sure such tasks are executed for every relevant parameter programmatically. A
powerful example of this can be found with tasks.us.AllZillow, which executes a tasks.us.zillow.Zillow task once for
each geography level, year, and month in that year.

A generic example of using a luigi.WrapperTask:

from luigi import WrapperTask, Task, Parameter

class MyTask (Task) :

rrr

This task needs to be run for each possible “geog’

rrr

geog = Parameter ()

def run(self):
pass

def output (self):
pass

class MyWrapperTask (WrapperTask) :

rrr

Execute ‘MyTask' once for each possible ‘geog' .
rrs

def requires(self):
for geog in ('state', 'county', 'city'):
yield MyTask (geog=geoq)

Use parameters only when necessary
Tasks are unique to their parameters. In other words, if a task is run once with a certain set of parameters, it will not
be run again unless the output it generated is deleted.

Therefore it’s very important to not have parameters available in a Task’s definition that do not affect its result. If you
have such extraneous parameters, it would be possible to run a task redundantly.

An example of this:

from tasks.base_ tasks import DownloadUnzipTask
class MyBadTask (DownloadUnzipTask) :

goodparam = Parameter ()
badparam = Parameter ()

30 Chapter 6. Validating your code

Bigmetadata Documentation, Release 0.0.1

def url (self):
return 'http://somesite/with/data/{}'.format (self.goodparam)

tasks.base_tasks.DownloadUnzipTask will generate the location for a unique output file automatically based off of
all its params, but badparam above doesn’t actually affect the file being downloaded. That means if we change
badparam we’ll download the same file twice.

Use default parameter values sparingly

The above bad practice is easily paired with setting default values for parameters. For example:

from tasks.base_ tasks import DownloadUnzipTask

class MyBadTask (DownloadUnzipTask) :

rrr

My URL doesn't depend on “badparam’!

rrr

goodparam = Parameter ()
badparam = Parameter (default='foo')

def url (self):
return 'http://somesite/with/data/{}'.format (self.goodparam)

Now it’s easy to simply forget that badparam even exists! But it still affects the output filename, making it noisy and
less clear which parameters actually matter.

Keep fewer than 1000 columns per table
Postgres has a hard limit on the number of columns. If you create a tasks.base_tasks.TableTask whose columns
method returns a OrderedDict with much more than 1000 columns, the task will fail.

In such cases, you’ll want to split your tasks.base_tasks.TableTask into several pieces, likely pulling columns from the
same tasks.base_tasks.ColumnsTask. There is no limit on the number of columns in a tasks.base_tasks.ColumnsTask.

Each geometry column should have a unique geom_ref column with it
When setting up a tasks.base_tasks.ColumnsTask for Geometries, make sure that you store a meaningful and unique
geom_ref from the same table.

* It is meaningful if it can be found as a way to refer to that geometry in data sources elsewhere — for example,
FIPS codes are meaningful references to county geometries in the USA. However, the automatically generated
serial ogc_fid column from a Shapefile is not meaningful.

e It is unique if that geom_ref column has an ID that is not duplicated by any other columns.

For example:

from tasks.base_ tasks import ColumnsTask
from tasks.meta import OBSColumn, GEOM_REF
from luigi import Parameter

class MyGeoColumnsTask (ColumnsTask) :

6.1. Best practices 31

https://en.wikipedia.org/wiki/FIPS_county_code

Bigmetadata Documentation, Release 0.0.1

resolution = Parameter ()

def columns (self):

geom = OBSColumn (
id=self.resolution,
type='Geometry"')

geomref = OBSColumn (
id=self.resolution + '_id', # Make sure we have "+ '_id'"!
type="Text"',
targets={geom: GEOM_REF})

return OrderedDict ([
('"geom', geom),
("geomref', geomref)

1)

No matter what resolution this Task is passed, it will generate a unique ID for both the geom and the geomref.
Ifthe + '+id' concatenation were missing, it would mean that the metadata model would not properly link geomrefs
to the geometries they refer to.

Specify section, subsection, source tags and license tags for all columns

When defining your tasks.meta.OBSColumn objects in a tasks.base_tasks.ColumnsTask class, make sure each column
is assigned a tasks.meta.OBSTag of type, section, subsection, source, and license. Use shared tags
from tasks.tags when possible, in particular for sect ion and subsection.

