

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Introduction

[image: _images/logo_negru.png]

BigConnect provides an extensible platform to understand and work with any amounts of data, from any source and in any format. It’s an information-agnostic system where all data that flows into the system is transformed, mapped, enriched and then stored in a logical way using a semantic model of concepts, attributes and relationships. It provides an extensible, unified visual interface with tools for data discovery and analysis, collaboration, alerting and information management.

It’s best suited for exploring and making sense of unstructured data.

The platform and all its components are extensible, massively scalable and highly secure and can be used to build Big Data systems and applications that can cover most use cases and industry requirements.

It is built using the latest technologies and is currently being used by many customers in the intelligence, government, banking and academic sectors.

It is best-suited to help solve problems where there is no straightforward solution and no obvious “correct” answer.

Table of contents

	Introduction

	Feature Highlights

User Guide

	Introduction

	First Steps

	Installing BigConnect

	Starting and stopping

	Accessing BigConnect

	Using BigConnect

	Getting started

	Discovering your data

	Data advanced visualization

	Administration panel

	Configuration

	Computation engine

User Guide

	Getting Started

Developer Guide

	Architecture and Concepts

	Getting started

	Source code structure

	Setup for development

	Contributing

	Glossary

	Web Framework

	Plugin development

	Data Worker Plugins

	Creating a plugin

	Processes Worker Plugins

	External Worker Plugins

	Web Plugins

	Creating a standard plugin

	Creating a React plugin

	Extension Points

	Extension Point Reference

	Activity

	Admin

	Authentication

	Dashboard Item

	Dashboard Layout

	Dashboard Report Renderer

	Dashboard Toolbar Item

	Element Menu

	Element List Item Renderer

	Graph Edge Class

	Graph Edge Transformer

	Graph Export

	Graph Layout

	Graph Node Class

	Graph Node Decoration

	Graph Node Transformer

	Graph Options

	Graph Selection

	Graph Style

	Graph View

	Inspector Component

	Inspector Text

	Inspector Toolbar

	Logout

	Map Options

	Menu Bar

	Search Type

	Search Toolbar

	User Profile Section

	Visibility

	Websocket

	REST APIs

Feature Highlights

The platform, as a whole, can do a lot: data ingestion, data enrichment, discovery and analysis. It is completely extensible and can be extended to suit any use case, using common development languages like Java, JavaScript, React, CSS/LESS etc.

Customizations are in the form of plugins that can be developed both for the back-end and the front-end.

Dynamic Data Model

The core foundation of bigCONNECT is the dynamic, semantic data model. It represents the way you store, correlate and query all information and it’s a conceptual data model that expresses information in a factual way: objects, relations and attributes.

Typically, the data model is used to provide meaning to the information stored in bigCONNECT, either at ingestion time or later on, during the life-cycle of the data. It can be defined in the beginning or any time later on, to adapt to any data structure, type or meaning. Any information stored in the system can be mapped to an object (concept), can have some relations and some attributes.

Concepts can be anything you can think of: persons, vehicles, bank transactions, phone calls, equipment, companies, locations, events, network packets, log files etc. They are linked to each other using meaningful relations like “works at”, “lives in”, “has friend”, “is brother of”, “sent from IP”, “source file” etc.

Concepts and relations can also have attributes. For a company these can be the company name, formation date, address etc. For a person these can be its first name, last name, birth date, phone number, email address etc. For a “works at” relation we can have the “start date” and “end date” attributes to denote when the person started to work at a company. For a “sent from IP” relation we can have the “timestamp” and the “user” etc

Ingestion

bigCONNECT can ingest and process any kind of information: databases, office documents, text files, XML files, HTML files, images, audio and video files or streams.

Data ingestion can be manual using the UI or automated using scalable ETL and streaming tools. We currently provide plugins for Pentaho Data Integration [https://sourceforge.net/projects/pentaho/files/Data%20Integration/] (now Hitachi Vantra) and Apache Nifi [https://nifi.apache.org/] in the open and plugins for Oracle Data Integrator [https://www.oracle.com/middleware/technologies/data-integrator.html], IBM DataStage [https://www.ibm.com/ro-en/marketplace/datastage], Informatica PowerCenter [https://www.informatica.com/products/data-integration/powercenter.html] and Microsoft SSIS [https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services?view=sql-server-2017] in the Enterprise [http://bigconnect.io]version.

Data ingestion is a visual process. Either by using BigConnect’s user interface or another 3rd party ETL tool, data ingestion and data model mapping will be done in an easy, visual way. This ensures lower error rates and high process maintainability.

[image: .gitbook/assets/image%20%2811%29.png]

Enrichment

Information enrichment is done using pluggable Data Workers. They receive objects, attributes and relations and can do further processing: compute additional attributes, create or alter the data model, call external services etc. Data Workers are plugins and don’t run in a particular order. Instead, they are all notified when something changes in the data model and can choose to take appropriate action. Some examples are: extracting text from documents, extracting entities from text, computing other attributes based on existing ones, running audio, image or video processing algorithms, applying machine learning or neural network models etc.

Visual Interface

BigConnect provides an extensible integrated visual console where users can query and analyze the data. The console is collaborative, and all actions are taken inside a space. This means that all data that is added, modified, queried or analyzed can be contained to that space alone. Data changes that happen inside a space can be published to be available for everybody.

Spaces are collaborative, and users can be invited to a space and have different access rights within that space. Spaces can be created for particular needs, use cases or logical groupings.

Search

ElasticSearch is used behind the scenes to search through the data model and compute aggregations. This means that search results are delivered near-real-time and search queries can be as complex as you can imagine.

[image: .gitbook/assets/image%20%2873%29.png]

The UI provides a Google-like search experience, enriched with filters, sorting, refinements and spatial queries. The search field supports the Lucene query syntax so you can use special things like wildcard (*), question mark (?), keyword matching, phrase matching, grouping, boolean queries (AND, OR), fuzzy queries (~), proximity matching (~4), range searches (amount:[500 TO 800]) and boosts (^).

Example:

("foo bar" AND "quic*")^1.5 OR "q?ry" –"john"

A query builder is also provided to build complex boolean queries using a few clicks. Spatial queries can use the map to pinpoint the center and area of interest:

[image: .gitbook/assets/image%20%2852%29.png]

On top of classic faceted full-text search, more advanced queries can be performed using the Cypher query language, using the integrated Cypher query editor with autocomplete features:

MATCH (nicole:Actor {name: 'Nicole Kidman'})-[:ACTED_IN]->(movie:Movie)
WHERE movie.year < 2015
RETURN movie

Search queries together with their filters can be saved for later reference or they can be used in aggregations.

Items

Data items like concepts and relations can have a lot of information associated using model-defined attributes. The UI provides a unified way of managing the attributes of an item or a group of items in what we call the “Detail view”.

The Detail view contains all information about a selected object or a group of selected objects. You can change the attributes, attach an image, see assigned tags, navigate through its relations and execute relevant actions for the object (ex. Delete, Add Watch, Export etc.)

[image: .gitbook/assets/image%20%2814%29.png]

If a group of objects is selected, the Detail view will display statistics about the common attributes of the selected objects.

[image: .gitbook/assets/image%20%2851%29.png]

The Detail view is completely extendable to fit any needs using the UI plugin mechanism.

Besides the various objects that can be loaded into the platform, bigCONNECT has special support for some common item types: text, image, audio and video.

Text items have by definition some textual content that can be annotated by selecting pieces of text and marking them as new objects or relations. This is handy if you need to infer new relations from textual content such as mentioned persons, companies, locations, IP addresses or items found in a dictionary, detected by an NLP engine or that satisfy a certain regex pattern.

[image: .gitbook/assets/image%20%2841%29.png]

Images have by definition an associated image. They can be text items as well, so they can have text attached to as well, from an OCR engine for example. In the same way as text items, the image can be annotated to mark relevant existing or objects. This can be done manually or automatically using Face Recognition or Object Detection software. Sample plugins are provided for Azure Cloud Computer Vision.

[image: .gitbook/assets/image%20%284%29.png]

Audio items have by definition an associated audio track. bigCONNECT will show a player for these types of items to play the contents. Audio items can be text items as well, so they can have text attached, from a speech-to-text engine for example. Sample plugins are provided for speech-to-text using Google Cloud Speech API.

[image: .gitbook/assets/image%20%2827%29.png]

Video items have by definition associated video content and can also be text items. Since a video can optionally have an audio track, a Data Worker can be used to split and OCR the video frames and the audio track to extract all relevant information from the video, such as text, found objects, people etc.

[image: .gitbook/assets/image%20%2839%29.png]

Dashboard

The visual console includes a dashboard where users are being taken upon login. Various widgets can be added or removed from the dashboard to bring to focus any relevant information.

[image: .gitbook/assets/image%20%2837%29.png]

Saved searches can be displayed on the dashboard as visual aggregations, lists or tag clouds. The provided widgets also include different chart types and aggregations, alerts and found behaviors.

Widgets can be created by developers using the UI plugin mechanism.

Data analysis

Data analysis is performed using analysis products. Out of the box, three products are provided: Graph, Map and Timeline, but one can create any kind of analysis product using the SDK.

Any number of analysis product instances can be added inside a space to facilitate analysis from multiple perspectives.

Graph

For analyzing the data in its core connected form, we provide an advanced graph tool that can be used to create connections, see how objects are related, find connections between objects and more.

[image: .gitbook/assets/image%20%2867%29.png]

The graph is interactive, you can drag objects around, create new objects and relations and explore the entire data model.

Objects can be copied and pasted from anywhere onto the graph, external files can be dragged & dropped in to create new objects and various layout and ranking algorithms can be applied on the displayed data such as Page Rank, Betweenness Centrality, Closeness Centrality and Degree Centrality.

Finding how two objects are connected is quite easy as well. Just use the Find Path feature to find out.

[image: .gitbook/assets/image%20%2834%29.png]

Map

Data with geo-spatial information associated (latitude, longitude) can be displayed on an interactive map with support for layers, annotations and aggregations.

[image: .gitbook/assets/image%20%2857%29.png]

New objects can be created at specific points on the map and will automatically receive location information for future reference. Practical use cases can include defining POIs, locating events, cars, phone calls, network packets etc.

The map can be annotated using points, lines and polygons that can become themselves objects inside the system.

Timeline

The timeline is present on every screen and can display the distribution of items over time, if items have date/time attributes. Multiple date/time attributes can be displayed on the timeline and you can zoom-in/zoom-out to specific time periods and select the objects of interest.

[image: .gitbook/assets/image%20%2838%29.png]

Administration

The console includes administration capabilities for editing the semantic model, managing users and roles, defining behaviors and ingesting data from various data sources. The admin console is customizable and can be extended by creating 3rd party plugins.

Behaviors

Multiple saved searches (normal and Cypher queries) can be grouped together to define a behavior. A score is provided for each query and a threshold for the entire behavior. All objects that satisfy the queries and are over the threshold will be compliant with the defined behavior.

Alerting

Items of interest can be added to a watch list by choosing which attributes/relations to listed for changes. You will be notified once a change has been made to the respective items via email or the dashboard.

Security

Security is enforced at the UI level and at the data level. At the UI level, security is achieved by users, roles and privileges that control what users can do in the console, both at a global level and at the space level.

At the data level, fine-grained access can be controlled up to the attribute level. Labels can be applied to items, attributes and relations to restrict access to sensitive information. Only users with the required authorizations can see the data items that have security labels associated. The authorizations and security labels can be user-defined to provide maximum flexibility and extensibility.

Extensibility

BigConnect is designed to be highly extensible and customizable at all levels. Being an open-source platform, the code can be altered as-is or can be extended using plugins, which is the recommended way.

Please see the Developer Guide for details on how to build the source code, what are the extension points and have a look at the sample plugins.

Scalability

The platform is built on top of the latest Big Data technologies and can scale massively, from small clusters of three nodes to clusters of thousand of nodes.

The amount of data that can be ingested is unlimited and directly related to the number of employed cluster nodes. Performance benchmarks are available where a cluster of 1000 nodes can ingest 1 terabyte of simple records with speeds of up to 100 million records per second.

Licensing

BigConnect is free to use and customize and will always be so. While you can use the open-source releases to build and run your systems, we generally don’t recommend you do so. The open-source code base is in continuous development and bugs can always sneak in at any level. This can be disastrous in a production environment as it can lead to data corruption or data loss. While we do provide recommendations for production deployments, we don’t provide any guarantee whatsoever.

We do instead provide highly tested, enterprise grade releases, with included premium support, that are being used in sensitive production environments. These releases are based on an annual subscription model.

Please contact us for more details.

REST APIs

The BigConnect Web Console is a webapp and it has specific endpoints that you can use to develop your own REST clients.

There is an REST API browser included in the Web Console that you can explore and play with the different API endpoints. You can find it in the admin console, under the REST API section.

[image: developer-guide/../.gitbook/assets/image%20%2861%29.png]

Architecture and Concepts

Before starting to browse the source code, customize the platform or develop plugins, you should first know how BigConnect actually works. After finishing this section you should have a thorough understanding of the platform’s inner-workings and its components.

Architecture

A high level overview of a production architecture is presented below. This is an ideal deployment scenario, with dedicated machines for each Web Console, Data Workers, Job Workers, Queues and Data Ingestion.

[image: developer-guide/../.gitbook/assets/architecture%20%281%29.png]

There are four types of BigConnect nodes that can be run:

	Data Worker nodes usually handle data enrichment.

	Process Worker nodes usually handle long running processes (such as running Machine Learning models or Graph algorithms) or scheduled tasks.

	External Worker nodes that handle data ingestion or processing from potentially rate-limited external sources

	Web Console nodes serve the Web Console application

Each BigConnect running node can be a combination of one or more types. This means that in a very simple deployment, one running node can be used to serve the Web Console, to run data worker plugins and job worker plugins, whereas in a typical production deployment you will have nodes that handle specific tasks and are also distributed across many machines.

Because nodes need to talk to each-other, each node instance can connect to a WorkQueue to publish and subscribe to messages. The current implementation offers an in-memory work queue for simple deployments and a RabbitMQ work queue for production deployments. Other types of WorkQueues can be easily implemented as well (eg. Apache Kafka, AWS Simple Queue Service etc.).

{% hint style=”info” %}
All three node types share a common code base that also includes additional useful services like LDAP authentication, SMTP for sending mails (notifications), notifications, alerts, JMX metrics, geocoding etc.
{% endhint %}

The Graph Engine

Handles the persistence of data and provides operations for adding, updating, deleting and querying stored data. It provides a graph-like structure based on Vertices, Edges and multi-valued Properties that can be applied to Vertices or Edges.

Property Graphs have been around for a while and the technology offering has grown consistently in the last years. BigConnect however brings two new important features: multi-valued properties and fine-grained security.

It makes a clear distinction between storing data and querying data, because not all storage containers can also retrieve the data in a timely manner. This is a common architecture for Property Graphs where a search index is used to perform fast queries.

The current implementation uses Apache Accumulo for storage and ElasticSearch for searching.

{% hint style=”info” %}
The Graph Engine itself is an abstract component and provides a Blueprints-like API, so other implementations can be added for storage and search. The code base clearly separates the interfaces that should be implemented for a new technology.
{% endhint %}

Data Model (Ontology)

The core foundation of bigCONNECT is the dynamic, semantic data model, called Ontology. It represents the way you store, correlate and query all information and it’s a conceptual data model that expresses information in a factual way: objects, relations and attributes.

Typically, the ontology is used to provide meaning to the information stored in bigCONNECT, either at ingestion time or later on, during the life-cycle of the data. It can be defined in the beginning or any time later on, to adapt to any data structure, type or meaning. Any information stored in the system can be mapped to an entity (that has a concept), can have some relations and some attributes.

Concepts can be anything you can think of: person, vehicle, bank transaction, phone call, equipment, company, location, event, network packet, log file etc. They are linked to each other using meaningful relations like “works at”, “lives in”, “has friend”, “is brother of”, “sent from IP”, “source file” etc.

Concepts and relations can also have attributes. For a company these can be the company name, formation date, address etc. For a person these can be its first name, last name, birth date, phone number, email address etc. For a “works at” relation we can have the “start date” and “end date” attributes to denote when the person started to work at a company. For a “sent from IP” relation we can have the “timestamp” and the “user” etc.

The ontology defines what Concepts, Relations and Properties are available**.** Each ontology item can also have several meta-properties such as: searchable, deletable, color etc.

Concepts

The conceps are hierarchical and inheritable. This means that child concepts will inherit the properties of parent concepts. There is a root concept that sits at the top of the hierarchy and is called thing and ****It’s a system-level concept that cannot be removed. Any first-level concepts must inherit the thing root concept.

Concepts also have meta-properties that describe how the concept should be treated in the system and what actions are available for them:

 	Meta-Property
 	Description

 	title
 	Unique identifier for the Concept

 	displayName
 	The human-readable name that should be displayed in the platform

 	icon
 	The image to use to display the entity

 	userVisible
 	If the concept is visible in the Web Console

 	searchable
 	If the concept should show in the Concept type search filter

 	deleteable
 	If the delete button should show in the Web Console

 	updateable
 	If the concept's properties can be updated

 	intents
 	See the Intents section

 	displayType
 	Specifies how the UI should display the entity: audio, image, video
 or document

 	color
 	The color to use on the graph and when underlining the concept in a document
 text section

 	titleFormula
 	
 A JavaScript snippet used to display the title of the entity. The snipped
 could be a single expression, or multiple lines with a return.
 All formulas have access to:

 	vertex: The json vertex object (if the element is vertex)

 	edge: The json edge object (if the element is an edge)

 	ontology: The json ontology object (concept/relation)

 	id The iri

 	displayName The display name of type

 	parentConcept Parent iri

 	pluralDisplayName The plural display name of type

 	properties The property iris defined on this type

 	prop: Function that accepts a property IRI and returns the
 display value.

 	props: Function that accepts a property IRI and returns a
 list of all matching properties.

 	propRaw: Function that accepts a property IRI and returns
 the raw value.

 	subtitleFormula
 	A JavaScript snippet used to display additional information in the search
 results.

 	timeFormula
 	A JavaScript snippet used to display additional information in the search
 results.

Out of the box, the following concept hierarchy is provided in the [DefaultOntologyCreator](https://github.com/mware-solutions/bigconnect/blob/master/bc-common/src/main/java/com/mware/core/model/ontology/DefaultOntologyCreator.java) class.
	Thing

	Event

	Person

	Organization

	Raw

	Document

	Audio

	Image

	Video

Relations

The relations are hierarchical and inheritable, like concepts. This means that child relations will inherit the properties of parent relations . There is a root relation that sits at the top of the hierarchy and is called topObjectProperty and ****It’s a system-level relation that cannot be removed. Any first-level relations must inherit the thing root concept.

Relations also have meta-properties that describe how the they should be treated in the system and what actions are available for them:

 	Meta-Property
 	Description

 	title
 	Unique identifier for the relation

 	displayName
 	The human-readable name that should be displayed in the platform

 	domainConceptIris
 	The source concepts

 	rangeConceptIris
 	The destination concepts

 	inverseOfs
 	A list of relations that this relation is the inverse of

 	userVisible
 	If the relation is visible in the Web Console

 	deleteable
 	If the delete button should show in the Web Console

 	updateable
 	If the concept can be updated

 	intents
 	See the Intents section

 	color
 	The color to use on the graph

 	titleFormula
 	
 A JavaScript snippet used to display the title of the entity. The snipped
 could be a single expression, or multiple lines with a return.
 All formulas have access to:

 	vertex: The json vertex object (if the element is vertex)

 	edge: The json edge object (if the element is an edge)

 	ontology: The json ontology object (concept/relation)

 	id The iri

 	displayName The display name of type

 	parentIri Parent iri (if edge and is a child type)

 	properties The property iris defined on this type

 	prop: Function that accepts a property IRI and returns the
 display value.

 	props: Function that accepts a property IRI and returns a
 list of all matching properties.

 	propRaw: Function that accepts a property IRI and returns
 the raw value.

 	subtitleFormula
 	A JavaScript snippet used to display additional information in the search
 results.

 	timeFormula
 	A JavaScript snippet used to display additional information in the search
 results.

Out of the box, the following relation hierarchy is provided in the [DefaultOntologyCreator](https://github.com/mware-solutions/bigconnect/blob/master/bc-common/src/main/java/com/mware/core/model/ontology/DefaultOntologyCreator.java) class.Relations:

	Has Entity

	Has Source

	Contains image of

	Has image

Properties

Properties apply to both concepts and relations. They also have meta-properties that describe how the they should be treated in the system and what actions are available for them:

 	Meta-Property
 	Description

 	title
 	Unique identifier for the property

 	displayName
 	The human-readable name that should be displayed in the platform

 	dataType
 	The type of the property: string, integer, double, currency, date, boolean,
 geoLocation. The property is rendered in the Web Console based on its type.

 	userVisible
 	If the property is visible in the Web Console

 	searchable
 	If the property should show in the Filter by Property list in the
 Web Console

 	searchFacet
 	If the property should be displayed as a Search Facet on the Web Console

 	textIndexHints
 	
 Specifies how text is indexed in the full text search:

 	NONE - Do not index this property (default)

 	ALL - Combination of FULL_TEXT and EXACT_MATCH

 	FULL_TEXT - Allow full text searching. Good for large text

 	EXACT_MATCH - Allow exact matching. Good for multi-word known values.

 	deleteable
 	Should the delete button show in the Web Console and allow deleting properties
 in REST calls.

 	addable
 	Should the add property list show this property and allow creating property
 values in REST calls.

 	updateable
 	Should the edit button show in the UI and allow updating property values
 in REST calls.

 	intents
 	See the Intents section

 	displayType
 	
 Specifies how the UI should display the value. Plugins can add new display
 types, see the Ontology Property Display Types section in Font-end
 Plugins

 	bytes: Show the value in a human readable size unit based
 on size. Assumes the value is in bytes.

 	dateOnly: Remove the time from the property value and stop
 timezone shifting display for users (Date will be same regardless of users
 timezone).

 	geoLocation: Show the geolocation using description (if available),
 and truncated coordinates.

 	heading: Show a direction arrow, assumes the value is number
 in degrees.

 	link: Show the value as a link (assumes the value is valid
 href)

 	longtext: Show the value using multiline whitespace, and
 allow editing in a instead of one line

 	propertyGroup
 	Allows multiple properties to be included under a unified collapsible
 header in the Inspector. All properties that match the value (case-sensitive)
 will be placed in a section.

 	possibleValues
 	
 Creates a pick list on the Web Console. The value is a JSON document describing
 the possible values. In this example, F will be the raw value
 saved in the property value, but Female would be displayed to
 user in pick list and in the Inspector:

 { "M": "Male", "F": "Female" }

 	displayFormula
 	
 A JavaScript snippet used to display the value of the property. The snipped
 could be a single expression, or multiple lines with a return.
 All formulas have access to:

 	vertex: The json vertex object (if the element is vertex)

 	edge: The json edge object (if the element is an edge)

 	ontology: The json ontology object

 	prop: Function that accepts a property IRI and returns the
 display value.

 	props: Function that accepts a property IRI and returns a
 list of all matching properties.

 	propRaw: Function that accepts a property IRI and returns
 the raw value.

 	validationFormula
 	A JavaScript snippet used to validate the value of the property. The snipped
 could be a single expression, or multiple lines with a return true/false

 	aggType
 	How the property should be aggregated in ElasticSearch: none, Histogram,
 GeoHash , Statistics, Calendar

 	aggInterval
 	
 The aggregation interval for Histogram aggregation:

 	For date fields: year, quarter, month, week, day, hour, minute, second

 	For numeric fields: a positive decimal

 	aggCalendarField
 	For Calendar aggregation: DAY_OF_MONTH, DAY_OF_WEEK, HOUR_OF_DAY, MONTH,
 YEAR

 	aggTimeZone
 	The timezone to use in the Calendar aggregation

 	aggPrecision
 	The GeoHash precision to use for the GeoHash aggregation

Out of the box, the following properties are provided in the [DefaultOntologyCreator](https://github.com/mware-solutions/bigconnect/blob/master/bc-common/src/main/java/com/mware/core/model/ontology/DefaultOntologyCreator.java) class.
	Title - the title of the object

	Text - any text contents

	Source - the origin

	…

Intents

The ontology defines concepts, relationships, and properties. During data processing, BigConnect needs to know what type of concept, relationship, and property to assign when it finds them. For example if BigConnect is scanning a document and finds a phone number, BigConnect will need to assign a concept to that phone number. This is where intents come in.

Intents can be defined in the ontology and overridden in the configuration. Out of the box, the following intents are provided, and they are used in the provided Data Workers. See the OntologyConstants [https://github.com/mware-solutions/bigconnect/blob/master/bc-common/src/main/java/com/mware/core/model/ontology/OntologyConstants.java]file to find their usage.

	entityImage

	artifactContainsImage

	artifactTitle

	artifactHasEntity

	artifactContainsImageOfEntity

	entityHasImage

	media.duration

	media.dateTaken

	media.deviceMake

	media.deviceModel

	media.width

	media.height

	media.metadata

	media.fileSize

	media.description

	media.imageHeading

	media.yAxisFlipped

	media.clockwiseRotation

	bankAccount

	phoneNumber

	pageCount

	documentAuthor

	audioDuration

	videoDuration

	geoLocation

{% hint style=”info” %}
There are a lot of system properties, concepts and relations used internally by BigConnect.
{% endhint %}

The initial ontology is defined in the DefaultOntologyCreator [https://github.com/mware-solutions/bigconnect/blob/master/bc-common/src/main/java/com/mware/core/model/ontology/DefaultOntologyCreator.java] class.

Configuration

There are many strategies for locating BigConnect’s configuration properties. By default, BigConnect will use com.mware.core.config.FileConfigurationLoader [https://github.com/mware-solutions/bigconnect/blob/master/bc-common/src/main/java/com/mware/core/config/FileConfigurationLoader.java] to load configuration files and com.mware.core.bootstrap.lib.LibDirectoryLoader [https://github.com/mware-solutions/bigconnect/blob/master/bc-common/src/main/java/com/mware/core/bootstrap/lib/LibDirectoryLoader.java] to load additional .jar files.

The following directories will be searched in order:

	/opt/bigconnect for Linux/OSX

	c:/opt/bigconnect for Windows

	${appdata}/Bigconnect

	${user.home}/.bigconnect

	a directory specified with the BIGCONNECT_DIR environment variable

The FileConfigurationLoader will load alphabetically all files in config sub-directories with .properties extensions, allowing you to override properties in various places.

All .jar files in /lib sub-directories will be added to the classpath.

{% hint style=”info” %}
There is also a com.mware.core.bootstrap.lib.HdfsLibLoader [https://github.com/mware-solutions/bigconnect/blob/master/bc-common/src/main/java/com/mware/core/bootstrap/lib/LibDirectoryLoader.java]that can be used to load .jar files from HDFS. This is useful when running Data Workers or Process Workers as Hadoop jobs.
{% endhint %}

For the purposes of this guide, $BIGCONNECT_DIR will refer to the parent directory of sub-directories where your config and lib files are stored, regardless of which of the above options you choose to use

Security

An important feature of the Graph Engine is that it includes a layer of fine-grained data security: every operation on the data structure is made using a set of Authorizations and each piece of data has a Visibility label attached to it.

