
BigARTM Documentation
Release 1.0

Konstantin Vorontsov

February 15, 2017

Contents

1 Introduction 3

2 Downloads 5

3 Formats 7

4 Installation 9
4.1 Installation for Windows users . 9
4.2 Installation for Linux and Mac OS-X users . 10

5 Tutorial references 13
5.1 BigARTM command line utility . 13
5.2 Running BigARTM from Python API . 17
5.3 Low-level API in C . 17

6 Python Interface 25
6.1 ARTM model . 25
6.2 LDA model . 30
6.3 hARTM . 33
6.4 Batches Utils . 36
6.5 Dictionary . 37
6.6 Regularizers . 39
6.7 Scores . 43
6.8 Score Tracker . 45
6.9 Master Component . 48

7 Release Notes 55
7.1 Changes in Python API . 55
7.2 Changes in Protobuf Messages . 58
7.3 Changes in BigARTM CLI . 61
7.4 Changes in c_interface . 61
7.5 BigARTM v0.7.X Release Notes . 62

8 BigARTM Developer’s Guide 77
8.1 Downloads (Windows) . 77
8.2 Source code . 78
8.3 Build C++ code on Windows . 78
8.4 Python code on Windows . 79
8.5 Compiling .proto files on Windows . 80

i

8.6 Working with iPython notebooks remotely . 80
8.7 Build C++ code on Linux . 81
8.8 Code style . 81

9 Legacy documentation pages 83
9.1 Basic BigARTM tutorial for Linux and Mac OS-X users . 83
9.2 Basic BigARTM tutorial for Windows users . 85
9.3 Enabling Basic BigARTM Regularizers . 87
9.4 BigARTM as a Service . 89
9.5 BigARTM: The Algorithm Under The Hood . 90
9.6 Messages . 91
9.7 C++ interface . 120
9.8 Windows distribution . 124

Python Module Index 127

ii

BigARTM Documentation, Release 1.0

Getting help

• Learn more about BigARTM from IPython Notebooks, NLPub.ru, MachineLearning.ru and several pub-
lications.

• Search for information in the archives of the bigartm-users mailing list, or post a question.
• Report bugs with BigARTM in our ticket tracker.
• Try the Q&A – it’s got answers to many common questions.

Contents 1

https://github.com/bigartm/bigartm-book/blob/master/README.md
https://nlpub.ru/BigARTM
http://www.machinelearning.ru/wiki/index.php?title=BigARTM
https://github.com/bigartm/bigartm/wiki/Publications
https://github.com/bigartm/bigartm/wiki/Publications
https://groups.google.com/group/bigartm-users
https://groups.google.com/d/forum/bigartm-users
https://github.com/bigartm/bigartm/issues
https://github.com/bigartm/bigartm/wiki/Q&A

BigARTM Documentation, Release 1.0

2 Contents

CHAPTER 1

Introduction

Warning: Please note that this is a beta version of the BigARTM library which is still undergoing final testing
before its official release. Should you encounter any bugs, lack of functionality or other problems with our library,
please let us know immediately. Your help in this regard is greatly appreciated.

This is the documentation for the BigARTM library. BigARTM is a tool to infer topic models, based on a novel
technique called Additive Regularization of Topic Models. This technique effectively builds multi-objective models
by adding the weighted sums of regularizers to the optimization criterion. BigARTM is known to combine well
very different objectives, including sparsing, smoothing, topics decorrelation and many others. Such combinations of
regularizers significantly improves several quality measures at once almost without any loss of the perplexity.

Online. BigARTM never stores the entire text collection in the main memory. Instead the collection is split into small
chunks called ‘batches’, and BigARTM always loads a limited number of batches into memory at any time.

Parallel. BigARTM can concurrently process several batches, and by doing so it substantially improves the throughput
on multi-core machines. The library hosts all computation in several threads withing a single process, which enables
efficient usage of shared memory across application threads.

Extensible API. BigARTM comes with an API in Python, but can be easily extended for all other languages that have
an implementation of Google Protocol Buffers.

Cross-platform. BigARTM is known to be compatible with gcc, clang and the Microsoft compiler (VS 2012). We
have tested our library on Windows, Ubuntu and Fedora.

Open source. BigARTM is released under the New BSD License. If you plan to use our library commercially, please
beware that BigARTM depends on ZeroMQ. Please, make sure to review ZeroMQ license.

Acknowledgements. BigARTM project is supported by Russian Foundation for Ba-
sic Research (grants 14-07-00847, 14-07-00908, 14-07-31176), Skolkovo Institute of Sci-
ence and Technology (project 081-R), Moscow Institute of Physics and Technology.

Partners

3

http://en.wikipedia.org/wiki/Topic_model
http://www.machinelearning.ru/wiki/images/1/1f/Voron14aist.pdf
https://code.google.com/p/protobuf/
http://opensource.org/licenses/BSD-3-Clause
http://zeromq.org/area:licensing
http://www.rfbr.ru/rffi/eng/about
http://www.skoltech.ru/en
http://mipt.ru/en/

BigARTM Documentation, Release 1.0

4 Chapter 1. Introduction

http://https://confluence.ap-team.ru/display/research/Antiplagiat+Research+Home/
http://bbridge.net/

CHAPTER 2

Downloads

• Windows

– Latest 64 bit release: BigARTM_v0.8.2_win64

– Latest build from master branch: BigARTM_master_win64.7z (warning, use this with caution)

– All previous releases are available at https://github.com/bigartm/bigartm/releases

Please refer to Basic BigARTM tutorial for Windows users for step by step installation procedure.

• Linux, Mac OS-X

To run BigARTM on Linux and Mac OS-X you need to clone BigARTM repository
(https://github.com/bigartm/bigartm) and build it as described in Basic BigARTM tutorial for Linux and
Mac OS-X users.

• Datasets

Download one of the following datasets to start experimenting with BigARTM. See Formats page for the de-
scription of input data formats. Note that docword.* and vocab.* files indicate UCI BOW format, while
vw.* file indicate Vowpal Wabbit format.

5

https://github.com/bigartm/bigartm/releases/download/v0.8.2/BigARTM_v0.8.2_win64.7z
https://ci.appveyor.com/api/projects/bigartm/bigartm/artifacts/BigARTM.7z?branch=master&job=Environment%3A%20JOB%3Dpython3%2C%20PYTHON_VERSION%3D3.5%2C%20MINICONDA%3DC%3A%5CMiniconda35-x64
https://github.com/bigartm/bigartm/releases
https://github.com/bigartm/bigartm

BigARTM Documentation, Release 1.0

Task Source #Words #Items Files
kos UCI 6906 3430 –

docword.kos.txt.gz
(1 MB)

– vocab.kos.txt
(54 KB)

nips UCI 12419 1500 –
docword.nips.txt.gz
(2.1 MB)

– vocab.nips.txt
(98 KB)

enron UCI 28102 39861 –
docword.enron.txt.gz
(11.7 MB)

–
vocab.enron.txt
(230 KB)

nytimes UCI 102660 300000 –
docword.nytimes.txt.gz
(223 MB)

–
vocab.nytimes.txt
(1.2 MB)

pubmed UCI 141043 8200000 –
docword.pubmed.txt.gz
(1.7 GB)

–
vocab.pubmed.txt
(1.3 MB)

wiki Gensim 100000 3665223
– vw.wiki-

en.txt.zip (1.8
GB)

wiki_enru Wiki 196749 216175 –
vw.wiki_enru.txt.zip
(285 MB)

eurlex eurlex 19800 21000 –
vw.eurlex.txt.zip
(13 MB)

– vw.eurlex-
test.txt.zip (13
MB)

lastfm lastfm 1k, 360k –
vw.lastfm_1k.txt.zip
(100 MB)

–
vw.lastfm_360k.txt.zip
(330 MB)

mmro mmro 7805 1061 –
docword.mmro.txt.gz
(500 KB)

–
vocab.mmro.txt
(150 KB)

–
pPMI_w100.mmro.txt.7z
(23 MB)

–
vw.mmro.txt.7z
(1.4 MB)

6 Chapter 2. Downloads

https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
https://s3-eu-west-1.amazonaws.com/artm/docword.kos.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/docword.kos.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/vocab.kos.txt
https://s3-eu-west-1.amazonaws.com/artm/vocab.kos.txt
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
https://s3-eu-west-1.amazonaws.com/artm/docword.nips.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/docword.nips.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/vocab.nips.txt
https://s3-eu-west-1.amazonaws.com/artm/vocab.nips.txt
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
https://s3-eu-west-1.amazonaws.com/artm/docword.enron.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/docword.enron.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/vocab.enron.txt
https://s3-eu-west-1.amazonaws.com/artm/vocab.enron.txt
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
https://s3-eu-west-1.amazonaws.com/artm/docword.nytimes.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/docword.nytimes.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/vocab.nytimes.txt
https://s3-eu-west-1.amazonaws.com/artm/vocab.nytimes.txt
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
https://s3-eu-west-1.amazonaws.com/artm/docword.pubmed.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/docword.pubmed.txt.gz
https://s3-eu-west-1.amazonaws.com/artm/vocab.pubmed.txt
https://s3-eu-west-1.amazonaws.com/artm/vocab.pubmed.txt
http://radimrehurek.com/gensim/wiki.html
https://s3-eu-west-1.amazonaws.com/artm/vw.wiki-en.txt.zip
https://s3-eu-west-1.amazonaws.com/artm/vw.wiki-en.txt.zip
https://s3-eu-west-1.amazonaws.com/artm/vw.wiki-en.txt.zip
http://dumps.wikimedia.org
https://s3-eu-west-1.amazonaws.com/artm/vw.wiki-enru.txt.zip
https://s3-eu-west-1.amazonaws.com/artm/vw.wiki-enru.txt.zip
http://www.ke.tu-darmstadt.de/resources/eurlex
https://s3-eu-west-1.amazonaws.com/artm/vw.eurlex.txt.zip
https://s3-eu-west-1.amazonaws.com/artm/vw.eurlex.txt.zip
https://s3-eu-west-1.amazonaws.com/artm/vw.eurlex-test.txt.zip
https://s3-eu-west-1.amazonaws.com/artm/vw.eurlex-test.txt.zip
https://s3-eu-west-1.amazonaws.com/artm/vw.eurlex-test.txt.zip
http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/
https://s3-eu-west-1.amazonaws.com/artm/vw.lastfm_1k.txt.zip
https://s3-eu-west-1.amazonaws.com/artm/vw.lastfm_1k.txt.zip
https://s3-eu-west-1.amazonaws.com/artm/vw.lastfm_360k.txt.zip
https://s3-eu-west-1.amazonaws.com/artm/vw.lastfm_360k.txt.zip
http://mmro.ru/
https://s3-eu-west-1.amazonaws.com/artm/docword.mmro.txt.7z
https://s3-eu-west-1.amazonaws.com/artm/docword.mmro.txt.7z
https://s3-eu-west-1.amazonaws.com/artm/vocab.mmro.txt
https://s3-eu-west-1.amazonaws.com/artm/vocab.mmro.txt
https://s3-eu-west-1.amazonaws.com/artm/pPMI_w100.mmro.txt.7z
https://s3-eu-west-1.amazonaws.com/artm/pPMI_w100.mmro.txt.7z
https://s3-eu-west-1.amazonaws.com/artm/vw.mmro.txt.7z
https://s3-eu-west-1.amazonaws.com/artm/vw.mmro.txt.7z

CHAPTER 3

Formats

This page describes input data formats compatible with BigARTM. Currently all formats correspond to Bag-of-words
representation, meaning that all linguistic processing (lemmatization, tokenization, detection of n-grams, etc) needs to
be done outside BigARTM.

1. Vowpal Wabbit is a single-format file, based on the following principles:

• each document is depresented in a single line

• all tokens are represented as strings (no need to convert them into an integer identifier)

• token frequency defaults to 1.0, and can be optionally specified after a colon (:)

• namespaces (Batch.class_id) can be identified by a pipe (|)

Example 1

doc1 Alpha Bravo:10 Charlie:5 |author Ola_Nordmann
doc2 Bravo:5 Delta Echo:3 |author Ivan_Ivanov

Example 2

user123 |track-like track2 track5 track7 |track-play track1:10 track2:25 track3:2 track7:8 |track-skip track2:3 track8:1 |artist-like artist4:2 artist5:6 |artist-play artist4:100 artist5:20
user345 |track-like track2 track5 track7 |track-play track1:10 track2:25 track3:2 track7:8 |track-skip track2:3 track8:1 |artist-like artist4:2 artist5:6 |artist-play artist4:100 artist5:20

2. UCI Bag-of-words format consists of two files - vocab.*.txt and docword.*.txt. The format of the
docword.*.txt file is 3 header lines, followed by NNZ triples:

D
W
NNZ
docID wordID count
docID wordID count
...
docID wordID count

The file must be sorted on docID. Values of wordID must be unity-based (not zero-based). The format of
the vocab.*.txt file is line containing wordID=n. Note that words must not have spaces or tabs. In
vocab.*.txt file it is also possible to specify the namespace (Batch.class_id) for tokens, as it is shown
in this example:

token1 @default_class
token2 custom_class
token3 @default_class
token4

7

https://en.wikipedia.org/wiki/Bag-of-words_model
https://en.wikipedia.org/wiki/Bag-of-words_model
https://github.com/JohnLangford/vowpal_wabbit/wiki/Input-format
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words

BigARTM Documentation, Release 1.0

Use space or tab to separate token from its class. Token that are not followed by class label automatically get
‘’@default_class‘’ as a label (see ‘’token4” in the example).

Unicode support. For non-ASCII characters save vocab.*.txt file in UTF-8 format.

3. Batches (binary BigARTM-specific format).

This is compact and efficient format, based on several protobuf messages in public BigARTM interface (Batch,
Item and Field).

• A batch is a collection of several items

• An item is a collection of several fields

• A field is a collection of pairs (token_id, token_weight).

The following example shows a Python code that generates a synthetic batch.

import artm.messages, random, uuid

num_tokens = 60
num_items = 100
batch = artm.messages.Batch()
batch.id = str(uuid.uuid4())
for token_id in range(0, num_tokens):

batch.token.append('token' + str(token_id))

for item_id in range(0, num_items):
item = batch.item.add()
item.id = item_id
field = item.field.add()
for token_id in range(0, num_tokens):

field.token_id.append(token_id)
background_count = random.randint(1, 5) if (token_id >= 40) else 0
topical_count = 10 if (token_id < 40) and ((token_id % 10) == (item_id % 10)) else 0
field.token_weight.append(background_count + topical_count)

Note that the batch has its local dictionary, batch.token. This dictionary which maps token_id into the
actual token. In order to create a batch from textual files involve one needs to find all distinct words, and map
them into sequential indices.

batch.id must be set to a unique GUID in a format of 00000000-0000-0000-0000-000000000000.

8 Chapter 3. Formats

mailto:''@default_class

CHAPTER 4

Installation

Installation for Windows users

Download

Download latest binary distribution of BigARTM from https://github.com/bigartm/bigartm/releases. Explicit down-
load links can be found at Downloads section (for 32 bit and 64 bit configurations).

The distribution will contain pre-build binaries, command-line interface and BigARTM API for Python. The distri-
bution also contains a simple dataset. More datasets in BigARTM-compatible format are available in the Downloads
section.

Refer to Windows distribution for details about other files, included in the binary distribution package.