Specify unit tags for all measure columns

When defining a tasks.meta.OBSColumn that will hold a measurement, make sure to define a unit using a tag. This
could be something like people, money, etc. There are standard units accessible in tasks.tags.

Making sure ETL code works right

After having written an ETL, you’ll want to double check all of the following to make sure the code is usable.

Results and byproducts are being generated

When you use Run any task to run individual components:
e Were any exceptions thrown? On what task were they thrown? With which arguments?
* Are appropriate files being generated in the tmp folder?
* Are tables being created in the relevant tmp schema?

* Are tables and columns being added to the observatory.obs_table and observatory.obs_column
metadata tables?

Provided tasks.base_tasks.TableTask and tasks.base_tasks.ColumnTask classes were executed, it’s wise to jump into
the database and check to make sure entries were made in those tables.

32 Chapter 6. Validating your code

Bigmetadata Documentation, Release 0.0.1

make psqgl

SELECT COUNT (*) FROM observatory.obs_column WHERE id LIKE 'path.to.module.%';
SELECT COUNT (x) FROM observatory.obs_table WHERE id LIKE 'path.to.module.%';
SELECT COUNT (*) FROM observatory.obs_column_table

WHERE column_id LIKE 'path.to.module%'
AND table_id LIKE 'path.to.module%';

Delete old data to start from scratch to make sure everything works

When using the proper utility classes, your data on disk, for example from downloads that are part of the ETL, will be
saved to a file or folder tmp/module.name/ClassName_Args.

In order to make sure the ETL is reproduceable, it’s wise to delete this folder or move it to another location after
development, and re-run to make sure that the whole process can still run from start to finish.

Making sure metadata works right

Checking the metadata works right is one of the more challenging components of QA’ing new ETL code.

Regenerate the obs_meta table

The obs_meta table is a denormalized view of the underlying metadata objects that you’ve created when running
tasks.

You can force the regeneration of this table using tasks.carto.OBSMetaToLocal

’make —— run carto OBSMetaToLocal —-force

Once the table is generated, you can take a look at it in SQL:

’make psql

If the metadata is working correctly, you should have more entries in obs_meta than before. If you were starting
from nothing, there should be more than O rows in the table.

’SELECT COUNT (*) FROM observatory.obs_meta;

If you already had data, you can filter obs_meta to look for new rows with a schema corresponding to what you
added. For example, if you added metadata columns and tables in tasks/mx/inegi, you should look for columns
with that schema:

SELECT COUNT () FROM observatory.obs_meta WHERE numer_id LIKE 'mx.inegi.%';

If nothing is appearing in obs_meta, chances are you are missing some metadata:

Have you defined and executed a proper tasks.base_tasks.TableTask?

You can check to see if these links exist by checking obs_column_table:

6.3. Making sure metadata works right 33

Bigmetadata Documentation, Release 0.0.1

make psqgl

SELECT COUNT (*) FROM observatory.obs_column_table
WHERE column_id LIKE 'my.schema.%'
AND table_id LIKE 'my.schema.%';

If they don’t exist, make sure that your Python code roughly corresponds to:

from tasks.base_ tasks import ColumnsTask, TableTask
class MyColumnsTask (ColumnsTask) :

def columns (self):
Return OrderdDict of columns here

class MyTableTask (TableTask) :

def table_timespan (self):
Return timespan here

def requires(self):
return {
'columns': MyColumnsTask ()

def columns (self):
return self.input () ['columns']

def populate (self):
Populate the output table here

Unless the TableTask returns some of the columns from ColumnsTask in its own columns method, the links will not
be initialized properly.

Finally, double check that you actually ran the TableTask using make —- run my.schema MyTableTask.
Are you defining geom_ref relationships properly?