The Visibility is used to determine whether a given user meets the security requirements to read the value. This enables data of various security levels to be stored in the same element (vertex or edge) and users of varying degrees of access to query the data, while preserving data confidentiality.

When changes to the graph are made, users can specify a visibility label for each value. These labels consist of a set of user-defined tokens that are required to read the value the label is associated with. The set of tokens required can be specified using syntax that supports logical AND & and OR | combinations of terms, as well as nesting groups () of terms together.

Each term is comprised of one to many alpha-numeric characters, hyphens, underscores or periods. Optionally, each term may be wrapped in quotation marks which removes the restriction on valid characters. In quoted terms, quotation marks and backslash characters can be used as characters in the term by escaping them with a backslash.

For example, suppose within our organization we want to label our data values with security labels defined in terms of user roles. We might have tokens such as:

admin
audit
system

These can be specified alone or combined using logical operators:

// Users must have admin privileges
admin

// Users must have admin and audit privileges
admin&audit

// Users with either admin or audit privileges
admin|audit

// Users must have audit and one or both of admin or system
(admin|system)&audit

When both | and & operators are used, parentheses must be used to specify precedence of the operators.

When clients attempt to read data from BigConnect, any security labels present are examined against the set of authorizations passed by the client code. If the authorizations are determined to be insufficient to satisfy the visibility label, the value is suppressed from the set of results sent back to the client.

Authorizations are specified as a comma-separated list of tokens the user possesses:

Authorization auths = new Authorizations("admin","system");

Web Framework

BigConnect has its own minimalistic, lightning-fast web framework. It provides a thin layer of fundamental web application features without adding much overhead.

The framework provides routing and parameter binding. Routing refers to determining how an application responds to a client request to a particular endpoint, which is a URI (or path) and a specific HTTP request method (GET, POST, and so on). Each route can have one or more handler functions, which are executed when the route is matched.

Route definition takes the following structure: app.METHOD (path, handlers) where:

	app in an instance of com.mware.web.framework.App [https://github.com/mware-solutions/bigconnect-web/blob/master/web-base/src/main/java/com/mware/web/framework/App.java]

	METHOD is an HTTP request method [https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods], in lowercase.

	path is a path on the server

	handlers are a list of classes to be called when the route is matched. Each class must implement the com.mware.web.framework.Handler [https://github.com/mware-solutions/bigconnect-web/blob/master/web-base/src/main/java/com/mware/web/framework/Handler.java] or its sub-interfaces, like com.mware.web.framework.ParameterizedHandler [https://github.com/mware-solutions/bigconnect-web/blob/master/web-base/src/main/java/com/mware/web/framework/ParameterizedHandler.java]``

Route handlers need to satisfy one requirement: they need to have a method annotated with the Handle [https://github.com/mware-solutions/bigconnect-web/blob/master/web-base/src/main/java/com/mware/web/framework/annotations/Handle.java] annotation. This method will be called by the framework once the route matches.

Handler methods can also have parameters that will be bound automatically to request parameters, based on their type or name. There are also two annotations available to bind request parameters:

	Optional [https://github.com/mware-solutions/bigconnect-web/blob/master/web-base/src/main/java/com/mware/web/framework/annotations/Optional.java] - the parameter is optional

	Required [https://github.com/mware-solutions/bigconnect-web/blob/master/web-base/src/main/java/com/mware/web/framework/annotations/Required.java] - the parameter is required and the framework will throw an exception if it’s not set in the incoming request

Getting started

This guide is intended for those who wish to:

	Contribute code to BigConnect

	Create their own BigConnect plugins

	Create a custom build of BigConnect

In order to work with BigConnect as a developer, it’s recommended that you are proficient with the following technologies:

	Java, since the entire back end is written in Java

	JavaScript, jQuery and ReactJS , since the UI is very JavaScript heavy

If that sounds like you, then please keep in mind the following conventions you’ll encounter while reading this guide.

	Any reference to $BIGCONNECT_DIR refers to the base directory for BigConnect configuration. The most important subdirectory to this is the config directory, where BigConnect configuration properties files placed.

While we do recommend reading all the pages in this Developer Guide, the steps below are the fastest path to getting an instance of BigConnect up and running in no time.

Prerequisites

You need to have Java 1.8 and Apache Maven 3.5.3+ installed.

Build and run the project

The platform consists of several projects:

	bigconnect [https://github.com/mware-solutions/bigconnect]

	dw-plugins [https://github.com/mware-solutions/dw-plugins]

	bigconnect-web [https://github.com/mware-solutions/bigconnect-web.git]

First, clone the source code for all three GitHub repositories:

git clone https://github.com/mware-solutions/bigconnect.git
git clone https://github.com/mware-solutions/dw-plugins.git
git clone https://github.com/mware-solutions/bigconnect-web.git

Second, build the bigconnect and dw-plugns projects. Go into each folder and do:

mvn -DskipTests install

Third, change to the bigconnect-web folder and run the web application:

mvn -Pbuild-webapp,dev-tomcat-run install

This will start the embedded Tomcat server with an embedded ElasticSearch node and H2 database.

Once started, the web console will be available at http://localhost:8888

Contributing

If you’re planning on contributing to BigConnect , then it’s a good idea to fork a repository first. GitHub provides instructions for forking a repository [https://help.github.com/articles/fork-a-repo]. After forking a BigConnect repository, you’ll want to create a local clone of your fork in which to make changes before creating a pull request [https://help.github.com/articles/creating-a-pull-request/].

Here’s a quick guide to creating a great pull request for one of the repositories:

	Fork the repo

	Run the tests. Pull requests without tests are much less likely to be merged, and it’s great to know you’re starting with a clean slate.

	Add a test for your change. Refactoring and documentation changes require no new tests. If you are adding functionality or fixing a bug, please include a test.

	Make the test pass.

	Push to your fork and submit a pull request.

At this point you’re waiting on one of the primary developers. This is an active project so you should get a response in a reasonable amount of time. We may suggest some changes or improvements or alternatives at that time. Please don’t consider the feedback as a lack of appreciation for your time and effort. It most certainly is not.

Some things that will increase the chance that your pull request is accepted, are:

	Include good tests

	Keep the changeset small

	Stick to existing code conventions

	Update the documentation, examples elsewhere, guides, whatever is affected by your contribution

See this post on pull request etiquette [http://kunkle.org/blog/2013/07/10/pull-request-etiquette/] for more contribution tips.

Glossary

vertex

A node in the graph that can have properties and edges to other vertices.

edge

A connection between two vertices in the graph.

data model (ontology)

The valid concepts, properties, and relationships for a BigConnect installation.

concept

A type defined in the data model (e.g. person, place, or company). Uniquely identified by an IRI and assigned to every vertex in the graph.

IRI

Internationalized Resource Identifier. e.g. person or worksFor

property

A field defined in the data model as valid for one or more concepts. Uniquely identified by an IRI and optionally set on vertices in the graph.

relationship

A connection defined in the data model as valid from one concept to another. Uniquely identified by an IRI and stored as edges between vertices in the graph.

DW

Acronym for Data Worker.

data worker

Type of BigConnect plugin that responds to changes in the graph and often used for data enrichment and analytics. DWs can respond to creation or update events on vertices, properties, or edges.

raw

The property on a vertex used to store any imported data.

visibility

The data access control applied to vertices, properties, and edges. The term ‘visibility’ is borrowed from Accumulo.

visibility source

The data stored on behalf of the visibility user interface component to support displaying and editing data access control settings. This data is converted by the configured VisibilityTranslator [https://github.com/mware-solutions/bigconnect/blob/master/bc-common/src/main/java/com/mware/core/security/VisibilityTranslator.java] to the BcVisibility [https://github.com/mware-solutions/bigconnect/blob/master/bc-common/src/main/java/com/mware/core/security/BcVisibility.java] value used to enforce data access control.

visibility json

A JSONObject consisting of the visibility source and a list of workspace ids. This value is stored as metadata on all vertices, properties, and edges to support data access control.

authorization

The data access control rights granted to BigConnect users to control their access to vertices, properties, and edges. The term ‘authorization’ is borrowed from Accumulo.

workspace (or space)

A named collection of vertices that can be shared for collaboration with other BigConnect users. New and changed vertices, properties, and edges are only visible in a workspace until being published by a user with the PUBLISH privilege.

Setup for development

Before getting into how to develop on your machine, there are a few dependencies that need to be installed:

	JDK 1.8

	Apache Maven [https://maven.apache.org/download.cgi] 3.5.3+

	NodeJS [https://nodejs.org/download/release/v8.12.0/]8.12+ (only for web development)

	Yarn [https://yarnpkg.com/en/docs/install] package manager 1.10+ (only for web development)

	ElasticSearch [https://www.elastic.co/downloads/past-releases/elasticsearch-5-6-10] 5.6.10

For working with BigConnect’s code base, and IDE is highly recommended. We perform a lot of our development using the IntelliJ IDEA [https://www.jetbrains.com/idea/] IDE, but other editors like Eclipse can be used as well.

Since all repositories are Maven projects, importing the project in your IDE should be straightforward. Just open the repository folder and the IDE should handle the rest.

Setup

	Install JDK 1.8 and Apache Maven. Optionally, make sure that the mvncommand is added to your path.

	Install NodeJS and the Yarn package manager (optional)

	Install and run ElasticSearch using its default configuration

	Install Grunt globally: npm install -g grunt-cli (optional)

	Clone a GitHub repository

{% hint style=”info” %}
NodeJS, Yarn and Grunt are required if you intent to do bigconnect-web frontend development or you want to create your custom web plugin.
{% endhint %}

To run the web console from your IDE, you need to open the bigconnect-web project and create a Run configuration.

A Run configuration for IntelliJ IDEA is detailed in bigconnect-web’s repository README.md [https://github.com/mware-solutions/bigconnect-web/blob/master/README] file.

Source code structure

BigConnect is hosted at GitHub [http://www.github.com] and uses Git [http://git-scm.com/] for source control. In order to obtain the source code, you must first install Git on your system. GitHub provides instructions for installing and setting up Git [https://help.github.com/articles/set-up-git].

The source code is divided into multiple repositories that make up the platform as a whole:

	bigconnect [https://github.com/mware-solutions/bigconnect] - contains the source code for the core of the platform and the graph engine

	dw-plugins [https://github.com/mware-solutions/dw-plugins] - contains various Data Workers that can be used for different purposes

	bigconnect-web [https://github.com/mware-solutions/bigconnect-web.git] - contains the Web UI

The bigconnect repository

Contains the core of the platform and has all the code for the graph engine, data workers, long running processes, ontology and more.

Directory structure:

	common - common code shared among the multiple BigConnect components

	core - core BigConnect services for users, data workers, notifications, workspaces etc.

	cypher - support for Cypher queries

	elastic - Search Index implementation for ElasticSearch

	graph - core graph engine API

	security - shared files for the security model

	sql - support for SQL queries

	plugins - various plugins such as RocksDB storage, Spark integration, Proxy etc.

	proxyserver-api - Java client driver

	proxyserver - Java server

	shell - Groovy shell

	test - testing harness

The dw-plugins repository

Contains various required and optional Data Worker plugins:

	audio-metadata - extracts audio metadata (size and duration) using ffprobe [https://ffmpeg.org/ffprobe.html]

	audio-mp4-encoder - Encodes audio data into MP4 format using ffmpeg [https://ffmpeg.org/]

	audio-ogg-encoder - Encodes audio data into OGG format using ffmpeg [https://ffmpeg.org/]

	azure-image-ocr - Uses Azure Computer Vision [https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/] API to extract text from image resources

	azure-image-tags - Uses Azure Computer Vision [https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/] API to extract tags from image resources

	dictionary-extractor - Extracts terms from text using a dictionary

	google-nlp - Uses Google Cloud Natural Language [https://cloud.google.com/natural-language/] API to extract named entities

	google-s2t - Uses Google Cloud Speech-to-Text [https://cloud.google.com/speech-to-text/] API to extract audio transcripts

	groovy - Runs Groovy scripts as data workers

	image-metadata-extractor - Extracts image metadata using the Drewnoakes [https://github.com/drewnoakes/metadata-extractor]library

	location-extractor - Extracts location from text using the CLAVIN Open Source Geotagger [https://clavin.bericotechnologies.com/]

	mime-type-ontology-mapper - Maps MIME types to an ontology concepts

	opencv-object-detector - Detects objects in images (like faces) using OpenCV [https://opencv.org/]

	opennlp-me-extractor - Extracts terms from text using an OpenNLP [https://opennlp.apache.org/]maximum entropy

	phone-number-extractor - Extracts phone numbers from text using libphonenumber [https://github.com/googlei18n/libphonenumber]

	regex-extractor - Extracts terms from text based on Regex expressions

	tika-mime-type - Uses Apache Tika [https://tika.apache.org/] to determine content MIME type

	tika-text-extractor - Uses Apache Tika [https://tika.apache.org/] to extract text from various content types (pdf, doc etc.)

	video-audio-extract - Extracts the audio stream from a video using ffmpeg [https://ffmpeg.org/]

	video-frame-extract - Extracts video frames for image processing using ffmpeg [https://ffmpeg.org/]

	video-metadata - extracts video metadata (geolocation, date, device, width etc.) with ffprobe [https://ffmpeg.org/ffprobe.html]

	video-mp4-encoder - Encodes video into MP4 format with ffmpeg [https://ffmpeg.org/]

	video-poster-frame - Gets a video thumbnail by extracting a frame from the video using ffmpeg [https://ffmpeg.org/]

	video-webm-encoder - Encodes video into WebM format with ffmpeg [https://ffmpeg.org/]

The bigconnect-web repository

Contains all the code for the web console and its plugins

	config - configuration files for running the web console

	plugins - bundled plugins for the web console

	advanced-dictionary-manager - plugin for managing dictionaries for the dictionary-extractor data worker

	auth-username-only - plugins for authentication using only the username

	auth-username-password - plugins for authentication using username/password and forgot password.

	graph-product - graph analysis plugin

	map-product - spatial analysis plugin

	rest-explorer - plugins for browsing and interacting with the REST API endpoints

	terms-of-use - plugin for displaying and agreeing to initial terms & conditions

	tomcat-server - contains all dependencies for running the embedded Tomcat server

	war - source code for the web front-end (HTML, LESS, JavaScript)

	web-base - source code for the web back-end

Plugin development

Many features within BigConnect are developed and run as plugins to the system. There are four basic types of plugins:

	Web Plugins

	Data Worker Plugins

	Process Worker Plugins

	External Worker Plugins

External Worker Plugins

BigConnect can ingest any kind of data but sometimes that ingestion process is not as straightforward as dragging data onto BigConnect’s UI or creating a simple connector to hit a rest API endpoint. External resource workers run tasks asynchronously using BigConnect’s resources so that more complicated tasks or tasks that take a long time to complete will not interfere with other parts of the architecture.

Consider the following example:

You want to ingest all of the data from a specific rest end point into BigConnect, but you are rate-limited by those API calls. It is possible to write a command line tool to handle the data import, but you want a managed solution that works while BigConnect is running and can be monitored from the BigConnect UI.

In that instance, you may want to consider an external resource worker. It can automatically hit the API end-point, run as fast as the rate limit is, and then pause execution as is needed.

Development

There are only two methods that you must implement when creating an external resource worker, run [http://localhost/java/com/mware/core/externalResource/ExternalResourceWorker.html#run--]and stop [http://localhost/java/com/mware/core/externalResource/ExternalResourceWorker.html#stop--]. The abstraction over these external process workers are extremely simple to support many possible use cases. A provided helper class called QueueExternalResourceWorker [https://github.com/mware-solutions/bigconnect/blob/master/bc-common/src/main/java/com/mware/core/externalResource/QueueExternalResourceWorker.java] will support some default functionality that will de-queue data from a queue and process it.

Deployment

External resource workers are run inside the web server when it is brought online. They are injected through the service loader and then their lifecycle is started when their start method is called. To ensure that an ExternalResourceWorker is loaded on the classpath, it must be on the classpath and be referenced in a file com.mware.core.externalResource.ExternalResourceWorker in the META-INF/services folder in the jar.

If you do not want to run ExternalResourceWorkers inside of the server, add the following to your configuration.

#disable the External Resource Workers from running inside of the web server
disable.com.mware.core.process.ExternalResourceRunnerProcess=true

Processes Worker Plugins

Overview

There are certain instances in which a task must be run in the background of BigConnect. Some typical reasons to run a background task in BigConnect are:

	Incoming data needs to be run outside of the data worker framework,

	Work done by a web request would take too long and would ruin the UX,

	You would like to spawn an asynchronous task a long-running task inside of BigConnect that will notify the web UI when it is done but not block on a request.

BigConnect supports Long Running Processes in the background. Long Running Processes are similar to Data Workers: they recieve a message from a queue, the Long Running Process decides if it can operate on the message, and then works on that message. An example of a Long Running Process is FindPathLongRunningProcessWorker [https://github.com/mware-solutions/bigconnect/blob/master/bc-common/src/main/java/com/mware/core/model/longRunningProcess/FindPathLongRunningProcessWorker.java]. When a find-path request is issued from the graph on the UI, a web request is made to the server with the source and destination vertex and a message is queued into the configured long running process queue. That message is then dequeued by all of the current long running processes and the FindPathLongRunningProcessWorker [https://github.com/mware-solutions/bigconnect/blob/master/bc-common/src/main/java/com/mware/core/model/longRunningProcess/FindPathLongRunningProcessWorker.java] sees that it can work on the message, finds all of the paths between the specified vertices, and sends those results to the UI.

Development

Long Running Processes have an isHandled method and a processInternal method that need to be implemented as a minimum to create a LongRunningProcessWorker. Like the Data Workers, the isHandled [http://localhost/java/com/mware/core/model/longRunningProcess/LongRunningProcessWorker.html#isHandled-org.json.JSONObject-] method allows the long running process to filter through the messages that are put onto the long running process queue. Then, the canonical class reference must be in that same project’s META-INF/services/com.mware.core.model.longRunningProcess.LongRunningProcessWorker file so it can be loaded from the classpath.

isHandled

This method returns true if the Long Running Process Worker can operate on the incoming message. Otherwise, it returns false.

processInternal

This method handles the message that the isHandled method above returned true for.

Deployment

Long Running Processes are deployed inside of the web server by default. Running the Long Running Processes in the web server is good enough for a typical installation, but the requirements are going to vary widely depending on things like:

	Your data size,

	How resource-intensive your long running processes are on the server,

	The number of cores on each box.

Long Running Processes are run inside of their own threads on the server and run independently of each other. It is possible to run more than one instance of long running processes which can be useful if your Long Running Process message queue gets backed up.

To add more instances of each Long Running Process Worker, simply add/change the following in your properties file:

#Set number of long running process threads to 2
com.mware.core.process.LongRunningProcessRunnerProcess.threadCount=2

If you do not want Long Running Processes to run inside of the web server, add the following to your configuration:

#disable the long running processes running inside of the web server
disable.com.mware.core.process.LongRunningProcessRunnerProcess=true

Data Worker Plugins

Data Workers are designed for data enhancement and individual scoring analytics on each element or property of the graph. Data Workers will get notified of every change made to elements and properties in the system and allow other Data Workers to act on those changes. For example, the PhoneNumberExtractorWorker [https://github.com/mware-solutions/dw-plugins/blob/master/phone-number-extractor/src/main/java/com/mware/gpw/phone/PhoneNumberExtractorWorker.java] analyzes each property of every element in the system and tries to determine if there is a phone number in the text. It then proposes that the phone number it found should be resolved to a concept that is defined in the ontology and broadcasts the changes to the UI.

The Data Workers follow the blackboard design pattern [https://en.wikipedia.org/wiki/Blackboard_%28design_pattern%29] model. Each Data Worker notifies the thread that is running it that it can work on an element and an optional property. If the worker returns true from its isHandled method is called, then that Data Worker’s execute method is called with additional data. The Data Worker is then able to contribute data or run operations on that specific element or property.

Development

For a bare-bone Data Worker you must implement two methods: the execute method and the isHandled method.

isHandled

This method must return true if the specific DataWorker can handle the element or property that is passed into that method. Otherwise the method return false and the execute method on the DataWorker will not be called.

execute

All work should be done inside of this method for every Data Worker. The InputStream parameter is only populated if the value that is retrieved from the vertex is a StreamingPropertyValue. The DataWorkerData object that gets passed in is a data object that encapsulates all of the information about the element and the context in which the Data Worker may need to consider.

Use Cases

Data Enhancement

Since Data Workers look at the data on a per-element and per-property basis, data enhancement can be easily applied to each element. As an example, consider a video that is loaded into BigConnect by someone who is trying to discover if a specific person is in the video. The following steps can happen if the correct Data Workers are running and an appropriate ontology is created.

	The file is uploaded to the server.

	The server creates a vertex with the following properties set:

	Raw property set to the bytes of the video file

	FileName property set to the name of the video file

	Concept type set to the raw concept

	The vertex is queued and submitted to the Data Workers.

	Every Data Worker sees the new vertex after it is de-queued by the runner and the MimeTypeExtractor Data Worker sees that it is a raw vertex and it can handle

	The MimeTypeExtractor Data Worker sees that the raw bytes are a video and sets the concept type to video.

	After the MimeTypeExtractor is done, it re-queues the vertex so that other Data Workers can see the changes that were made.

	Every Data Worker sees the updated vertex from the queue and a Data Worker splits the video into separate images and re-queues the vertex.

	Again, every data worker sees that video frames are now images on the vertex and a facial recognition Data Worker pulls out the people in each image and checks to see if the specific person is in the video.

Analytics

Imagine we wanted to update a fraud score on a person vertex. We could write a Data Worker which listens for any changes made to any person vertex and update that fraud score. Below is some pseudo code on how you might do that.

public class PersonFraudScoreDW extends DataWorker {
 public boolean isHandled(Element element, Property property) {
 return isPersonVertex(element);
 }

 public void execute(InputStream in, DataWorkerData data) throws Exception {
 double fraudScore = calculateFraudScore(data.getElement(), data.getElement().getEdges());
 data.getElement().setProperty("fraudScore", fraudScore);
 }
}

Deployment

Data Workers are deployed inside of the web server by default. This configuration works well for development and installations that do not need to scale up further than their web server. On large installations it may be required to move the Data Workers out of the web server. When each Data Worker starts up, they are all started inside of their own threads and a DataWorkerRunner coordinates each of them together. It is possible to run more than one set of Data Workers in the server which can be valuable if you are running on multi-core hardware. To add more Data Worker threads, ensure that the following is in your configuration:

#Set number of graph property worker threads to 4
com.mware.core.process.DataWorkerRunnerProcess.threadcount=4

If you do not want the graph property workers running inside of the web server, add the following to your configuration.

#disable the graph property workers running inside of the web server
disable.com.mware.core.process.DataWorkerRunnerProcess=true

Creating a plugin

Prerequisites

There will be some development in this tutorial so we recommend that you at least be familiar with the command line, maven and a java IDE that works with maven (e.g. IntelliJ).

Background

One of the major parts of BigConnect is the system of Data Workers that enhance and analyze the data. Since most organizations are going to have different use-cases and needs for working with the data, we designed the Data Workers to be as pluggable as possible.

Skeleton

package com.mware.helloworld.worker;

import com.mware.ge.Element;
import com.mware.ge.Property;
import com.mware.core.ingest.dataworker.DataWorkerData;
import com.mware.core.ingest.dataworker.DataWorker;

import java.io.InputStream;

public class HelloWorldDataWorker extends DataWorker {
 @Override
 public boolean isHandled(Element element, Property property) {
 return false;
 }

 @Override
 public void execute(InputStream inputStream, DataWorkerData dataWorkerData) throws Exception {

 }
}

In order to load it on the classpath, we need to modify the services file in the resources directory:

Go into the worker/src/main/resources/META-INF/services directory and add the HelloWorldDataWorker line to the file com.mware.core.ingest.dataworker.DataWorker. to look like this:

com.mware.helloworld.worker.ExampleDataWorker
com.mware.helloworld.worker.HelloWorldDataWorker

Go back to the root of your project and run mvn clean package, then add the generated jar to your classpath. Go back to the admin pane, check the list of plugins, and expand the Data Worker drop down. You will now see your data worker in the list of plugins. Unfortunately, there isn’t a nice name for it or a description, so let us add one.Add the following annotations to the class (look at the example data worker for a reference) and import the correct classes.

import com.mware.core.model.Description;
import com.mware.core.model.Name;

@Name("My Hello World Data Worker")
@Description("Sets the title of every person vertex to Hello World")

Run mvn clean package, then copy the jar to the classpath again. You will see the name and description update in the admin plugin list.

Adding Functionality

Right now we have a skeleton of a data worker, but it doesn’t do anything. As it stands, it only tells the entire data worker framework that it can’t work on anything because it returns false every time the isHandled method is called. We want to enable it to do whatever it needs to do. Ctrl+C out of the web server then change the isHandled method to return element instanceof Vertex and import the correct classes.

Now your code should look like:

// ... imports omitted
@Name("My Hello World Data Worker")
@Description("Sets the title of every person vertex to Hello World")
public class HelloWorldDataWorker extends DataWorker {
 @Override
 public boolean isHandled(Element element, Property property) {
 return element instanceof Vertex;
 }

 @Override
 public void execute(InputStream inputStream, DataWorkerData dataWorkerData) throws Exception {

 }
}

But that isn’t all. We only want to deal with people vertices, not every vertex is going to have a full name property. To do that, we are going to need put one more boolean statement inside of the isHandled method.

"person".equals(BcProperties.CONCEPT_TYPE.getPropertyValue(element));

Your HelloWorldDataWorker should now look like this:

@Name("My Hello World Data Worker")
@Description("Sets the title of every person vertex to Hello World")
public class HelloWorldDataWorker extends DataWorker {
 @Override
 public boolean isHandled(Element element, Property property) {
 return element instanceof Vertex && "person".equals(BcProperties.CONCEPT_TYPE.getPropertyValue(element));
 }

 @Override
 public void execute(InputStream inputStream, DataWorkerData dataWorkerData) throws Exception {
 }
}

Now we will get only the person vertices in the execute method, but we still aren’t doing anything with them. Add the following lines to the execute method to actually do the grunt work of setting the person vertices names to Hello World.