Configure BigARTM Python API

1. Install Python, for example from the following links:

• Python 2.7.11, 64 bit – https://www.python.org/ftp/python/2.7.11/python-2.7.11.amd64.msi, or

• Python 2.7.11, 32 bit – https://www.python.org/ftp/python/2.7.11/python-2.7.11.msi

Remember that the version of BigARTM package must match your version Python installed on your machine.
If you have 32 bit operating system then you must select 32 bit for Python and BigARTM package. If you have
64 bit operating system then you are free to select either version. However, please note that memory usage of
32 bit processes is limited by 2 GB. For this reason we recommend to select 64 bit configurations.

Please note that you must use Python 2.7, because Python 3 is not supported by BigARTM.

Also you need to have several Python libraries to be installed on your machine:

• numpy >= 1.9.2

• pandas >= 0.16.2

2. Add C:\BigARTM\bin folder to your PATH system variable, and add C:\BigARTM\python to your
PYTHONPATH system variable:

set PATH=%PATH%;C:\BigARTM\bin
set PATH=%PATH%;C:\Python27;C:\Python27\Scripts
set PYTHONPATH=%PYTHONPATH%;C:\BigARTM\Python

Remember to change C:\BigARTM and C:\Python27 with your local folders.

9

https://github.com/bigartm/bigartm/releases
https://www.python.org/ftp/python/2.7.11/python-2.7.11.amd64.msi
https://www.python.org/ftp/python/2.7.11/python-2.7.11.msi

BigARTM Documentation, Release 1.0

3. Setup Google Protocol Buffers library, included in the BigARTM release package.

• Copy C:\BigARTM\bin\protoc.exe file into C:\BigARTM\protobuf\src folder

• Run the following commands from command prompt

cd C:\BigARTM\protobuf\Python
python setup.py build
python setup.py install

Avoid python setup.py test step, as it produces several confusing errors. Those errors are harmless.
For further details about protobuf installation refer to protobuf/python/README.

Installation for Linux and Mac OS-X users

Currently there is no distribution package of BigARTM for Linux. BigARTM had been tested on several Linux
distributions, and it is known to work well, but you have to get the source code and compile it locally on your machine.

System dependencies

Building BigARTM requires the following components:

• git (any recent version) – for obtaining source code;

• cmake (at least of version 2.8), make, g++ or clang compiler with c++11 support, boost (at least of version
1.40) – for building library and binary executable;

• python (version 2.7) – for building Python API for BigARTM.

To simplify things, you may type:

• On deb-based distributions: sudo apt-get install git make cmake build-essential
libboost-all-dev

• On rpm-based distributions: sudo yum install git make cmake gcc-c++ glibc-static
libstdc++-static boost boost-static python (for Fedora 22 or higher use dnf instead of
yum)

• On Mac OS distributions: brew install git cmake boost

Download sources and build

Clone the latest BigARTM code from our github repository, and build it via CMake as in the following script.

cd ~
git clone --branch=stable https://github.com/bigartm/bigartm.git
cd bigartm
mkdir build && cd build
cmake ..
make

Note for Linux users: By default building binary executable bigartm requiers static versions of Boost, C and C++
libraries. To alter it, run cmake command with option -DBUILD_BIGARTM_CLI_STATIC=OFF.

10 Chapter 4. Installation

https://raw.githubusercontent.com/bigartm/bigartm/master/3rdparty/protobuf/python/README.txt
https://git-scm.org
https://cmake.org
https://python.org

BigARTM Documentation, Release 1.0

System-wide installation

To install command-line utility, shared library module and Python interface for BigARTM, you can type:

sudo make install

Normally this will install:

• bigartm utility into folder /usr/local/bin/;

• shared library libartm.so (artm.dylib for Max OS-X) into folder /usr/local/lib/;

• Python interface for BigARTM into Python-specific system directories, along with necessary dependencies.

If you want to alter target folders for binary and shared library objects, you may specify common prefix
while running cmake command via option -DCMAKE_INSTALL_PREFIX=path_to_folder. By default
CMAKE_INSTALL_PREFIX=/usr/local/.

Configure BigARTM Python API

If you want to use only Python interface for BigARTM, you may run following commands:

Step 1 - install Google Protobuf as dependency
cd ~/bigartm/3rdparty/protobuf/python
sudo python setup.py install

Step 2 - install Python interface for BigARTM
cd ~/bigartm/python
sudo python setup.py install

Step 3 - point ARTM_SHARED_LIBRARY variable to libartm.so (libartm.dylib) location
export ARTM_SHARED_LIBRARY=~/bigartm/build/lib/libartm.so # for linux
export ARTM_SHARED_LIBRARY=~/bigartm/build/lib/libartm.dylib # for Mac OS X

We strongly recommend system-wide installation as there is no need to keep BigARTM code after it, so you may
safely remove folder ~/bigartm/.

Troubleshooting

If you build BigARTM in existing folder build (e.g. you built BigARTM before) and encounter any errors, it may
be due to out-of-date file CMakeCache.txt in folder build. In that case we strongly recommend to delete this file
and try to build again.

Using BigARTM Python API you can encounter this error:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "build/bdist.linux-x86_64/egg/artm/wrapper/api.py", line 19, in __init__
File "build/bdist.linux-x86_64/egg/artm/wrapper/api.py", line 53, in _load_cdll
OSError: libartm.so: cannot open shared object file: No such file or directory
Failed to load artm shared library. Try to add the location of `libartm.so` file into your LD_LIBRARY_PATH system variable, or to set ARTM_SHARED_LIBRARY - a specific system variable which may point to `libartm.so` file, including the full path.

This error indicates that BigARTM’s python interface can not locate libartm.so (libartm.dylib) files. In such case type
export ARTM_SHARED_LIBRARY=path_to_artm_shared_library.

4.2. Installation for Linux and Mac OS-X users 11

BigARTM Documentation, Release 1.0

BigARTM on Travis-CI

To get a live usage example of BigARTM you may check BigARTM’s .travis.yml script and the latest continuous
integration build.

12 Chapter 4. Installation

https://raw.githubusercontent.com/bigartm/bigartm/master/.travis.yml
https://travis-ci.org/bigartm/bigartm
https://travis-ci.org/bigartm/bigartm

CHAPTER 5

Tutorial references

BigARTM command line utility

This document provides an overview of bigartm command-line utility shipped with BigARTM.

For a detailed description of bigartm command line interface refer to bigartm.exe notebook (in Russian).

In brief, you need to download some input data (a textual collection represented in bag-of-words format). We recom-
mend to download sample colections in vowpal wabbit format by links provided in Downloads section of the tutorial.
Then you can use bigartm as described by bigartm --help. You may also get more information about builtin
regularizers by typing bigartm --help --regularizer.

BigARTM v0.8.2 - library for advanced topic modeling (http://bigartm.org):

Input data:
-c [--read-vw-corpus] arg Raw corpus in Vowpal Wabbit format
-d [--read-uci-docword] arg docword file in UCI format
-v [--read-uci-vocab] arg vocab file in UCI format
--read-cooc arg read co-occurrences format
--batch-size arg (=500) number of items per batch
--use-batches arg folder with batches to use

Dictionary:
--dictionary-min-df arg filter out tokens present in less than

N documents / less than P% of documents
--dictionary-max-df arg filter out tokens present in less than

N documents / less than P% of documents
--dictionary-size arg (=0) limit dictionary size by filtering out

tokens with high document frequency
--use-dictionary arg filename of binary dictionary file to

use

Model:
--load-model arg load model from file before processing
-t [--topics] arg (=16) number of topics
--use-modality arg modalities (class_ids) and their

weights
--predict-class arg target modality to predict by theta

matrix

Learning:
-p [--num-collection-passes] arg (=0)

number of outer iterations (passes

13

http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/junk/cli/BigARTM_CommandLineInferface.ipynb

BigARTM Documentation, Release 1.0

through the collection)
--num-document-passes arg (=10) number of inner iterations (passes

through the document)
--update-every arg (=0) [online algorithm] requests an update

of the model after update_every
document

--tau0 arg (=1024) [online algorithm] weight option from
online update formula

--kappa arg (=0.699999988) [online algorithm] exponent option from
online update formula

--reuse-theta reuse theta between iterations
--regularizer arg regularizers (SmoothPhi,SparsePhi,Smoot

hTheta,SparseTheta,Decorrelation)
--threads arg (=-1) number of concurrent processors

(default: auto-detect)
--async invoke asynchronous version of the

online algorithm

Output:
--save-model arg save the model to binary file after

processing
--save-batches arg batch folder
--save-dictionary arg filename of dictionary file
--write-model-readable arg output the model in a human-readable

format
--write-dictionary-readable arg output the dictionary in a

human-readable format
--write-predictions arg write prediction in a human-readable

format
--write-class-predictions arg write class prediction in a

human-readable format
--write-scores arg write scores in a human-readable format
--write-vw-corpus arg convert batches into plain text file in

Vowpal Wabbit format
--force force overwrite existing output files
--csv-separator arg (=;) columns separator for

--write-model-readable and
--write-predictions. Use \t or TAB to
indicate tab.

--score-level arg (=2) score level (0, 1, 2, or 3
--score arg scores (Perplexity, SparsityTheta,

SparsityPhi, TopTokens, ThetaSnippet,
or TopicKernel)

--final-score arg final scores (same as scores)

Other options:
-h [--help] display this help message
--rand-seed arg specify seed for random number

generator, use system timer when not
specified

--guid-batch-name applies to save-batches and indicate
that batch names should be guids (not
sequential codes)

--response-file arg response file
--paused start paused and waits for a keystroke

(allows to attach a debugger)
--disk-cache-folder arg disk cache folder
--disable-avx-opt disable AVX optimization (gives similar

14 Chapter 5. Tutorial references

BigARTM Documentation, Release 1.0

behavior of the Processor component to
BigARTM v0.5.4)

--time-limit arg (=0) limit execution time in milliseconds
--log-dir arg target directory for logging

(GLOG_log_dir)
--log-level arg min logging level (GLOG_minloglevel;

INFO=0, WARNING=1, ERROR=2, and
FATAL=3)

Examples:

* Download input data:
wget https://s3-eu-west-1.amazonaws.com/artm/docword.kos.txt
wget https://s3-eu-west-1.amazonaws.com/artm/vocab.kos.txt
wget https://s3-eu-west-1.amazonaws.com/artm/vw.mmro.txt
wget https://s3-eu-west-1.amazonaws.com/artm/vw.wiki-enru.txt.zip

* Parse docword and vocab files from UCI bag-of-word format; then fit topic model with 20 topics:
bigartm -d docword.kos.txt -v vocab.kos.txt -t 20 --num_collection_passes 10

* Parse VW format; then save the resulting batches and dictionary:
bigartm --read-vw-corpus vw.mmro.txt --save-batches mmro_batches --save-dictionary mmro.dict

* Parse VW format from standard input; note usage of single dash '-' after --read-vw-corpus:
cat vw.mmro.txt | bigartm --read-vw-corpus - --save-batches mmro2_batches --save-dictionary mmro2.dict

* Re-save batches back into VW format:
bigartm --use-batches mmro_batches --write-vw-corpus vw.mmro.txt

* Parse only specific modalities from VW file, and save them as a new VW file:
bigartm --read-vw-corpus vw.wiki-enru.txt --use-modality @russian --write-vw-corpus vw.wiki-ru.txt

* Load and filter the dictionary on document frequency; save the result into a new file:
bigartm --use-dictionary mmro.dict --dictionary-min-df 5 dictionary-max-df 40% --save-dictionary mmro-filter.dict

* Load the dictionary and export it in a human-readable format:
bigartm --use-dictionary mmro.dict --write-dictionary-readable mmro.dict.txt

* Use batches to fit a model with 20 topics; then save the model in a binary format:
bigartm --use-batches mmro_batches --num_collection_passes 10 -t 20 --save-model mmro.model

* Load the model and export it in a human-readable format:
bigartm --load-model mmro.model --write-model-readable mmro.model.txt

* Load the model and use it to generate predictions:
bigartm --read-vw-corpus vw.mmro.txt --load-model mmro.model --write-predictions mmro.predict.txt

* Fit model with two modalities (@default_class and @target), and use it to predict @target label:
bigartm --use-batches <batches> --use-modality @default_class,@target --topics 50 --num_collection_passes 10 --save-model model.bin
bigartm --use-batches <batches> --use-modality @default_class,@target --topics 50 --load-model model.bin

--write-predictions pred.txt --csv-separator=tab
--predict-class @target --write-class-predictions pred_class.txt --score ClassPrecision

* Fit simple regularized model (increase sparsity up to 60-70%):
bigartm -d docword.kos.txt -v vocab.kos.txt --dictionary-max-df 50% --dictionary-min-df 2

--num_collection_passes 10 --batch-size 50 --topics 20 --write-model-readable model.txt
--regularizer "0.05 SparsePhi" "0.05 SparseTheta"

5.1. BigARTM command line utility 15

BigARTM Documentation, Release 1.0

* Fit more advanced regularize model, with 10 sparse objective topics, and 2 smooth background topics:
bigartm -d docword.kos.txt -v vocab.kos.txt --dictionary-max-df 50% --dictionary-min-df 2

--num_collection_passes 10 --batch-size 50 --topics obj:10;background:2 --write-model-readable model.txt
--regularizer "0.05 SparsePhi #obj"
--regularizer "0.05 SparseTheta #obj"
--regularizer "0.25 SmoothPhi #background"
--regularizer "0.25 SmoothTheta #background"

* Upgrade batches in the old format (from folder 'old_folder' into 'new_folder'):
bigartm --use-batches old_folder --save-batches new_folder

* Configure logger to output into stderr:
tset GLOG_logtostderr=1 & bigartm -d docword.kos.txt -v vocab.kos.txt -t 20 --num_collection_passes 10

Additional information about regularizers:

>bigartm.exe --regularizer --help
List of regularizers available in BigARTM CLI:

--regularizer "tau SmoothTheta #topics"
--regularizer "tau SparseTheta #topics"
--regularizer "tau SmoothPhi #topics @class_ids !dictionary"
--regularizer "tau SparsePhi #topics @class_ids !dictionary"
--regularizer "tau Decorrelation #topics @class_ids"
--regularizer "tau TopicSelection #topics"
--regularizer "tau LabelRegularization #topics @class_ids !dictionary"
--regularizer "tau ImproveCoherence #topics @class_ids !dictionary"
--regularizer "tau Biterms #topics @class_ids !dictionary"

List of regularizers available in BigARTM, but not exposed in CLI:

--regularizer "tau SpecifiedSparsePhi"
--regularizer "tau SmoothPtdw"
--regularizer "tau HierarchySparsingTheta"

If you are interested to see any of these regularizers in BigARTM CLI please send a message to
bigartm-users@googlegroups.com.

By default all regularizers act on the full set of topics and modalities.
To limit action onto specific set of topics use hash sign (#), followed by
list of topics (for example, #topic1;topic2) or topic groups (#obj).
Similarly, to limit action onto specific set of class ids use at sign (@),
by the list of class ids (for example, @default_class).
Some regularizers accept a dictionary. To specify the dictionary use exclamation mark (!),
followed by the path to the dictionary(.dict file in your file system).
Depending on regularizer the dictinoary can be either optional or required.
Some regularizers expect an dictinoary with tokens and their frequencies;
Other regularizers expect an dictinoary with tokens co-occurencies;
For more information about regularizers refer to wiki-page:

https://github.com/bigartm/bigartm/wiki/Implemented-regularizers

To get full help run `bigartm --help` without --regularizer switch.