In cases where a TableTask does not have its own geometries, at least one of the columns returned from its columns
method needs to be in a geom_ref relationship. Here’s an example:

from collections import OrderedDict

from tasks.base tasks import ColumnsTask, TableTask
from tasks.meta import OBSColumn, GEOM_REF

class MyGeoColumnsTask (ColumnsTask) :
def columns (self):

geom = OBSColumn (
type='Geometry"')

geomref = OBSColumn (
type="'Text"',
targets={geom: GEOM_REF})

return OrderedDict ([

34 Chapter 6. Validating your code

Bigmetadata Documentation, Release 0.0.1

('"geom', geom),
('"geomref', geomref)

1)
class MyColumnsTask (ColumnsTask) :

def columns (self):
Return OrderdDict of columns here

class MyTableTask (TableTask) :

def table_timespan(self):
Return timespan here

def requires(self):
return {
'geom_columns': MyGeoColumnsTask (),
'data_columns': MyColumnsTask ()

def columns (self):
cols = OrderedDict ()
cols['geomref'] = self.input () ['geom_columns']['geomref']
cols.update(self.input () ['data_columns'])
return cols

def populate(self):
Populate the output table here

The above code would ensure that all columns existing inside MyTableTask would be appropriately linked to any
geometries that connect to geomref.

Do you have both the data and geometries in your table?

You can check by running:

SELECT % FROM observatory.obs_table
WHERE id LIKE 'my.schema.%';

If there is only one table and it has a null “the_geom” boundary, then you are missing a geometry table. For example:

SELECT » from observatory.obs_table
WHERE id LIKE 'es.ine.five_year_population%';

id | tablename
— | timespan | the_geom | description | version
,, o
—t—————— o o o
es.ine.five_year_population_99914b932b | obs_
—24pb656e9e23dldac2c8ab5786a388f9bf0fd4eb5ae | 2015
—r 5
(1 row)

Notice that the_geom is empty. You will need to write a second TableTask with the following structure:

6.3. Making sure metadata works right 35

Bigmetadata Documentation, Release 0.0.1

class Geometry (TableTask) :

def table_timespan(self):
Return timespan here

def requires(self):
return ({
'meta': MyGeoColumnsTask (),
'data': RawGeometry ()

def columnns (self):
return self.input () ['meta']

def populate(self):
Populate the output table here

Regenerate and look at the Catalog

Once tasks.carto.OBSMetaToLocal has been run, you can generate the catalog.

’make catalog

You can view the generated Catalog in a browser window by going to the IP and port address for the nginx process.
The current processes are shown with docker-compose ps ormake ps.

1. Are there any nasty typos or missing data?

* Variable names should be unique, human-readable, and concise. If the variable needs more in-depth defi-
nition, this should go in the “description” of the variable.

2. Does the nesting look right? Are there columns not nested?

* Variables that are denominators should also have subcolumns of direct nested variables.

» There may be repetitive nesting if a variable is nested under two denominators, which is fine.
3. Are sources and licenses populated for all measures?

* A source and license tasks.util. OBSTag must be written for new sources and licenses
4. Is a table with a boundary/timespan matrix appearing beneath each measure?

* If not, hardcode the sample latitude and longitude in tasks.meta.catalog_lonlat.

Upload to a test CARTO server

If you set a CARTODB_API_KEY and CARTODB_URL in your . env file, in the format:

CARTODB_API_KEY=your_api_key
CARTODB_URL=https://username.carto.com

You will now be able to upload your data and metadata to CARTO for previewing.

make sync

36 Chapter 6. Validating your code

CHAPTER 7

Testing your data

* ETL unit tests

* Metadata integration tests
* API unit tests

* [Integration tests

* Diagnosing common issues in integration tests

— Cannot find point to test

ETL unit tests

Unit tests ensure that there are no errors in the underlying utility classes that could cause errors in code you build on
top of them.

Tests are run with:

’make etl-unittest

Metadata integration tests

Integration tests make sure that the metadata being generated as part of your ETL will actually be queryable by the
API. For example, if you have an ETL that ingests data but does not ..

API unit tests

APIT unit tests make sure the observatory-extension, which reads data and metadata from the ETL, are working right.

In order for this to function, you’ll need to clone a copy of observatory-extension into the root of the
bigmetadata repo.

git clone git@github.com:cartodb/observatory—-extension
make extension-unittest

37

Bigmetadata Documentation, Release 0.0.1

Integration tests

Integration tests ensure that the data from the ETL that is set for deployment is is able to return a measure for every
piece of metadata.