// gets the vertex from the data object that is passed in
Vertex v = (Vertex) dataWorkerData.getElement();

// sets the property on the vertex, using the visibility of the vertex and the authorizations of the graph property worker
v.setProperty("fullName", "Hello World", v.getVisibility(), getAuthorizations());

// flush the changes to the graph
getGraph().flush();

// notify the UI and future workers that there was a change to the data
getWorkQueueRepository().pushGraphPropertyQueue(v, "", "fullName", Priority.NORMAL);

Since we now are changing the properties, we need to make sure that the data worker won’t change the title to “Hello World” continually. Add the following boolean condition to the isHandled method

!"Hello World".equals(element.getPropertyValue("fullName"))

Your HelloWorldDataWorker class now looks like:

package com.mware.helloworld.worker;

import com.mware.ge.Element;
import com.mware.ge.Property;
import com.mware.ge.Vertex;

import com.mware.core.ingest.dataworker.DataWorkerData;
import com.mware.core.ingest.dataworker.DataWorker;
import com.mware.core.model.Description;
import com.mware.core.model.Name;
import com.mware.core.model.properties.BcProperties;
import com.mware.core.model.workQueue.Priority;

import java.io.InputStream;

@Name("My Hello World Data Worker")
@Description("Sets the title of every person vertex to Hello World")
public class HelloWorldDataWorker extends DataWorker {
 @Override
 public boolean isHandled(Element element, Property property) {
 return element instanceof Vertex &&
 "person".equals(BcProperties.CONCEPT_TYPE.getPropertyValue(element)) &&
 !"Hello World".equals(element.getPropertyValue("fullName"));
 }

 @Override
 public void execute(InputStream inputStream, DataWorkerData dataWorkerData) throws Exception {
 Vertex v = (Vertex)graphPropertyWorkData.getElement();
 v.setProperty("fullName", "Hello World", v.getVisibility(), getAuthorizations());
 getGraph().flush();
 getWorkQueueRepository().pushGraphPropertyQueue(v, "", "fullName", Priority.NORMAL);
 }
}

Go to your project root and run mvn clean package and then deploy the jar again. Restart you app.

We need to test out that the data worker actually makes the changes that we intend. To do that, we are going to add an entity to the graph and watch it’s name change.

	Click on Graph in the right hand side of the screen

	Right click on the graph.

	Click New Entity…

	In the concept type text box, type Person and hit enter

	Click on Create

You will see a person get added to the graph, and their name quickly change from “No Title Available” to “Hello World”.

Web Plugins

BigConnect is designed to be a single page application, but requests must be made back to the server to retrieve information, process data, and manage many other back-end services. Since BigConnect was designed to be extensible with many different types of plugins, web plugins fit naturally into BigConnect’s architecture.

Web plugins are deployed alongside BigConnect inside of the web server and are used to both add custom functionality and override existing components.

Development

Creating a web app plugin can range from creating some JavaScript that can execute inside of BigConnect all the way to overriding the current functionality of an endpoint inside BigConnect. This means that web app plugins will always have some sort of mix of front-end and back-end components that provide functionality.

To start working with a web plugin, you must implement the interface com.mware.web.WebAppPlugin [https://github.com/mware-solutions/bigconnect-web/blob/master/web-base/src/main/java/com/mware/web/WebAppPlugin.java] and register all of your helper files in there. Since BigConnect has its own web layer framework, please consider reading the Web Framework section to understand more about how it works.

Before diving into web plugin development, there are a few things every developer should know.

Compiling the front-end

From the bigconnect-web/war project directory, assuming that you have the prerequisites installed, the front-end can be compiled with:

mvn clean compile

Compiling the front-end is useful if you want to customize the provided Web Console.

Localization

All strings are loaded from MessageBundle.properties property files. Extend/replace strings using a web plugin that defines/overrides strings in another bundle using a web plugin. Use the registerMessageBundle Java API.

Translate message keys to current locale value using i18n JavaScript function available in global scope:

i18n("visibility.label")

The translation function also supports interpolation. If a message key is defined as my.property=The {0} brown fox {1} over the lazy dog then in the JavaScript code you can do:

i18n("my.property", "quick", "jumps");
// returns "The quick brown fox jumps over the lazy dog"

Routing with URL fragments

The Web Console has a built-in set of routing using the URLs fragment identifier.

Open Entity / Relation details:

Fragment: #v=[(v[vertexId] | e[edgeId])]&w=[workspaceId]
Example: https://localhost:8888/#v=vMY_VERTEX_ID,eMy_EDGE_ID&w=MY_WORKSPACE

Opens the full-screen view of one or many entities/relationships. A v or e must prefix the id to signify the element type.

Prompt User to Add Entity / Relation

Fragment: #add=[(v[vertexId] | e[edgeId])]
Example: https://localhost:8888/#add=MY_VERTEX_ID_1,MY_VERTEX_ID_2

Opens the Web Console, but prompts the user to add the passed in vertices to their space. Those vertices must be published.

Open Admin Section

Fragment: #admin=[section][name]
Example: https://localhost:8888/#admin=plugin:ui+extensions

Opens the Web Console and the admin pane (if the user has admin privilege) to the admin tool with name [name] in section [section].

Property Info Metadata

Properties have an info icon that opens a metadata popover. The metadata displayed can be configured with configuration property files.

properties.metadata.propertyNames: Lists metadata properties to display in popover
properties.metadata.propertyNameDisplay: Lists metadata display name keys (MessageBundle.properties)
properties.metadata.propertyNamesType: Lists metadata types to format values.

Metadata Types: timezone, datetime, user, sandboxStatus, percent

Helpful Global Functions

These are some developer helper functions. Run these commands in the browser console.

LiveReload

Have the browser auto refresh when changes are made. This is remembered in local storage so, it only needs to be run once to enable. grunt must be watching.

enableLiveReload(true); // to enable (refresh browser once to start)
enableLiveReload(false); // to disable

Switch Language

Test changing the language. Sets a localStorage token and reloads the page while loading appropriate resources. Useful for checking the UI with different size text.

switchLanguage('de'); // Accepts language or language and country with "_". Ex: en_us

Component Highlighter

Overlays component name using mouseover events. Useful for checking what component is responsible for what on the page.

enableComponentHighlighting(true); // Display component overlays
enableComponentHighlighting(false); // Disable component overlays

Deployment

To ensure that your web plugin is deployed, it needs to be loaded onto the classpath by adding it’s fully qualified class name into the META-INF/services/com.mware.web.WebAppPlugin file in a jar that is on the classpath.

Creating a React plugin

Writing components in React [https://facebook.github.io/react] is now the preferred way to extend the Web Console with custom features. Most extension points already support React, but check their documentation to make sure.

When writing a web plugin, there are two methods to include React components:

	Use registerJavaScriptComponent to include a React jsx component from the plugins resource folder.

	Integrate a build step to your plugins pom.xml to transpile jsx components and then register them with registerCompiledJavaScript.

Each approach as its pros and cons, as we will see below.

registerJavaScriptComponent

PROS:

	Easy to get started, or for components with minimal complexity. Doesn’t require separate build step.

CONS:

	Doesn’t scale as well with many files. Each file must be registered.

	Each file registered slows server startup as they are compiled at run-time

	Compilation failures will happen at run-time

Example

This example will create a plugin that creates a new card that users can add to their dashboard.

Create a java file at plugins/web/src/main/java/org/bigconnect/example/web/ReactDemoWebAppPlugin.java with the following content:

package org.bigconnect.example.web;

import com.mware.core.model.Description;
import com.mware.core.model.Name;
import com.mware.web.WebApp;
import com.mware.web.WebAppPlugin;
import com.mware.web.framework.Handler;

import javax.servlet.ServletContext;

@Name("React Web Demo")
@Description("Register a React JSX File")
public class ReactDemoWebAppPlugin implements WebAppPlugin {
 public void init(WebApp app, ServletContext servletContext, Handler authenticationHandler) {
 // Register plugin to use extension registry
 app.registerJavaScript("/org/bigconnect/example/web/react-plugin.js");

 // Register React components
 app.registerJavaScriptComponent("/org/bigconnect/example/web/ReactDemo.jsx");
 app.registerJavaScriptComponent("/org/bigconnect/example/web/ReactDemoConfig.jsx");
 }
}

Next, we need to load our web plugin into the web server using service loading, so open up the plugins/web/src/main/resources/META-INF/services/com.mware.web.WebAppPlugin and add the line:

org.bigconnect.example.web.ReactDemoWebAppPlugin

so now that file is going to look like:

org.bigconnect.example.web.ExampleWebAppPlugin org.bigconnect.example.web.SelectedVertexWebAppPlugin org.bigconnect.example.web.ReactDemoWebAppPlugin

Create the following files:

	plugins/web/src/main/resources/org/bigconnect/example/web/react-plugin.js:

define(['public/v1/api'], function(api) {
 api.registry.registerExtension('org.bigconnect.web.dashboard.item', {
 title: 'React Demo',
 description: 'React dashboard card demo',
 identifier: 'org-bigconnect-example-web-react',

 // Note: Leave off the file extension as requirejs assumes ".js" which
 // is created at runtime.
 componentPath: 'org/bigconnect/example/web/ReactDemo',
 configurationPath: 'org/bigconnect/example/web/ReactDemoConfig'
 })
})

	plugins/web/src/main/resources/org/bigconnect/example/web/ReactDemo.jsx:

// 'react', 'create-react-class', and 'prop-types' come from RequireJS.
define(['create-react-class'], function(createReactClass) {
 const ReactDemo = createReactClass({
 render() {
 const { item } = this.props;
 const { configuration } = item;
 const { val = 'Not Set' } = configuration
 return (<div>
 <h1>Hello Dashboard Card with React</h1>
 <h2>Config = {val}</h2>
 </div>);
 }
 })

 return ReactDemo;
})

	plugins/web/src/main/resources/com/bigconnect/example/web/ReactDemoConfig.jsx:

define(['create-react-class', 'prop-types'], function(createReactClass, PropTypes) {
 const ReactDemoConfig = createReactClass({
 propTypes: {
 item: PropTypes.shape({
 configuration: PropTypes.object.isRequired
 }).isRequired,
 extension: PropTypes.object.isRequired
 },
 render() {
 const { item } = this.props;
 const { configuration } = item;
 const { val = 'Not Set' } = configuration
 return (<button onClick={this.onClick}>Config = {val}</button>);
 },
 onClick() {
 const { item, extension, configurationChanged } = this.props;
 const val = item.configuration.val || 0;
 const newConfig = {
 ...item.configuration,
 val: val + 1
 };
 configurationChanged({ item: { ...item, configuration: newConfig }, extension: extension });
 }
 })

 return ReactDemoConfig;
})

All JSX components will be compiled using Babel. ReactDemo.jsx will compile to ReactDemo.js and create a SourceMap at ReactDemo.src.js.

registerCompiledJavaScript

Recommended for complex interface plugins that have deeper component hierarchy.

PROS

	Files are compiled at build-time, so no server startup delay

	Allows use of custom transpile / babel settings

	Better performance, only one request is needed to load all dependencies

	Easier to include other build steps like linting, testing, etc.

	Identify compilation errors at build time

CONS

	Adds complexity to the build process, must configure Maven and WebPack

Example

This example will create a plugin that creates a new card that users can add to their dashboard.

All these files remain the same as previous example: ReactDemo.jsx, and ReactDemoConfig.jsx, but now we change pom.xml, react-plugin.js, and ReactDemoWebAppPlugin.java

First, lets create a package.json file to manage our plugins dependencies in our plugins/web/src/main/resources/org/bigconnect/example/web directory:

{
 "name": "web",
 "version": "1.0.0",
 "main": "js/react-plugin.js",
 "devDependencies": {
 "babel-core": "^6.26.0",
 "babel-plugin-transform-object-rest-spread": "^6.26.0",
 "babel-plugin-transform-react-display-name": "^6.25.0",
 "babel-plugin-transform-react-jsx": "^6.24.1",
 "babel-preset-es2015": "^6.24.1",
 "react": "^16.2.0",
 "webpack": "^3.10.0"
 },
 "dependencies": {
 "babel-loader": "^7.1.2"
 }
}

Run yarn install in the plugins/web/src/main/resources/org/bigconnect/example/web directory.

Now create a .babelrcfile in the plugins/web/src/main/resources/org/bigconnect/example/web directory, with the following contents:

{
 "plugins": [
 "transform-react-jsx",
 "transform-react-display-name",
 "transform-object-rest-spread",

 // Iterate all preset-2015 except commonjs
 "check-es2015-constants",
 "transform-es2015-arrow-functions",
 "transform-es2015-block-scoped-functions",
 "transform-es2015-block-scoping",
 "transform-es2015-classes",
 "transform-es2015-computed-properties",
 "transform-es2015-destructuring",
 "transform-es2015-duplicate-keys",
 "transform-es2015-for-of",
 "transform-es2015-function-name",
 "transform-es2015-literals",

 // Removed transform-es2015-modules-commonjs
 // Breaks files because of top-level this, breaks amd on front-end

 "transform-es2015-object-super",
 "transform-es2015-parameters",
 "transform-es2015-shorthand-properties",
 "transform-es2015-spread",
 "transform-es2015-sticky-regex",
 "transform-es2015-template-literals",
 "transform-es2015-typeof-symbol",
 "transform-es2015-unicode-regex",
 "transform-regenerator"
]
}

Create a webpack configuration file: plugins/web/src/main/resources/org/bigconnect/example/web/webpack.config.js with the following contents:

// webpack.config.js
var path = require('path');
var webpack = require('webpack');
var BcAmdExternals = [
 'public/v1/api',
 'create-react-class'
].map(path => ({ [path]: { amd: path, commonjs2: false, commonjs: false }}));

module.exports = {
 entry: {
 ReactDemo: './ReactDemo.jsx',
 ReactDemoConfig: './ReactDemoConfig.jsx'
 },
 output: {
 path: path.resolve(__dirname, 'dist'),
 filename: '[name].js',
 library: '[name]',
 libraryTarget: 'umd',
 },
 externals: BcAmdExternals,
 resolve: {
 extensions: ['.js', '.jsx']
 },
 module: {
 rules: [
 {
 test: /\.jsx?$/,
 exclude: /(node_modules)/,
 use: [
 { loader: 'babel-loader' }
]
 }
]
 },
 devtool: 'source-map',
 plugins: [
 new webpack.optimize.UglifyJsPlugin({
 mangle: process.env.NODE_ENV !== 'development',
 compress: {
 drop_debugger: false,
 warnings: true
 }
 })
]
};

Try a build by running webpack from the plugins/web/src/main/resources/org/bigconnect/example/web directory:

node ./node_modules/webpack/bin/webpack.js

Now, lets change the plugin to register the compiled files. Edit the ReactDemoWebAppPlugin.java file to match the contents below:

@Name("React Web Demo")
@Description("Register a React JSX File")
public class ReactDemoWebAppPlugin implements WebAppPlugin {
 public void init(WebApp app, ServletContext servletContext, Handler authenticationHandler) {
 // Register plugin to use extension registry
 // We don't use webpack for this file
 app.registerJavaScript("/org/bigconnect/example/web/react-plugin.js");

 // Register React components by pointing to the webpack compiled versions in dist folder
 app.registerCompiledJavaScript("/org/bigconnect/example/web/dist/ReactDemo.js");
 app.registerCompiledJavaScript("/org/bigconnect/example/web/dist/ReactDemoConfig.js");
 }
}

Change the react-plugin.js file to use compiled files:

define(['public/v1/api'], function(api) {
 api.registry.registerExtension('org.bigconnect.web.dashboard.item', {
 title: 'React Demo',
 description: 'React dashboard card demo',
 identifier: 'org-bigconnect-example-web-react',

 // Note: Leave off the file extension as requirejs assumes ".js" which
 // is created at runtime.
 componentPath: 'org/bigconnect/example/web/dist/ReactDemo',
 configurationPath: 'org/bigconnect/example/web/dist/ReactDemoConfig'
 })
})

Finally, we need to integrate yarn and webpack into the maven build. In your plugin’s pom.xml, add the following:

<build>
 <plugins>
 <plugin>
 <groupId>com.github.eirslett</groupId>
 <artifactId>frontend-maven-plugin</artifactId>
 <version>${plugin.frontend}</version>
 <configuration>
 <workingDirectory>src/main/resources/org/bigconnect/example/web</workingDirectory>
 <installDirectory>${frontend.installDirectory}</installDirectory>
 </configuration>
 <executions>
 <execution>
 <id>yarn install</id>
 <goals>
 <goal>yarn</goal>
 </goals>
 <configuration>
 <arguments>install --production=false</arguments>
 </configuration>
 </execution>
 <execution>
 <id>webpack build</id>
 <goals>
 <goal>webpack</goal>
 </goals>
 <phase>generate-resources</phase>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

Now run mvn compile to test the build and you are ready to go.

Creating a standard plugin

First steps

Lets create a new web app plugin so that we can dive into more detail on how the web app plugins are designed. To get started, first clone the bigconnect-plugin-template [https://github.com/mware-solutions/bigconnect-plugin-template] project:

git clone https://github.com/mware-solutions/bigconnect-plugin-template.git

We will be working in the plugins/web folder in the cloned project, so create a java file at plugins/web/src/main/java/org/bigconnect/example/web/SelectedVertexWebAppPlugin.java with the following content:

package org.bigconnect.example.web;

import com.google.inject.Singleton;
import com.mware.web.framework.Handler;
import com.mware.core.model.Description;
import com.mware.core.model.Name;
import com.mware.web.WebApp;
import com.mware.web.WebAppPlugin;

import javax.servlet.ServletContext;

@Name("Selected Vertex Action Web App Plugin")
@Description("Registers a new menu item which will send back the vertex that it was clicked from and call some action on it")
@Singleton
public class SelectedVertexWebAppPlugin implements WebAppPlugin {
 @Override
 public void init(WebApp app, ServletContext servletContext, Handler authenticationHandler) {

 }
}

This class is responsible for telling the web server exactly which files it will be serving and in which context it will be serving them. Next, we need to load our web plugin into the web server using service loading, so open upplugins/web/src/main/resources/META-INF/services/com.mware.web.WebAppPlugin and add the line:

org.bigconnect.example.web.SelectedVertexWebAppPlugin

so now that file is going to look like this:

org.bigconnect.example.web.ExampleWebAppPlugin org.bigconnect.example.web.SelectedVertexWebAppPlugin

Lets just make sure that the web app plugin appears in the application. At the root of your repository, run mvn clean package and then run ./run.sh. When the application comes up, enter the application using admin/admin and look at the list of plugins in the admin pane. Under the webapp directory, you should see that you have an entry for the web plugin that you just made.

Congratulations! You successfully made a web plugin, but of course, it doesn’t do anything.

Making the web plugin do something

There are two possible parts to each web plugin, the back-end code which will handle any web requests and the front-end code which will add to BigConnect’s Web Console. We will be adding a little bit of both. To start, let’s create the menu item on the front-end.

To start, we need to create the files that will be served by BigConnect and then tell the web server to serve them up. Create a file plugins/web/src/main/resources/org/bigconnect/example/web/selectedvertexplugin.js with the following content:

require([
 'public/v1/api'
], function (
 api
) {
 'use strict';

 //register the extension to the registry.
 //BigConnect will query the registry to know what plugins to run.
 //This code will create a new menu in the context menu and, when clicked,
 // will launch the 'doAction' event through the dom thanks to flight.
 api.registry.registerExtension('org.bigconnect.vertex.menu', {
 label: 'Do Action',
 event: 'doAction'
 });

 //create an handle for the doAction event that gets created from above.
 $(document).on('doAction', function(e, data) {
 //output the fact that there was an event and the parameters to the console.
 console.log("action happened", e, data);
 });
});

We are almost done. Now, we need to tell the web server that we want this JavaScript file to be served on every page. Open up the plugins/web/src/main/java/org/bigconnect/example/web/SelectedVertexWebAppPlugin.java and add the following line into the init method:

app.registerJavaScript("/org/bigconnect/example/web/selectedvertexplugin.js", true);

Now we are telling BigConnect where to load the JavaScript code from. It will be on the classpath since the selectedvertexplugin.js file is bundled with the war. By setting the last boolean parameter to true, we are telling it that we want the JavaScript file included in the page when the page loads. Loading the script on the page is the correct thing to do when the page loads so that our plugin can be registered, but you don’t typically want too many things to be loaded on the page because it will make startup slower. Try to defer loading of resources as long as possible.

Now your web plugin class should like the following:

package org.bigconnect.example.web;

import com.google.inject.Singleton;
import com.mware.web.framework.Handler;
import com.mware.core.model.Description;
import com.mware.core.model.Name;
import com.mware.web.WebApp;
import com.mware.web.WebAppPlugin;

import javax.servlet.ServletContext;

@Name("Selected Vertex Action Web App Plugin")
@Description("Registers a new menu item which will send back the vertex that it was clicked from and call some action on it")
@Singleton
public class SelectedVertexWebAppPlugin implements WebAppPlugin {
 @Override
 public void init(WebApp app, ServletContext servletContext, Handler authenticationHandler) {
 app.registerJavaScript("/org/bigconnect/example/web/selectedvertexplugin.js", true);
 }
}

Go to the root of your project and run mvn clean package && ./run.sh again and reload the web browser to see the changes that we made. Create a vertex and right click on it; you should see a menu item that says ‘Do Action’ inside of it. Make sure your browser JavaScript console is open and then simply click on the menu item. You will see a “action happened” message displayed the console.

Congratulations! We now have a front-end-only web plugin which is pretty good. But what we really want to do is be able to communicate from the front-end to the back-end and do something with the response on the front-end.

In the next steps we will create and use a web-worker to send an ajax request to the server, do something with it, and receive back some data on the front end.

Communicate with the server

To start, let’s create an endpoint that we can have the ajax request hit. For right now, we are just going to System.out.printf the information that we get receive from the front end.

To do that, we need to register an endpoint to let the front end hit it, so lets create the callback first. Create a java file at plugins/web/src/main/java/org/bigconnect/example/web/SelectedVertexAction.java with the following content:

package org.bigconnect.example.web;

import com.mware.core.model.clientapi.dto.ClientApiObject;
import com.mware.web.framework.ParameterizedHandler;
import com.mware.web.framework.annotations.Handle;
import com.mware.web.framework.annotations.Required;
import com.mware.web.model.ClientApiSuccess;

public class SelectedVertexAction implements ParameterizedHandler {
 @Handle
 public ClientApiObject handle(
 @Required(name = "vertexId") String vertexId
) {
 System.out.printf("Received a post with %s as the specified vertexId\n", vertexId);
 return new ClientApiSuccess();
 }
}

This class will output the vertex that was clicked on and return a success message. Next, we need to register this class with BigConnect, so open up the SelectedVertexWebAppPlugin class and add the following line:

app.post("/selected", authenticationHandler.getClass(), BcCsrfHandler.class, SelectedVertexAction.class);

to the init method. There are a couple of parameters that you don’t have to worry about right now that are a part of the method call, but the most important parameter is the SelectedVertexAction.class parameter which references the class that will handle the web request.

Unfortunately we aren’t done here. We need to write the web worker that will actually call that endpoint. Create a file plugins/web/src/main/resources/org/bigconnect/example/web/selectedvertexwebworker.js with the following content:

define('data/web-worker/services/selectedvertex', [
 'public/v1/workerApi'
], function(workerApi) {
 var ajax = workerApi.ajax;
 'use strict';
 return {
 selected: function(vertexId) {
 return ajax('POST', '/selected', { vertexId: vertexId });
 }
 }
})

We will also need to register our new web-worker in the SelectedVertexWebAppPlugin class, so append the following line at the end of the init method.

app.registerWebWorkerJavaScript("/org/bigconnect/example/web/selectedvertexwebworker.js");

This web-worker is the data layer between the REST API and JavaScript code. It will run inside of a promise that will allow the code that calls it to use the information that is returned by the AJAX request. Since we are currently returning ClientApiSuccess, it will only return a true value wrapped in a JSON object, but it will become more important to pass the data back when we are doing more complicated things on the server.

Only one more thing to do. Make the web-worker do the REST API call. Change the code in plugins/web/src/main/resources/org/bigconnect/example/web/selectedvertexplugin.js to look like the following:

require([
 'public/v1/api'
], function (
 api
) {
 'use strict';

 api.registry.registerExtension('org.bigconnect.vertex.menu', {
 label: 'Do Action',
 event: 'doAction'
 });

 $(document).on('doAction', function(e, data) {
 //require the data object necessary to do the ajax request
 api.connect().then(function(connectApi) {

 //do the ajax request. Notice how 'selectedvertex' is defined at the top of the web worker and 'selected' is the method name in the web worker
 connectApi
 .dataRequest('selectedvertex', 'selected', data.vertexId)
 .then(function(response) {
 //just console.log the result
 console.log("got response back from the server!", response);
 });
 });
 });
});

Save that file and run mvn clean package && ./run.sh in your project. Right click on a vertex in the graph and click on the ‘Do Action’ menu. On the server you will see a message that looks like “Received a post with as the specified vertexId”, and in your browser console you will see something that looks like got response back from the server! Object {success: true}

More back-end work

Typically, you are going to want to do something on the back-end and send the results to the front-end. To demonstrate this concept, we have to make some changes to what happens in the route that we just made. Change the SelectedVertexAction.java file to look like the following:

package org.bigconnect.example.web;

import com.google.inject.Inject;
import com.mware.core.model.clientapi.dto.ClientApiObject;
import com.mware.core.model.workQueue.WorkQueueRepository;
import com.mware.ge.Authorizations;
import com.mware.ge.Graph;
import com.mware.ge.Vertex;
import com.mware.web.framework.ParameterizedHandler;
import com.mware.web.framework.annotations.Handle;
import com.mware.web.framework.annotations.Required;
import com.mware.web.model.ClientApiSuccess;
import com.mware.web.parameterProviders.ActiveWorkspaceId;

import java.text.SimpleDateFormat;
import java.util.Date;

public class SelectedVertexAction implements ParameterizedHandler {
 private Graph graph;
 private WorkQueueRepository repository;

 @Inject
 public SelectedVertexAction(Graph graph, WorkQueueRepository repository) {
 this.graph = graph;
 this.repository = repository;
 }

 @Handle
 public ClientApiObject handle(
 @Required(name = "vertexId") String vertexId,
 @ActiveWorkspaceId(required = false) String workspaceId,
 Authorizations authorizations
) {
 //get the vertex that was sent back from the front end
 Vertex v = graph.getVertex(vertexId, authorizations);

 //put the current date and time into the string
 String format = new SimpleDateFormat().format(new Date());

 //make a new title for the vertex
 final String newName = String.format("Action (%s)", format);

 //set the property on the vertex
 v.setProperty("helloworld#fullName", newName, v.getVisibility(), authorizations);

 // make sure that the changes are persisted into the graph
 this.graph.flush();

 //tell the case that the vertex has changed so it needs to be reloaded
 this.repository.broadcastElement(v, workspaceId);

 return new ClientApiSuccess();
 }
}

This code will now change the name of the vertex that the menu item was opened on to “Action (_current time_)”.

Note that in this example we didn’t send the information back to the front-end through the web request. We instead broadcasted a message to the front-end saying the vertex has changed and needs to be reloaded.

Let’s send the new title to the front-end and have it create a simple JavaScript alert box. At the end of the handle method, instead of returning the ClientApiSuccess object return:

return new ClientApiObject() {
 public String getNewName(){
 return newName;
 }
};

Now we are passing the message back to the front-end instead of just passing back a success message. Go into the selectedvertexplugin.js file and add the following instead of the console message:

 alert("Vertex " + data.vertexId + " title changed to " + response.newName);

The new name of the element will be passed back to the front-end and a JavaScript alert will be shown to the user.