16 Chapter 5. Tutorial references

BigARTM Documentation, Release 1.0

Running BigARTM from Python API

Refer to ARTM tutorial (in Russian or in English), which describes artm.ARTM model from high-level Python API
of BigARTM.

Refer to LDA tutorial (in Russian or in English), which describes artm.LDA model from high-level Python API of
BigARTM.

Refer to ARTM notebook with model experiment (in Russian or in English), which shows an example of usage of
artm.ARTM model from high-level Python API of BigARTM.

If some of these link are not available, try to open the repository manually: https://github.com/bigartm/bigartm-book

Low-level API in C

This document explains all public methods of the low level BigARTM interface, written in plain C language.

Introduction

The goal of low level API is to expose all functionality of the library in a set of simple functions written in plain
C language. This makes it easier to consume BigARTM from various programming environments. For example,
the Python Interface of BigARTM uses ctypes module to call the low level BigARTM interface. Most programming
environments also have similar functionality: PInvoke in C#, loadlibrary in Matlab, etc.

Typical methods of low-level API may look as follows:

int ArtmCreateMasterModel(int length, const char* master_model_config);
int ArtmFitOfflineMasterModel(int master_id, int length, const char* fit_offline_master_model_args);
int ArtmRequestTopicModel(int master_id, int length, const char* get_model_args);

This methods, similarly to most other methods in low level API, accept a serialized binary representation of some
Google Protocol Buffer message. From BigARTM v0.8.2 it is also possible to pass JSON-serialized protobuf message.
This might be useful if you are planing to use low-level C interface from environment where configuring protobuf
libraries would be challenging. Please, refer to Messages for more details about each particular message, and Protobuf
documentation regarding JSON mapping.

Note that this documentation is incomplete. For the actual list the methods of low-level C API please refer to
c_interface.h. Same is true about messages documentation. It is always recommended to review the messages.proto
definition.

If you plan to implement a high-wrapper around low-level API we recoomend to review the source code of existing
wrappers cpp_interface.h, cpp_interface.cc (for C++ wrapper) and spec.py, api.py (for python wrapper).

List of all methods with corresponding protobuf types

ArtmConfigureLogging (artm.ConfigureLoggingArgs);
const char* = ArtmGetVersion();
const char* = ArtmGetLastErrorMessage();

artm.CollectionParserInfo = ArtmParseCollection (artm.CollectionParserConfig);

master_id = ArtmCreateMasterModel (artm.MasterModelConfig);
ArtmReconfigureMasterModel (master_id, artm.MasterModelConfig);
ArtmReconfigureTopicName (master_id, artm.MasterModelConfig);

5.2. Running BigARTM from Python API 17

http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/ARTM_tutorial_RU.ipynb
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/ARTM_tutorial_EN.ipynb
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/LDA_tutorial_RU.ipynb
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/LDA_tutorial_EN.ipynb
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/ARTM_example_RU.ipynb
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/ARTM_example_EN.ipynb
https://github.com/bigartm/bigartm-book
https://docs.python.org/2/library/ctypes.html
http://msdn.microsoft.com/en-us/library/aa288468(v=vs.71).aspx
http://www.mathworks.se/help/matlab/matlab_external/calling-functions-in-shared-libraries.html
https://developers.google.com/protocol-buffers/docs/proto3#json
https://developers.google.com/protocol-buffers/docs/proto3#json
https://github.com/bigartm/bigartm/blob/master/src/artm/c_interface.h
https://github.com/bigartm/bigartm/blob/master/src/artm/messages.proto
https://github.com/bigartm/bigartm/blob/master/src/artm/cpp_interface.h
https://github.com/bigartm/bigartm/blob/master/src/artm/cpp_interface.cc
https://github.com/bigartm/bigartm/blob/master/python/artm/wrapper/spec.py
https://github.com/bigartm/bigartm/blob/master/python/artm/wrapper/api.py

BigARTM Documentation, Release 1.0

ArtmDisposeMasterComponent (master_id);

ArtmImportBatches (master_id, artm.ImportBatchesArgs);

ArtmGatherDictionary (master_id, artm.GatherDictionaryArgs);
ArtmFilterDictionary (master_id, artm.FilterDictionaryArgs);
ArtmCreateDictionary (master_id, artm.DictionaryData);
ArtmImportDictionary (master_id, artm.ImportDictionaryArgs);
ArtmExportDictionary (master_id, artm.ExportDictionaryArgs);

artm.DictionaryData = ArtmRequestDictionary (master_id, artm.GetDictionaryArgs);

ArtmInitializeModel (master_id, artm.InitializeModelArgs);
ArtmExportModel (master_id, artm.ExportModel);
ArtmImportModel (master_id, artm.ImportModel);
ArtmOverwriteTopicModel (master_id, artm.TopicModel);

ArtmFitOfflineMasterModel (master_id, artm.FitOfflineMasterModelArgs);
ArtmFitOnlineMasterModel (master_id, attm.FitOnlineMasterModelArgs);

artm.ThetaMatrix = ArtmRequestTransformMasterModel(master_id, artm.TransformMasterModelArgs);
artm.ThetaMatrix = ArtmRequestTransformMasterModelExternal(master_id, artm.TransformMasterModelArgs);

artm.MasterModelConfig = ArtmRequestMasterModelConfig (master_id);
artm.ThetaMatrix = ArtmRequestThetaMatrix (master_id, artm.GetThetaMatrix);
artm.ThetaMatrix = ArtmRequestThetaMatrixExternal (master_id, artm.GetThetaMatrix);
artm.TopicModel = ArtmRequestTopicModel (master_id, artm.GetTopicModel);
artm.TopicModel = ArtmRequestTopicModelExternal (master_id, artm.GetTopicModel);
artm.ScoreData = ArtmRequestScore (master_id, artm.GetScoreValueArgs);
artm.ScoreArray = ArtmRequestScoreArray (master_id, artm.GetScoreArrayArgs);
artm.MasterComponentInfo = ArtmRequestMasterComponentInfo (master_id, artm.GetMasterComponentInfoArgs);

ArtmDisposeModel (master_id, const char* model_name);
ArtmDisposeDictionary (master_id, const char* dictionary_name);
ArtmDisposeBatch (master_id, const char* batch_name);
ArtmClearThetaCache (master_id, artm.ClearThetaCacheArgs);
ArtmClearScoreCache (master_id, artm.ClearScoreCacheArgs);
ArtmClearScoreArrayCache (master_id, artm.ClearScoreArrayCacheArgs);

ArtmCopyRequestedMessage (int length, char* address);
ArtmCopyRequestedObject (int length, char* address);

ArtmSetProtobufMessageFormatToJson();
ArtmSetProtobufMessageFormatToBinary();

int = ArtmProtobufMessageFormatIsJson();

Below we give a short description of these methods.

• ArtmConfigureLogging allows to configure logging parameters; this method is optional, you may not use
it

• ArtmGetVersion returns the version of BigARTM library

• ArtmParseCollection parse collection in VW or UCI-BOW formats, creates batches and stores them to
disk

• ArtmCreateMasterModel / ArtmReconfigureMasterModel /
ArtmDisposeMasterComponent create master model / updates its parameters / dispose given in-
stance of master model.

• ArtmImportBatches loads batches from disk into memory for quicker processing. This is optional, most
methods that require batches can work directly with files on disk.

18 Chapter 5. Tutorial references

BigARTM Documentation, Release 1.0

• ArtmGatherDictionary / ArtmFilterDictionary / ArtmImportDictionary /
ArtmExportDictionary Main methods to work with dictionaries. Gather initialized the dictionary
based on a folder with batches, Filter eliminates tokens based on their frequency, Import/Export save and
re-load dictionary to/from disk.

• You may also created the dictionary from artm.DictionaryData message, that contains the list of all
tokens to be included in the dictionary. To do this use method ArtmCreateDictionary (to create a dictio-
nary) and ArtmRequestDictionary (to retrieve artm.DictionaryData for an existing dictionary).

• ArtmInitializeModel / ArtmExportModel / ArtmImportModel handle models (e.g. matrices of
size |T|*|W| such as pwt, nwt or rwt). Initialize* fills the matrix with random 0..1 values. Export and
Import saves the matrix to disk and re-loads it back.

• ArtmOverwriteTopicModel allows to overwite values in topic model (for example to manually specify
initial approximation).

• ArtmFitOfflineMasterModel — fit the model with offline algorithm

• ArtmFitOnlineMasterModel — fit the model with online algorithm

• ArtmRequestTransformMasterModel — apply the model to new data

• ArtmRequestMasterModelConfig — retrieve configuration of master model

• ArtmRequestThetaMatrix — retrieve cached theta matrix

• ArtmRequestTopicModel — retrieve a model (e.g. pwt, nwt or rwt matrix)

• ArtmRequestScore – retrieve score (such as perplexity, sparsity, etc)

• ArtmRequestScoreArray – retrieve historical information for a given score

• ArtmRequestMasterComponentInfo – retrieve diagnostics information and internal state of the master
model

• ArtmDisposeModel / ArtmDisposeDictionary / ArtmDisposeBatch – dispose specific objects

• ArtmClearThetaCache / ArtmClearScoreCache / ArtmClearScoreArrayCache – clear spe-
cific caches

• ArtmSetProtobufMessageFormatToJson / ArtmSetProtobufMessageFormatToBinary /
ArtmProtobufMessageFormatIsJson – configure the low-level API to work with JSON-serialized pro-
tobuf messages instead of binary-serialized protobuf messages

The following operations are less important part of low-level BigARTM CLI. In most cases you won’e need them,
unless you have a very specific needs.

master_id = ArtmDuplicateMasterComponent (master_id, artm.DuplicateMasterComponentArgs);
ArtmCreateRegularizer (master_id, artm.RegularizerConfig);
ArtmReconfigureRegularizer (master_id, artm.RegularizerConfig);
ArtmDisposeRegularizer (master_id, const char* regularizer_name);
ArtmOverwriteTopicModelNamed (master_id, artm.TopicModel, const char* name);
ArtmCreateDictionaryNamed (master_id, artm.DictionaryData, const char* name);
ArtmAttachModel (master_id, artm.AttachModelArgs, int address_length, char* address);

artm.ProcessBatchesResult = ArtmRequestProcessBatches (master_id, artm.ProcessBatchesArgs);
artm.ProcessBatchesResult = ArtmRequestProcessBatchesExternal(master_id, artm.ProcessBatchesArgs);

ArtmAsyncProcessBatches (master_id, artm.ProcessBatchesArgs);
ArtmMergeModel (master_id, artm.MergeModelArgs);
ArtmRegularizeModel (master_id, artm.RegularizeModelArgs);
ArtmNormalizeModel (master_id, artm.NormalizeModelArgs);

artm.Batch = ArtmRequestLoadBatch (const char* filename);
ArtmAwaitOperation (int operation_id, artm.AwaitOperationArgs);
ArtmSaveBatch (const char* disk_path, artm.Batch);

5.3. Low-level API in C 19

BigARTM Documentation, Release 1.0

Protocol for retrieving results

The methods in low-level API can be split into two groups — those that execute certain action, and those that request
certain data. For example ArtmCreateMasterModel and ArtmFitOfflineMasterModel just execute an
action, while ArtmRequestTopicModel is a request for data. Naming convention is that such requests always
start with ArtmRequest prefix.

1. To call execute-action method is fairly straighforward — first you create a protobuf message that describe the
arguments of the operation. For example, ArtmCreateMasterModel expects artm.MasterModelConfig
message, as defined in the documentation of ArtmCreateMasterModel. Then you serialize protobuf message,
and pass it to the method along with the length of the serialized message. In some cases you also pass the master_id,
returned by ArtmCreateMasterModel, as described in details futher below on this page. The execute-action
method will typically return an error code, with zero value (or ARTM_SUCCESS) indicating successfull execution.

2. To call request-data method is more tricky. First you follow the same procedure as when calling an execute-
action method, e.g. create and serialize protobuf message and pass it to your ArtmRequestXxx operation. For
example, ArtmRequestTopicModel expects artm.GetTopicModelArgs message. Then the method like
ArtmRequestTopicModel will return the size (in bytes) of the memory buffer that needs to be allocated by caller.
To fill this buffer with actual data you need to call method

int ArtmCopyRequestedMessage(int length, char* address)

where address give a pointer to the memory buffer, and length must give the length of the buffer (e.g. must match
the value returned by ArtmRequestXxx call). After ArtmCopyRequestedMessage the buffer will contain
protobuf-serialized message. To deserialize this message you need to know its protobuf type, which will be defined
by the documentation of the ArtmRequestXxx method that you are calling. For ArtmRequestTopicModel it
will be a artm.TopicModel message.

3. Note that few ArtmRequestXxx methods has a more complex protocol that require two subsequent calls — first,
to ArtmCopyRequestedMessage, and then to ArtmCopyRequestedObject. If that’s the case the name
of the method will be ArtmRequestXxxExternal (for example ArtmRequestThetaMatrixExternal or
ArtmRequestTopicModelExternal). Typically this is used to copy out large objects, such as theta or phi
matrices, and store them directly as dense matrices, bypassing protobuf serialization. For more information see
cpp_interface.cc.

A side-note on thread safety: in between calls to ArtmRequestXxx and ArtmCopyRequestedMessage the
result is stored in a thread local storage. This allows you to call multiple ArtmRequestXxx methods from different
threads.

Error handling

All methods in this API return an integer value. Negative return values represent an error code. See error codes for
the list of all error codes. To get corresponding error message as string use ArtmGetLastErrorMessage().
Non-negative return values represent a success, and for some API methods might also incorporate some use-
ful information. For example, ArtmCreateMasterModel() returns the ID of newly created master compo-
nent, and ArtmRequestTopicModel() returns the length of the buffer that should be allocated before calling
ArtmCopyRequestedMessage().

MasterId and MasterModel

The concept of Master Model is central in low-level API. Almost any interaction with the low-level API starts by
calling method ArtmCreateMasterModel, which creates an instance of so-called Master Model (or Master Com-
ponent), and returns its master_id – an integer identifier that refers to that instance. You need master_id in
the remaining methods of the low-level API, such as ArtmFitOfflineMasterModel. master_id creates a
context, or scope, that isolate different models from each other. An operation applied to a specific master_id will

20 Chapter 5. Tutorial references

https://github.com/bigartm/bigartm/blob/master/src/artm/cpp_interface.cc

BigARTM Documentation, Release 1.0

not affect other master components. Each master model occupy some memory — potentially a very large amount,
depending on the number of topics and tokens in the model. Once you are done with a specific instance of master
component you need to dispose its resources by calling ArtmDisposeMasterComponent(master_id). After
that master_id is no longer valid, and it must not be used as argument to other methods.

You may use method ArtmRequestMasterComponentInfo to retrieve internal diagnostics information about
master component. It will reveal its internal state and tell the config of the master component, the list of scores and
regularizers, the list of phi matrices, the list of dictionaries, cache entries, and other informatino that will help to
understand how master component is functioning.

Note there might be confusion between terms MasterComponent and MasterModel, throughout this page as well as in
the actual naming of the methods. This is due to historical reasons, and for all practical purposes you may think that
this terms refer to the same thing.