As above, you’ll need a copy of observatory-extension locally for this test to work.

git clone git@github.com:cartodb/observatory-extension
make extension-autotest

Diagnosing common issues in integration tests

Cannot find point to test

TODO

38 Chapter 7. Testing your data

CHAPTER 8

Deploying the Observatory

39

Bigmetadata Documentation, Release 0.0.1

40

Chapter 8. Deploying the Observatory

CHAPTER 9

Indices and tables

¢ genindex
* modindex

e search

41

Bigmetadata Documentation, Release 0.0.1

42

Chapter 9. Indices and tables

Index

A

aggregate (OBSColumn attribute), 24

C

catalog_lonlat() (tasks.meta.OBSColumn method), 24
colname (OBSColumnTable attribute), 26

column (OBSColumnTable attribute), 26

column (OBSColumnTag attribute), 27

column_id (OBSColumnTable attribute), 26
column_id (OBSColumnTag attribute), 27

columns (OBSTable attribute), 26

columns (OBSTag attribute), 25

current_session() (in module tasks.meta), 19

D

denominators() (tasks.meta.OBSColumn method), 24
description (OBSColumn attribute), 24

description (OBSTable attribute), 26

description (OBSTag attribute), 25

E

extra (OBSColumn attribute), 24
extra (OBSColumnTable attribute), 26

G

geom_column() (tasks.meta.OBSTable method), 27
geom_timespans() (tasks.meta.OBSColumn method), 24
geomref_column() (tasks.meta.OBSTable method), 27

H

has_catalog_image() (tasks.meta.OBSColumn method),
24

has_children() (tasks.meta.OBSColumn method), 24

has_denominators() (tasks.meta.OBSColumn method),
24

id (OBSColumn attribute), 24
id (OBSTable attribute), 26
id (OBSTag attribute), 25

is_cartographic() (tasks.meta.OBSColumn method), 25
is_geomref() (tasks.meta.OBSColumn method), 25
is_interpolation() (tasks.meta.OBSColumn method), 25

L

license_tags() (tasks.meta.OBSColumn method), 25

N

name (OBSColumn attribute), 24
name (OBSTag attribute), 25

O

OBSColumn (class in tasks.meta), 24
OBSColumnTable (class in tasks.meta), 26
OBSColumnTag (class in tasks.meta), 27
OBSColumnToColumn (class in tasks.meta), 25
OBSTable (class in tasks.meta), 26

OBSTag (class in tasks.meta), 25

R

reltype (OBSColumnToColumn attribute), 26

S

source (OBSColumnToColumn attribute), 26
source_id (OBSColumnToColumn attribute), 25
source_tags() (tasks.meta.OBSColumn method), 25
summable() (tasks.meta.OBSColumn method), 25

T

table (OBSColumnTable attribute), 26
table_id (OBSColumnTable attribute), 26
tablename (OBSTable attribute), 26

tables (OBSColumn attribute), 24

tag (OBSColumnTag attribute), 27

tag_id (OBSColumnTag attribute), 27

tags (OBSColumn attribute), 24

target (OBSColumnToColumn attribute), 26
target_id (OBSColumnToColumn attribute), 26
targets (OBSColumn attribute), 24
the_geom (OBSTable attribute), 26

43

Bigmetadata Documentation, Release 0.0.1

timespan (OBSTable attribute), 26
type (OBSColumn attribute), 24
type (OBSTag attribute), 25

U

unit() (tasks.meta.OBSColumn method), 25

\Y

version (OBSColumn attribute), 24
version (OBSTable attribute), 27
version (OBSTag attribute), 25

W

weight (OBSColumn attribute), 24

44

Index

	Quickstart
	Requirements
	Clone & configure
	Start
	Run

	Example ETL/metadata pipeline
	1. Import libraries
	2. Download the data
	3. Import data into PostgreSQL
	4. Preprocess data in PostgreSQL
	5. Write metadata
	6. Populate output table

	Development
	Utility Functions
	Abstract classes
	Batteries included
	Running and Re-Running Pieces of the ETL

	Convenience tasks
	Makefile
	Tasks
	Functions

	Metadata model
	Relational Diagram
	Manually generated entities
	Autogenerated entities

	Validating your code
	Best practices
	Making sure ETL code works right
	Making sure metadata works right
	Regenerate and look at the Catalog
	Upload to a test CARTO server

	Testing your data
	ETL unit tests
	Metadata integration tests
	API unit tests
	Integration tests
	Diagnosing common issues in integration tests

	Deploying the Observatory
	Indices and tables