Conclusion

This tutorial summarized the basic steps of creating a web plugin. We created a plugin that can exchange data between the front-end and the back-end. Using these simple concepts, it’s now possible to build more complicated features.

Extension Points

Extension Points

Extension points are places built into BigConnect’s Web Console to define additional behavior. Custom plugins can also define extension points that can be implemented by other plugins.

An extension point is simply a mapping from a string – the namespaced extension point name – to a JavaScript object. What kind of object is defined by the consumer of the extension point.

All registered extension points are viewable in the admin panel, under UI Extensions, and in the table of contents in this document.

To register some custom behavior, require the public/v1/api [https://docs.bigconnect.io/%7E/drafts/-LQEgexO3YP4CDrrELDr/primary/javascript/module-public_v1_api.html] module, and use the registry [https://docs.bigconnect.io/%7E/drafts/-LQEgexO3YP4CDrrELDr/primary/javascript/module-registry.html] member.

require(['public/v1/api'], function(bc) { var registry = bc.registry; registry.registerExtension([extension point name], [extension point object])})

For example, to add an item to the menu bar, use the Menu bar extension point:

bc.registry.registerExtension('org.bigconnect.menubar', { title: i18n('org.bigconnect.examples.menubar.title'), identifier: 'org-bigconnect-examples-menubar', action: { type: 'pane', componentPath: 'org/bigconnect/examples/menubar/Pane' }, welcomeTemplatePath: 'hbs!org/bigconnect/examples/menubar/welcome', icon: '../img/glyphicons/white/glyphicons_066_tags@2x.png', options: { placementHint: 'top', placementHintAfter: 'search', }});

Web plugins can also define their own extension points. They do not need to be defined ahead of time, simply ask the registry for all registered extensions using a unique point name:

registry.extensionsForPoint([extension point name]);// Returns array of registered objects

It is good practice to define some documentation for your new extension point. Documenting provides a validation function, and a description shown in the admin panel under UI Extensions. Document the extension point using registry.documentExtensionPoint before prior to requesting registry.extensionsForPoint

registry.documentExtensionPoint('com.example.point', 'Description...', function () { return true; }, 'http://example.com/docs');

If you call documentExtensionPoint before extensionsForPoint all the extensions returned are guaranteed to have passed validation. Invalid extensions are logged as warnings in the JavaScript console. This documentation appears in the admin pane under UI Extensions. Add an external documentation URL using an optional 4th parameter.

[image: developer-guide/plugin-development/web-plugins/../../../.gitbook/assets/image%20%2842%29.png]

Invalid extensions are logged as warnings in the browser JavaScript console.

Please see the list of available extension points with descriptions and code examples under the section Extension Point Reference.

Extension Point Reference

description: Add additional items to the activity panel

Activity

Example code [https://github.com/mware-solutions/doc-examples/tree/master/extension-activity]

Activity extension points allow plugins to add additional items to the activity panel (opened via the gears menu bar icon.) These rows can show the progress of a long-running process or a front-end task using start/stop events.

[image: developer-guide/plugin-development/web-plugins/extension-point-reference-1/../../../../.gitbook/assets/image%20%2858%29.png]

This tutorial will create an example long-running process, and an activity item that shows its progress, along with a custom finished component. For details on creating the back-end long-running process, see the tutorial code link above.

Create a web plugin

The web plugin registers the resources needed, and creates a route to start the process.

he POST route to start the activity includes some filters before the StartExample handler. These are run in order and protect the route based on request and session conditions:

	authenticator: Will only allow authenticated users

	csrfProtector: Prevent cross-site request forgery attacks. Should be placed on all requests

	ReadPrivilegeFilter: Will only allow users that have this privilege. Other filters [https://github.com/mware-solutions/bigconnect-web/tree/master/web-base/src/main/java/com/mware/web/privilegeFilters] available in BigConnect

Register Extension

Register the activity extension in the plugin.js file. The type provided should match the type of the custom QueueItem.

app.registerJavaScript("/com/mware/examples/activity/plugin.js", true);
app.registerWebWorkerJavaScript("/com/mware/examples/activity/service.js");
app.registerJavaScriptComponent("/com/mware/examples/activity/Finished.jsx");
app.registerResourceBundle("/com/mware/examples/activity/messages.properties");
app.post("/com/mware/examples/activity/start", authenticator, csrfProtector, ReadPrivilegeFilter.class, StartExample.class);

ActivityWebAppPlugin.java (lines 21–28) [https://github.com/mware-solutions/doc-examples/blob/master/extension-activity/src/main/java/com/mware/examples/activity/ActivityWebAppPlugin.java#L21-L28]

Internationalization

Add a message bundle key for the type of activity

activity.tasks.type.com-mware-examples-activity=Example

messages.properties (line 1) [https://github.com/mware-solutions/doc-examples/blob/master/extension-activity/src/main/resources/com/mware/examples/activity/messages.properties#L1]

Finished Interface

Define the component to render when the process is complete, this just calls alert with the process JSON. The button will look at home with the dismiss button if it has btn btn-mini class names.

define(['react'], function(React) {
 const Finished = React.createClass({
 onClick() {
 alert(JSON.stringify(this.props.process, null, 2));
 },
 render() {
 return <button onClick={this.onClick} className="btn btn-mini">Test</button>
 }
 })
 return Finished;
})

Finished.jsx (lines 1–11) [https://github.com/mware-solutions/doc-examples/blob/master/extension-activity/src/main/resources/com/mware/examples/activity/Finished.jsx#L1-L11]

description: Add a section to the admin page

Admin

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-admin]

Admin extensions allow sections to be added in the admin pane that when clicked, open a custom component. This tutorial registers three admin extensions that show React, Flight, and an admin extension that opens a link.

[image: developer-guide/plugin-development/web-plugins/extension-point-reference-1/../../../../.gitbook/assets/image%20%2835%29.png]

Create a web plugin

First, create the web plugin that registers the resources.

app.registerJavaScript("/com/mware/examples/admin/plugin.js");

app.registerJavaScriptComponent("/com/mware/examples/admin/React.jsx");
app.registerJavaScript("/com/mware/examples/admin/flight.js", false);
app.registerJavaScriptTemplate("/com/mware/examples/admin/flight-template.hbs");

app.registerResourceBundle("/com/mware/examples/admin/messages.properties");

AdminWebAppPlugin.java (lines 17–23) [https://github.com/mware-solutions/doc-examples/blob/master/extension-admin/src/main/java/com/mware/examples/admin/AdminWebAppPlugin.java#L17-L23]

Register Extension

Register the admin extensions in the plugin.js file:

 bc.registry.registerExtension('org.bigconnect.admin', {
 section: i18n('com.mware.examples.admin.section'),
 name: i18n('com.mware.examples.admin.react.name'),
 subtitle: i18n('com.mware.examples.admin.react.subtitle'),
 componentPath: 'com.mware/examples/admin/React'
});

plugin.js (lines 3–8) [https://github.com/mware-solutions/doc-examples/blob/master/extension-admin/src/main/resources/com/mware/examples/admin/plugin.js#L3-L8]

The other two are very similar except we had sortHint to “Open URL” so it is first.

options: {
 sortHint: 0
}

plugin.js (lines 22–24) [https://github.com/mware-solutions/doc-examples/blob/master/extension-admin/src/main/resources/com/mware/examples/admin/plugin.js#L22-L24]

Notice we use the globally available i18n function to display strings. These are defined in messages.properties

com.mware.examples.admin.section=Examples
com.mware.examples.admin.react.name=React
com.mware.examples.admin.react.subtitle=React admin example

messages.properties (lines 2–4) [https://github.com/mware-solutions/doc-examples/blob/master/extension-admin/src/main/resources/com/mware/examples/admin/messages.properties#L2-L4]

description: Create custom login authentication mechanisms

Authentication

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-authentication]

Create custom login authentication mechanisms.

[image: developer-guide/plugin-development/web-plugins/extension-point-reference-1/../../../../.gitbook/assets/image%20%2810%29.png]

Create a web plugin

The web plugin registers the resources needed, and creates a route the form will POST credentials.

app.registerBeforeAuthenticationJavaScript("/com/mware/examples/authentication/plugin.js");
app.registerJavaScript("/com/mware/examples/authentication/authentication.js", false);
app.registerJavaScriptTemplate("/com/mware/examples/authentication/login.hbs");
app.registerCss("/com/mware/examples/authentication/login.css");
app.registerResourceBundle("/com/mware/examples/authentication/messages.properties");

app.post(AuthenticationHandler.LOGIN_PATH, login);

ExampleAuthenticationPlugin.java (lines 24–30) [https://github.com/mware-solutions/doc-examples/blob/master/extension-authentication/src/main/java/com/mware/examples/authentication/ExampleAuthenticationPlugin.java#L24-L30]

This extension deviates from others in that the authentication plugin.js is registered using registerBeforeAuthenticationJavaScript. Since all plugin JavaScript isn’t loaded until after login, we need a different way to add scripts to the page earlier. Only the plugin file that registers the extension needs to be registered in this way. The actual authentication component is registered using registerJavaScript with the second parameter, includeInPage set to false, resulting in the component not being loaded on page load, but is always available to RequireJS.

Register Extension

Register the authentication extension in the plugin.js file:

define(['public/v1/api'], function(bc) {
 'use strict';

 bc.registry.registerExtension('org.bigconnect.authentication', {
 componentPath: 'com/mware/examples/authentication/authentication'
 })
});

plugin.js [https://github.com/mware-solutions/doc-examples/blob/master/extension-authentication/src/main/resources/com/mware/examples/authentication/plugin.js]

Create the JS Component

Create the FlightJS authentication component.

define([
 'public/v1/api',
 './login.hbs'
], function(
 bc,
 template) {
 'use strict';

 return bc.defineComponent(ExampleAuthentication);

 function ExampleAuthentication() {

 this.defaultAttrs({
 errorSelector: '.text-error',
 usernameSelector: '.login input.username',
 passwordSelector: 'input.password',
 loginButtonSelector: '.login .btn-primary',
 signInButtonSelector: '.signin',
 loginFormSelector: '.login'
 });

 this.after('initialize', function() {
 var self = this;

 this.$node.html(template(this.attr));
 this.enableButton(false);

 this.on('click', {
 loginButtonSelector: this.onLoginButton,
 signInButtonSelector: this.onSignInButton
 });

 this.on('keyup change paste', {
 usernameSelector: this.onUsernameChange,
 passwordSelector: this.onPasswordChange
 });

 this.select('usernameSelector').focus();
 });

 this.onSignInButton = function(event) {
 event.preventDefault();

 var form = this.select('loginFormSelector').show();
 _.defer(function() {
 form.find('input').eq(0).focus();
 });
 };

 this.checkValid = function() {
 var self = this,
 user = this.select('usernameSelector'),
 pass = this.select('passwordSelector');

 _.defer(function() {
 self.enableButton(
 $.trim(user.val()).length > 0 &&
 $.trim(pass.val()).length > 0
);
 });
 };

 this.onUsernameChange = function(event) {
 this.checkValid();
 };

 this.onPasswordChange = function(event) {
 this.checkValid();
 };

 this.onLoginButton = function(event) {
 var self = this,
 $error = this.select('errorSelector'),
 $username = this.select('usernameSelector'),
 $password = this.select('passwordSelector');

 event.preventDefault();
 event.stopPropagation();
 event.target.blur();

 if (this.submitting) {
 return;
 }

 this.enableButton(false, true);
 this.submitting = true;
 $error.empty();

 $.post('login', {
 username: $username.val(),
 password: $password.val()
 }).fail(function(xhr, status, error) {
 self.submitting = false;
 if (xhr.status === 403) {
 error = i18n('com.mware.examples.authentication.invalid');
 }
 $error.text(error);
 self.enableButton(true);
 })
 .done(function() {
 self.trigger('loginSuccess');
 })
 };

 this.enableButton = function(enable, loading) {
 if (this.submitting) return;
 var button = this.select('loginButtonSelector');

 if (enable) {
 button.removeClass('loading').removeAttr('disabled');
 } else {
 button.toggleClass('loading', !!loading)
 .attr('disabled', true);
 }
 };
 }
});

authentication.js [https://github.com/mware-solutions/doc-examples/blob/master/extension-authentication/src/main/resources/com/mware/examples/authentication/authentication.js]

When the login request succeeds, the component triggers loginSuccess, this notifies BigConnect that the application loading process should attempt to continue loading. If the session is not valid, the front-end state is undefined.

$.post('login', {
 username: $username.val(),
 password: $password.val()
}).fail(function(xhr, status, error) {
 self.submitting = false;
 if (xhr.status === 403) {
 error = i18n('com.mware.examples.authentication.invalid');
 }
 $error.text(error);
 self.enableButton(true);
})
.done(function() {
 self.trigger('loginSuccess');
})

authentication.js (lines 89–102) [https://github.com/mware-solutions/doc-examples/blob/master/extension-authentication/src/main/resources/com/mware/examples/authentication/authentication.js#L89-L102]

Login Route

The login route uses BigConnect’s UserRepository to create users, then prepares the session using CurrentUser.set.

public JSONObject handle(
 HttpServletRequest request,
 @Required(name = "username") String username,
 @Required(name = "password") String password
) throws Exception {
 username = username.trim();
 password = password.trim();

 if (isValid(username, password)) {
 User user = findOrCreateUser(username);
 userRepository.updateUser(user, new UserNameAuthorizationContext(username, RemoteAddressUtil.getClientIpAddr(request)));
 CurrentUser.set(request, user.getUserId(), user.getUsername());
 JSONObject json = new JSONObject();
 json.put("status", "OK");
 return json;
 } else {
 throw new BcAccessDeniedException("", null, null);
 }
}

Login.java (lines 27–45) [https://github.com/mware-solutions/doc-examples/blob/master/extension-authentication/src/main/java/com/mware/examples/authentication/Login.java#L27-L45]

description: Create new dashboard widgets

Dashboard Item

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-item]

Dashboard items are user-selectable content placed on the dashboard. These could be charts using the report configuration or custom components in React or FlightJS.

[image: developer-guide/plugin-development/web-plugins/extension-point-reference-1/../../../../.gitbook/assets/image%20%2836%29.png]

In this tutorial we will create two new dashboard items:

	Component that defines a report to show concept counts

	Custom React component that renders a number and configuration to increment

Web Plugin

Register the resources.

app.registerJavaScript("/com/mware/examples/dashboard_item/plugin.js", true);

app.registerJavaScriptComponent("/com/mware/examples/dashboard_item/React.jsx");
app.registerJavaScriptComponent("/com/mware/examples/dashboard_item/Config.jsx");

app.registerResourceBundle("/com/mware/examples/dashboard_item/messages.properties");

DashboardItemWebAppPlugin.java (lines 16–21) [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-item/src/main/java/com/mware/examples/dashboard_item/DashboardItemWebAppPlugin.java#L16-L21]

Register Extension

Register two extensions, a report-style card, and a custom component.

bc.registry.registerExtension('org.bigconnect.web.dashboard.item', {
 title: 'Concept Type Counts',
 description: 'Show total counts for entity types',
 identifier: 'com.mware-examples-dashboard-item',
 report: {
 defaultRenderer: 'org.bigconnect-pie',
 endpoint: '/vertex/search',
 endpointParameters: {
 q: '*',
 size: 0,
 filter: '[]',
 aggregations: [
 {
 type: 'term',
 name: 'field',
 field: ONTOLOGY_CONSTANTS.PROP_CONCEPT_TYPE
 }
].map(JSON.stringify)
 }
 }
 });

 bc.registry.registerExtension('org.bigconnect.web.dashboard.item', {
 title: 'React Component',
 description: 'Example React Component',
 identifier: 'com.mware-examples-dashboard-item-react',
 componentPath: 'com/mware/examples/dashboard_item/React',
 configurationPath: 'com/mware/examples/dashboard_item/Config'
 });

plugin.js (lines 3–31) [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-item/src/main/resources/com/mware/examples/dashboard_item/plugin.js#L3-L31]

Report Configuration

defaultRenderer: 'org.bigconnect-pie',
endpoint: '/vertex/search',
endpointParameters: {
 q: '*',
 size: 0,
 filter: '[]',
 aggregations: [
 {
 type: 'term',
 name: 'field',
 field: ONTOLOGY_CONSTANTS.PROP_CONCEPT_TYPE
 }
].map(JSON.stringify)
}

plugin.js (lines 8–21) [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-item/src/main/resources/com/mware/examples/dashboard_item/plugin.js#L8-L21]

Create the Custom Component

The custom component will also register a configuration component. It will access a count property in the configuration and display the current value.

 item: { ...item, configuration: { ...item.configuration, count: 0 } },
 extension
 })
});

React.jsx (lines 11–14) [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-item/src/main/resources/com/mware/examples/dashboard_item/React.jsx#L11-L14]

In the configuration component, we increment the count (creating if needed) when the button is clicked.

const { item, extension } = this.props;
const { configuration:previous } = item;
const configuration = { ...previous, count: (previous.count || 0) + 1 };

this.props.configurationChanged({
 item: { ...item, configuration },
 extension
})

Config.jsx (lines 15–22) [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-item/src/main/resources/com/mware/examples/dashboard_item/Config.jsx#L15-L22]

Wiring Refresh

Dashboard triggers refreshData on all items when the user clicks the refresh button in the top-right corner. To wire this message in a React component we need the DOM Element of the item, so first register a ref in render()

<div ref="wrap">

React.jsx (line 23) [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-item/src/main/resources/com/mware/examples/dashboard_item/React.jsx#L23]

Then, listen for the event, we must use Jquery to listen as Flight uses non-standard event triggering.

componentDidMount() {
 const { item, extension } = this.props;
 $(this.refs.wrap.parentNode).on('refreshData', (event) => {
 this.props.configurationChanged({
 item: { ...item, configuration: { ...item.configuration, count: 0 } },
 extension
 })
 });
},

React.jsx (lines 7–15) [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-item/src/main/resources/com/mware/examples/dashboard_item/React.jsx#L7-L15]

Finally, unregister the listener on teardown

componentWillUnmount() {
 $(this.refs.wrap.parentNode).off('refreshData');
},

React.jsx (lines 16–18) [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-item/src/main/resources/com/mware/examples/dashboard_item/React.jsx#L16-L18]

Custom UI Elements

[image: developer-guide/plugin-development/web-plugins/extension-point-reference-1/../../../../.gitbook/assets/image%20%2830%29.png]

Provide a configurationPath to the extension to add an additional user interface component in the configure popover. The figure describes how the configuration interface is generated for the saved search dashboard item.

The possible configuration can come from:

	Default configuration (edit title)

	Extension specific (configuration defined in extension configurationPath)

	Report configuration (choose which reportRenderer)

	Report chosen configuration (Report defined configurationPath)

The configuration component gets attributes of the item when opened.

	extension The extension registered

	item The item instance which includes configuration

To update an items configuration, trigger configurationChanged in FlightJS or call configurationChanged from props in React.

// Flight Example

this.attr.item.configuration.myConfigOption = 'newValue';
this.trigger('configurationChanged', {
 extension: this.attr.extension,
 item: this.attr.item
});

// React Example

var { item, extension } = this.props,
 configuration = { ...item.configuration, newStateValue: true };

item = { ...item, configuration }
this.props.configurationChanged({ item, extension })

description: Change dashboard widget layout

Dashboard Layout

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-layout]

Specifies the dashboard items, their sizes, and positions as the default dashboard configuration. Currently, only the first extension registered will be used. If no extension is registered, the system uses the default template.

All dashboard cards are placed in a grid system. The default grid is 12 columns and unbounded rows. If metrics is not defined or overlaps a previous definition, then the layout system will place the card automatically.

{% hint style=”warning” %}
The console will show a warning if multiple extensions are found. The extension used is non-deterministic.
{% endhint %}

Web Plugin

Register the plugin in a web plugin.

app.registerJavaScript("/com/mware/examples/dashboard_layout/plugin.js", true);

DashboardLayoutWebAppPlugin.java (line 16) [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-layout/src/main/java/com/mware/examples/dashboard_layout/DashboardLayoutWebAppPlugin.java#L16]

Register the Layout

A layout is just the extension and initial configuration metrics for the items.

bc.registry.registerExtension('org.bigconnect.web.dashboard.layout', [
 {
 extensionId: 'com.mware-examples-dashboard-item-react',
 configuration: { metrics: { x: 5, y: 0, width: 4, height: 3 } }
 },
 {
 extensionId: "com.mware-web-notifications",
 configuration: { metrics :{ x: 9, y: 0, width: 3, height: 3 } }
 }
]);

plugin.js (lines 3–12) [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-layout/src/main/resources/com/mware/examples/dashboard_layout/plugin.js#L3-L12]

description: Add new types of charts

Dashboard Report Renderer

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-reportrenderer]

Adds additional output types for dashboard items that define a report or item.configuration.report

[image: developer-guide/plugin-development/web-plugins/extension-point-reference-1/../../../../.gitbook/assets/image%20%2866%29.png]

For this tutorial, we’ll create a new JSON renderer that simply takes the result, formats it, then prints it.

[image: developer-guide/plugin-development/web-plugins/extension-point-reference-1/../../../../.gitbook/assets/image%20%2829%29.png]

Create the Web Plugin

Register the resources to define the extension and the referenced component:

app.registerJavaScript("/com/mware/examples/dashboard_reportrenderer/plugin.js", true);
app.registerJavaScript("/com/mware/examples/dashboard_reportrenderer/renderer.js", false);
app.registerResourceBundle("/com/mware/examples/dashboard_reportrenderer/messages.properties");

DashboardReportrendererWebAppPlugin.java (lines 16–18) [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-reportrenderer/src/main/java/com/mware/examples/dashboard_reportrenderer/DashboardReportrendererWebAppPlugin.java#L16-L18]

Register the Extension

Register the new report renderer. It will accept any response.

bc.registry.registerExtension('org.bigconnect.web.dashboard.reportrenderer', {
 identifier: 'com.mware-examples-dashboard-reportrenderer',
 label: i18n('com.mware.examples.dashboard_reportrenderer.label'),
 supportsResponse: function(data) {
 return true;
 },
 componentPath: 'com/mware/examples/dashboard_reportrenderer/renderer'
});

plugin.js (lines 3–10) [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-reportrenderer/src/main/resources/com/mware/examples/dashboard_reportrenderer/plugin.js#L3-L10]

Define the Renderer

Create the renderer component and include the mixin.

define([
 'public/v1/api',
 'dashboard/reportRenderers/withRenderer'
], function(api, withReportRenderer) {

 return api.defineComponent(JSONStringRenderer, withReportRenderer)

 function JSONStringRenderer() {

renderer.js (lines 1–8) [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-reportrenderer/src/main/resources/com/mware/examples/dashboard_reportrenderer/renderer.js#L1-L8]

Now, implement the processData and render functions

this.processData = function(data) {
 return JSON.stringify(data, null, 2);
}

this.render = function(d3, node, data) {
 d3.select(node)
 .style({
 'white-space': 'pre',
 'font-family': 'menlo',
 'font-size': '8pt'
 })
 .text(data);
}

renderer.js (lines 11–23) [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-reportrenderer/src/main/resources/com/mware/examples/dashboard_reportrenderer/renderer.js#L11-L23]

Renderer Mixin

The custom report renderer provides:

	Automatically requesting data using endpoint configuration

	Handling refresh and reflow events

	Basic click handling if aggregations found

	Error handling

If the renderer uses the mixin, the only function required is render. Optionally, a processData function can be defined to transform the raw server results. It’s better to process the data in processDatafunction instead of render because it will run once on refreshData events, instead of on every reflow event.

Built-In Report Renderers

[image: http://localhost/extension-points/front-end/dashboard/renderer-bar-h.png]org-bigconnect-bar-horizontal

Horizontal bar chart, also supports stacked bars if two aggregations provided.[image: http://localhost/extension-points/front-end/dashboard/renderer-bar-v.png]org-bigconnect-bar-vertical

Vertical bar chart, also supports stacked bars if two aggregations provided.[image: http://localhost/extension-points/front-end/dashboard/renderer-pie.png]org-bigconnect-pie

A classic pie chart.[image: http://localhost/extension-points/front-end/dashboard/renderer-text-overview.png]org-bigconnect-text-overview

Text cards that show number and text.[image: http://localhost/extension-points/front-end/dashboard/renderer-element-list.png]org-bigconnect-element-list

Standard list of elements, used in search results.

description: Add custom widget config options

Dashboard Toolbar Item

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-toolbaritem]

Allows custom buttons to be rendered next to the cards configuration button. These buttons (displayed as icons) can send an event on click, or specify content to be rendered in a popover.

[image: http://localhost/extension-points/front-end/dashboard/toolbar.png]

Web Plugin

Register resources for the plugin, the component, and the toolbar icon.

app.registerJavaScript("/com/mware/examples/dashboard_toolbaritem/plugin.js", true);
app.registerJavaScript("/com/mware/examples/dashboard_toolbaritem/popover.js", false);
app.registerResourceBundle("/com/mware/examples/dashboard_toolbaritem/messages.properties");
app.registerFile("/com/mware/examples/dashboard_toolbaritem/trash.png", "image/png");

DashboardToolbaritemWebAppPlugin.java (lines 16–19) [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-toolbaritem/src/main/java/com/mware/examples/dashboard_toolbaritem/DashboardToolbaritemWebAppPlugin.java#L16-L19]

Register Extension

Register the toolbar extension, specifying the component that will be rendered in a popover on click, and icon.

bc.registry.registerExtension('org.bigconnect.dashboard.toolbar.item', {
 identifier: 'com.mware-examples-dashboard-toolbar',
 canHandle: function(options) {
 return options.extension.identifier === 'com.mware-web-notifications'
 },
 tooltip: 'My Example Action',
 icon: '/com/mware/examples/dashboard_toolbaritem/trash.png',
 action: {
 type: 'popover',
 componentPath: 'com/mware/examples/dashboard_toolbaritem/popover'
 }
});

plugin.js (lines 3–14) [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-toolbaritem/src/main/resources/com/mware/examples/dashboard_toolbaritem/plugin.js#L3-L14]

Create the Popover Component

The popover component must be flight component, this one just renders some text. The dashboard handles the creation of the popover and simply renders this component in the content area.

function ExampleToolbarPopover() {
 this.after('initialize', function() {
 this.$node.text('Example Popover');
 });
}

popover.js (lines 8–14) [https://github.com/mware-solutions/doc-examples/blob/master/extension-dashboard-toolbaritem/src/main/resources/com/mware/examples/dashboard_toolbaritem/popover.js#L8-L14]

If content is updated in the popover and the size changes, the component should trigger an event to notify the popover parent component. This will adjust the anchor point to match the size change.

this.trigger('positionDialog');

description: Adjust how list items are displayed

Element List Item Renderer

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-entity-listitemrenderer]

This allows plugins to adjust how list items are displayed in search results, Inspector, or anywhere else the Element List Component is used.