ArtmConfigureLogging

You may use ArtmConfigureLogging call to set logging parameters, such as verbosity level or directory to output
logs. You are not require to call ArtmConfigureLogging, in which case logging is automaticaly initialized to
INFO level, and logs are placed in the active working folder.

Note that you can set log directory just one time. Once it is set you can not change it afterwards.
Method ArtmConfigureLogging will return error code INVALID_OPERATION if it detects an attempt
to change logging folder after logging had been initialized. In order to set log directory the call to
ArtmConfigureLogging must happen prior to calling any other methods in low-level C API. (with excep-
tion to ArtmSetProtobufMessageFormatToJson, ArtmSetProtobufMessageFormatToBinary and
ArtmProtobufMessageFormatIsJson). This is because methods in c_interface may automatically ini-
tialize logging into current working directory, which later can not be changed.

Setting log directory require that target folder already exist on disk.

The following parameters can be customized with ArtmConfigureLogging.

message ConfigureLoggingArgs {
// If specified, logfiles are written into this directory
// instead of the default logging directory.
optional string log_dir = 1;

// Messages logged at a lower level than this
// do not actually get logged anywhere
optional int32 minloglevel = 2;

// Log messages at a level >= this flag are automatically
// sent to stderr in addition to log files.
optional int32 stderrthreshold = 3;

// Log messages go to stderr instead of logfiles
optional bool logtostderr = 4;

// color messages logged to stderr (if supported by terminal)
optional bool colorlogtostderr = 5;

// log messages go to stderr in addition to logfiles
optional bool alsologtostderr = 6;

// Buffer log messages for at most this many seconds
optional int32 logbufsecs = 7;

// Buffer log messages logged at this level or lower

5.3. Low-level API in C 21

BigARTM Documentation, Release 1.0

// (-1 means do not buffer; 0 means buffer INFO only; ...)
optional int32 logbuflevel = 8;

// approx. maximum log file size (in MB). A value of 0 will be silently overridden to 1.
optional int32 max_log_size = 9;

// Stop attempting to log to disk if the disk is full.
optional bool stop_logging_if_full_disk = 10;

}

We recommend to set logbuflevel = -1 to not buffer log messages. However by default BigARTM does not set
this parameter, using the same default as provided by glog.

ArtmReconfigureTopicName

To explain ArtmReconfigureTopicName we need to first start with ArtmReconfigureMasterModel.
ArtmReconfigureMasterModel allow user to rename topics, but the number of topics must stay the
same, and the order and the content of all existing phi matrices remains unchanged. On contrary,
ArtmReconfigureTopicName may change the number of topics by adding or removing topics, as well as re-
order columns of existing phi matrices. In ArtmReconfigureMasterModel the list of topic names is treated as
new identifiers that should be set for existing columns. In ArtmReconfigureTopicName the list of topic names
is matched against previous topic names. New topic names are added to phi matrices, topic names removed from the
list are excluded from phi matrices, and topic names present in both old and new lists are re-ordered accordingly to
match new topic name list.

Examples for ArtmReconfigureMasterModel:

• t1, t2, t3 -> t4, t5, t6 sets new topic names for existing columns in phi matrices.

Examples for ArtmReconfigureTopicName:

• t1, t2, t3 -> t1, t2, t3, t4 adds a new column to phi matrices, initialized with zeros

• t1, t2, t3 -> t1, t2 removes last column from phi matrices

• t1, t2, t3 -> t2, t3 removes the first column from phi matrices

• t1, t2, t3 -> t3, t2 removes the first column from phi matrices and swaps the remaining two columns

• t1, t2, t3 -> t4, t5, t6 removes all columns from phi matrices and creates three new columns, ini-
tialized with zeros

Note that both ArtmReconfigureTopicName and ArtmReconfigureMasterModel only affect phi matri-
ces where set of topic names match the configuration of the master model. User-created matrices with custom set of
topic names, for example created via ArtmMergeModel, will stay unchanged.

If you change topic names you should also consider changing your configuration of scores and regularizers. Also take
into account that ArtmReconfigureTopicName and ArtmReconfigureMasterModel do not update theta
cache. It is a good idea to call ArtmClearThetaCache after changing topic names.

ArtmGetLastErrorMessage

const char* ArtmGetLastErrorMessage()
Retrieves the textual error message, occured during the last failing request.

22 Chapter 5. Tutorial references

BigARTM Documentation, Release 1.0

Error codes

#define ARTM_SUCCESS 0
#define ARTM_STILL_WORKING -1
#define ARTM_INTERNAL_ERROR -2
#define ARTM_ARGUMENT_OUT_OF_RANGE -3
#define ARTM_INVALID_MASTER_ID -4
#define ARTM_CORRUPTED_MESSAGE -5
#define ARTM_INVALID_OPERATION -6
#define ARTM_DISK_READ_ERROR -7
#define ARTM_DISK_WRITE_ERROR -8

ARTM_SUCCESS
The API call succeeded.

ARTM_STILL_WORKING
This error code is applicable only to ArtmAwaitOperation(). It indicates that library is still processing
the collection. Try to retrieve results later.

ARTM_INTERNAL_ERROR
The API call failed due to internal error in BigARTM library. Please, collect steps to reproduce this issue and
report it with BigARTM issue tracker.

ARTM_ARGUMENT_OUT_OF_RANGE
The API call failed because one or more values of an argument are outside the allowable range of values as
defined by the invoked method.

ARTM_INVALID_MASTER_ID
An API call that require master_id parameter failed because MasterComponent with given ID does not exist.

ARTM_CORRUPTED_MESSAGE
Unable to deserialize protocol buffer message.

ARTM_INVALID_OPERATION
The API call is invalid in current state or due to provided parameters.

ARTM_DISK_READ_ERROR
The required files coult not be read from disk.

ARTM_DISK_WRITE_ERROR
The required files could not be writtent to disk.

5.3. Low-level API in C 23

BigARTM Documentation, Release 1.0

24 Chapter 5. Tutorial references

CHAPTER 6

Python Interface

This document describes all classes and functions in python interface of BigARTM library.

ARTM model

This page describes ARTM class.

class artm.ARTM(num_topics=None, topic_names=None, num_processors=None, class_ids=None,
scores=None, regularizers=None, num_document_passes=10, reuse_theta=False,
dictionary=None, cache_theta=False, theta_columns_naming=’id’, seed=-1)

__init__(num_topics=None, topic_names=None, num_processors=None, class_ids=None,
scores=None, regularizers=None, num_document_passes=10, reuse_theta=False, dic-
tionary=None, cache_theta=False, theta_columns_naming=’id’, seed=-1)

Parameters

• num_topics (int) – the number of topics in model, will be overwrited if topic_names
is set

• num_processors (int) – how many threads will be used for model training, if not
specified then number of threads will be detected by the lib

• topic_names (list of str) – names of topics in model

• class_ids (dict) – list of class_ids and their weights to be used in model, key —
class_id, value — weight, if not specified then all class_ids will be used

• cache_theta (bool) – save or not the Theta matrix in model. Necessary if
ARTM.get_theta() usage expects

• scores (list) – list of scores (objects of artm.*Score classes)

• regularizers (list) – list with regularizers (objects of artm.*Regularizer classes)

• num_document_passes (int) – number of inner iterations over each document

• dictionary (str or reference to Dictionary object) – dictionary to
be used for initialization, if None nothing will be done

• reuse_theta (bool) – reuse Theta from previous iteration or not

• theta_columns_naming (str) – either ‘id’ or ‘title’, determines how to name
columns (documents) in theta dataframe

• seed (unsigned int or -1) – seed for random initialization, -1 means no seed

25

BigARTM Documentation, Release 1.0

Important public fields

• regularizers: contains dict of regularizers, included into model

• scores: contains dict of scores, included into model

• score_tracker: contains dict of scoring results: key — score name, value — ScoreTracker
object, which contains info about values of score on each synchronization (e.g. collection
pass) in list

Note

• Here and anywhere in BigARTM empty topic_names or class_ids means that model (or
regularizer, or score) should use all topics or class_ids.

• If some fields of regularizers or scores are not defined by user — internal lib defaults
would be used.

• If field ‘topic_names’ is None, it will be generated by BigARTM and will be available
using ARTM.topic_names().

dispose()

Description free all native memory, allocated for this model

Note

• This method does not free memory occupied by dictionaries, because dictionaries are
shared across all models

• ARTM class implements __exit__ and __del___ methods, which automatically call dis-
pose.

fit_offline(batch_vectorizer=None, num_collection_passes=1)

Description proceeds the learning of topic model in offline mode

Parameters

• batch_vectorizer (object_referenece) – an instance of BatchVectorizer class

• num_collection_passes (int) – number of iterations over whole given collection

fit_online(batch_vectorizer=None, tau0=1024.0, kappa=0.7, update_every=1, ap-
ply_weight=None, decay_weight=None, update_after=None, async=False)

Description proceeds the learning of topic model in online mode

Parameters

• batch_vectorizer (object_reference) – an instance of BatchVectorizer class

• update_every (int) – the number of batches; model will be updated once per it

• tau0 (float) – coefficient (see ‘Update formulas’ paragraph)

• kappa (float) (float) – power for tau0, (see ‘Update formulas’ paragraph)

• update_after (list of int) – number of batches to be passed for Phi synchro-
nizations

• apply_weight (list of float) – weight of applying new counters

• decay_weight (list of float) – weight of applying old counters

• async (bool) – use or not the async implementation of the EM-algorithm

Note async=True leads to impossibility of score extraction via score_tracker. Use get_score()
instead.

26 Chapter 6. Python Interface

BigARTM Documentation, Release 1.0

Update formulas

• The formulas for decay_weight and apply_weight:

• update_count = current_processed_docs / (batch_size * update_every);

• rho = pow(tau0 + update_count, -kappa);

• decay_weight = 1-rho;

• apply_weight = rho;

• if apply_weight, decay_weight and update_after are set, they will be used, otherwise the
code below will be used (with update_every, tau0 and kappa)

get_phi(topic_names=None, class_ids=None, model_name=None)

Description get custom Phi matrix of model. The extraction of the whole Phi matrix expects
ARTM.phi_ call.

Parameters

• topic_names (list of str) – list with topics to extract, None value means all top-
ics

• class_ids (list of str) – list with class ids to extract, None means all class ids

• model_name (str) – self.model_pwt by default, self.model_nwt is also reasonable to
extract unnormalized counters

Returns

• pandas.DataFrame: (data, columns, rows), where:

• columns — the names of topics in topic model;

• rows — the tokens of topic model;

• data — content of Phi matrix.

get_phi_sparse(topic_names=None, class_ids=None, model_name=None, eps=None)

Description get phi matrix in sparse format

Parameters

• topic_names (list of str) – list with topics to extract, None value means all top-
ics

• class_ids (list of str) – list with class ids to extract, None means all class ids

• model_name (str) – self.model_pwt by default, self.model_nwt is also reasonable to
extract unnormalized counters

• eps (float) – threshold to consider values as zero

Returns

• a 3-tuple of (data, rows, columns), where

• data — scipy.sparse.csr_matrix with values

• columns — the names of topics in topic model;

• rows — the tokens of topic model;

get_score(score_name)

Description get score after fit_offline, fit_online or transform

6.1. ARTM model 27

BigARTM Documentation, Release 1.0

Parameters score_name (str) – the name of the score to return

get_theta(topic_names=None)

Description get Theta matrix for training set of documents (or cached after transform)

Parameters topic_names (list of str) – list with topics to extract, None means all
topics

Returns

• pandas.DataFrame: (data, columns, rows), where:

• columns — the ids of documents, for which the Theta matrix was requested;

• rows — the names of topics in topic model, that was used to create Theta;

• data — content of Theta matrix.

get_theta_sparse(topic_names=None, eps=None)

Description get Theta matrix in sparse format

Parameters

• topic_names (list of str) – list with topics to extract, None means all topics

• eps (float) – threshold to consider values as zero

Returns

• a 3-tuple of (data, rows, columns), where

• data — scipy.sparse.csr_matrix with values

• columns — the ids of documents;

• rows — the names of topics in topic model;

info

Description returns internal diagnostics information about the model

initialize(dictionary=None)

Description initialize topic model before learning

Parameters dictionary (str or reference to Dictionary object) – loaded
BigARTM collection dictionary

library_version

Description the version of BigARTM library in a MAJOR.MINOR.PATCH format

load(filename, model_name=’p_wt’)

Description loads from disk the topic model saved by ARTM.save()

Parameters

• filename (str) – the name of file containing model

• model_name (str) – the name of matrix to be saved, ‘p_wt’ or ‘n_wt’

Note

• Loaded model will overwrite ARTM.topic_names and class_ids fields.

• All class_ids weights will be set to 1.0, you need to specify them by hand if it’s necessary.

• The method call will empty ARTM.score_tracker.

28 Chapter 6. Python Interface

BigARTM Documentation, Release 1.0

• All regularizers and scores will be forgotten.

• etc.

• We strongly recommend you to reset all important parameters of the ARTM model, used
earlier.

remove_theta()

Description removes cached theta matrix

reshape_topics(topic_names)

Description update topic names of the model.

Adds, removes, and reorders columns of phi matrices according to the new set of topic names. New topics
are initialized with zeros.

save(filename, model_name=’p_wt’)

Description saves one Phi-like matrix to disk

Parameters

• filename (str) – the name of file to store model

• model_name (str) – the name of matrix to be saved, ‘p_wt’ or ‘n_wt’

topic_names

Description Gets or sets the list of topic names of the model.

Note

• Setting topic name allows you to put new labels on the existing topics. To add, remove or
reorder topics use ARTM.reshape_topics() method.

• In ARTM topic names are used just as string identifiers, which give a unique name to
each column of the phi matrix. Typically you want to set topic names as something like
“topic0”, “topic1”, etc. Later operations like get_phi() allow you to specify which topics
you need to retrieve. Most regularizers allow you to limit the set of topics they act upon.
If you configure a rich set of regularizers it is important design your topic names accord-
ing to how they are regularizerd. For example, you may use names obj0, obj1, ..., objN
for objective topics (those where you enable sparsity regularizers), and back0, back1, ...,
backM for background topics (those where you enable smoothing regularizers).

transform(batch_vectorizer=None, theta_matrix_type=’dense_theta’, predict_class_id=None)

Description find Theta matrix for new documents

Parameters

• batch_vectorizer (object_reference) – an instance of BatchVectorizer class

• theta_matrix_type (str) – type of matrix to be returned, possible values:
‘dense_theta’, ‘dense_ptdw’, ‘cache’, None, default=’dense_theta’

• predict_class_id (str) – class_id of a target modality to predict. When this option
is enabled the resulting columns of theta matrix will correspond to unique labels of a target
modality. The values will represent p(c|d), which give the probability of class label c for
document d.

Returns

• pandas.DataFrame: (data, columns, rows), where:

• columns — the ids of documents, for which the Theta matrix was requested;

6.1. ARTM model 29

BigARTM Documentation, Release 1.0

• rows — the names of topics in topic model, that was used to create Theta;

• data — content of Theta matrix.

Note

• ‘dense_ptdw’ mode provides simple access to values of p(t|w,d). The resulting pan-
das.DataFrame object will contain a flat theta matrix (no 3D) where each item has multiple
columns - as many as the number of tokens in that document. These columns will have the
same item_id. The order of columns with equal item_id is the same as the order of tokens
in the input data (batch.item.token_id).

transform_sparse(batch_vectorizer, eps=None)

Description find Theta matrix for new documents as sparse scipy matrix

Parameters

• batch_vectorizer (object_reference) – an instance of BatchVectorizer class

• eps (float) – threshold to consider values as zero

Returns

• a 3-tuple of (data, rows, columns), where

• data — scipy.sparse.csr_matrix with values

• columns — the ids of documents;

• rows — the names of topics in topic model;

LDA model

This page describes LDA class.

class artm.LDA(num_topics=None, num_processors=None, cache_theta=False, dictio-
nary=None, num_document_passes=10, seed=-1, alpha=0.01, beta=0.01,
theta_columns_naming=’id’)

__init__(num_topics=None, num_processors=None, cache_theta=False, dictio-
nary=None, num_document_passes=10, seed=-1, alpha=0.01, beta=0.01,
theta_columns_naming=’id’)

Parameters

• num_topics (int) – the number of topics in model, will be overwrited if topic_names
is set

• num_processors (int) – how many threads will be used for model training, if not
specified then number of threads will be detected by the lib

• cache_theta (bool) – save or not the Theta matrix in model. Necessary if
ARTM.get_theta() usage expects

• num_document_passes (int) – number of inner iterations over each document

• dictionary (str or reference to Dictionary object) – dictionary to
be used for initialization, if None nothing will be done

• reuse_theta (bool) – reuse Theta from previous iteration or not

• seed (unsigned int or -1) – seed for random initialization, -1 means no seed

30 Chapter 6. Python Interface

BigARTM Documentation, Release 1.0

• alpha (float) – hyperparameter of Theta smoothing regularizer

• beta (float or list of floats with len == num_topics) – hyperpa-
rameter of Phi smoothing regularizer

• theta_columns_naming (str) – either ‘id’ or ‘title’, determines how to name
columns (documents) in theta dataframe

Note

• the type (not value!) of beta should not change after initialization: if it was scalar - it
should stay scalar, if it was list - it should stay list.

fit_offline(batch_vectorizer, num_collection_passes=1)

Description proceeds the learning of topic model in offline mode

Parameters

• batch_vectorizer (object_referenece) – an instance of BatchVectorizer class

• num_collection_passes (int) – number of iterations over whole given collection

fit_online(batch_vectorizer, tau0=1024.0, kappa=0.7, update_every=1)

Description proceeds the learning of topic model in online mode

Parameters

• batch_vectorizer (object_reference) – an instance of BatchVectorizer class

• update_every (int) – the number of batches; model will be updated once per it

• tau0 (float) – coefficient (see ‘Update formulas’ paragraph)

• kappa (float) (float) – power for tau0, (see ‘Update formulas’ paragraph)

• update_after (list of int) – number of batches to be passed for Phi synchro-
nizations

Update formulas

• The formulas for decay_weight and apply_weight:

• update_count = current_processed_docs / (batch_size * update_every);

• rho = pow(tau0 + update_count, -kappa);

• decay_weight = 1-rho;

• apply_weight = rho;

get_theta()

Description get Theta matrix for training set of documents

Returns

• pandas.DataFrame: (data, columns, rows), where:

• columns — the ids of documents, for which the Theta matrix was requested;

• rows — the names of topics in topic model, that was used to create Theta;

• data — content of Theta matrix.

get_top_tokens(num_tokens=10, with_weights=False)

Description returns most probable tokens for each topic

6.2. LDA model 31

BigARTM Documentation, Release 1.0

Parameters

• num_tokens (int) – number of top tokens to be returned

• with_weights (bool) – return only tokens, or tuples (token, its p_wt)

Returns

• list of lists of str, each internal list corresponds one topic in natural order, if with_weights
== False, or list, or list of lists of tules, each tuple is (str, float)

initialize(dictionary)

Description initialize topic model before learning

Parameters dictionary (str or reference to Dictionary object) – loaded
BigARTM collection dictionary

load(filename, model_name=’p_wt’)

Description loads from disk the topic model saved by LDA.save()

Parameters

• filename (str) – the name of file containing model

• model_name (str) – the name of matrix to be saved, ‘p_wt’ or ‘n_wt’

Note

• We strongly recommend you to reset all important parameters of the LDA model, used
earlier.

remove_theta()

Description removes cached theta matrix

save(filename, model_name=’p_wt’)

Description saves one Phi-like matrix to disk

Parameters

• filename (str) – the name of file to store model

• model_name (str) – the name of matrix to be saved, ‘p_wt’ or ‘n_wt’

transform(batch_vectorizer, theta_matrix_type=’dense_theta’)

Description find Theta matrix for new documents

Parameters

• batch_vectorizer (object_reference) – an instance of BatchVectorizer class

• theta_matrix_type (str) – type of matrix to be returned, possible values:
‘dense_theta’, None, default=’dense_theta’

Returns

• pandas.DataFrame: (data, columns, rows), where:

• columns — the ids of documents, for which the Theta matrix was requested;

• rows — the names of topics in topic model, that was used to create Theta;

• data — content of Theta matrix.

32 Chapter 6. Python Interface

BigARTM Documentation, Release 1.0

hARTM

This page describes hARTM class.

class artm.hARTM(num_processors=None, class_ids=None, scores=None, regularizers=None,
num_document_passes=10, reuse_theta=False, dictionary=None, cache_theta=False,
theta_columns_naming=’id’, seed=-1, tmp_files_path=’‘)

__init__(num_processors=None, class_ids=None, scores=None, regularizers=None,
num_document_passes=10, reuse_theta=False, dictionary=None, cache_theta=False,
theta_columns_naming=’id’, seed=-1, tmp_files_path=’‘)

Description a class for constructing topic hierarchy that is a sequence of tied artm.ARTM()
models (levels)

Parameters

• num_processors (int) – how many threads will be used for model training, if not
specified then number of threads will be detected by the lib

• class_ids (dict) – list of class_ids and their weights to be used in model, key —
class_id, value — weight, if not specified then all class_ids will be used

• cache_theta (bool) – save or not the Theta matrix in model. Necessary if
ARTM.get_theta() usage expects

• scores (list) – list of scores (objects of artm.*Score classes)

• regularizers (list) – list with regularizers (objects of artm.*Regularizer classes)

• num_document_passes (int) – number of inner iterations over each document

• dictionary (str or reference to Dictionary object) – dictionary to
be used for initialization, if None nothing will be done

• reuse_theta (bool) – reuse Theta from previous iteration or not

• theta_columns_naming (str) – either ‘id’ or ‘title’, determines how to name
columns (documents) in theta dataframe

• seed (unsigned int or -1) – seed for random initialization, -1 means no seed

• tmp_files_path (str) – a path where to save temporary files (temporary solution),
default value: current directory

Usage

• to construct hierarchy you have to learn several ARTM models: hier =
artm.hARTM() level0 = hier.add_level(num_topics=5) # returns artm.ARTM() in-
stance # work with level0 as with usual model level1 = hier.add_level(num_topics=25,
parent_level_weight=1) # work with level1 as with usual model # ...

• to get the i-th level’s model, use

level = hier[i]

or level = hier.get_level(i)

• to iterate through levels use

for level in hier: # some work with level

• method hier.del_level(...) removes i-th level and all levels after it

6.3. hARTM 33

BigARTM Documentation, Release 1.0

• other hARTM methods correspond to those in ARTM class and call them sequantially for
all levels of hierarchy from 0 to the last one. For example, to fit levels offline you may call
fit_offline method of hARTM instance or of each level individually.

add_level(num_topics=None, topic_names=None, parent_level_weight=1)

Description adds new level to the hierarchy

Parameters

• num_topics (int) – the number of topics in level model, will be overwriten if
parameter topic_names is set

• topic_names (list of str) – names of topics in model

• parent_level_weight (float) – the coefficient of smoothing n_wt by n_wa,
a enumerates parent topics

Returns ARTM or derived ARTM_Level instance

Notes

• hierarchy structure assumes the number of topics on each following level is greater
than on previous one

• work with returned value as with usual ARTM model

• to access any level, use [] or get_level method

• Important! You cannot add next level before previous one is initialized and fit.

del_level(level_idx)

Description removes i-th level and all following levels.

Parameters level_idx (int) – the number of level from what to start removing if -1, the
last level is removed

dispose()

Description free all native memory, allocated for this hierarchy

Note

• This method does not free memory occupied by models’ dictionaries, because dictio-
naries are shared across all models

• hARTM class implements __exit__ and __del__ methods, which automatically call
dispose.

fit_offline(batch_vectorizer, num_collection_passes=1)

Description proceeds the learning of all hirarchy levels from 0 to the last one

Parameters

• batch_vectorizer (object_referenece) – an instance of BatchVectorizer
class

• num_collection_passes (int) – number of iterations over whole given col-
lection for each level

Note

• You cannot add add next level before previous one is fit. So use this method only
when all levels are added, initialized and fit, for example, when you added one more
regularizer or loaded hierarchy from disk.

34 Chapter 6. Python Interface

BigARTM Documentation, Release 1.0

get_level(level_idx)

Description access level

Parameters level_idx (int) – the number of level to return

Returns specified level that is ARTM or derived ARTM_Level instance

get_phi(class_ids=None, model_name=None)

Description get level-wise horizontally stacked Phi matrices

Parameters

• class_ids (list of str) – list with class ids to extract, None means all class
ids

• model_name (str) – self.model_pwt by default, self.model_nwt is also reasonable
to extract unnormalized counters

Returns

• pandas.DataFrame: (data, columns, rows), where:

• columns — the names of topics in format level_X_Y where X is level index and Y
is topic name;

• rows — the tokens of topic model;

• data — content of Phi matrix.

Note

• if you need to extract specified topics, use get_phi() method of individual level model

get_theta(topic_names=None)

Description get level-wise vertically stacked Theta matrices for training set of documents

Parameters topic_names (list of str) – list with topics to extract, None means all
topics

Returns

• pandas.DataFrame: (data, columns, rows), where:

• columns — the ids of documents, for which the Theta matrix was requested;

• rows — the names of topics in format level_X_Y where X is level index and Y is
topic name;

• data — content of Theta matrix.

library_version

Description the version of BigARTM library in a MAJOR.MINOR.PATCH format

load(path)

Description loads models of already constructed hierarchy

Parameters path (str) – a path where hierarchy was saved by hARTM.save method

Notes

• Loaded models will overwrite ARTM.topic_names and class_ids fields of each level.

• All class_ids weights will be set to 1.0, you need to specify them by hand if it’s
necessary.

6.3. hARTM 35

BigARTM Documentation, Release 1.0

• The method call will empty ARTM.score_tracker of each level.

• All regularizers and scores will be forgotten.

• etc.

• We strongly recommend you to reset all important parameters of the ARTM models
and hARTM, used earlier.

save(path)

Description saves all levels

Parameters path (str) – a path where to save hierarchy files This must be existing empty
path, otherwise exception is raised

transform(batch_vectorizer)

Description get level-wise vertically stacked Theta matrices for new documents

Parameters batch_vectorizer (object_reference) – an instance of BatchVector-
izer class

Returns

• pandas.DataFrame: (data, columns, rows), where:

• columns — the ids of documents, for which the Theta matrix was requested;

• rows — the names of topics in format level_X_Y where X is level index and Y is
topic name;

• data — content of Theta matrix.

Note

• to access p(t|d, w) matrix or to predict class use transform method of hierarchy level
individually

Batches Utils

This page describes BatchVectorizer class.

class artm.BatchVectorizer(batches=None, collection_name=None, data_path=’‘,
data_format=’batches’, target_folder=None, batch_size=1000,
batch_name_type=’code’, data_weight=1.0, n_wd=None, vocabu-
lary=None, gather_dictionary=True, class_ids=None)

__init__(batches=None, collection_name=None, data_path=’‘, data_format=’batches’, tar-
get_folder=None, batch_size=1000, batch_name_type=’code’, data_weight=1.0,
n_wd=None, vocabulary=None, gather_dictionary=True, class_ids=None)

Parameters

• collection_name (str) – the name of text collection (required if data_format
== ‘bow_uci’)

• data_path (str) –

1. if data_format == ‘bow_uci’ => folder containing ‘docword.collection_name.txt’
and vocab.collection_name.txt files; 2) if data_format == ‘vowpal_wabbit’ => file
in Vowpal Wabbit format; 3) if data_format == ‘bow_n_wd’ => useless parameter
4) if data_format == ‘batches’ => folder containing batches

36 Chapter 6. Python Interface

BigARTM Documentation, Release 1.0

• data_format (str) – the type of input data: 1) ‘bow_uci’ — Bag-Of-Words in
UCI format; 2) ‘vowpal_wabbit’ — Vowpal Wabbit format; 3 ‘bow_n_wd’ — result
of CountVectorizer or similar tool; 4) ‘batches’ — the BigARTM data format

• batch_size (int) – number of documents to be stored in each batch

• target_folder (str) – full path to folder for future batches storing; if not set,
no batches will be produced for further work

• batches (list of str) – list with non-full file names of batches (necessary
parameters are batches + data_path + data_fromat==’batches’ in this case)

• batch_name_type (str) – name batches in natural order (‘code’) or using ran-
dom guids (guid)

• data_weight (float) – weight for a group of batches from data_path; it can be a
list of floats, then data_path (and target_folder if not data_format == ‘batches’) should
also be lists; one weight corresponds to one path from the data_path list;

• n_wd (array) – matrix with n_wd counters

• vocabulary (dict) – dict with vocabulary, key - index of n_wd, value - token

• gather_dictionary (bool) – create or not the default dictionary in vectorizer;
if data_format == ‘bow_n_wd’ - automatically set to True; and if data_weight is list -
automatically set to False

• class_ids (list of str) – list of class ids to parse and include in batches

batch_size

Returns the user-defined size of the batches

batches_list

Returns list of batches names

data_path

Returns the disk path of batches

dictionary

Returns Dictionary object, if parameter gather_dictionary was True, else None

num_batches

Returns the number of batches

weights

Returns list of batches weights

Dictionary

This page describes Dictionary class.

class artm.Dictionary(name=None, dictionary_path=None, data_path=None)

__init__(name=None, dictionary_path=None, data_path=None)

Parameters

• name (str) – name of the dictionary

6.5. Dictionary 37

BigARTM Documentation, Release 1.0

• dictionary_path (str) – can be used for default call of load() method in con-
structor

• data_path (str) – can be used for default call of gather() method in constructor

Note: all parameters are optional

copy()

Description returns a copy the dictionary loaded in lib with another name.

create(dictionary_data)

Description creates dictionary using DictionaryData object

Parameters dictionary_data (DictionaryData instance) – configuration of
dictionary

filter(class_id=None, min_df=None, max_df=None, min_df_rate=None, max_df_rate=None,
min_tf=None, max_tf=None, max_dictionary_size=None)

Description filters the BigARTM dictionary of the collection, which was already loaded into
the lib

Parameters

• dictionary_name (str) – name of the dictionary in the lib to filter

• dictionary_target_name (str) – name for the new filtered dictionary in the
lib

• class_id (str) – class_id to filter

• min_df (float) – min df value to pass the filter

• max_df (float) – max df value to pass the filter

• min_df_rate (float) – min df rate to pass the filter

• max_df_rate (float) – max df rate to pass the filter

• min_tf (float) – min tf value to pass the filter

• max_tf (float) – max tf value to pass the filter

• max_dictionary_size (float) – give an easy option to limit dictionary size;
rare tokens will be excluded until dictionary reaches given size.