[image: developer-guide/plugin-development/web-plugins/extension-point-reference-1/../../../../.gitbook/assets/image%20%286%29.png]

Web Plugin

Register the resources needed.

app.registerJavaScript("/com/mware/examples/entity_listitemrenderer/plugin.js", true);
app.registerJavaScript("/com/mware/examples/entity_listitemrenderer/component.js", false);
app.registerJavaScriptTemplate("/com/mware/examples/entity_listitemrenderer/template.hbs");
app.registerResourceBundle("/com/mware/examples/entity_listitemrenderer/messages.properties");
app.registerLess("/com/mware/examples/entity_listitemrenderer/style.less");

EntityListItemRendererWebAppPlugin.java (lines 16–20) [https://github.com/mware-solutions/doc-examples/blob/master/extension-entity-listitemrenderer/src/main/java/com/mware/examples/entity_listitemrenderer/EntityListItemRendererWebAppPlugin.java#L16-L20]

Register Extension

Now, register the item renderer. It will only override when the usageContext is searchresults. Some contexts send different input as the item parameter, so its recommended to accept specific contexts, rather than support all contexts.

bc.registry.registerExtension('org.bigconnect.entity.listItemRenderer', {
 canHandle: function(element, usageContext) {
 return usageContext === 'searchresults';
 },
 componentPath: 'com/mware/examples/entity_listitemrenderer/component'
});

plugin.js (lines 3–8) [https://github.com/mware-solutions/doc-examples/blob/master/extension-entity-listitemrenderer/src/main/resources/com/mware/examples/entity_listitemrenderer/plugin.js#L3-L8]

Create the JS Component

Create a Flight component that will render each row.

define([
 'public/v1/api',
 './template.hbs'
], function(
 api,
 template) {

 return api.defineComponent(ListItemExample);

 function ListItemExample() {

 this.attributes({
 item: null,
 usageContext: null,
 imgSelector: '.img'
 });

 this.after('initialize', function() {
 var $node = this.$node;
 var item = this.attr.item;
 var usageContext = this.attr.usageContext;

 api.connect().then(function(connected) {
 $node
 .addClass('example-renderer')
 .html(template({
 item: item,
 usageContext: usageContext,
 title: connected.formatters.vertex.title(item)
 }));
 })

 this.on('loadPreview', _.once(this.onLoadPreview.bind(this)));

 $node.data('vertexId', item.id);
 });

 this.onLoadPreview = function(event) {
 var self = this,
 item = this.attr.item;

 api.connect().then(function(c) {
 var url = c.formatters.vertex.image(item, null, 80, 80);
 var imageIsFromConcept = c.formatters.vertex.imageIsFromConcept(item);

 self.select('imgSelector')
 .toggleClass('icon', imageIsFromConcept)
 .css('background-image', 'url(' + url + ')');
 })
 };
 }
});

component.js [https://github.com/mware-solutions/doc-examples/blob/master/extension-entity-listitemrenderer/src/main/resources/com/mware/examples/entity_listitemrenderer/component.js]

Render the template using the item, and formatters.vertex.title to get the title.

.html(template({
 item: item,
 usageContext: usageContext,
 title: connected.formatters.vertex.title(item)
}));

component.js (lines 26–30) [https://github.com/mware-solutions/doc-examples/blob/master/extension-entity-listitemrenderer/src/main/resources/com/mware/examples/entity_listitemrenderer/component.js#L26-L30]

Remember to set the vertexId (or edgeId) in data of the element, for selection to work correctly.

$node.data('vertexId', item.id);

component.js (line 35) [https://github.com/mware-solutions/doc-examples/blob/master/extension-entity-listitemrenderer/src/main/resources/com/mware/examples/entity_listitemrenderer/component.js#L35]

To display an image in the row, wait for the loadPreview event that notifies the component that it has scrolled into view. As this event might be called many times, we ensure onLoadPreview is only ever called once using underscore.js _.once.

this.on('loadPreview', _.once(this.onLoadPreview.bind(this)));

component.js (line 33) [https://github.com/mware-solutions/doc-examples/blob/master/extension-entity-listitemrenderer/src/main/resources/com/mware/examples/entity_listitemrenderer/component.js#L33]

The image path returned from formatters.vertex.image function might be the concept icon, check if it using formatters.vertex.imageIsFromConcept is so we can style it differently.

this.onLoadPreview = function(event) {
 var self = this,
 item = this.attr.item;

 api.connect().then(function(c) {
 var url = c.formatters.vertex.image(item, null, 80, 80);
 var imageIsFromConcept = c.formatters.vertex.imageIsFromConcept(item);

 self.select('imgSelector')
 .toggleClass('icon', imageIsFromConcept)
 .css('background-image', 'url(' + url + ')');
 })
};

component.js (lines 38–50) [https://github.com/mware-solutions/doc-examples/blob/master/extension-entity-listitemrenderer/src/main/resources/com/mware/examples/entity_listitemrenderer/component.js#L38-L50]

Custom CSS

To customize styling, add a class to the node.

.addClass('example-renderer')

component.js (line 25) [https://github.com/mware-solutions/doc-examples/blob/master/extension-entity-listitemrenderer/src/main/resources/com/mware/examples/entity_listitemrenderer/component.js#L25]

.element-list ul li a.example-renderer {
 height: auto;
 min-height: 3em;
 padding: 0.5em 1em;
 display: flex;
 align-items: center;

 .img {
 @size: 40px;
 flex: 0 0 auto;
 width: @size;
 height: @size;
 border-radius: @size / 2;
 background-position: center;
 background-size: contain;
 margin-left: 0.5em;
 border: 1px solid #e2e2e2;

 &.icon {
 border-radius: 0;
 border-width: 0;
 background-size: 50% auto;
 background-repeat: no-repeat;
 }
 }
 .title {
 flex: 1 1 auto;
 }
}
// 5 lines hidden…

style.less (lines 1–29) [https://github.com/mware-solutions/doc-examples/blob/master/extension-entity-listitemrenderer/src/main/resources/com/mware/examples/entity_listitemrenderer/style.less#L1-L29]

When the row is selected the list element will have an active class. Certain elements may need to adjust to be visible with the blue selection background. The example changes the image border color:

.element-list ul li.active a.example-renderer {
 .img {
 border-color: #096d9e;
 }
}

style.less (lines 31–35) [https://github.com/mware-solutions/doc-examples/blob/master/extension-entity-listitemrenderer/src/main/resources/com/mware/examples/entity_listitemrenderer/style.less#L31-L35]

description: Add new items to vertex or edge context menu

Element Menu

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-element-context-menu]

Plugin to add new items to vertex or edge context menu. Providing a shouldDisable handler will still show the item in the context menu, provide a canHandle function if you want to remove items completely based on the current selection and target element.

To add a divider:

registry.registerExtension('org.bigconnect.vertex.menu', 'DIVIDER'); // vertex menu
registry.registerExtension('org.bigconnect.edge.menu', 'DIVIDER'); //edge menu

Example

To register an item:

require(['public/v1/api'], function(bc) {

 bc.connect().then(function(api) {
 bc.registry.registerExtension('org.bigconnect.vertex.menu', {
 label: i18n('com.mware.examples.vertex.menu.google'),
 event: 'context-menu-search-google',
 selection: 1,
 shouldDisable: (selection, vertexId, DOMelement, vertex) => {
 return api.formatters.vertex.title(vertex) === i18n('vertex.property.title.not_available');
 },
 options: {
 insertIntoMenuItems: function(item, items) {
 //add item under search submenu
 var search = _.findWhere(items, { label: i18n('vertex.contextmenu.search') });
 if (search && search.submenu) {
 search.submenu.push(item);
 } else {
 items.push(item);
 }
 }
 }
 });

 bc.registry.registerExtension('org.bigconnect.edge.menu', {
 label: i18n('com.mware.examples.edge.menu.delete'),
 event: 'context-menu-delete-edge',
 cls: 'context-menu-danger',
 options: {
 insertIntoMenuItems: function(item, items) {
 // Add item to the end of the list
 items.push(item);
 }
 }
 });

 $(document).on('context-menu-search-google', function(e, data) {
 api.dataRequest('vertex', 'store', {vertexIds: [data.vertexId]}).then(result => {
 var title = api.formatters.vertex.title(result[0]);
 var url = 'http://www.google.com/#safe=on&q=' + title;
 window.open(url, '_blank');
 });
 });

 $(document).on('context-menu-delete-edge', function(e, data) {
 data.edgeIds.forEach(edgeId => api.dataRequest('edge', 'delete', edgeId));
 });
 });
});
// 25 lines hidden…

plugin.js (lines 1–48) [https://github.com/mware-solutions/doc-examples/blob/master/extension-element-context-menu/src/main/resources/com/mware/examples/context_menu/plugin.js#L1-L48]

Then add an event listener to handle when your menu item is clicked:

 bc.connect().then(function(api) {
 bc.registry.registerExtension('org.bigconnect.vertex.menu', {
 label: i18n('com.mware.examples.vertex.menu.google'),
 event: 'context-menu-search-google',
 selection: 1,
 shouldDisable: (selection, vertexId, DOMelement, vertex) => {
 return api.formatters.vertex.title(vertex) === i18n('vertex.property.title.not_available');
 },
 options: {
 insertIntoMenuItems: function(item, items) {
 //add item under search submenu
 var search = _.findWhere(items, { label: i18n('vertex.contextmenu.search') });
 if (search && search.submenu) {
 search.submenu.push(item);
 } else {
 items.push(item);
 }
 }
 }
 });

 bc.registry.registerExtension('org.bigconnect.edge.menu', {
 label: i18n('com.mware.examples.edge.menu.delete'),
 event: 'context-menu-delete-edge',
 cls: 'context-menu-danger',
 options: {
 insertIntoMenuItems: function(item, items) {
 // Add item to the end of the list
 items.push(item);
 }
 }
 });

 $(document).on('context-menu-search-google', function(e, data) {
 api.dataRequest('vertex', 'store', {vertexIds: [data.vertexId]}).then(result => {
 var title = api.formatters.vertex.title(result[0]);
 var url = 'http://www.google.com/#safe=on&q=' + title;
 window.open(url, '_blank');
 });
 });

 $(document).on('context-menu-delete-edge', function(e, data) {
 data.edgeIds.forEach(edgeId => api.dataRequest('edge', 'delete', edgeId));
 });
 });
// 32 lines hidden…

plugin.js (lines 3–47) [https://github.com/mware-solutions/doc-examples/blob/master/extension-element-context-menu/src/main/resources/com/mware/examples/context_menu/plugin.js#L3-L47]

description: Change the style of graph edges

Graph Edge Class

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-edge-class]

Function that can change the Cytoscape [http://js.cytoscape.org/] style of edges. Useful for customizing the style of edges on the graph.

[image: http://localhost/extension-points/front-end/graphEdge/class.png]

Web Plugin

Register a plugin file to register the extensions.

app.registerJavaScript("/com/mware/examples/graph_edge_class/plugin.js", true);

GraphEdgeClassWebAppPlugin.java (line 16) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-edge-class/src/main/java/com/mware/examples/graph_edge_class/GraphEdgeClassWebAppPlugin.java#L16]

Register Extension

Register the class extension that checks if any of the edges (they are by default bundled together by type) has a comment. If any of them do, add a class.

bc.registry.registerExtension('org.bigconnect.graph.edge.class', function(edges, type, classes) {
 var hasComment = _.any(edges, function(edge) {
 var comment = _.findWhere(edge.properties, { name: ONTOLOGY_CONSTANTS.PROP_COMMENT_ENTRY })
 return comment && comment.value.indexOf('class') >= 0;
 });

 if (hasComment) {
 classes.push('hasComment')
 }
});

plugin.js (lines 3–12) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-edge-class/src/main/resources/com/mware/examples/graph_edge_class/plugin.js#L3-L12]

Register a style extension to test.

bc.registry.registerExtension('org.bigconnect.graph.style', function(cytoscapeStylesheet) {
 cytoscapeStylesheet.selector('edge.hasComment')
 .style({
 color: '#ff0000',
 'line-color': '#ff0000',
 'target-arrow-color': '#ff0000',
 width: 5
 })
});

plugin.js (lines 13–22) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-edge-class/src/main/resources/com/mware/examples/graph_edge_class/plugin.js#L13-L22]

description: Modify edge data

Graph Edge Transformer

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-edge-transformer]

Register a function that can modify the Cytoscape [http://js.cytoscape.org/] edge data.

[image: http://localhost/extension-points/front-end/graphEdge/transformer.png]

Web Plugin

Create a web plugin and register the plugin.

app.registerJavaScript("/com/mware/examples/graph_edge_transformer/plugin.js", true);

GraphEdgeTransformerWebAppPlugin.java (line 16) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-edge-transformer/src/main/java/com/mware/examples/graph_edge_transformer/GraphEdgeTransformerWebAppPlugin.java#L16]

Register Extension

Register the transformer that counts all the properties of the collapsed edges and sets a new data parameter called numProperties.

bc.registry.registerExtension('org.bigconnect.graph.edge.transformer', function(data) {
 data.numProperties = data.edges.reduce(function(sum, edge) {
 return sum + edge.properties.length;
 }, 0)
});

plugin.js (lines 3–7) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-edge-transformer/src/main/resources/com/mware/examples/graph_edge_transformer/plugin.js#L3-L7]

Create a style extension to test. We use mapData to interpolate the number into a color.

bc.registry.registerExtension('org.bigconect.graph.style', function(cytoscapeStylesheet) {
 cytoscapeStylesheet.selector('edge[numProperties]')
 .style({
 'line-color': 'mapData(numProperties, 4, 10, blue, red)',
 'target-arrow-color': 'mapData(numProperties, 4, 10, blue, red)'
 })
});

plugin.js (lines 9–15) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-edge-transformer/src/main/resources/com/mware/examples/graph_edge_transformer/plugin.js#L9-L15]

description: Add an Export menu option

Graph Export

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-export]

Register a function that can add a menu option in export context menu. If multiple export plugins are registered, they are placed in an “Export” submenu

.[image: http://localhost/extension-points/front-end/graphExport/menu.png] [image: http://localhost/extension-points/front-end/graphExport/export.png]

Web Plugin

Register the resources need for export, a plugin, component, template, stylesheet, and message bundle.

 app.registerJavaScript("/com/mware/examples/graph_export/configuration.js", false);
 app.registerJavaScriptTemplate("/com/mware/examples/graph_export/template.hbs");
 app.registerLess("/com/mware/examples/graph_export/style.less");
 app.registerResourceBundle("/com/mware/examples/graph_export/messages.properties");
}

GraphExportWebAppPlugin.java (lines 16–20) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-export/src/main/java/com/mware/examples/graph_export/GraphExportWebAppPlugin.java#L16-L20]

Register Extension

Register the extension to add a menu item to the graph context menu.

bc.registry.registerExtension('org.bigconnect.graph.export', {
 menuItem: i18n('com.mware.examples.graph_export.label'),
 componentPath: 'com/mware/examples/graph_export/configuration'
});

plugin.js (lines 3–6) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-export/src/main/resources/com/mware/examples/graph_export/plugin.js#L3-L6]

Define Component

Create the Flight component that logs the Cytoscape [http://js.cytoscape.org/] json backup.

function GraphExportExample() {

 this.after('initialize', function() {
 this.$node.html(template({
 productId: this.attr.productId,
 workspaceId: this.attr.workspaceId
 }));
 this.$node.find('pre')[0].textContent = JSON.stringify(this.attr.cy.json(), null, 2)
 });

}

configuration.js (lines 11–21) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-export/src/main/resources/com/mware/examples/graph_export/configuration.js#L11-L21]

Style

Add some stylesheet declarations in a wrapper class to avoid collisions with other plugins.

.com.mware-examples-graph_export {

 pre {
 width: 100%;
 min-width: 15em;
 font-family: menlo;
 font-size: 80%;
 height: 10em;
 overflow: auto;
 display: block;
 padding: 0.5em;
 box-sizing: border-box;
 white-space: pre;
 }

 code {
 width: 100%;
 overflow: hidden;
 text-overflow: ellipsis;
 display: block;
 margin: 0;
 padding: 0 1em;
 box-sizing: border-box;
 }
}
// 7 lines hidden…
// 10 lines hidden…

style.less [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-export/src/main/resources/com/mware/examples/graph_export/style.less]

description: Register new types of graph layout

Graph Layout

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-layout]

Plugin to add Cytoscape layout [http://js.cytoscape.org/#layouts]

[image: http://localhost/extension-points/front-end/graphLayout/layout.png]

Web Plugin

Register resources for the plugin and message bundle.

app.registerJavaScript("/com/mware/examples/graph_layout/plugin.js", true);
app.registerResourceBundle("/com/mware/examples/graph_layout/messages.properties");

GraphLayoutWebAppPlugin.java (lines 16–17) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-layout/src/main/java/com/mware/examples/graph_layout/GraphLayoutWebAppPlugin.java#L16-L17]

Register Extension

Register the layout extension.

bc.registry.registerExtension('org.bigconnect.graph.layout', MyLayout);

plugin.js (line 36) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-layout/src/main/resources/com/mware/examples/graph_layout/plugin.js#L36]

Create the Layout Class

The layout class is initialized with options for the layout. These options include the cy instance and the elements (eles) to layout. These should be filtered to real vertices .filter('.v') so we are not moving decorations.

MyLayout.identifier = 'example-random';
function MyLayout(options) {
 this.options = options;
}

MyLayout.prototype.run = function() {
 var cy = this.options.cy;

 // Use `eles` option allows layout
 // to work if running on all or selection
 // of nodes
 var nodes = this.options.eles || cy.nodes();

 var width = $(window).width();
 var height = $(window).height();

 nodes.filter('.v').each(function(i, node) {
 node.renderedPosition(retina.pointsToPixels({
 x: Math.round(Math.random() * width),
 y: Math.round(Math.random() * height)
 }));
 })

 // Must call ready and stop callbacks
 cy.one("layoutready", this.options.ready);
 cy.trigger("layoutready");

 cy.one("layoutstop", this.options.stop);
 cy.trigger("layoutstop");

 return this;
};

plugin.js (lines 3–34) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-layout/src/main/resources/com/mware/examples/graph_layout/plugin.js#L3-L34]

The positions are generated using a random number using the current window width. The use of retina.pointsToPixels allows transformation from virtual points to actual screen pixels in the case of a hidpi display.

node.renderedPosition(retina.pointsToPixels({
 x: Math.round(Math.random() * width),
 y: Math.round(Math.random() * height)
}));

plugin.js (lines 20–23) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-layout/src/main/resources/com/mware/examples/graph_layout/plugin.js#L20-L23]

Message Bundle

Add a i18n value in a MessageBundle.properties. This will be displayed in the graph context menu.

graph.layout.example-random.displayName=Random (Example)

messages.properties (line 1) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-layout/src/main/resources/com/mware/examples/graph_layout/messages.properties#L1]

description: Add custom styling to graph nodes

Graph Node Class

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-class]

Register a function that can add or remove classes from Cytoscape [http://js.cytoscape.org/] nodes for custom styling.[image: http://localhost/extension-points/front-end/graphNode/class.png]

Web Plugin

Register the plugin script in a web plugin.

app.registerJavaScript("/com/mware/examples/graph_node_class/plugin.js", true);

GraphNodeClassWebAppPlugin.java (line 16) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-class/src/main/java/com/mware/examples/graph_node_class/GraphNodeClassWebAppPlugin.java#L16]

Register Extension

Register the class extension and apply a unknownName class when the vertex [http://localhost/GLOSSARY.html#vertex] is a person with no name property [http://localhost/GLOSSARY.html#property].

bc.registry.registerExtension('org.bigconnect.graph.node.class', function(vertex, classes) {
 var name = _.findWhere(vertex.properties, { name: ONTOLOGY_CONSTANTS.PROP_TITLE })
 var concept = _.findWhere(vertex.properties, { name: ONTOLOGY_CONSTANTS.PROP_CONCEPT_TYPE })
 if (concept && concept.value === ONTOLOGY_CONSTANTS.CONCEPT_TYPE_PERSON && !name) {
 classes.push('unknownName')
 }
});

plugin.js (lines 3–9) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-class/src/main/resources/com/mware/examples/graph_node_class/plugin.js#L3-L9]

Register a style extension to test the behavior by adjusting the opacity.

bc.registry.registerExtension('org.bigconnect.graph.style', function(cytoscapeStylesheet) {
 cytoscapeStylesheet.selector('node.unknownName')
 .style({
 'opacity': '0.75'
 })
});

plugin.js (lines 11–16) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-class/src/main/resources/com/mware/examples/graph_node_class/plugin.js#L11-L16]

description: Add decorations to graph nodes

Graph Node Decoration

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-decoration]

Graph node decorations are additional detail to display around a vertex when displayed in a graph. These decorations are implemented as Cytoscape [http://js.cytoscape.org/] nodes inside of compound nodes. That allows them to be styled just like vertices using org.bigconnect.graph.style extensions.

{% hint style=”danger” %}
Decorations can have performance impact on the graph.

Once a node displays a decoration, another container node is created that is never removed. Also each decoration is a full cytoscape node.
{% endhint %}

Alignment Positions

The figure below shows the available positions. The alignment locations are automatically adjusted based on the placement of the text in a node.

[image: http://localhost/extension-points/front-end/graphDecorations/alignment-options.png]

Annotated positions and alignment configuration value:

	Top left { h: 'left', v: 'top' }

	Top center { h: 'center', v: 'top' }

	Top right { h: 'right', v: 'top' }

	Center left { h: 'left', v: 'center' }

	Center center { h: 'center', v: 'center' }

	Center right { h: 'right', v: 'center' }

	Bottom left { h: 'left', v: 'bottom' }

	Bottom center { h: 'center', v: 'bottom' }

	Bottom right { h: 'right', v: 'bottom' }

Note: There is no collision detection on decorations with equal alignments.

[image: http://localhost/extension-points/front-end/graphDecorations/decorations.png]

Web Plugin

Register the plugin script in a web plugin.

app.registerJavaScript("/com/mware/examples/graph_node_decoration/popover.js", false);

GraphNodeDecorationWebAppPlugin.java (line 17) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-decoration/src/main/java/com/mware/examples/graph_node_decoration/GraphNodeDecorationWebAppPlugin.java#L17]

Register Extension

Register the decoration extension for a new decoration in the top-left corner of nodes. This decoration will apply to all vertices that have a comment, and display the number of comments in the decoration.

bc.registry.registerExtension('org.bigconnect.graph.node.decoration', {
 applyTo: function(v) {
 return _.any(v.properties, function(p) {
 return p.name === ONTOLOGY_CONSTANTS.PROP_COMMENT_ENTRY &&
 p.value.indexOf(onlyDecorationAlignmentsText) === -1 &&
 p.value.indexOf("popover") === -1;
 })
 },
 alignment: { h: 'left', v: 'top' },
 classes: 'custom',
 data: function(vertex) {
 return {
 label: vertex.properties.reduce(function(sum, p) {
 if (p.name === ONTOLOGY_CONSTANTS.PROP_COMMENT_ENTRY) {
 return sum + 1;
 }
 return sum;
 }, 0)
 }
 }
});

plugin.js (lines 34–54) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-decoration/src/main/resources/com/mware/examples/graph_node_decoration/plugin.js#L34-L54]

The default graph style-sheet defines label as the content of the node.

content: 'data(label)',

styles.js (line 213) [https://github.com/mware-solutions/doc-examples/blob/master/main-source-doc/product/graph/styles.js#L213]

Register a style extension to format the decoration. All decorations have the decoration class, so append that to the selector to avoid conflicts with node classes.

 onClick: function(event, data) {
 var id = this.id();
 require(['com/mware/examples/graph_node_decoration/popover'], function(Popover) {
 Popover.attachTo(data.cy.container(), {
 anchorTo: {
 decorationId: id
 }
 });
 })
 }
});

plugin.js (lines 70–80) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-decoration/src/main/resources/com/mware/examples/graph_node_decoration/plugin.js#L70-L80]

Popover Tutorial

Decorations can have popovers that are opened when the user clicks on the decoration using the onClick handler

.[image: http://localhost/extension-points/front-end/graphDecorations/popover.png]

Web Plugin

Register the popover component and template.

app.registerJavaScript("/com/mware/examples/graph_node_decoration/plugin.js", true);
app.registerJavaScript("/com/mware/examples/graph_node_decoration/popover.js", false);
app.registerJavaScriptTemplate("/com/mware/examples/graph_node_decoration/template.hbs");

GraphNodeDecorationWebAppPlugin.java (lines 16–18) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-decoration/src/main/java/com/mware/examples/graph_node_decoration/GraphNodeDecorationWebAppPlugin.java#L16-L18]

Register Extension

Register the decoration with an onClick handler.

 onClick: function(event, data) {
 var id = this.id();
 require(['com/mware/examples/graph_node_decoration/popover'], function(Popover) {
 Popover.attachTo(data.cy.container(), {
 anchorTo: {
 decorationId: id
 }
 });
 })
 }
});

plugin.js (lines 70–80) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-decoration/src/main/resources/com/mware/examples/graph_node_decoration/plugin.js#L70-L80]

Popover Component

Create the Flight component to render the popover.

define([
 'public/v1/api',
 'util/popovers/withPopover'
], function(
 api,
 withPopover) {

 return api.defineComponent(DecorationPopover, withPopover);

 function DecorationPopover() {

 this.before('initialize', function(node, config) {
 config.template = '/com/mware/examples/graph_node_decoration/template'
 this.after('setupWithTemplate', function() {
 })
 });
 }
});

popover.js [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-decoration/src/main/resources/com/mware/examples/graph_node_decoration/popover.js]

The withPopover mixin provides the popover specific handling to attach to the decoration.

Add the template with the necessary markup for the popover.

<div class="fileImportPopover popover top collapseVisibility">
 <div class="popover-title">Example</div>
 <div class="arrow"></div>
 <div class="popover-content">
 Popover for Graph Node
 </div>
</div>

template.hbs [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-decoration/src/main/resources/com/mware/examples/graph_node_decoration/template.hbs]

The popover mixin calls setupWithTemplate to initialize the popover, so if extra work is needed to be done after the template has rendered, use after('setupWithTemplate'). this.dialog and this.popover are instance variables for the popover and the content.

description: Adjust the data for graph nodes

Graph Node Transformer

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-transformer]

Allows extensions to adjust the data attribute of Cytoscape [http://js.cytoscape.org/] nodes.[image: http://localhost/extension-points/front-end/graphNode/transformer.png]

This tutorial will adjust the size of graph nodes based on how many properties they have.