Note the current dictionary will be replaced with filtered

gather(data_path, cooc_file_path=None, vocab_file_path=None, symmetric_cooc_values=False)

Description creates the BigARTM dictionary of the collection, represented as batches and
load it in the lib

Parameters

• data_path (str) – full path to batches folder

• cooc_file_path (str) – full path to the file with cooc info. Cooc info is a file
with three columns, first two a the zero-based indices of tokens in vocab file, and third
one is a value of their coocurance in collection (or another) pairwise statistic.

• vocab_file_path (str) – full path to the file with vocabulary. If given, the
dictionary token will have the same order, as in this file, otherwise the order will be
random. If given, the tokens from batches, that are not presented in vocab, will be
skipped.

38 Chapter 6. Python Interface

BigARTM Documentation, Release 1.0

• symmetric_cooc_values (bool) – if the cooc matrix should considered to be
symmetric or not

load(dictionary_path)

Description loads the BigARTM dictionary of the collection into the lib

Parameters dictionary_path (str) – full filename of the dictionary

load_text(dictionary_path, encoding=’utf-8’)

Description loads the BigARTM dictionary of the collection from the disk in the human read-
able text format

Parameters

• dictionary_path (str) – full file name of the text dictionary file

• encoding (str) – an encoding of text in diciotnary

save(dictionary_path)

Description saves the BigARTM dictionary of the collection on the disk

Parameters dictionary_path (str) – full file name for the dictionary

save_text(dictionary_path, encoding=’utf-8’)

Description saves the BigARTM dictionary of the collection on the disk in the human read-
able text format

Parameters

• dictionary_path (str) – full file name for the text dictionary file

• encoding (str) – an encoding of text in diciotnary

Regularizers

This page describes KlFunctionInfo and Regularizer classes.

See detailed description of regularizers for understanding their sense.

class artm.KlFunctionInfo(function_type=’log’, power_value=2.0)

__init__(function_type=’log’, power_value=2.0)

Parameters

• function_type (str) – the type of function, ‘log’ (logarithm) or ‘pol’ (polyno-
mial)

• power_value (float) – the double power of polynomial, ignored if type = ‘log’

class artm.SmoothSparsePhiRegularizer(name=None, tau=1.0, gamma=None,
class_ids=None, topic_names=None, dictionary=None,
kl_function_info=None, config=None)

__init__(name=None, tau=1.0, gamma=None, class_ids=None, topic_names=None, dictio-
nary=None, kl_function_info=None, config=None)

Parameters

• name (str) – the identifier of regularizer, will be auto-generated if not specified

6.6. Regularizers 39

https://github.com/bigartm/bigartm/wiki/Implemented-regularizers

BigARTM Documentation, Release 1.0

• tau (float) – the coefficient of regularization for this regularizer

• gamma (float) – the coefficient of relative regularization for this regularizer

• class_ids (list of str) – list of class_ids to regularize, will regularize all
classes if not specified

• topic_names (list of str) – list of names of topics to regularize, will regu-
larize all topics if not specified

• dictionary (str or reference to Dictionary object) – Bi-
gARTM collection dictionary, won’t use dictionary if not specified

• kl_function_info (KlFunctionInfo object) – class with additional info
about function under KL-div in regularizer

• config (protobuf object) – the low-level config of this regularizer

class artm.SmoothSparseThetaRegularizer(name=None, tau=1.0, topic_names=None,
alpha_iter=None, kl_function_info=None,
doc_titles=None, doc_topic_coef=None, con-
fig=None)

__init__(name=None, tau=1.0, topic_names=None, alpha_iter=None, kl_function_info=None,
doc_titles=None, doc_topic_coef=None, config=None)

Parameters

• name (str) – the identifier of regularizer, will be auto-generated if not specified

• tau (float) – the coefficient of regularization for this regularizer

• alpha_iter (list of str) – list of additional coefficients of regular-
ization on each iteration over document. Should have length equal to
model.num_document_passes

• topic_names (list of str) – list of names of topics to regularize, will regu-
larize all topics if not specified

• kl_function_info (KlFunctionInfo object) – class with additional info
about function under KL-div in regularizer

• doc_titles (list of strings) – list of titles of documents to be processed
by this regularizer. Default empty value means processing of all documents. User
should guarantee the existence and correctness of document titles in batches (e.g. in
src files with data, like WV).

• doc_topic_coef (list of doubles or list of lists of
doubles) – Two cases: 1) list of doubles with length equal to num of topics.
Means additional multiplier in M-step formula besides alpha and tau, unique for each
topic, but general for all processing documents. 2) list of lists of doubles with outer
list length equal to length of doc_titles, and each inner list length equal to num of
topics. Means case 1 with unique list of additional multipliers for each document
from doc_titles. Other documents will not be regularized according to description of
doc_titles parameter. Note, that doc_topic_coef and topic_names are both using.

• config (protobuf object) – the low-level config of this regularizer

class artm.DecorrelatorPhiRegularizer(name=None, tau=1.0, gamma=None, class_ids=None,
topic_names=None, config=None)

__init__(name=None, tau=1.0, gamma=None, class_ids=None, topic_names=None, config=None)

Parameters

40 Chapter 6. Python Interface

BigARTM Documentation, Release 1.0

• name (str) – the identifier of regularizer, will be auto-generated if not specified

• tau (float) – the coefficient of regularization for this regularizer

• gamma (float) – the coefficient of relative regularization for this regularizer

• class_ids (list of str) – list of class_ids to regularize, will regularize all
classes if not specified

• topic_names (list of str) – list of names of topics to regularize, will regu-
larize all topics if not specified

• config (protobuf object) – the low-level config of this regularizer

class artm.LabelRegularizationPhiRegularizer(name=None, tau=1.0, gamma=None,
class_ids=None, topic_names=None, dic-
tionary=None, config=None)

__init__(name=None, tau=1.0, gamma=None, class_ids=None, topic_names=None, dictio-
nary=None, config=None)

Parameters

• name (str) – the identifier of regularizer, will be auto-generated if not specified

• tau (float) – the coefficient of regularization for this regularizer

• gamma (float) – the coefficient of relative regularization for this regularizer

• class_ids (list of str) – list of class_ids to regularize, will regularize all
classes if not specified

• topic_names (list of str) – list of names of topics to regularize, will regu-
larize all topics if not specified

• dictionary (str or reference to Dictionary object) – Bi-
gARTM collection dictionary, won’t use dictionary if not specified

• config (protobuf object) – the low-level config of this regularizer

class artm.SpecifiedSparsePhiRegularizer(name=None, tau=1.0, gamma=None,
topic_names=None, class_id=None,
num_max_elements=None, probabil-
ity_threshold=None, sparse_by_columns=True,
config=None)

__init__(name=None, tau=1.0, gamma=None, topic_names=None, class_id=None,
num_max_elements=None, probability_threshold=None, sparse_by_columns=True,
config=None)

Parameters

• name (str) – the identifier of regularizer, will be auto-generated if not specified

• tau (float) – the coefficient of regularization for this regularizer

• gamma (float) – the coefficient of relative regularization for this regularizer

• class_id – class_id to regularize

• topic_names (list of str) – list of names of topics to regularize, will regu-
larize all topics if not specified

• num_max_elements (int) – number of elements to save in row/column

6.6. Regularizers 41

BigARTM Documentation, Release 1.0

• probability_threshold (float) – if m elements in row/column sum into
value >= probability_threshold, m < n => only these elements would be saved. Value
should be in (0, 1), default=None

• sparse_by_columns (bool) – find max elements in column or in row

• config (protobuf object) – the low-level config of this regularizer

class artm.ImproveCoherencePhiRegularizer(name=None, tau=1.0, gamma=None,
class_ids=None, topic_names=None, dictio-
nary=None, config=None)

__init__(name=None, tau=1.0, gamma=None, class_ids=None, topic_names=None, dictio-
nary=None, config=None)

Parameters

• name (str) – the identifier of regularizer, will be auto-generated if not specified

• tau (float) – the coefficient of regularization for this regularizer

• gamma (float) – the coefficient of relative regularization for this regularizer

• class_ids (list of str) – list of class_ids to regularize, will regularize all
classes if not specified, dictionaty should contain pairwise tokens coocurancy info

• topic_names (list of str) – list of names of topics to regularize, will regu-
larize all topics if not specified

• dictionary (str or reference to Dictionary object) – Bi-
gARTM collection dictionary, won’t use dictionary if not specified, in this case
regularizer is useless

• config (protobuf object) – the low-level config of this regularizer

class artm.SmoothPtdwRegularizer(name=None, tau=1.0, config=None)

__init__(name=None, tau=1.0, config=None)

Parameters

• name (str) – the identifier of regularizer, will be auto-generated if not specified

• tau (float) – the coefficient of regularization for this regularizer

• config (protobuf object) – the low-level config of this regularizer

class artm.TopicSelectionThetaRegularizer(name=None, tau=1.0, topic_names=None, al-
pha_iter=None, config=None)

__init__(name=None, tau=1.0, topic_names=None, alpha_iter=None, config=None)

Parameters

• name (str) – the identifier of regularizer, will be auto-generated if not specified

• tau (float) – the coefficient of regularization for this regularizer

• alpha_iter (list of str) – list of additional coefficients of regular-
ization on each iteration over document. Should have length equal to
model.num_document_passes

• topic_names (list of str) – list of names of topics to regularize, will regu-
larize all topics if not specified

• config (protobuf object) – the low-level config of this regularizer

42 Chapter 6. Python Interface

BigARTM Documentation, Release 1.0

class artm.TopicSegmentationPtdwRegularizer(name=None, window=None, threshold=None,
background_topic_names=None, config=None)

__init__(name=None, window=None, threshold=None, background_topic_names=None, con-
fig=None)

Parameters

• name (str) – the identifier of regularizer, will be auto-generated if not specified

• window (int) – a number of words to the one side over which smoothing will be
performed

• threshold (float) – probability threshold for a word to be a topic-changing word

• background_topic_names (list of str) – list of names of topics to be
considered background, will not consider background topics if not specified

• config (protobuf object) – the low-level config of this regularizer

Scores

This page describes *Scores classes.

See detailed descrition of scores for understanding their sense.

class artm.SparsityPhiScore(name=None, class_id=None, topic_names=None, model_name=None,
eps=None)

__init__(name=None, class_id=None, topic_names=None, model_name=None, eps=None)

Parameters

• name (str) – the identifier of score, will be auto-generated if not specified

• class_id (str) – class_id to score

• topic_names (list of str) – list of names of topics to regularize, will score
all topics if not specified

• model_name – phi-like matrix to be scored (typically ‘pwt’ or ‘nwt’), ‘pwt’ if not
specified

• eps (float) – the tolerance const, everything < eps considered to be zero

class artm.ItemsProcessedScore(name=None)

__init__(name=None)

Parameters name (str) – the identifier of score, will be auto-generated if not specified

class artm.PerplexityScore(name=None, class_ids=None, topic_names=None, dictionary=None)

__init__(name=None, class_ids=None, topic_names=None, dictionary=None)

Parameters

• name (str) – the identifier of score, will be auto-generated if not specified

• class_ids (list of str) – class_id to score, means that tokens of all class_ids
will be used

6.7. Scores 43

https://github.com/bigartm/bigartm/wiki/Implemented-scores

BigARTM Documentation, Release 1.0

• dictionary (str or reference to Dictionary object) – Bi-
gARTM collection dictionary, is strongly recommended to be used for correct
replacing of zero counters.

class artm.SparsityThetaScore(name=None, topic_names=None, eps=None)

__init__(name=None, topic_names=None, eps=None)

Parameters

• name (str) – the identifier of score, will be auto-generated if not specified

• topic_names (list of str) – list of names of topics to regularize, will score
all topics if not specified

• eps (float) – the tolerance const, everything < eps considered to be zero

class artm.ThetaSnippetScore(name=None, item_ids=None, num_items=None)

__init__(name=None, item_ids=None, num_items=None)

Parameters

• name (str) – the identifier of score, will be auto-generated if not specified

• item_ids (list of int) – list of names of items to show, default=None

• num_items (int) – number of theta vectors to show from the beginning (no sense
if item_ids was given)

class artm.TopicKernelScore(name=None, class_id=None, topic_names=None, eps=None, dictio-
nary=None, probability_mass_threshold=None)

__init__(name=None, class_id=None, topic_names=None, eps=None, dictionary=None, probabil-
ity_mass_threshold=None)

Parameters

• name (str) – the identifier of score, will be auto-generated if not specified

• class_id (str) – class_id to score

• topic_names (list of str) – list of names of topics to regularize, will score
all topics if not specified

• probability_mass_threshold (float) – the threshold for p(t|w) values to
get token into topic kernel. Should be in (0, 1)

• dictionary (str or reference to Dictionary object) – Bi-
gARTM collection dictionary, won’t use dictionary if not specified

• eps (float) – the tolerance const, everything < eps considered to be zero

class artm.TopTokensScore(name=None, class_id=None, topic_names=None, num_tokens=None, dic-
tionary=None)

__init__(name=None, class_id=None, topic_names=None, num_tokens=None, dictionary=None)

Parameters

• name (str) – the identifier of score, will be auto-generated if not specified

• class_id (str) – class_id to score

44 Chapter 6. Python Interface

BigARTM Documentation, Release 1.0

• topic_names (list of str) – list of names of topics to regularize, will score
all topics if not specified

• num_tokens (int) – number of tokens with max probability in each topic

• dictionary (str or reference to Dictionary object) – Bi-
gARTM collection dictionary, won’t use dictionary if not specified

class artm.TopicMassPhiScore(name=None, class_id=None, topic_names=None, model_name=None,
eps=None)

__init__(name=None, class_id=None, topic_names=None, model_name=None, eps=None)

Parameters

• name (str) – the identifier of score, will be auto-generated if not specified

• class_id (str) – class_id to score

• topic_names (list of str) – list of names of topics to regularize, will score
all topics if not specified

• model_name – phi-like matrix to be scored (typically ‘pwt’ or ‘nwt’), ‘pwt’ if not
specified

• eps (float) – the tolerance const, everything < eps considered to be zero

class artm.ClassPrecisionScore(name=None)

__init__(name=None)

Parameters name (str) – the identifier of score, will be auto-generated if not specified

class artm.BackgroundTokensRatioScore(name=None, class_id=None, delta_threshold=None,
save_tokens=None, direct_kl=None)

__init__(name=None, class_id=None, delta_threshold=None, save_tokens=None, direct_kl=None)

Parameters

• name (str) – the identifier of score, will be auto-generated if not specified

• class_id (str) – class_id to score

• delta_threshold (float) – the threshold for KL-div between p(t|w) and p(t) to
get token into background. Should be non-negative

• save_tokens (bool) – save background tokens or not, save if field not specified

• direct_kl (bool) – use KL(p(t) || p(t|w)) or via versa, true if field not specified

Score Tracker

This page describes *ScoreTracker classes.

class artm.score_tracker.SparsityPhiScoreTracker(score)

__init__(score)

Properties

•Note: every field is a list of info about score on all synchronizations.