Web Plugin

Register the plugin script in a web plugin.

app.registerJavaScript("/com/mware/examples/graph_node_transformer/plugin.js", true);

GraphNodeTransformerWebAppPlugin.java (line 16) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-transformer/src/main/java/com/mware/examples/graph_node_transformer/GraphNodeTransformerWebAppPlugin.java#L16]

Register Extension

Register the transformer extension that just places a property count into the data object.

bc.registry.registerExtension('org.bigconnect.graph.node.transformer', function(vertex, data) {
 data.numProperties = vertex.properties.length;
});

plugin.js (lines 3–5) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-transformer/src/main/resources/com/mware/examples/graph_node_transformer/plugin.js#L3-L5]

Register a style extension to test the transformer. The selector checks for the data property and adjusts the size of the node depending on numProperties.

bc.registry.registerExtension('org.bigconnect.graph.style', function(cytoscapeStylesheet) {
 var pixelRatio = 'devicePixelRatio' in window ? window.devicePixelRatio : 1;
 cytoscapeStylesheet.selector('node[numProperties]')
 .style({
 'width': 'mapData(numProperties, 4, 15, ' + 30 * pixelRatio + ', ' + 75 * pixelRatio + ')',
 'height': 'mapData(numProperties, 4, 15, ' + 30 * pixelRatio + ', ' + 75 * pixelRatio + ')'
 })
});

plugin.js (lines 7–14) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-transformer/src/main/resources/com/mware/examples/graph_node_transformer/plugin.js#L7-L14]

description: Add custom graph option menu items

Graph Options

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-options]

Plugin to add custom options components (Flight or React) which display in the graph options menu (next to Fit) when the menu is opened.

[image: http://localhost/extension-points/front-end/graphOptions/options.png]

For this tutorial we’ll create a new options extension that adds a preferenced-backed checkbox. This could be used for toggling some built-in graph styles, for example.

Web Plugin

Register the plugin script and React component in a web plugin.

app.registerJavaScriptComponent("/com/mware/examples/graph_options/React.jsx");
app.registerResourceBundle("/com/mware/examples/graph_options/messages.properties");

GraphOptionsWebAppPlugin.java (lines 17–18) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-options/src/main/java/com/mware/examples/graph_options/GraphOptionsWebAppPlugin.java#L17-L18]

Register Extension

Register the options extension pointing to the React component.

bc.registry.registerExtension('org.bigconnect.graph.options', {
 identifier: 'com.mware-examples-graph-opts',
 optionComponentPath: 'com/mware/examples/graph_options/React'
});

plugin.js (lines 3–6) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-options/src/main/resources/com/mware/examples/graph_options/plugin.js#L3-L6]

Component

Create the component that renders a checkbox, and looks up user preferences.

define(['public/v1/api', 'create-react-class'], function(api, createReactClass) {

 const PREF_NAME = 'my-option-value'

 const MyOption = createReactClass({
 render() {
 const { cy } = this.props;
 const myOptionDefault = bcData.currentUser.uiPreferences[PREF_NAME];
 return (
 <label>My Setting
 <input
 onChange={this.onChange}
 type="checkbox"
 defaultChecked={myOptionDefault} />
 </label>
);
 },

React.jsx (lines 1–17) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-options/src/main/resources/com/mware/examples/graph_options/React.jsx#L1-L17]

Implement the saving of the preference when the user clicks the checkbox. This updates the in memory user object, and updates the server.

onChange(event) {
 const { checked } = event.target;
 bcData.currentUser.uiPreferences[PREF_NAME] = checked;
 api.connect()
 .then(c => c.dataRequest('user', 'preference', PREF_NAME, checked))
 .then(() => console.log('saved'))
}

React.jsx (lines 18–24) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-options/src/main/resources/com/mware/examples/graph_options/React.jsx#L18-L24]

description: Add custom graph selection types

Graph Selection

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-selection]

Add custom Cytoscape [http://js.cytoscape.org/] selection menu items. Graph provides select all, none, and invert by default.[image: http://localhost/extension-points/front-end/graphSelector/selection.png]

This tutorial will create a selection menu item to select a random node or edge.

Web Plugin

Register the plugin script in a web plugin.

app.registerResourceBundle("/com/mware/examples/graph_selection/messages.properties");

GraphSelectionWebAppPlugin.java (line 17) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-selection/src/main/java/com/mware/examples/graph_selection/GraphSelectionWebAppPlugin.java#L17]

Register Extension

Register the selection extension to find a random element and select it.

require(['public/v1/api'], function(bc) {

 var doRandomSelection = function(cy) {
 var elements = cy.elements('.v,.e').unselect(),
 randomIndex = Math.floor(Math.random() * elements.length);
 elements[randomIndex].select();
 }
 doRandomSelection.identifier = 'com.mware-examples-graph-selection';
 doRandomSelection.visibility = 'always';

 bc.registry.registerExtension('org.bigconnect.graph.selection', doRandomSelection);
});

plugin.js [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-selection/src/main/resources/com/mware/examples/graph_selection/plugin.js]

The elements function in Cytoscape will return all nodes and edges. This includes decorations on nodes, and temporary edges used for find path, etc. Filter by .v,.e to include only real vertices and edges.

description: Change the visuals style of graph objects

Graph Style

Apply additional Cytoscape styles [http://js.cytoscape.org/#style] to the graph. This is used to adjust the styling of all graph elements: Nodes, Edges, Decorations, etc.

	Node Styles [http://js.cytoscape.org/#style/node-body]

	Edges Styles [http://js.cytoscape.org/#style/edge-line]

	Core Styles [http://js.cytoscape.org/#style/core]

	Style values can use interpolation [http://js.cytoscape.org/#style/mappers] based on data values.

All style extensions have precedence over the built-in style if the selectors are similar specificity. The BigConnect style-sheet is defined as:

 function getExtensionStyles() {
 // Mock the cytoscape style fn api to the json style
 const collector = styleCollector();

 /**
 * @callback org.visallo.graph.style~StyleFn
 * @param {object} cytoscapeStyle
 * @param {function} cytoscapeStyle.selector Switch to adjusting the passed in selector string
 * @param {function} cytoscapeStyle.style Add styles to the current selector. Accepts one parameter,
 * the `object` of styles to add
 * @param {function} cytoscapeStyle.css Alias of `style`
 */
 styleExtensions.forEach(fn => fn(collector.mock));
 return collector.styles;

 function styleCollector() {
 const styles = {};
 var currentSelector;
 const add = (obj) => {
 if (!currentSelector) throw new Error('No selector found for style: ' + obj)
 styles[currentSelector] = obj;
 return api.mock;
 }
 const api = {
 mock: {
 selector: (str) => {
 currentSelector = str;
 return api.mock;
 },
 style: add,
 css: add
 },
 get styles() {
 return _.map(styles, (style, selector) => ({ selector, style }))
 }
 }
 return api;
 }
 }

 function getSelectionStyles() {
 return [
 {
 selector: 'node:selected',
 css: {
 'display': 'element',
 'opacity': 1,
 'background-image-opacity': 1,
 'background-color': '#0088cc',
 'border-color': '#0088cc',
 'color': '#0088cc'
 }
 },
 {
 selector: 'node[selectedImageSrc]:selected',
 css: {
 'background-image': 'data(selectedImageSrc)'
 }
 },
 {
 selector: 'edge:selected',
 css: {
 'display': 'element',
 'opacity': 1,
 'line-color': '#0088cc',
 'color': '#0088cc',
 'target-arrow-color': '#0088cc',
 'source-arrow-color': '#0088cc'
 }
 }

];
 }

 function getDefaultStyles() {
 return [
 {
 selector: 'core',
 css: {
 'outside-texture-bg-color': '#efefef'
 }
 },
 {
 selector: 'node',
 css: {
 'background-color': '#ccc',
 'background-fit': 'contain',
 'border-color': 'white',
 'background-image-crossorigin': 'use-credentials',
 'font-family': 'helvetica',
 'font-size': 18 * pixelRatio,
 'min-zoomed-font-size': 4,
 'text-events': 'yes',
 'text-outline-color': 'white',
 'text-outline-width': 2,
 'text-halign': 'center',
 'text-valign': 'bottom',
 content: 'Loading…',
 opacity: 1,
 color: '#999',
 height: GENERIC_SIZE * pixelRatio,
 shape: 'roundrectangle',
 width: GENERIC_SIZE * pixelRatio
 }
 },
 {
 selector: 'node.ancillary',
 css: {
 'background-color': '#fff',
 'background-fit': 'contain',
 'border-color': 'white',
 'background-image-crossorigin': 'use-credentials',
 'font-family': 'helvetica',
 'font-size': 18 * pixelRatio,
 'min-zoomed-font-size': 4,
 'text-events': 'yes',
 'text-outline-color': 'transparent',
 'text-outline-width': 0,
 'text-halign': 'center',
 'text-valign': 'center',
 content: '',
 opacity: 1,
 color: '#333',
 height: GENERIC_SIZE * pixelRatio,
 shape: 'rectangle',
 width: GENERIC_SIZE * pixelRatio
 }
 },
 {
 selector: 'node.ancillary.unhandled',
 css: {
 display: 'none'
 }
 },
 {
 selector: 'node.drawEdgeToMouse',
 css: {
 'background-opacity': 0,
 'text-events': 'no',
 width: GENERIC_SIZE * pixelRatio,
 height: GENERIC_SIZE * pixelRatio,
 shape: 'ellipse',
 content: '',
 events: 'no'
 }
 },
 {
 selector: 'node.v',
 css: {
 'background-color': '#fff',
 'background-image': 'data(imageSrc)',
 content: 'data(truncatedTitle)',
 }
 },
 {
 selector: 'node.c',
 css: {
 'background-color': '#fff',
 'background-image': 'data(imageSrc)',
 shape: 'rectangle',
 content: 'data(truncatedTitle)',
 }
 },
 {
 selector: 'node.decorationParent',
 css: {
 'background-image': 'none',
 'background-color': 'transparent',
 'background-opacity': 0,
 'compound-sizing-wrt-labels': 'exclude',
 content: ''
 }
 },
 {
 selector: 'node.decorationParent:active',
 css: {
 'background-color': 'transparent',
 'background-opacity': 0,
 'overlay-color': 'transparent',
 'overlay-padding': 0,
 'overlay-opacity': 0,
 'border-width': 0
 }
 },
 {
 selector: 'node.decoration',
 css: {
 'background-color': '#F89406',
 'background-image': 'none',
 'border-width': 2,
 'border-style': 'solid',
 'border-color': '#EF8E06',
 'text-halign': 'center',
 'text-valign': 'center',
 'font-size': 20,
 color: 'white',
 'text-outline-color': 'transparent',
 'text-outline-width': 0,
 content: 'data(label)',
 events: 'no',
 shape: 'roundrectangle',
 'padding-left': 5,
 'padding-right': 5,
 'padding-top': 3,
 'padding-bottom': 3,
 width: 'label',
 height: 'label',
 'z-index': 1
 }
 },
 {
 selector: 'node.decoration.hidden',
 css: {
 display: 'none'
 }
 },
 {
 selector: 'node.video',
 css: {
 shape: 'rectangle',
 width: (CUSTOM_IMAGE_SIZE * pixelRatio) * VIDEO_ASPECT_RATIO,
 height: (CUSTOM_IMAGE_SIZE * pixelRatio) / VIDEO_ASPECT_RATIO
 }
 },
 {
 selector: 'node.image',
 css: {
 shape: 'rectangle',
 width: (CUSTOM_IMAGE_SIZE * pixelRatio) * IMAGE_ASPECT_RATIO,
 height: (CUSTOM_IMAGE_SIZE * pixelRatio) / IMAGE_ASPECT_RATIO
 }
 },
 {
 selector: 'node.hasCustomGlyph',
 css: {
 width: CUSTOM_IMAGE_SIZE * pixelRatio,
 height: CUSTOM_IMAGE_SIZE * pixelRatio
 }
 },
 {
 selector: 'node.hover',
 css: {
 opacity: 0.6
 }
 },
 {
 selector: 'node.focus',
 css: {
 color: '#00547e',
 'font-weight': 'bold',
 'overlay-color': '#a5e1ff',
 'overlay-padding': 10 * pixelRatio,
 'overlay-opacity': 0.5
 }
 },
 {
 selector: 'edge.focus',
 css: {
 'overlay-color': '#a5e1ff',
 'overlay-padding': 7 * pixelRatio,
 'overlay-opacity': 0.5
 }
 },
 {
 selector: 'node.temp',
 css: {
 'background-color': 'rgba(255,255,255,0.0)',
 'background-image': 'none',
 width: '1',
 height: '1'
 }
 },
 {
 selector: 'node.controlDragSelection',
 css: {
 'border-width': 5 * pixelRatio,
 'border-color': '#a5e1ff'
 }
 },
 {
 selector: 'edge',
 css: {
 'font-size': 11 * pixelRatio,
 'target-arrow-shape': 'triangle',
 color: '#aaa',
 content: edgeLabels ? 'data(label)' : '',
 'curve-style': edgesCount > MaxEdgesBeforeHayStackOptimization || optimizedGraph ? 'haystack' : 'bezier',
 'min-zoomed-font-size': 3,
 'text-outline-color': 'white',
 'text-outline-width': 2,
 width: 2.5 * pixelRatio
 }
 },
 {
 selector: 'edge.label',
 css: {
 content: 'data(label)',
 'font-size': 12 * pixelRatio,
 color: '#0088cc',
 'text-outline-color': 'white',
 'text-outline-width': 4
 }
 },
 {
 selector: 'edge.drawEdgeToMouse',
 css: {
 events: 'no',
 width: 4,
 'line-color': '#0088cc',
 'line-style': 'dotted',
 'target-arrow-color': '#0088cc'
 }
 },
 {
 selector: 'edge.path-hidden-verts',
 css: {
 'line-style': 'dashed',
 content: 'data(label)',
 'font-size': 16 * pixelRatio,
 color: 'data(pathColor)',
 'text-outline-color': 'white',
 'text-outline-width': 4
 }
 },
 {
 selector: 'edge.path-edge',
 css: {
 'line-color': 'data(pathColor)',
 'target-arrow-color': 'data(pathColor)',
 'source-arrow-color': 'data(pathColor)',
 width: 4 * pixelRatio
 }
 },
 {
 selector: 'edge.temp',
 css: {
 width: 4,
 'line-color': '#0088cc',
 'line-style': 'dotted',
 'target-arrow-color': '#0088cc'
 }
 }
];
 }
 }
// 49 lines hidden…
// 9 lines hidden…
// 160 lines hidden…
// 18 lines hidden…

styles.js (lines 15–359) [https://github.com/mware-solutions/doc-examples/blob/master/main-source-doc/product/graph/styles.js#L15-L359]

Examples

Change the opacity of a node based on a class.

bc.registry.registerExtension('org.bigconnect.graph.style', function(cytoscapeStylesheet) {
 cytoscapeStylesheet.selector('node.unknownName')
 .style({
 'opacity': '0.75'
 })
});

plugin.js (lines 11–16) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-class/src/main/resources/com/mware/examples/graph_node_class/plugin.js#L11-L16]

Change the line color and thickness of an edge.

bc.registry.registerExtension('org.bigconnect.graph.style', function(cytoscapeStylesheet) {
 cytoscapeStylesheet.selector('edge.hasComment')
 .style({
 color: '#ff0000',
 'line-color': '#ff0000',
 'target-arrow-color': '#ff0000',
 width: 5
 })

plugin.js (lines 14–21) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-edge-class/src/main/resources/com/mware/examples/graph_edge_class/plugin.js#L14-L21]

Change the color of an edge (and edge arrow) based on value of data attribute.

bc.registry.registerExtension('org.bigconnect.graph.style', function(cytoscapeStylesheet) {
 cytoscapeStylesheet.selector('edge[numProperties]')
 .style({
 'line-color': 'mapData(numProperties, 4, 10, blue, red)',
 'target-arrow-color': 'mapData(numProperties, 4, 10, blue, red)'
 })
});

plugin.js (lines 9–15) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-edge-transformer/src/main/resources/com/mware/examples/graph_edge_transformer/plugin.js#L9-L15]

Change the size of a node based on the value of a data attribute

require(['public/v1/api'], function(bc) {

 bc.registry.registerExtension('org.bigconnect.graph.node.transformer', function(vertex, data) {
 data.numProperties = vertex.properties.length;
 });

 bc.registry.registerExtension('org.bigconnect.graph.style', function(cytoscapeStylesheet) {
 var pixelRatio = 'devicePixelRatio' in window ? window.devicePixelRatio : 1;
 cytoscapeStylesheet.selector('node[numProperties]')
 .style({
 'width': 'mapData(numProperties, 4, 15, ' + 30 * pixelRatio + ', ' + 75 * pixelRatio + ')',
 'height': 'mapData(numProperties, 4, 15, ' + 30 * pixelRatio + ', ' + 75 * pixelRatio + ')'
 })
 });
});

plugin.js [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-transformer/src/main/resources/com/mware/examples/graph_node_transformer/plugin.js]

Add multiple entries for decorations.

bc.registry.registerExtension('org.bigconnect.graph.style', function(style) {
 style
 .selector('.decoration.custom')
 .css({
 shape: 'octagon',
 'background-color': 'orange',
 'border-color': 'darkorange',
 'padding-left': 10,
 'padding-right': 10,
 'font-size': 23 * retina.devicePixelRatio,
 width: 20 * retina.devicePixelRatio,
 height: 20 * retina.devicePixelRatio
 })
 .selector('.decoration.customAll')
 .css({
 shape: 'roundrectangle',
 'background-color': 'blue',
 'border-color': 'darkblue',
 'padding-left': 10,
 'padding-right': 10,
 'font-size': 19 * retina.devicePixelRatio,
 width: 15 * retina.devicePixelRatio,
 height: 15 * retina.devicePixelRatio
 })

plugin.js (lines 82–105) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-node-decoration/src/main/resources/com/mware/examples/graph_node_decoration/plugin.js#L82-L105]

description: Add custom graph view overlay components

Graph View

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-view]

Plugin to add custom view components which overlay the graph. Used for toolbars, etc., that interact with the graph.

Views can be Flight or React components and should be styled to be absolutely positioned. The absolute position given is relative to the graph. 0,0 is top-left corner of graph.

[image: developer-guide/plugin-development/web-plugins/extension-point-reference-1/../../../../.gitbook/assets/image%20%2849%29.png]

Web Plugin

Register the plugin script, React component, and less in a web plugin.

app.registerJavaScript("/com/mware/examples/graph_view/plugin.js", true);
app.registerJavaScriptComponent("/com/mware/examples/graph_view/View.jsx");
app.registerLess("/com/mware/examples/graph_view/style.less");
app.registerResourceBundle("/com/mware/examples/graph_view/messages.properties");

GraphViewWebAppPlugin.java (lines 16–19) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-view/src/main/java/com/mware/examples/graph_view/GraphViewWebAppPlugin.java#L16-L19]

Register Extension

Register the options extension pointing to the React component.

bc.registry.registerExtension('org.bigconnect.graph.view', {
 componentPath: 'com/mware/examples/graph_view/View',
 className: 'com.mware-examples-graph-view'
});

plugin.js (lines 3–6) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-view/src/main/resources/com/mware/examples/graph_view/plugin.js#L3-L6]

Component

Create the graph view component. This one will be like a floating toolbar panel.

const GraphViewExample = createReactClass({
 render() {
 return (
 <div>
 Custom palette
 <div className="btn-toolbar">
 <div className="btn-group">
 <button className="btn btn-mini">A</button>
 <button className="btn btn-mini">B</button>
 <button className="btn btn-mini">C</button>
 </div>
 <div className="btn-group">
 <button className="btn btn-mini">D</button>
 <button className="btn btn-mini">E</button>
 </div>
 </div>
 </div>
)
 }
});

View.jsx (lines 6–25) [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-view/src/main/resources/com/mware/examples/graph_view/View.jsx#L6-L25]

Style

The less style file is wrapped in the class name defined in the component to avoid conflicts with other plugins and core BigConnect styles.

.com.mware-examples-graph-view {
 background: #ececec;
 display: inline-block;
 padding: 0.5em;
 margin: 0.5em;
 border: 1px solid #bdbdbd;
 box-shadow: 0 0px 20px rgba(0,0,0,0.1);
 border-radius: 2px;
 color: #4c4c4c;
 text-align: center;

 .btn-toolbar {
 margin: 0;
 }
}

.graph-views {
 background-color: transparent !important;
}

style.less [https://github.com/mware-solutions/doc-examples/blob/master/extension-graph-view/src/main/resources/com/mware/examples/graph_view/style.less]

description: Alter the element inspector

Inspector Component

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-layout-component]

The Inspector is rendered using a custom layout engine consisting of a tree of layout components. This layout engine can be used elsewhere to display elements using different contexts also.

Layout Components are nodes in the layout tree that define the type of layout and what children are included in the layout.

The children defined in a layout component can be references (ref) to other components, or FlightJS components specified with a componentPath. Layout components can also specify a flight component to be attached to the node for implementing behavior.

[image: http://localhost/extension-points/front-end/layout/inspector.png] [image: http://localhost/extension-points/front-end/layout/popup.png]

This tutorial will use layout components to override the body of all elements to include a new section above properties. Another extension will be created to modify the body of popup views in the graph (open from the entity’s context menu or long press on the entity to activate.)

[image: ../../../../_images/desc.png]

Web Plugin

Register the plugin script.

app.registerJavaScript("/com/mware/examples/layout_component/popupBody.js", false);

LayoutComponentWebAppPlugin.java (line 17) [https://github.com/mware-solutions/doc-examples/blob/master/extension-layout-component/src/main/java/com/mware/examples/layout_component/LayoutComponentWebAppPlugin.java#L17]

Register Extension

The extension will need to replace the org.bigconnect.layout.body layout component with a custom one. All plugins layout components have precedence over the built-in components unless the plugin component uses a less specific applyTo.

bc.registry.registerExtension('org.bigconnect.layout.component', {
 identifier: 'org.bigconnect.layout.body',
 children: [
 {
 ref: 'org.bigconnect.layout.text',
 model: 'Example of text layout component with fixed string',
 className: 'examples-layout_component-subheader'
 },
 { componentPath: 'detail/properties/properties', className: 'org-bigconnect-properties', modelAttribute: 'data' },
 { componentPath: 'comments/comments', className: 'org-bigconnect-comments', modelAttribute: 'data' },
 { componentPath: 'detail/relationships/relationships', className: 'org-bigconnect-relationships', modelAttribute: 'data' },
 { componentPath: 'detail/text/text', className: 'org-bigconnect-texts' }
]
});

plugin.js (lines 3–16) [https://github.com/mware-solutions/doc-examples/blob/master/extension-layout-component/src/main/resources/com/mware/examples/layout_component/plugin.js#L3-L16]

The component is identical to the one built-in to bigConnect with an additional child prepended.

{
 identifier: 'org.bigconnect.layout.body.right',
 children: [
 { componentPath: 'comments/comments', className: 'org-bigconnect-comments', modelAttribute: 'data' },
 { componentPath: 'detail/relationships/relationships', className: 'org-bigconnect-relationships', modelAttribute: 'data' }
]
},
{
 identifier: 'org.bigconnect.layout.body',

generic.js (lines 64–72) [https://github.com/mware-solutions/doc-examples/blob/master/main-source-doc/item/layoutComponents/generic.js#L64-L72]

The additional component uses a ref to reference a helper string component. The string component renders whatever model is passed to it as a string. The only modifications are an additional class that we use to style.

.examples-layout_component-subheader {
 margin: 1em;
 padding: 0.5em;
 border-radius: 3px;
 border: 1px solid #d6d013;
 background: lightyellow;
 color: #716409;
}

style.less (lines 11–18) [https://github.com/mware-solutions/doc-examples/blob/master/extension-layout-component/src/main/resources/com/mware/examples/layout_component/style.less#L11-L18]

Popup Extension

The popup extension overrides the same identifier org.bigconnect.layout.body, except with constraints and context of the graph popup.

bc.registry.registerExtension('org.bigconnect.layout.component', {
 applyTo: {
 constraints: ['width', 'height'],
 contexts: ['popup']
 },
 identifier: 'org.bigconnect.layout.body',
 children: [
 {
 componentPath: 'com/mware/examples/layout_component/popupBody',
 className: 'examples-layout_component-popupbody'
 }
]
});

plugin.js (lines 19–31) [https://github.com/mware-solutions/doc-examples/blob/master/extension-layout-component/src/main/resources/com/mware/examples/layout_component/plugin.js#L19-L31]

This extension uses a custom componentPath instead of a ref. The component is a FlightJS component that renders how many properties are on the element and a button to search for related entities. The component triggers positionDialog because it renders async. This event will reposition the popup based on its size.

this.render = function(model) {
 var self = this,
 $node = this.$node,
 count = model.properties.length;

 api.connect().then(function(c) {
 $node.text('This element has ' +
 c.formatters.string.plural(count, 'property', 'properties')
).append('<button class="btn btn-small">Search Related</button>')
 self.trigger('positionDialog');
 })
}

popupBody.js (lines 27–38) [https://github.com/mware-solutions/doc-examples/blob/master/extension-layout-component/src/main/resources/com/mware/examples/layout_component/popupBody.js#L27-L38]

All popups have interaction disabled with pointer-events: none, so one change is needed to make the button clickable. Add a pointer-events: all to the button in a stylesheet.

.btn {
 width: 16em;
 margin-top: 1em;
 display: block;
 pointer-events: all;
}

style.less (lines 4–9) [https://github.com/mware-solutions/doc-examples/blob/master/extension-layout-component/src/main/resources/com/mware/examples/layout_component/style.less#L4-L9]

String Component

org.bigconnect.layout.text is defined as a helper to render string models. The model passed to it is transformed to a string using String(model).

You can specify a text style, which sets a css class with builtin text styling. Valid Style options: title, subtitle, heading1, heading2, heading3, body, footnote

Or set a word count to truncate the text to: truncate: 20, which will also add a title attribute with the full model text.

children: [
 {
 ref: 'org.bigconnect.layout.text',
 model: 'hello world',
 style: 'title'
 }
]

Collection Item

Instead of setting a fixed number of children, specify collectionItem to render a dynamic number of child elements based on the model. For each item in a model array, the collection item is duplicated as a child. This requires the model to be an array, or an error is thrown.

registry.registerExtension('org.bigconnect.layout.component', {
 identifier: 'com.example.using.collection',
 children: [
 { ref: 'com.example.my.collection', model: ['First', 'Second'] }
]
});

registry.registerExtension('org.bigconnect.layout.component', {
 identifier: 'com.example.my.collection',
 // model: function(model) { /* optionally transform model */ return model; },
 collectionItem: { ref: 'org.bigconnect.layout.text' }
});

<!-- Output -->
<div>First</div>
<div>Second</div>

Using the Layout

The layout can be used to render any single element or list of items, it’s useful to specify context to allow custom rendering for that instance.

To initialize the renderer, attach the Item flight component to a DOM element, and pass a model object.

require(['detail/item/item'], function(Item) {
 Item.attachTo(domElement, {
 model: model,
 // Optional Array
 constraints: ['width'],
 // Optional String
 context: 'mycontext'
 });
});

description: Replace the element inspector text section

Inspector Text

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-detail-text]

Replace the default text collapsible section content in the Inspector.