6.8. Score Tracker 45

BigARTM Documentation, Release 1.0

•value - values of Phi sparsity.

•zero_tokens - number of zero rows in Phi.

•total_tokens - number of all rows in Phi.

•Note: every field has a version with prefix ‘last_‘, means retrieving only info about the last synchro-
nization.

class artm.score_tracker.SparsityThetaScoreTracker(score)

__init__(score)

Properties

•Note: every field is a list of info about score on all synchronizations.

•value - values of Theta sparsity.

•zero_topics - number of zero rows in Theta.

•total_topics - number of all rows in Theta.

•Note: every field has a version with prefix ‘last_‘, means retrieving only info about the last synchro-
nization.

class artm.score_tracker.PerplexityScoreTracker(score)

__init__(score)

Properties

•Note: every field is a list of info about score on all synchronizations.

•value - values of perplexity.

•raw - raw values in formula for perplexity.

•normalizer - normalizer values in formula for perplexity.

•zero_tokens - number of zero p(w|d) = sum_t p(w|t) p(t|d).

•Note: every field has a version with prefix ‘last_‘, means retrieving only info about the last synchro-
nization.

class artm.score_tracker.TopTokensScoreTracker(score)

__init__(score)

Properties

•Note: every field is a list of info about score on all synchronizations.

•num_tokens - number of requested top tokens.

•coherence - each element of list is a dict, key - topic name, value - topic coherence counted using
top-tokens

•average_coherence - average coherencies of all scored topics.

•tokens - each element of list is a dict, key - topic name, value - list of top-tokens

46 Chapter 6. Python Interface

BigARTM Documentation, Release 1.0

•weights - each element of list is a dict, key - topic name, value - list of weights of corresponding
top-tokens (weight of token == p(w|t))

•Note: every field has a version with prefix ‘last_‘, means retrieving only info about the last synchro-
nization.

class artm.score_tracker.TopicKernelScoreTracker(score)

__init__(score)

Properties

•Note: every field is a list of info about score on all synchronizations.

•tokens - each element of list is a dict, key - topic name, value - list of kernel tokens

•size - each element of list is a dict, key - topic name, value - kernel size

•contrast - each element of list is a dict, key - topic name, value - kernel contrast

•purity - each element of list is a dict, key - topic name, value - kernel purity

•coherence - each element of list is a dict, key - topic name, value - topic coherence counted using
kernel tokens

•average_size - average kernel size of all scored topics.

•average_contrast - average kernel contrast of all scored topics.

•average_purity - average kernel purity of all scored topics.

•average_coherence - average coherencies of all scored topics.

•Note: every field has a version with prefix ‘last_‘, means retrieving only info about the last synchro-
nization.

class artm.score_tracker.ItemsProcessedScoreTracker(score)

__init__(score)

Properties

•Note: every field is a list of info about score on all synchronizations.

•value - numbers of processed documents.

•Note: every field has a version with prefix ‘last_‘, means retrieving only info about the last synchro-
nization.

class artm.score_tracker.ThetaSnippetScoreTracker(score)

__init__(score)

Properties

•Note: every field is a list of info about score on all synchronizations.

•document_ids - each element of list is a list of ids of returned documents.

•snippet - each element of list is a dict, key - doc id, value - list with corresponding p(t|d) values.

6.8. Score Tracker 47

BigARTM Documentation, Release 1.0

•Note: every field has a version with prefix ‘last_‘, means retrieving only info about the last synchro-
nization.

class artm.score_tracker.TopicMassPhiScoreTracker(score)

__init__(score)

Properties

•Note: every field is a list of info about score on all synchronizations.

•value - values of ratio of sum_t n_t of scored topics.and all topics

•topic_mass - each value is a dict, key - topic name, value - topic mass n_t

•topic_ratio - each value is a dict, key - topic name, value - topic ratio

•Note: every field has a version with prefix ‘last_‘, means retrieving only info about the last synchro-
nization.

class artm.score_tracker.ClassPrecisionScoreTracker(score)

__init__(score)

Properties

•Note: every field is a list of info about score on all synchronizations.

•value - values of ratio of correct predictions.

•error - numbers of error predictiona.

•total - numbers of all predictions.

•Note: every field has a version with prefix ‘last_‘, means retrieving only info about the last synchro-
nization.

class artm.score_tracker.BackgroundTokensRatioScoreTracker(score)

__init__(score)

Properties

•Note: every field is a list of info about score on all synchronizations.

•value - values of part of background tokens.

•tokens - each element of list is a lists of background tokens (can be acceced if ‘save_tokens’ was
True)

•Note: every field has a version with prefix ‘last_‘, means retrieving only info about the last synchro-
nization.

Master Component

This page describes MasterComponent class.

48 Chapter 6. Python Interface

BigARTM Documentation, Release 1.0

class artm.MasterComponent(library, topic_names=None, class_ids=None, scores=None, regulariz-
ers=None, num_processors=None, pwt_name=None, nwt_name=None,
num_document_passes=None, reuse_theta=None, cache_theta=False)

__init__(library, topic_names=None, class_ids=None, scores=None, regulariz-
ers=None, num_processors=None, pwt_name=None, nwt_name=None,
num_document_passes=None, reuse_theta=None, cache_theta=False)

Parameters

• library – an instance of LibArtm

• topic_names (list of str) – list of topic names to use in model

• class_ids (dict) – key - class_id, value - class_weight

• scores (dict) – key - score name, value - config

• regularizers (dict) – key - regularizer name, value - tuple (config, tau) or triple
(config, tau, gamma)

• num_processors (int) – number of worker threads to use for processing the
collection

• pwt_name (str) – name of pwt matrix

• nwt_name (str) – name of nwt matrix

• num_document_passes (in) – num passes through each document

• reuse_theta (bool) – reuse Theta from previous iteration or not

• cache_theta (bool) – save or not the Theta matrix

attach_model(model)

Parameters model (str) – name of matrix in BigARTM

Returns

• messahes.TopicModel() object with info about Phi matrix

• numpy.ndarray with Phi data (i.e., p(w|t) values)

clear_score_array_cache()
Clears all entries from score array cache

clear_score_cache()
Clears all entries from score cache

clear_theta_cache()
Clears all entries from theta matrix cache

create_dictionary(dictionary_data, dictionary_name=None)

Parameters

• dictionary_data – an instance of DictionaryData with info about dictionary

• dictionary_name (str) – name of exported dictionary

create_regularizer(name, config, tau, gamma=None)

Parameters

• name (str) – the name of the future regularizer

• config – the config of the future regularizer

6.9. Master Component 49

BigARTM Documentation, Release 1.0

• tau (float) – the coefficient of the regularization

create_score(name, config, model_name=None)

Parameters

• name (str) – the name of the future score

• config – an instance of ***ScoreConfig

export_dictionary(filename, dictionary_name)

Parameters

• filename (str) – full name of dictionary file

• dictionary_name (str) – name of exported dictionary

export_model(model, filename)

filter_dictionary(dictionary_name=None, dictionary_target_name=None, class_id=None,
min_df=None, max_df=None, min_df_rate=None, max_df_rate=None,
min_tf=None, max_tf=None, max_dictionary_size=None, args=None)

Parameters

• dictionary_name (str) – name of the dictionary in the core to filter

• dictionary_target_name (str) – name for the new filtered dictionary in the
core

• class_id (str) – class_id to filter

• min_df (float) – min df value to pass the filter

• max_df (float) – max df value to pass the filter

• min_df_rate (float) – min df rate to pass the filter

• max_df_rate (float) – max df rate to pass the filter

• min_tf (float) – min tf value to pass the filter

• max_tf (float) – max tf value to pass the filter

• max_dictionary_size (float) – give an easy option to limit dictionary size;
rare tokens will be excluded until dictionary reaches given size.

• args – an instance of FilterDictionaryArgs

fit_offline(batch_filenames=None, batch_weights=None, num_collection_passes=None,
batches_folder=None)

Parameters

• batch_filenames (list of str) – name of batches to process

• batch_weights (list of float) – weights of batches to process

• num_collection_passes (int) – number of outer iterations

• batches_folder (str) – folder containing batches to process

fit_online(batch_filenames=None, batch_weights=None, update_after=None, ap-
ply_weight=None, decay_weight=None, async=None)

Parameters

• batch_filenames (list of str) – name of batches to process

50 Chapter 6. Python Interface

BigARTM Documentation, Release 1.0

• batch_weights (list of float) – weights of batches to process

• update_after (list of int) – number of batches to be passed for Phi syn-
chronizations

• apply_weight (list of float) – weight of applying new counters (len ==
len of update_after)

• decay_weight (list of float) – weight of applying old counters (len == len
of update_after)

• async (bool) – whether to use the async implementation of the EM-algorithm or
not

gather_dictionary(dictionary_target_name=None, data_path=None, cooc_file_path=None, vo-
cab_file_path=None, symmetric_cooc_values=None, args=None)

Parameters

• dictionary_target_name (str) – name of the dictionary in the core

• data_path (str) – full path to batches folder

• cooc_file_path (str) – full path to the file with cooc info

• vocab_file_path (str) – full path to the file with vocabulary

• symmetric_cooc_values (bool) – whether the cooc matrix should considered
to be symmetric or not

• args – an instance of GatherDictionaryArgs

get_dictionary(dictionary_name)

Parameters dictionary_name (str) – name of dictionary to get

get_info()

get_phi_info(model)

Parameters model (str) – name of matrix in BigARTM

Returns messages.TopicModel object

get_phi_matrix(model, topic_names=None, class_ids=None, use_sparse_format=None)

Parameters

• model (str) – name of matrix in BigARTM

• topic_names (list of str or None) – list of topics to retrieve (None
means all topics)

• class_ids (list of str or None) – list of class ids to retrieve (None means
all class ids)

• use_sparse_format (bool) – use sparsedense layout

Returns numpy.ndarray with Phi data (i.e., p(w|t) values)

get_score(score_name)

Parameters

• score_name (str) – the user defined name of score to retrieve

• score_config – reference to score data object

get_score_array(score_name)

6.9. Master Component 51

BigARTM Documentation, Release 1.0

Parameters

• score_name (str) – the user defined name of score to retrieve

• score_config – reference to score data object

get_theta_info()

Returns messages.ThetaMatrix object

get_theta_matrix(topic_names=None)

Parameters topic_names (list of str or None) – list of topics to retrieve (None
means all topics)

Returns numpy.ndarray with Theta data (i.e., p(t|d) values)

import_dictionary(filename, dictionary_name)

Parameters

• filename (str) – full name of dictionary file

• dictionary_name (str) – name of imported dictionary

import_model(model, filename)

Parameters

• model (str) – name of matrix in BigARTM

• filename (str) – the name of file to load model from binary format

initialize_model(model_name=None, topic_names=None, dictionary_name=None, seed=None,
args=None)

Parameters

• model_name (str) – name of pwt matrix in BigARTM

• topic_names (list of str) – the list of names of topics to be used in model

• dictionary_name (str) – name of imported dictionary

• seed (unsigned int or -1, default None) – seed for random initializa-
tion, None means no seed

• args – an instance of InitilaizeModelArgs

merge_model(models, nwt, topic_names=None, dictionary_name=None)
Merge multiple nwt-increments together.

Parameters

• models (dict) – list of models with nwt-increments and their weights, key -
nwt_source_name, value - source_weight.

• nwt (str) – the name of target matrix to store combined nwt. The matrix will be
created by this operation.

• topic_names (list of str) – names of topics in the resulting model. By de-
fault model names are taken from the first model in the list.

• dictionary_name – name of dictionary that defines which tokens to include in
merged model

normalize_model(pwt, nwt, rwt=None)

Parameters

52 Chapter 6. Python Interface

BigARTM Documentation, Release 1.0

• pwt (str) – name of pwt matrix in BigARTM

• nwt (str) – name of nwt matrix in BigARTM

• rwt (str) – name of rwt matrix in BigARTM

process_batches(pwt, nwt=None, num_document_passes=None, batches_folder=None,
batches=None, regularizer_name=None, regularizer_tau=None,
class_ids=None, class_weights=None, find_theta=False, reuse_theta=False,
find_ptdw=False, predict_class_id=None)

Parameters

• pwt (str) – name of pwt matrix in BigARTM

• nwt (str) – name of nwt matrix in BigARTM

• num_document_passes (int) – number of inner iterations during processing

• batches_folder (str) – full path to data folder (alternative 1)

• batches (list of str) – full file names of batches to process (alternative 2)

• regularizer_name (list of str) – list of names of Theta regularizers to use

• regularizer_tau (list of float) – list of tau coefficients for Theta regu-
larizers

• class_ids (list of str) – list of class ids to use during processing

• class_weights (list of float) – list of corresponding weights of class ids

• find_theta (bool) – find theta matrix for ‘batches’ (if alternative 2)

• reuse_theta (bool) – initialize by theta from previous collection pass

• find_ptdw (bool) – calculate and return Ptdw matrix or not (works if find_theta
== False)

• predict_class_id (str, default None) – class_id of a target modality to
predict

Returns

• tuple (messages.ThetaMatrix, numpy.ndarray) — the info about Theta (if find_theta
== True)

• messages.ThetaMatrix — the info about Theta (if find_theta == False)

reconfigure(topic_names=None, class_ids=None, scores=None, regulariz-
ers=None, num_processors=None, pwt_name=None, nwt_name=None,
num_document_passes=None, reuse_theta=None, cache_theta=None)

reconfigure_regularizer(name, config=None, tau=None, gamma=None)

reconfigure_score(name, config)

reconfigure_topic_name(topic_names=None)

regularize_model(pwt, nwt, rwt, regularizer_name, regularizer_tau, regularizer_gamma=None)

Parameters

• pwt (str) – name of pwt matrix in BigARTM

• nwt (str) – name of nwt matrix in BigARTM

• rwt (str) – name of rwt matrix in BigARTM

6.9. Master Component 53

BigARTM Documentation, Release 1.0

• regularizer_name (list of str) – list of names of Phi regularizers to use

• regularizer_tau (list of double) – list of tau coefficients for Phi regu-
larizers

transform(batches=None, batch_filenames=None, theta_matrix_type=None, pre-
dict_class_id=None)

Parameters

• batches – list of Batch instances

• batch_weights (list of float) – weights of batches to transform

• theta_matrix_type (int) – type of matrix to be returned

• predict_class_id (int) – type of matrix to be returned

Returns messages.ThetaMatrix object

54 Chapter 6. Python Interface

CHAPTER 7

Release Notes

Changes in Python API

This page describes recent changes in BigARTM’s Python API. Note that the API might be affected by changes in the
underlying protobuf messages. For this reason we recommend to review Changes in Protobuf Messages.

For further reference about Python API refer to ARTM model, Q & A or tutorials.

v0.8.2

Warning: BigARTM 3rdparty dependency had been upgraded from protobuf 2.6.1 to protobuf
3.0.0. This may affect you upgrade from previous version of bigartm. Pelase report any issues at bigartm-
users@googlegroups.com.

Warning: BigARTM now require you to install tqdm library to visualize progress bars. To install use pip
install tqdm or conda install -c conda-forge tqdm.