{% hint style=”warning” %}
The console will show a warning if multiple extensions are found for a given vertex, name, and key. The extension used is non-deterministic.
{% endhint %}

[image: developer-guide/plugin-development/web-plugins/extension-point-reference-1/../../../../.gitbook/assets/image%20%281%29.png]

Web Plugin

Register the resources needed.

app.registerJavaScript("/com/mware/examples/detail_text/plugin.js", true);
app.registerJavaScriptComponent("/com/mware/examples/detail_text/Example.jsx");
app.registerResourceBundle("/com/mware/examples/detail_text/messages.properties");

DetailTextWebAppPlugin.java (lines 16–18) [https://github.com/mware-solutions/doc-examples/blob/master/extension-detail-text/src/main/java/com/mware/examples/detail_text/DetailTextWebAppPlugin.java#L16-L18]

Register Extension

Now, register the text extension for all text properties.

bc.registry.registerExtension('org.bigconnect.detail.text', {
 shouldReplaceTextSectionForVertex: function(vertex, name, key) {
 return true;
 },
 componentPath: 'com/mware/examples/detail_text/Example'
});

plugin.js (lines 3–8) [https://github.com/mware-solutions/doc-examples/blob/master/extension-detail-text/src/main/resources/com/mware/examples/detail_text/plugin.js#L3-L8]

The JS Component

The component can be React or Flight, here is a React example that prints the name, key pair.

render() {
 const { vertex, propertyName, propertyKey } = this.props;
 return (
 <dl>
 <dt>Name</dt>
 <dd><code>{propertyName}</code></dd>
 <dt>Key</dt>
 <dd><code>{propertyKey}</code></dd>
 </dl>
)
}

Example.jsx (lines 7–17) [https://github.com/mware-solutions/doc-examples/blob/master/extension-detail-text/src/main/resources/com/mware/examples/detail_text/Example.jsx#L7-L17]

description: Add toolbar items to the element inspector

Inspector Toolbar

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-detail-toolbar]

Allows additional toolbar items to be added to the Inspector.

[image: developer-guide/plugin-development/web-plugins/extension-point-reference-1/../../../../.gitbook/assets/image%20%2846%29.png]

Web Plugin

Register the resources needed.

app.registerJavaScript("/com/mware/examples/detail_toolbar/plugin.js", true);
app.registerResourceBundle("/com/mware/examples/detail_toolbar/messages.properties");

DetailToolbarWebAppPlugin.java (lines 16–17) [https://github.com/mware-solutions/doc-examples/blob/master/extension-detail-toolbar/src/main/java/com/mware/examples/detail_toolbar/DetailToolbarWebAppPlugin.java#L16-L17]

Register Extension

Now, register the toolbar item.

bc.registry.registerExtension('org.bigconnect.detail.toolbar', {
 title: i18n('com.mware.examples.detail_toolbar.google'),
 event: 'detail-toolbar-google',
 canHandle: function(objects) {
 return objects.vertices.length === 1 && objects.edges.length === 0
 && /#person$/.test(objects.vertices[0].conceptType);
 }
});

plugin.js (lines 3–10) [https://github.com/mware-solutions/doc-examples/blob/master/extension-detail-toolbar/src/main/resources/com/mware/examples/detail_toolbar/plugin.js#L3-L10]

Listen

Register a document-level listener for the event specified in the extension. The formatters.vertex.title [http://localhost/javascript/module-formatters.vertex.html#.title] function transforms an element into a title string using the ontology title formula.

bc.connect().then(function(api) {
 $(document).on('detail-toolbar-google', function(e, data) {
 var person = data.vertices[0];
 var name = api.formatters.vertex.title(person);
 var url = 'http://www.google.com/#safe=on&q=' + name;
 window.open(url, '_blank');
 });
});

plugin.js (lines 12–19) [https://github.com/mware-solutions/doc-examples/blob/master/extension-detail-toolbar/src/main/resources/com/mware/examples/detail_toolbar/plugin.js#L12-L19]

description: Add custom logout handlers

Logout

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-logout]

Plugin to add custom logout handlers. When the user explicitly logs out, or session expiration.

If the handler returns false all other logout handlers are skipped and the default logout process is cancelled.

Web Plugin

Register the plugin resource in a web plugin.

app.registerResourceBundle("/com/mware/examples/logout/messages.properties");

LogoutWebAppPlugin.java (line 17) [https://github.com/mware-solutions/doc-examples/blob/master/extension-logout/src/main/java/com/mware/examples/logout/LogoutWebAppPlugin.java#L17]

Register Extension

Register the logout extension that warns the user, prevents the default logout action, and does the logout itself.

bc.registry.registerExtension('org.bigconnect.logout', function() {
 var seconds = 3;
 alert('Will logout in ' + seconds + ' seconds');
 _.delay(function() {
 visallo.connect()
 .then(function(connected) {
 $(document).trigger('willLogout');
 return connected.dataRequest('user', 'logout');
 })
 .then(function() {
 window.location.reload();
 })
 }, seconds * 1000)
 return false;
});

plugin.js (lines 3–17) [https://github.com/mware-solutions/doc-examples/blob/master/extension-logout/src/main/resources/com/mware/examples/logout/plugin.js#L3-L17]

description: Add new items to the map options menu

Map Options

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-map-options]

Add custom options components (Flight or React) which display in the map options menu (next to Fit).

[image: http://localhost/extension-points/front-end/mapOptions/options.png]

Web Plugin

Register the plugin, and component scripts. Then register a file reference to the geojson [https://github.com/mware-solutions/doc-examples/blob/master/extension-map-options/src/main/resources/com/mware/examples/map_options/countries.geojson] of countries.

app.registerJavaScript("/com/mware/examples/map_options/plugin.js", true);
app.registerJavaScriptComponent("/com/mware/examples/map_options/CountryBorders.jsx");
app.registerFile("/com/mware/examples/map_options/countries.geojson", "application/vnd.geo+json");
app.registerResourceBundle("/com/mware/examples/map_options/messages.properties");

MapOptionsWebAppPlugin.java (lines 16–19) [https://github.com/mware-solutions/doc-examples/blob/master/extension-map-options/src/main/java/com/mware/examples/map_options/MapOptionsWebAppPlugin.java#L16-L19]

Register Extension

Register the map options extension and point the path to the React component.

bc.registry.registerExtension('org.bigconnect.map.options', {
 identifier: 'com.mware-examples-map_options-countryborders',
 optionComponentPath: 'com/mware/examples/map_options/CountryBorders'
});

plugin.js (lines 3–6) [https://github.com/mware-solutions/doc-examples/blob/master/extension-map-options/src/main/resources/com/mware/examples/map_options/plugin.js#L3-L6]

Component

The react component manages the state of the geojson layer (visible/hidden) using a user preference, and uses the OpenLayers API to add/remove the vector layer.

define(['public/v1/api', 'create-react-class'], function(bc, createReactClass) {
 const key = 'examples-geojson';
 const CountryBorders = createReactClass({
 getInitialState() {
 const visible = bcData.currentUser.uiPreferences[key] === 'true'
 return { visible }
 },
 componentDidMount() {
 this.createCountryLayer();
 },
 render() {
 const { visible } = this.state;

 return (
 <label>
 Toggle Country Borders
 <input type="checkbox" checked={visible} onChange={this.onChange} />
 </label>
)
 },
 onChange() {
 const { visible } = this.state;
 const newVal = !visible;

 if (visible) {
 this.props.map.removeLayer(this.layer);
 } else {
 this.props.map.addLayer(this.layer);
 }

 bcData.currentUser.uiPreferences[key] = String(newVal);
 bc.connect()
 .then(c => c.dataRequest('user', 'preference', key, newVal));

 this.setState({ visible: newVal })
 },
 createCountryLayer() {
 if (this.layer) return;
 var { ol, map, cluster } = this.props;
 var styleArray = [new ol.style.Style({
 stroke: new ol.style.Stroke({
 color: 'red',
 width: 2
 })
 })];

 var vector = new ol.layer.Vector({
 source: new ol.source.Vector({
 url: 'com.mware/examples/map_options/countries.geojson',
 format: new ol.format.GeoJSON()
 }),
 style: function(feature, resolution) {
 return styleArray;
 }
 });

 if (this.state.visible) {
 map.addLayer(vector);
 }
 this.layer = vector;
 }
 });

 return CountryBorders;
});

CountryBorders.jsx [https://github.com/mware-solutions/doc-examples/blob/master/extension-map-options/src/main/resources/com/mware/examples/map_options/CountryBorders.jsx]

description: Add new entries in the application menu bar

Menu Bar

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-menubar]

Add additional icons into the menu bar that can open a component in the content area like the built-in dashboard.

The icon can refer to an existing icon bundled with BigConnect, or one registered with registerFile in a plugin. For best results, use a white mono-chromatic icon.

Web Plugin

Register the plugin, a component for the pane, and a template for the Welcome to BigConnect card.

app.registerJavaScript("/com/mware/examples/menubar/plugin.js", true);
app.registerJavaScriptComponent("/com/mware/examples/menubar/Pane.jsx");
app.registerJavaScriptTemplate("/com/mware/examples/menubar/welcome.hbs");
app.registerResourceBundle("/com/mware/examples/menubar/messages.properties");

MenubarWebAppPlugin.java (lines 16–19) [https://github.com/mware-solutions/doc-examples/blob/master/extension-menubar/src/main/java/com/mware/examples/menubar/MenubarWebAppPlugin.java#L16-L19]

Register Extension

Register the menu bar extension by pointing to the component and template. This one will use a bundled icon.

bc.registry.registerExtension('org.bigconnect.menubar', {
 title: i18n('com.mware.examples.menubar.title'),
 identifier: 'com.mware-examples-menubar',
 action: {
 type: 'full',
 componentPath: 'com/mware/examples/menubar/Pane'
 },
 welcomeTemplatePath: 'hbs!com/mware/examples/menubar/welcome',
 icon: '../img/glyphicons/white/glyphicons_066_tags@2x.png',
 options: {
 placementHint: 'top',
 placementHintAfter: 'search',
 }
});

plugin.js (lines 3–16) [https://github.com/mware-solutions/doc-examples/blob/master/extension-menubar/src/main/resources/com/mware/examples/menubar/plugin.js#L3-L16]

Component

Create a basic React component that displays some text and a button. Add some padding around the panel to match other panes.

define([
 'create-react-class'
], function(createReactClass) {
 'use strict';

 const MenubarExamplePane = createReactClass({
 render() {
 return (
 <div style={{padding: '1em'}}>
 Example Panel

 <button
 style={{display: 'block', width: '100%'}}
 className="btn">Example</button>
 </div>
)
 }
 });

 return MenubarExamplePane ;
});

Pane.jsx [https://github.com/mware-solutions/doc-examples/blob/master/extension-menubar/src/main/resources/com/mware/examples/menubar/Pane.jsx]

description: Add items to the search toolbar

Search Toolbar

Search toolbar items display below the search query input field. They have access to the current search query (if available), and can react to click events with content in a popover, or a custom event.

[image: http://localhost/extension-points/front-end/searchToolbar/toolbar.png]

Example

 registry.registerExtension('org.bigconnect.search.toolbar', {
 tooltip: 'My Search Toolbar Item',
 icon: 'myIcon.png',
 canHandle: function(currentSearch) {
 // Only show the icon if there's a search
 if (currentSearch) return true;
 return false;
 },
 action: {
 type: 'popover',
 componentPath: 'com/example/js/content'
 }
 });

description: Add new types of search

Search Type

Example code [https://github.com/mware-solutions/doc-examples/blob/master/extension-search-advanced]

Provide users with alternate search interfaces through a dropdown in the search pane. These additional interfaces have their own saved searches and completely control the interaction of search.

Search extensions control how the search is executed and the results are displayed.

[image: developer-guide/plugin-development/web-plugins/extension-point-reference-1/../../../../.gitbook/assets/image%20%2874%29.png]

Web Plugin

Register the plugin and a component/template for the new search interface.

app.registerJavaScript("/com/mware/examples/search_advanced/plugin.js", true);
app.registerJavaScriptComponent("/com/mware/examples/search_advanced/React.jsx");
app.registerJavaScript("/com/mware/examples/search_advanced/flight.js", false);
app.registerJavaScriptTemplate("/com/mware/examples/search_advanced/template.hbs");
app.registerLess("/com/mware/examples/search_advanced/style.less");
app.registerWebWorkerJavaScript("/com/mware/examples/search_advanced/worker.js");
app.registerResourceBundle("/com/mware/examples/search_advanced/messages.properties");

SearchAdvancedWebAppPlugin.java (lines 24–30) [https://github.com/mware-solutions/doc-examples/blob/master/extension-search-advanced/src/main/java/com/mware/examples/search_advanced/SearchAdvancedWebAppPlugin.java#L24-L30]

The search extension requires a search URL used for saved searches, but we can use the built-in ones by just defining a new route. To access the route in the front-end we need to also add a services object in worker.js.

//searches are saved by url
app.get("/com.mware/examples/search_advanced/flight/search", authenticator, csrfProtector, ReadPrivilegeFilter.class, ElementSearch.class);
app.post("/com.mware/examples/search_advanced/flight/search", authenticator, csrfProtector, ReadPrivilegeFilter.class, ElementSearch.class);
app.get("/com.mware/examples/search_advanced/react/search", authenticator, csrfProtector, ReadPrivilegeFilter.class, ElementSearch.class);
app.post("/com.mware/examples/search_advanced/react/search", authenticator, csrfProtector, ReadPrivilegeFilter.class, ElementSearch.class);

SearchAdvancedWebAppPlugin.java (lines 32–36) [https://github.com/mware-solutions/doc-examples/blob/master/extension-search-advanced/src/main/java/com/mware/examples/search_advanced/SearchAdvancedWebAppPlugin.java#L32-L36]

Defining a new services object extends what methods dataRequest can access.

define('data/web-worker/services/com.mware-examples-search', [
 '../util/ajax'
], function(ajax) {
 'use strict';

 var api = {
 search: function(query, offset, size) {
 return ajax('GET', '/element/search', {
 q: query,
 filter: '[]',
 offset: offset,
 size: size
 })
 }
 };

 return api;
});

worker.js [https://github.com/mware-solutions/doc-examples/blob/master/extension-search-advanced/src/main/resources/com/mware/examples/search_advanced/worker.js]

Register Extension

Register the search extension pointing to your component. The savedSearchUrl points to the route created previously.

bc.registry.registerExtension('org.bigconnect.search.advanced', {
 displayName: i18n('com.mware.examples.search.advanced.react.name'),
 componentPath: 'com/mware/examples/search_advanced/React',
 savedSearchUrl: '/com.mware/examples/search_advanced/react/search'
});

plugin.js (lines 3–7) [https://github.com/mware-solutions/doc-examples/blob/master/extension-search-advanced/src/main/resources/com/mware/examples/search_advanced/plugin.js#L3-L7]

Search Component

Create the component, it will be responsible for the UI, loading saved searches, executing searches, and displaying results.

In React:

define([
 'public/v1/api',
 'create-react-class'
], function(
 bcApi,
 createReactClass) {
 'use strict';

 const SIZE = 20;

 const SearchExample = createReactClass({

 getInitialState() {
 const { initialParameters } = this.props;
 return { query: initialParameters && initialParameters.q || '' }
 },

 componentWillReceiveProps(nextProps) {
 if (nextProps.initialParameters && nextProps.initialParameters.q) {
 this.setState({
 query: nextProps.initialParameters.q
 }, this.search);
 }
 },

 render() {
 return (
 <div className="com.mware-examples-advanced">
 <div className="query-container">
 <textarea placeholder="Query" onChange={this.onQueryChange} value={this.state.query}></textarea>
 </div>
 <div className="button-container">
 <button className="btn btn-primary" onClick={this.onSearchClick}>Execute</button>
 </div>
 </div>
)
 },

 onSearchClick() {
 this.search();
 },

 onQueryChange(event) {
 this.setState({ query: event.target.value });

 this.props.setCurrentSearchForSaving({
 url: '/com.mware/examples/search_advanced/react/search',
 parameters: {
 q: event.target.value
 }
 });
 },

 onInfiniteScrollRequest(resultsNode, data) {
 bcApi.connect()
 .then(({ dataRequest }) => {
 dataRequest('com.mware-examples-search', 'search', this.state.query, data.paging.offset, SIZE)
 .then((result) => {
 $(resultsNode).trigger(
 resultsNode,
 'addInfiniteItems',
 {
 success: true,
 items: result.elements,
 total: result.totalHits,
 nextOffset: result.nextOffset
 }
);
 })
 })
 },

 search() {
 bcApi.connect()
 .then(({ components, dataRequest }) => {
 return Promise.all([
 components.List,
 dataRequest('com.mware-examples-search', 'search', this.state.query, 0, SIZE)
]);
 })
 .spread((List, result) => {
 this.props.updateQueryStatus({
 success: true,
 message: i18n('com.mware.examples.search.advanced.hits', result.totalHits)
 });

 this.props.renderResults(resultsNode => {
 const content = $(resultsNode).css('display', result.totalHits ? 'block' : 'none')
 .find('.content')
 .teardownAllComponents()
 .empty()

 List.attachTo(content, {
 items: result.elements,
 usageContext: 'searchresults',
 nextOffset: result.nextOffset,
 infiniteScrolling: true,
 total: result.totalHits
 })

 $(resultsNode).off('infiniteScrollRequest').on('infiniteScrollRequest', (event, data) => {
 this.onInfiniteScrollRequest(resultsNode, data);
 })
 });
 })
 .catch(e => {
 this.props.updateQueryStatus({ success: false, error: e });
 })
 }
 });

 return SearchExample;
});
// 98 lines hidden…
// 3 lines hidden…

React.jsx (lines 1–113) [https://github.com/mware-solutions/doc-examples/blob/master/extension-search-advanced/src/main/resources/com/mware/examples/search_advanced/React.jsx#L1-L113]

In Flight:

define([
 'public/v1/api',
 './template.hbs'
], function(
 api,
 template) {
 'use strict';

 var SIZE = 20;

 return api.defineComponent(SearchExample);

 function SearchExample() {

 this.attributes({
 textareaSelector: 'textarea',
 searchSelector: '.btn'
 })

 this.after('initialize', function() {
 this.on('click', {
 searchSelector: this.onSearch
 })
 this.on('change keyup', {
 textareaSelector: this.onChange
 })
 this.on('savedQuerySelected', this.onSavedQuerySelected);

 const query = this.attr.initialParameters && this.attr.initialParameters.q || '';
 this.$node.html(template({ query: query }));
 });

 this.onSavedQuerySelected = function(event, data) {
 this.select('textareaSelector').val(data.query.parameters.q);
 this.runSearch();
 };

 this.onInfiniteScrollRequest = function(event, data) {
 var self = this;

 this.dataRequest('com.mware-examples-search', 'search', this.query, data.paging.offset, SIZE)
 .then(function(result) {
 self.trigger(
 event.target,
 'addInfiniteItems',
 {
 success: true,
 items: result.elements,
 total: result.totalHits,
 nextOffset: result.nextOffset
 }
);
 })
 };

 this.onChange = function(event) {
 this.trigger('setCurrentSearchForSaving', {
 url: '/com.mware/examples/search_advanced/flight/search',
 parameters: {
 q: $(event.target).val()
 }
 })
 }

 this.onSearch = function(event) {
 this.runSearch();
 };

 this.runSearch = function() {
 var self = this,
 query = this.select('textareaSelector').val();

 this.query = query;

 api.connect().then(function(connected) {
 self.dataRequest = connected.dataRequest;

 return Promise.all([
 connected.components.List,
 connected.dataRequest('com.mware-examples-search', 'search', query, 0, SIZE)
])
 }).spread(function(List, result) {
 self.trigger('updateQueryStatus', {
 success: true,
 message: i18n('com.mware.examples.search.advanced.hits', result.totalHits)
 });

 self.trigger('renderResults', resultsNode => {
 var resultsContainer = $(resultsNode).css('display', 'block')
 .find('.content')
 .teardownAllComponents()
 .empty()

 List.attachTo(resultsContainer, {
 items: result.elements,
 usageContext: 'searchresults',
 nextOffset: result.nextOffset,
 infiniteScrolling: true,
 total: result.totalHits
 })

 resultsContainer.off('infiniteScrollRequest').on('infiniteScrollRequest', self.onInfiniteScrollRequest);
 });
 })
 .catch((e) => {
 self.trigger('updateQueryStatus', { success: false, error: e });
 });
 };

 }
});
// 96 lines hidden…
// 3 lines hidden…

flight.js (lines 1–111) [https://github.com/mware-solutions/doc-examples/blob/master/extension-search-advanced/src/main/resources/com/mware/examples/search_advanced/flight.js#L1-L111]

Run Search and Display Results

Using the service created earlier, we can make a data request to run the search and get the result as a promise. Using the public API we access the List component for display.

bcApi.connect()
 .then(({ components, dataRequest }) => {
 return Promise.all([
 components.List,
 dataRequest('com.mware-examples-search', 'search', this.state.query, 0, SIZE)
]);
 })
 .spread((List, result) => {

React.jsx (lines 74–81) [https://github.com/mware-solutions/doc-examples/blob/master/extension-search-advanced/src/main/resources/com/mware/examples/search_advanced/React.jsx#L74-L81]

The search results should be rendered in an element outside of the extension component. The search interface defines the DOM element of the container to use and provides that as an argument for a custom callback to render the results.

In React:

this.props.renderResults(resultsNode => {

React.jsx (line 87) [https://github.com/mware-solutions/doc-examples/blob/master/extension-search-advanced/src/main/resources/com/mware/examples/search_advanced/React.jsx#L87]

In Flight:

self.trigger('renderResults', resultsNode => {

flight.js (line 88) [https://github.com/mware-solutions/doc-examples/blob/master/extension-search-advanced/src/main/resources/com/mware/examples/search_advanced/flight.js#L88]

The container HTML is structured as follows:

<div class="" style="display:none">
 <div class="content">
 <!-- results content should be here -->
 <!-- or attach element list to "content" node -->
 </div>
</div>

To display the results, render the List component into the results containers’ .content element, switch the display style on the container to show it, and enable infiniteScrolling.

const content = $(resultsNode).css('display', result.totalHits ? 'block' : 'none')
 .find('.content')
 .teardownAllComponents()
 .empty()

List.attachTo(content, {
 items: result.elements,
 usageContext: 'searchresults',
 nextOffset: result.nextOffset,
 infiniteScrolling: true,
 total: result.totalHits
})

React.jsx (lines 88–99) [https://github.com/mware-solutions/doc-examples/blob/master/extension-search-advanced/src/main/resources/com/mware/examples/search_advanced/React.jsx#L88-L99]

Then update the status of the query to display an error alert or show information such as the number of hits returned.

In React:

this.props.updateQueryStatus({
 success: true,
 message: i18n('com.mware.examples.search.advanced.hits', result.totalHits)
});

React.jsx (lines 82–85) [https://github.com/mware-solutions/doc-examples/blob/master/extension-search-advanced/src/main/resources/com/mware/examples/search_advanced/React.jsx#L82-L85]

In Flight:

self.trigger('updateQueryStatus', {
 success: true,
 message: i18n('com.mware.examples.search.advanced.hits', result.totalHits)
});

flight.js (lines 83–86) [https://github.com/mware-solutions/doc-examples/blob/master/extension-search-advanced/src/main/resources/com/mware/examples/search_advanced/flight.js#L83-L86]

Infinite Scroll

To finish making infinite scroll work, we listen for events on the results. Note, we have to listen using the container since events won’t bubble up to the extension container as its not a descendant.

$(resultsNode).off('infiniteScrollRequest').on('infiniteScrollRequest', (event, data) => {
 this.onInfiniteScrollRequest(resultsNode, data);
})

React.jsx (lines 101–103) [https://github.com/mware-solutions/doc-examples/blob/master/extension-search-advanced/src/main/resources/com/mware/examples/search_advanced/React.jsx#L101-L103]

Then, when we get notified of scrolling, make another search request with the given offset, and trigger an update to the List element.

In React:

onInfiniteScrollRequest(resultsNode, data) {
 bcApi.connect()
 .then(({ dataRequest }) => {
 dataRequest('com.mware-examples-search', 'search', this.state.query, data.paging.offset, SIZE)
 .then((result) => {
 $(resultsNode).trigger(
 resultsNode,
 'addInfiniteItems',
 {
 success: true,
 items: result.elements,
 total: result.totalHits,
 nextOffset: result.nextOffset
 }
);
 })
 })
},

React.jsx (lines 54–71) [https://github.com/mware-solutions/doc-examples/blob/master/extension-search-advanced/src/main/resources/com/mware/examples/search_advanced/React.jsx#L54-L71]

In Flight:

this.onInfiniteScrollRequest = function(event, data) {
 var self = this;

 this.dataRequest('com.mware-examples-search', 'search', this.query, data.paging.offset, SIZE)
 .then(function(result) {
 self.trigger(
 event.target,
 'addInfiniteItems',
 {
 success: true,
 items: result.elements,
 total: result.totalHits,
 nextOffset: result.nextOffset
 }
);
 })
};

flight.js (lines 38–54) [https://github.com/mware-solutions/doc-examples/blob/master/extension-search-advanced/src/main/resources/com/mware/examples/search_advanced/flight.js#L38-L54]

Notify of Search Changes

All search extensions should notify via setCurrentSearchForSaving that the search has modified. This allows the extension to work with the Saved Searches component to save the current search. The urlshould match the savedSearchUrl defined in the extension.

In React:

onQueryChange(event) {
 this.setState({ query: event.target.value });

 this.props.setCurrentSearchForSaving({
 url: '/com.mware/examples/search_advanced/react/search',
 parameters: {
 q: event.target.value
 }
 });
},

React.jsx (lines 43–52) [https://github.com/mware-solutions/doc-examples/blob/master/extension-search-advanced/src/main/resources/com/mware/examples/search_advanced/React.jsx#L43-L52]

In Flight:

this.onChange = function(event) {
 this.trigger('setCurrentSearchForSaving', {
 url: '/com.mware/examples/search_advanced/flight/search',
 parameters: {
 q: $(event.target).val()
 }
 })
}

flight.js (lines 56–63) [https://github.com/mware-solutions/doc-examples/blob/master/extension-search-advanced/src/main/resources/com/mware/examples/search_advanced/flight.js#L56-L63]

description: Add new user profile sections

User Profile Section

Plugin to configure new sections for the user profile dialog.

To register a section:

require(['public/v1/api'], function(registry) {
 registry.registerExtension('org.bigconnect.user.account.page', {
 identifier: 'changePassword',
 pageComponentPath: 'com.mware.useraccount.changePassword'
 });

 define('com.mware.useraccount.changePassword', [
 'flight/lib/component'
], function(defineComponent) {
 return defineComponent(ChangePassword);

 function ChangePassword() {
 this.after('initialize', function() {
 this.$node.html('Change Password');
 })
 }
 })
});

Remember to add a i18n value in a MessageBundle.properties. This will be displayed in the left pane

useraccount.page.[Page Identifier].displayName=[String to display]

For example:

useraccount.page.changePassword.displayName=Change Password

User Account Setting Plugin

Plugin to add a general setting to the user account settings page

To register a boolean setting:

require([
 'public/v1/api',
], function(bc) {
 bc.registry.registerExtension('org.bigconnect.user.account.page.setting', {
 identifier: 'my-bool-setting',
 group: 'useraccount.page.settings.setting.group.test',
 displayName: 'org.project.setting.myBoolean',
 type: 'boolean',
 uiPreferenceName: 'org.project.myBoolean'
 });
});

To register a custom control setting:

require([
 'public/v1/api'
], function(bc) {
 bc.registry.registerExtension('org.bigconnect.user.account.page.setting', {
 identifier: 'my-custom-setting',
 group: 'useraccount.page.settings.setting.group.test',
 displayName: 'org.project.setting.myCustom',
 type: 'custom',
 componentPath: 'org/project/setting/MyCustom'
 });
});

description: Change how the visibility is displayed and edited

Visibility

Example code [https://github.com/mware-solutions/doc-examples/tree/master/extension-visibility]

Plugin to configure the user interface for displaying and editing visibility authorization strings.

The visibility component requires two FlightJS components registered for viewing and editing:

registry.registerExtension('org.bigconnect.visibility', {
 editorComponentPath: 'myEditor',
 viewerComponentPath: 'myViewer'
});

Visibility Editor Component

Describes the form for editing visibility values.

Attributes

Accessible in plugin as this.attr

	value: Previous value to populate.

Events

Visibility [http://localhost/GLOSSARY.html#visibility] plugins event contract.

Must Respond to:

	visibilityclear: Clears the current value.

this.on('visibilityclear', function() {
 // Clear the value
 this.select('fieldSelector').val('');
});

Must Fire:

	visibilitychange: When the value changes. Send valid boolean if the current value is valid for submitting.

this.trigger("visibilitychange", {
 value: "[current value]",
 valid: [true | false]
});

Visibility Display Component

Describes the display of visibility values.

Attributes

	value: Current visibility value.

	property: Current property.

description: Register new websocket message listeners

Websocket

Extension to register new listeners for websocket messages. Must be registered in JavaScript file registered with app.registerWebWorkerJavaScript in web app plugin.

registry.registerExtension('org.bigconnect.websocket.message', {
 name: name,
 handler: function(data) {
 }
});

Computation engine

Currently BigConnect uses internal data workers for data ingestion and data processing. The major drawback of the current implementation is that there is no cluster computing support in order to provider faster insights and analytics for the available data.

For solving this issue it has been decided to add Apache Spark [http://spark-project.org/] support for short and long running processes. As a quick mention Apache Spark [http://spark-project.org/] is 100 times faster than Hadoop and 10 times faster than accessing data from disk.

In order to orchestrate the different Spark jobs that are spawned through BigConnect’s rich interface it has been aligned to make use of the Spark Jobserver [https://github.com/spark-jobserver/spark-jobserver]. It provides a RESTful interface for submitting and managing Apache Spark [http://spark-project.org/] jobs, jars, and job contexts and it is widely used by a lot of companies (e.g. Netflix). An important configuration setting is that one can choose to have a shared Spark Context or a new one per submitted job. Of course for improving response times one will opt for sharing the Spark Context if possible.

For our demo showcase a small cluster comprised of 1 master and 2 worker nodes is used and in front a single Spark Jobserver [https://github.com/spark-jobserver/spark-jobserver]instance. (We currently use only 3 machines bc-node-1, bc-node2 and bc-node 3). bc-node-2 and bc-node-3 are worker nodes and bc-node-1 holds both the Spark master and the Spark Jobserver.

In a few words in order to have a working Spark Jobserver [https://github.com/spark-jobserver/spark-jobserver] one can opt for the development mode or for the production one.

For development mode simply download the github repository and use the following commands:

sbt

job-server/reStart (when the sbt console has finished fetching all dependencies and so on)

If you install it on a server where you connect via ssh then you will definitely need a tool like tmux in order to have the jobserver running indefinitely. tmux basically can detach the current session and keep it running despite logging off. When coming back one can re-attach to the running session and continue from there.

So, simply wrap the commands above with: tmux (before) and CTRL+b d (after).

For production one needs to create a deployment. The steps are quite straightforward as explained in the official documentation.

	Copy config/local.sh.template to <environment>.sh and edit as appropriate. NOTE: be sure to set SPARK_VERSION if you need to compile against a different version.

	Copy config/shiro.ini.template to shiro.ini and edit as appropriate. NOTE: only required when authentication = on

	Copy config/local.conf.template to <environment>.conf and edit as appropriate.

	bin/server_deploy.sh <environment> – this packages the job server along with config files and pushes it to the remotes you have configured in <environment>.sh

	On the remote server, start it in the deployed directory with server_start.sh and stop it with server_stop.sh

If you encounter weird exceptions like there is no spark.jobserver.JobServer class found then simply retry step 4 or use server_package.sh, manually untar and run from the unarchived folder.

Usually the jobserver github repository will be cloned on a development machine and deployed to the production machines via ssh. (This is done automatically using the server_deploy.shmentioned above).

After successfully starting the jobserver one can start triggering spark jobs in 2 steps exemplified below from the official documentation:

WordCountExample walk-through

Package Jar - Send to Server

First, to package the test jar containing the WordCountExample: sbt job-server-tests/package. Then go ahead and start the job server using the instructions above.

Let’s upload the jar:

curl -X POST localhost:8090/binaries/test -H "Content-Type: application/java-archive" --data-binary @job-server-tests/target/scala-2.10/job-server-tests-$VER.jar
OK⏎

Ad-hoc Mode - Single, Unrelated Jobs (Transient Context)

The above jar is uploaded as app test. Next, let’s start an ad-hoc word count job, meaning that the job server will create its own SparkContext, and return a job ID for subsequent querying:

curl -d "input.string = a b c a b see" "localhost:8090/jobs?appName=test&classPath=spark.jobserver.WordCountExample"
{
 "duration": "Job not done yet",
 "classPath": "spark.jobserver.WordCountExample",
 "startTime": "2016-06-19T16:27:12.196+05:30",
 "context": "b7ea0eb5-spark.jobserver.WordCountExample",
 "status": "STARTED",
 "jobId": "5453779a-f004-45fc-a11d-a39dae0f9bf4"
}⏎

NOTE: If you want to feed in a text file config and POST using curl, you want the --data-binary option, otherwise curl will munge your line separator chars. Like:

curl --data-binary @my-job-config.json "localhost:8090/jobs?appNam=..."

Please pay attention to the fact that in the latest version you might stumble upon the following issue with Adhoc contexts: for Java jobs you first have to create a context and only then you can submit a job. Otherwise you will get an error. (you can track the progress here [https://github.com/spark-jobserver/spark-jobserver/pull/1124])

For creating a context use the following command:

curl -d "" 'localhost:8090/contexts/jcontext?context-factory=spark.jobserver.context.JavaSparkContextFactory'

Configuration

Introduction

BigConnect provides an extensible Big Data platform to understand and work with any amounts of data, from any source and in any format. It’s an information-agnostic system where all data that flows into the system is transformed, mapped, enriched and then stored in a logical way using a semantic model of concepts, attributes and relationships. It provides an extensible, unified visual interface with tools for data discovery and analysis, collaboration, alerting and information management.

The platform and all its components are extensible, massively scalable and highly secure. It can be used to build Big Data applications that can ~~~~cover most use cases and industry requirements.

Using BigConnect

Before you begin, make sure you’ve installed BigConnect and you started the necessary services.

Administration panel

As discussed in a previous section next to the username there are 2 icons: the first represents the Activity and the second the Administration panel.

Let us have a quick look at the Administration panel and to understand some basics. Please pay attention that this is available only if you have the ADMIN privilege. You can consult all the privileges linked to your account by going to Preferences under the username icon.

Another thing to remember is that privileges are not the same as roles. Currently only users with the administration role have full access to all BigConnect information.

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2872%29.png]

As depicted above there are multiple subcategories and we will go in depth with the most important ones:

	Behaviour

	Extract

	Ingest

	Ontology

	Plugin

	REST

	Security

	System Notifications

Behaviour

A behaviour is a union between multiple saved searches. Currently it can be used only in the Dashboard for visualization.

Let us take a basic example like returning all persons that have already paid their taxes for their properties this year but that do not have children yet.

For using a behaviour we should define 2 saved searches: TAXES_PAID and NO_CHILDREN.

Then we simply click on the Add button that will take us to the following:

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2868%29.png]

A behaviour has an overall score, in this case 4, and we add the 2 saved queries using the Add Query button. Please take into consideration that the score is given only if the search query returns any data. If the score of a query is higher than the threshold then the behaviour will display the search results no matter the score of the other query. As a last mention if the same concept is found by both searches it will be displayed only once.

Extract

Here we can configure certain patterns that will be applied only for text. Please pay attention to the fact that every audio file or video file can be interpreted and translated into text.

The UI is straightforward:

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2815%29.png]

Ingestion

Ingestion is the process that governs data loading into BigConnect. There are multiple ways to perform it. The easiest was already covered in a previous section: use the graph tool and simply upload or drag and drop files.

However we might be interested in fetching data from a database. This is in fact possible and has to be configured in the Ingest section of the Administration panel.

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2843%29.png]

As we can see above the interface is very easy and intuitive. Initially we have to press the Add button and fill in all the required fields. An example can be seen below:

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2854%29.png]

Please notice the fact that the jdbc driver has to be in the classpath otherwise an error message will be shown:

[image: user-guide/dashboard/../../.gitbook/assets/image%20%287%29.png]

Another issue that might occur is if the DB is not started or if the username password is wrong. Then the following error will be displayed:

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2823%29.png]

After successfully filling in all required information click on Save. A new row will appear in the data ingestion details table:

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2855%29.png]

The second step after we have a valid connection to a database is to create a datasource that will identify what data is to be fetched.

Click on the + sign.

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2875%29.png]

As we can see above there are multiple steps to be configured and if you want more details please check out our youtube channel. The the basic idea is that we configure a database connection, then specify the target tables for our data, specify the relationships according to our internal ontology and then we can finally start an actual data import job.

Ontology

The power of BigConnect lies in its ability to correlate data using a specific ontology. Basically data is identified based on the setup preferences. For example if our use case needs a concept City to depict all city names then we can simply include it in the ontology and then all the data can be processed accordingly.

By default BigConnect ships with a default ontology that can be modified to suit one’s needs. It is composed of 3 core components: concepts, properties and relationships.

One important thing to remember is that properties are inherited so if we create a new concept City under Thing then we do not need to repeat all the already defined properties that Thing has. Please also consider the fact that if one wants to search using a property then that property has to be made searchable. Otherwise it won’t have any impact in the data discovery process.

As a last remark in the Relationships section one can only see the custom relationships and not all the existing relationships. e.g. Has Entity will not be included.

Plugin

This subcategory covers all the plugins registered in BigConnect, both backend and frontend. For more details about creating a plugin please have a look in the appropriate section from the Developer Guide.

REST

This subcategory covers the exposed BigConnect API. One can use it to test certain endpoints directly from the UI, but it is also very useful if redesigning the web layer.

Security

This subcategory addresses the security scope of BigConnect and it is splitted in 2:

	Role management

	User management

The role management comes by default with the “administrator” role that is able to view all the workspaces, all the configurations and so on.

The need for new roles can appear quite early in a team’s lifecycle as it is not a good practice to share more information than needed inside a group of individuals. Basically a role will unite a group of privileges.

The user management part provides an overview of all registered users in BigConnect.

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2824%29.png]

As we can see above the demo instance had 2 users, both OFFLINE (meaning local). BigConnect can have remote users powered by LDAP for example, but the overall functionality remains the same.

We can filter them by username, display name or status.

Also we can delete and edit users (change email, name, privileges etc.) .

An important thing to notice is that we can also add a new user directly from this panel by pressing the Add button.

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2847%29.png]

Currently though this is not very useful as BigConnect is mostly used within large companies with no external exposure so there is LDAP integration in place.

Discovering your data

In the previous section we have seen some of the basic functionalities that BigConnect has to offer, but we have barely interacted with the actual data that it holds.

This section will describe the Discover tab present on the navigation bar. This is where one can start obtaining real insights in the available data.

Landing on this tab we will be greeted with the following:

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2853%29.png]

In the center of the screen we can find the query analyzer that currently supports Lucene like or Cypher syntaxes. Below, depending on the selection, we are presented with a nice how to displaying some of the most used patterns. For a quick demo we could simply use the * wildcard retrieving all available data and paginating it, but in real life scenarios we could end up writing very complex queries. The following is a Cypher query matching the customer named Demo and retrieving some details about its orders.

MATCH (demo:Customer {name:'Demo'})-[rel:PURCHASED]-(order:Order)
RETURN order.orderId AS OrderID, order.orderDate AS `Purchase Date`,
 demo.customerIdNo AS CustomerID, order.orderNumOfLineItems AS `Number Of Items`

Running the above query once could suit our purpose, but maybe we want to save it for later and re-run it. As we saw earlier the Dashboard has specialized widgets that could link to a Saved Search and display the data every time we visit the welcome page. In order to save a query one has to first write the query in the search box and then click Saved Searches.

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2848%29.png]

One can now set a meaningful name. In our case performing a full data search the name could simply be ALL. If one wants this query to become globally available then simply check also the Global checkbox. Otherwise directly click the Create button.

[image: ../../_images/image.png]

After saving it, when clicking the Saved Searches we can now find the ALL query available.

	If one clicks the query name then it will be executed and the data, if any, made available.

	If one wants to delete the query then simply hover it and click on the Delete button.

A simple query result using our saved search could look like this:

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2818%29.png]

The result list includes 4 Person entities and a City entity. To the right we can find a Refinements pane that can help us quickly hide certain results. If we click on the Person concept then we get the following output:

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2845%29.png]

The City concept is now hidden and the active filtering using the Person concept can be seen above the result list with green. In the Refinements pane we have no additional quick filters to apply.

Data advanced visualization

In the previous section we have seen how one can discover its data, filtering and obtaining programmatic insights.

In this section we will see how the programmatic approach that filters out the target data can be used as the baseline for further data analysis.

Let us click on the Analyze tab.

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2844%29.png]

Data can be visualized by using a BigConnect tool. Currently there are 2 tools available :

	Graph - entities become vertices and relationships become edges

	Map - based on geolocation information one can visualize their data across a specific region

As a rule of thumb BigConnect prefers structured data (db, excel files etc.) due to the fact that it can easily configure relationships prior to data ingestion. If we were to provide unstructured data the same output can be obtained but with more steps in between that require both manual and automatic intervention. These aspects will be covered in more depth in future sections.

Starting off

To the left of the screen, on the sidebar, one can find all its tools stacked together. In the snippet above we had none available.

So in order to add our initial data to BigConnect let us first select a tool. One can use the New button available on the sidebar or simply choose a tool from the center of the screen.

Graph

Let us select the Graph tool first. This will open the following:

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2863%29.png]

There are 3 self explanatory options available in order to populate our graph with some data:

	search already ingested data

	insert new data

	manually create new entities, relationships etc.

For now let us upload some files and try to visualize the data. Clicking on Upload will display the following popup:

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2862%29.png]

We will click Attach Files and select the relevant files.

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2856%29.png]

We have chosen 1 file and can now click on Import. ****

Please pay attention that if we were to upload an excel file BigConnect recognizes that it is a semi**-**structured data and will allow us to setup some smart mappings prior to data ingestion. For the moment though we will be using a simple text file.

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2833%29.png]

To the right we can now find a new Graph tool named Untitled. We would need a better name so in order to change it we simply hover it and click on Edit. There is one more action available and that is Delete.

Currently our graph contains only a document. The contents are related to everyday English conversations as it can be easily observed to the right in the details pane.

If our ontology were to contain the Person and City concepts then BigConnect could easily infer these in our document and present them on the graph as below:

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2871%29.png]

Important!

	We can simply use drag and drop to add additional files to our graph that will be inferred to entities, relationships etc.

	When changes are operated on the graph they are by default applied only to the current space and if we want to make them global then we need to publish them. In order to see if there are any pending changes we can look at the left bottom of the screen and check the number next to the Workspace changes. If changes exist then something similar to the snippet below will be presented when clicking on the indicated number:

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2826%29.png]

Explanation: An entity’s title was deleted but the change was not yet published.

We can now choose to Undo it (revert the change) or Publish it (propagate it globally).

Please check out our youtube channel for more in depth tutorials.

Map

This tool is extremely useful for data that has a geolocation property. BigConnect knows to infer this information if asked to when ingesting the data or when reprocessing it. Also we can manually add a new property GeoLocation to an entity.

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2831%29.png]

In the example above we can see Washington was recognized on the map and if we click on the pin then we are shown the details pane as in the graph tool.

There are some additional features available in the map as opposed to the graph like drawing a heatmap, grouping the entities together in a cluster etc.

Please check out our youtube channel for more in depth tutorials.

Getting started

The first thing you will see is the login screen.

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2864%29.png]Login

If you are using the default installation guide you can introduce any username and click the “Log In” button.

This will bring you to the welcome page called Dashboard.

[image: user-guide/dashboard/../../.gitbook/assets/image%20%282%29.png]

Important things to notice

	The title of the dashboard is Default - demo (where Default - is simply a prefix and demo is the logged in username as you can see in the top right corner ****) . This dashboard was created automatically and won’t be recreated on subsequent logins.

	The caret next to the dashboard name enables the user to do several actions like sharing, renaming or deleting the dashboard.

Attention! By default the dashboard is private and can be seen only by the current user.

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2850%29.png]

	The Welcome to BigConnect widget offers the basic information regarding all the actions that a user can trigger in the landing screen.

	The most important two are Discover and Analyze which can be found right at the top besides the Dashboard tab. ****The former handles creating, editing and saving searches and the later data visualization, enrichment, persistence etc.

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2870%29.png]

	Present on the navigation bar we can find the following:

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2822%29.png]

The first icon is the Activity. As we learned earlier BigConnect supports long running processes. In order to track their progress after being started one can find them depicted in this view. Please pay attention that regular/system notifications are not to be shown here.

The second icon represents the Administration page. This is shown only if the user has the appropriate privileges.

The third represents the username. If one clicks on it two new options are displayed : Preferences and Logout. The former offers multiple user related settings as the later logs out the logged in user.

	Underneath the navigation bar one can find 2 buttons : Edit and Refresh. As one might suspect when clicking on Edit the whole dashboard becomes interactive. The Refresh performs live reload of the available dashboard widgets. Let’s click on Edit.

[image: user-guide/dashboard/../../.gitbook/assets/image%20%283%29.png]

As one can see above there is now the possibility to remove certain widget or to add new ones.

The Welcome to BigConnect is useful only for new joiners so let us remove that. Also we may want to rearrange the widgets a bit. Please remember to click the Done Editing button when finished or simply press the Esc key otherwise nothing will be saved. Please find below our new simplified dashboard :

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2812%29.png]

Currently we have 3 widgets present on our dashboard : Entity Counts (amount of independent entities we have), Notifications (user related notifications) and Relationship Counts (number of relations between our entities).

Attention! If one decides to remove the Notifications widget then one will not be able to see any notifications. (e.g. Being added to a new space)

These initial widgets only show basic information. For real use cases one will use the more advanced widgets. Let us click once again the Edit button and then Add widget in order to have a look at what other widgets are available.

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2821%29.png]

[image: user-guide/dashboard/../../.gitbook/assets/image%20%288%29.png]

	Behaviour - ****enables a user to configure an existing behaviour and to display it on the Dashboard.

	Entity Counts - displays the total counts of concepts or entities loaded in BigConnect. It will be shown as a pie chart by default.

	Notifications - self explanatory displaying system and user notifications.

	Relationship Counts - displays the total number of relationships available between all existing entities. It will be shown as a bar chart by default.

	Saved Search - runs and displays an up to date saved search on the available data

	Search Results - displays tabular saved search results for performing additional aggregations

	Welcome to BigConnect - basic information about BigConnect functionalities

Attention! Please take into consideration that this is not limited to your user, but in fact to all existing users. Also, every widget has specific configuration that can be changed using the wheel icon.

Example dashboard

Until now we only configured the dashboard but no data was available. Please have a look below at a simple example and let’s analyze one by one the widgets. In the coming sections we will understand more about how data is ingested and manipulated to provide the target insights.

[image: user-guide/dashboard/../../.gitbook/assets/image%20%2832%29.png]

Entity Counts

There are 3 entities available: Person, Document and City. Each weight can be consulted by hovering on the pie chart slice corresponding to the target concept.

Relationship Counts

There is 1 type available: Has Entity.

In our example there is a central Document that links all our concepts so this is the reason we have 5 Has Entity relationships**.**

Saved Search

There is one saved search configured returning only the top 5 results for the available data.

First Steps

This section includes information on how to setup BigConnect and get it running, including:

	Downloading

	Installing

	Starting

	Configuring

Flavors

BigConnect comes in two packaging options:

	Hadoop - bundled with single-node Hadoop, Accumulo, ElasticSearch and ZooKeeper. This packaging is only available on Linux and MacOS.

	Lite - bundled with a RocksDB database and ElasticSearch for desktop use. This packaging is available on Linux, MacOS and Windows.

{% hint style=”warning” %}
Both flavors can be used to test-drive and develop on top of BigConnect and are not intended for production use !

Production deployments should be carefully planned in terms of resiliency, performance, availability and scalability. While you can do this yourself, we highly recommend getting in touch or using a commercially supported version of BigConnect.
{% endhint %}

Supported Platforms

Installation packages are provided for and tested against Linux, MacOS X, and Windows. Since BigConnect runs on Java, Hadoop, Accumulo and ElasticSearch, we also include the necessary binaries and files for these platforms. Running BigConnect against other versions of the included binaries is not supported.

Versions

The supplied version of BigConnect is tested and configured to run on top of the following services:

	Apache Hadoop 2.9.1

	Apache Accumulo 1.9.2

	Apache ZooKeeper 3.4.13

	ElasticSearch 5.6.10

Running on earlier versions of Apache Hadoop (2.3+) and Accumulo (1.6+) should work, but please check with support to see if your configuration is supported.

{% hint style=”success” %}
We also support running on Cloudera [https://www.cloudera.com/], HortonWorks [https://hortonworks.com/] and MapR [https://mapr.com/] distributions of Hadoop.

Running on earlier versions of Apache Hadoop (2.3+) and Accumulo (1.6+) should work, but please check with support to see if your configuration is supported.
{% endhint %}

Accessing BigConnect

BigConnect is a web application that you access through HTTPS on port 8889. All you need to do is point your web browser at the machine where BigConnect is running and specify the port number. For example, https://localhost:8889

{% hint style=”info” %}
The first time you access BigConnect it will prompt that the website uses an invalid SSL certificate. This is normal because we use a self-signed SSL certificate, so please ignore the error and continue.
{% endhint %}

BigConnect ships with a simple login screen where you only need to enter the username to access the system. If the username does not exist in the system, it will be automatically created.

{% hint style=”info” %}
Every user that logs in to the system using the default configuration is granted Administrator access.
{% endhint %}

Installing BigConnect

Currently BigConnect is provided in a .tar.gz package format for Linux and MacOS systems and .zip format for Windows and are the easiest choice for getting started.

The provided packages include all the necessary binaries and files to run the platform on your local machine, so dependencies should be required.

{% hint style=”info” %}
BigConnect only supports 64 bit operating systems.

Please make sure Java 8 64bit is installed and the java command is included in the user PATH
{% endhint %}

Install with .tar.gz format

BigConnect is provided for Linux and MacOS as a .tar.gz package. These packages are the easiest formats to use when trying out the platform and are free to use under the Apache 2.0 License.

The latest stable version of BigConnect can be found on the Download BigConnect [https://www.bigconnect.io/choose-edition] page.

Download and install the Linux Lite package

The .tar.gz archive for the latest BigConnect Linux SQL release can be downloaded and installed as follows:

wget http://bits.bigconnect.io/downloads/bc/bc-A.B.C-linux-x86_64.tar.gz
shasum -a 512 bc-A.B.C-linux-x86_64.tar.gz
tar -xzf bc-A.B.C-linux-x86_64.tar.gz
cd bc-A.B.C-sql-linux-x86_64/

A.B.C is the latest BigConnect release version found on the Download [https://www.bigconnect.io/download-free] page.

The folder bc-A.B.C-linux-x86_64/ will be referenced further as $BIGCONNECT_DIR

Compare the SHA produced by or shasum with the published SHA [http://bits.bigconnect.io/downloads/bc/bc-3.5.0-x86_64.tar.gz.sha512] value.

Directory layout of Linux .tar.gz packages

The .tar.gz packages are entirely self-contained. All files and directories are, by default, contained within $BIGCONNECT_DIR — the directory created when unpacking the archive.

This is very convenient because you don’t have to create any directories to start using BigConnect, and uninstalling BigConnect is as easy as removing the $BIGCONNECT_DIR directory. However, it is advisable to change the default locations of the config and data directories so that you do not delete important data later on.

Type	Description
:—	:—
config	Configuration files
datastore	The location of the data files written to disk by BigConnect
log	Log files
lib	System libraries needed by BigConnect
lib/ext	Additional libraries added by users (eg. database drivers and plugins)
webapp	BigConnect Web Console files

Starting and stopping

Starting and stopping the platform can be done using the bundled bigconnect.sh script available in the root of your $BIGCONNECT_DIR folder.

BigConnect Lite package

The bigconnect.sh script handles system life-cycle operations like:

	Starting/stopping the services

	Starting the BigConnect Shell

There are no first-time tasks to do for the SQL package.

Starting BigConnect

BigConnect can be started from the command line as follows:

./bigconnect.sh start

The start command will also start in-process services for H2 and ElasticSearch.

If BigConnect fails to start for any reason, please check the log files in the $BIGCONNECT_DIR/logs folder

Stopping BigConnect

In order to stop BigConnect from the command line, run:

./bigconnect.sh stop

Resetting the data

To completely wipe-out the data and start fresh, please delete the datastore folder.

{% hint style=”danger” %}
By removing the datastore folder will lose all you BigConnect data !
{% endhint %}

Getting Started

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/logo_negru.png
BlG
CONNECT

_static/ajax-loader.gif

_images/desc.png
org.bigconnect.layout.root

Johnny Appleseed

PERSON org.bigconnect.layout.header

OPEN ~ ADD ¥~ GOOGLE

Custom Addition using

Example of text layout component with fixed string l . .
org.bigconnect.layout.string

VISIBILITY public
STATUS unpublished
FULL NAME Johnny Appleseed public

Properties component

HAS SOURCE . .
Relationships component

g s —

_images/image.png
Default | Graph Query a - x Saved Searches »+ C

Nome oeme
© cloba
Querying data . o

‘The query strng is parsed nto a seies ofterms and operators. A term can be a single word — quick o brown —or a phrase, surounded by double quotes — ‘quick brown’ — which searches
forallthe words inthe phrase, inthe same order

Wildcards

Wildcard searches can be run on individua tems, using 4o replace single characte, and *toreplace zero or more characters:

aqurck bro®

Be aware that widcard queries can use an enormous amount of memory and perform very badly —us think how many terms need to be queried o match the query sting
Fuzziness

We can search fo temms that e similar to,but not exactly ke our search terms, using the “fuzzy” operator:

quike~ brun~ foks~

“The default edit distance is 2, but an edit distance of 1 should be suffcent o catch 80% of all uman misspelings. t can be specfed as:

aquike-1

< asene >

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up.png