• Add support for python 3.0

• Add hARTM class to support hierarchy model

• Add HierarchySparsingTheta for advanced inference of hierarchical models

• Enable replacing regularizers in ARTM-like models:

using operator[]-like style
model.regularizers['somename'] = SomeRegularizer(...)
using keyword argument overwrite in add function
model.regularizers.add(SomeRegularizer(name='somename', ...), overwrite=True)

• Better error reporting: raise exception in fit_offline, fit_online and transform if there is no data to process)

• Better support for changes in topic names, with reconfigure(), initialize() and merge_model()

• Show progress bars in fit_offline, fit_online and transform.

• Add ARTM.reshape_topics method to add/remove/reorder topics.

• Add max_dictionary_size parameter to Dictionary.filter()

• Add class_ids parameter to BatchVectorizer.__init__()

• Add dictionary_name parameter to MasterComponent.merge_model()

55

https://github.com/bigartm/bigartm/wiki/Q&A
https://github.com/bigartm/bigartm-book/blob/master/README.md
https://groups.google.com/group/bigartm-users
https://groups.google.com/group/bigartm-users
https://github.com/tqdm/tqdm

BigARTM Documentation, Release 1.0

• Add ARTM.transform_sparse() and ARTM.get_theta_sparse() for sparse retrieval of theta ma-
trix

• Add ARTM.get_phi_sparse() for sparse retrieval of phi matrix

v0.8.1

• New source type ‘bow_n_wd’ was added into BatchVectorizer class. This type oriented on using the output
of CountVectorizer and TfIdfVectorizers classes from sklearn. New parameters of BatchVectorizer are: n_wd
(numpy.array) and vocabulary(dict)

• LDA model was added as one of the public interfaces. It is a restricted ARTM model created to simplify
BigARTM usage for new users with few experience in topic modeling.

• BatchVectorizer got a flag ‘gather_dictionary’, which has default value ‘True’. This means that BV would
create dictionary and save it in the BV.dictionary field. For ‘bow_n_wd’ format the dictionary will be gathered
whenever the flag was set to ‘False’ or to ‘True’.

• Add relative regularization for Phi matrix

v0.8.0

Warning: Note that your script can be affected by our changes in the default values for
num_document_passes and reuse_theta parameters (see below). We recommend to use our new de-
fault settings, num_document_passes = 10 and reuse_theta = False. However, if you choose to
explicitly set num_document_passes = 1 then make sure to also set reuse_theta = True, otherwise
you will experience very slow convergence.

• all operations to work with dictionaries were moved into a separate class artm.Dictionary. (de-
tails in the documentation). The mapping between old and new methods is very straighforward:
ARTM.gather_dictionary is replaced with Dictionary.gather method, which allows to gather a
dictionary from a set of batches; ARTM.filter_dictionary is replaced with Dictionary.filter
method, which allows to filter a dictionary based on term frequency and document frequency;
ARTM.load_dictionary is replaced with Dictionary.load method, which allows to load a dictio-
nary previously exported to disk in Dictionary.save method; ARTM.create_dictionary is replaced
with Dictionary.create method, which allows to create a dictionary based on custom protobuf message
DictionaryData, containing a set of dictionary entries; etc... The following code snippet gives a basic
example:

my_dictionary = artm.Dictionary()
my_dictionary.gather(data_path='my_collection_batches', vocab_file_path='vocab.txt')
my_dictionary.save(dictionary_path='my_collection_batches/my_dictionary')
my_dictionary.load(dictionary_path='my_collection_batches/my_dictionary.dict')
model = artm.ARTM(num_topics=20, dictionary=my_dictionary)
model.scores.add(artm.PerplexityScore(name='my_fisrt_perplexity_score',

use_unigram_document_model=False,
dictionary=my_dictionary))

• added library_version property to ARTM class to query for the version of the underlying BigARTM
library; returns a string in MAJOR.MINOR.PATCH format;

• dictionary_name argument had been renamed to dictionary in many places across python interface,
including scores and regularizers. This is done because those arguments can now except not just a string, but
also the artm.Dictionary class itself.

56 Chapter 7. Release Notes

http://docs.bigartm.org/en/master/python_interface/dictionary.html

BigARTM Documentation, Release 1.0

• with Dictionary class users no longer have to generate names for their dictionaries (e.g. the unique
dictionary_name identifier that references the dictionary). You may use Dictionary.name field to
access to the underlying name of the dictionary.

• added dictionary argument to ARTM.__init__ constructor to let user initialize the model; note
that we’ve change the behavior that model is automatically initialized whenever user calls fit_offline
or fit_online. Now this is no longer the case, and we expect user to either pass a dictionary in
ARTM.__init__ constructor, or manually call ARTM.initialize method. If neither is performed then
ARTM.fit_offline and ARTM.fit_online will throw an exception.

• added seed argument to ARTM.__init__ constructor to let user randomly initialize the model;

• added new score and score tracker BackgroundTokensRatio

• remove the default value from num_topics argument in ARTM.__init__ constructor, which previously
was defaulting to num_topics = 10; now user must always specify the desired number of topics;

• moved argument reuse_theta from fit_offline method into ARTM.__init__ constructor; the argu-
ment is still used to indicate that the previous theta matrix should be re-used on the next pass over the collection;
setting reuse_theta = True in the constructor will now be applied to fit_online, which previously
did not have this option.

• moved common argument num_document_passes from ARTM.fit_offline, ARTM.fit_online,
ARTM.transform methods into ARTM.__init__ constructor.

• changed the default value of cache_theta parameter from True to False (in ARTM.__init__ construc-
tor); this is done to avoid excessive memory usage due to caching of the entire Theta matrix; if caching is indeed
required user has to manually turn it on by setting cache_theta = True.

• changed the default value of reuse_theta parameter from True to False (in ARTM.__init__ construc-
tor); the reason is the same as for changing the default for cache_theta parameter

• changed the default value of num_document_passes parameter from 1 to 10 (in ARTM.__init__ con-
structor);

• added arguments apply_weight, decay_weight and update_after in ARTM.fit_onlinemethod;
each argument accepts a list of floats; setting all three arguments will override the default behavior of the online
algorithm that rely on a specific formula with tau0, kappa and update_every.

• added argument async (boolean flag) in ARTM.fit_online method for improved performance.

• added argument theta_matrix_type in ARTM.transform method; potential values are:
"dense_theta", "dense_ptdw", None; default matrix type is "dense_theta".

• introduced a separate method ARTM.remove_theta to clear cached theta matrix; remove corresponding
boolean switch remove_theta from ARTM.get_theta method.

• removed ARTM.fit_transform method; note that the name was confusing because this method has
never fitted the model; the purpose of ARTM.fit_transform was to retrieve Theta matrix after fit-
ting the model (ARTM.fit_offline or ARTM.fit_online); same functionality is now available via
ARTM.get_theta method.

• introduced ARTM.get_score method, which will exist in parallel to score tracking functionality; the
goal for ARTM.get_score(score_name) is to always return the latest version of the score; for Phi
scores this means to calculate them on fly; for Theta scores this means to return a score aggregated over
last call to ARTM.fit_offline, ARTM.fit_online or ARTM.transform methods; opposite to
ARTM.get_score the score tracking functionality returns the overall history of a score. For further details on
score calculation refer to Q&A section in our wiki page.

• added data_weight in BatchVectorizer.__init__ constructor to let user specify an individual
weight for each batch

7.1. Changes in Python API 57

https://github.com/bigartm/bigartm/wiki/Q&A#how-to-calculate-perplexity-on-held-out-sample

BigARTM Documentation, Release 1.0

• score tracker classes had been rewritten, so you should make minor changes in the code that retrieves scores; for
example:

• added an API to initialize logging with custom logging directory, log level, etc... Search out wiki page Q&A for
more details.

in v0.7.x
print model.score_tracker['Top100Tokens'].last_topic_info[topic_name].tokens

in v0.8.0
last_tokens = model.score_tracker['Top100Tokens'].last_tokens
print last_tokens[topic_name]

v0.7.x

See BigARTM v0.7.X Release Notes.

Changes in Protobuf Messages

v0.8.2

• added CollectionParserConfig.num_threads to control the number of threads that perform parsing.
At the moment the feature is only implemented for VW-format.

• added CollectionParserConfig.class_id (repeated string) to control which modalities should be
parsed. If token’s class_id is not from this list, it will be excluded from the resulting batches. When the list is
empty, all modalities are included (this is the default behavior, as before).

• added CollectionParserInfo message to export diagnostics information from
ArtmParseCollection

• added FilterDictionaryArgs.max_dictionary_size to give user an easy option to limit his dic-
tionary size

• added MergeModelArgs.dictionary_name to define the set of tokens in the resulting matrix

• added ThetaMatrix.num_values, TopicModel.num_values to define number of non-zero elements
in sparse format

v0.8.0

Warning: New batches, created in BigARTM v0.8, CAN NOT be used in the previous versions of the library. Old
batches, created prior to BigARTM v0.8, can still be used. See below for details.

• added token_id and token_weight field in Item message, and obsoleted Item.field. Internally the
library will merge the content of Field.token_id and Field.token_weight across all fields, and store
the result back into Item.token_id, Item.token_weight. New Item message is as follows:

message Item {
optional int32 id = 1;
repeated Field field = 2; // obsolete in BigARTM v0.8.0
optional string title = 3;
repeated int32 token_id = 4;

58 Chapter 7. Release Notes

https://github.com/bigartm/bigartm/wiki/Q&A

BigARTM Documentation, Release 1.0

repeated float token_weight = 5;
}

• renamed topics_count into num_topics across multiple messsages (TopicModel, ThetaMatrix,
etc)

• renamed inner_iterations_count into num_document_passes in ProcessBatchesArgs

• renamed passes into num_collection_passes in FitOfflineMasterModelArgs

• renamed threads into num_processors in MasterModelConfig

• renamed topic_index field into topic_indices in TopicModel and ThetaMatrix messages

• added messages ScoreArray, GetScoreArrayArgs and ClearScoreArrayCacheArgs to bring
score tracking functionality down into BigARTM core

• added messages BackgroundTokensRatioConfig and BackgroundTokensRatio (new score)

• moved model_name from GetScoreValueArgs into ScoreConfig; this is done to support score track-
ing functionality in BigARTM core; each Phi score needs to know which model to use in calculation

• removed topics_count from InitializeModelArgs; users must specify topic names in
InitializeModelArgs.topic_name field

• removed topic_index from GetThetaMatrixArgs; users must specify topic names to retrieve in
GetThetaMatrixArgs.topic_name

• removed batch field in GetThetaMatrixArgs and GetScoreValueArgs.batch messages; users
should use ArtmRequestTransformMasterModel or ArtmRequestProcessBatches to process
new batches and calculate theta scores

• removed reset_scores flag in ProcessBatchesArgs; users should use new API
ArtmClearScoreCache

• removed clean_cache flag in GetThetaMatrixArgs; users should use new API
ArtmClearThetaCache

• removed MasterComponentConfig; users should user ArtmCreateMasterModel and pass
MasterModelConfig

• removed obsolete fields in CollectionParserConfig; same arguments can be specified at
GatherDictionaryArgs and passed to ArtmGatherDictionary

• removed Filter message in InitializeModelArgs; same arguments can be specified at
FilterDictionaryArgs and passed to ArtmFilterDictionary

• removed batch_name from ImportBatchesArgs; the field is no longer needed; batches will be identified
via their Batch.id identifier

• removed use_v06_api in MasterModelConfig

• removed ModelConfig message

• removed SynchronizeModelArgs, AddBatchArgs, InvokeIterationArgs, WaitIdleArgs
messages; users should use new APIs based on MasterModel

• removed GetRegularizerStateArgs, RegularizerInternalState,
MultiLanguagePhiInternalState messages

• removed model_name and model_name_cache in ThetaMatrix, GetThetaMatrixArgs and
ProcessBatchesArgs; the code of master component is simplified to only handle one theta matrix, so
there is no longer any reason to identify theta matrix with model_name

7.2. Changes in Protobuf Messages 59

BigARTM Documentation, Release 1.0

• removed Stream message, MasterComponentConfig.stream field, and all stream_name fields
across several messages; train/test streaming functionality is fully removed; users are expected to manage their
train and test collections (for example as separate folders with batches)

• removed use_sparse_bow field in several messages; the computation mode with dense matrices is no longer
supported;

• renamed item_count into num_items in ThetaSnippetScoreConfig

• add global enum ScoreType as a replacement for enums Type from ScoreConfig and ScoreData
messages

• add global enum RegularizerType as a replacement for enum Type from RegularizerConfig mes-
sage

• add global enum MatrixLayout as a replacement for enum MatrixLayout from
GetThetaMatrixArgs and GetTopicModelArgs messages

• add global enum ThetaMatrixType as a replacement for enum ThetaMatrixType from
ProcessBatchesArgs and TransformMasterModelArgs messages

• renamed enum Type into SmoothType in SmoothPtdwConfig to avoid conflicts in C# messages

• renamed enum Mode into SparseMode in SpecifiedSparsePhiConfig to avoid conflicts in C# mes-
sages

• renamed enum Format into CollectionFormat in CollectionParserConfig to avoid conflicts in
C# messages

• renamed enum NameType into BatchNameType in CollectionParserConfig to avoid conflicts in C#
messages

• renamed field transform_type into type in TransformConfig to avoid conflicts in C# messages

• remove message CopyRequestResultArgs; this is a breaking change; please check that

– all previous calls to ArtmCopyRequestResult are changed to to ArtmCopyRequestedMessage

– all previous calls to ArtmCopyRequestResultEx with request types GetThetaSecondPass and
GetModelSecondPass are changed to ArtmCopyRequestedObject

– all previous calls to ArtmCopyRequestResultEx with DefaultRequestType are changed to
ArtmCopyRequestedMessage

• remove field request_type in GetTopicModelArgs; to request only topics and/or tokens
users should set GetTopicModelArgs.matrix_layout to MatrixLayout_Sparse, and
GetTopicModelArgs.eps = 1.001 (any number greather that 1.0).

• change optional FloatArray into repeated float in field coherence of TopTokensScore

• change optional DoubleArray into repeated double in fields kernel_size,
kernel_purity, kernel_contrast and coherence of TopicKernelScore

• change optional StringArray into repeated string in field topic_name of
TopicKernelScore

v0.7.x

See BigARTM v0.7.X Release Notes.

60 Chapter 7. Release Notes

BigARTM Documentation, Release 1.0

Changes in BigARTM CLI

v0.8.2

• added option --rand-seed to initialize random number generator; without this options, RNG will be set
using system time

• added option --write-vw-corpus to convert batches into plain text file in Vowpal Wabbit format

• change the naming scheme of the batches, saved with --save-batches option. Previously file names were
guid-based, while new format will look like this: aabcde.batch. New format ensures the ordering of the
documents in the collection is be preserved, given that user scans batches alphabetically.

• added switch --guid-batch-name to enable old naming scheme of batches (guid-based names). This option
is useful if you launch multiple instances of BigARTM CLI to concurrently generate batches.

• speedup parsing large files in VowpalWabbit format

• when --use-modality is specified, the batches saved with --save-batches will only include tokens
from these modalities. Other tokens will be ignored during parsing. This option is implemented for both VW
and UCI BOW formats.

• implement TopicSelection, LabelRegularization, ImproveCoherence, Biterms regularizer
in BigARTM CLI

• added option --dictionary-size to give user an easy option to limit his dictionary size

• add more diagnostics information about dictionary size (before and after filtering)

• add strict verification of scores and regularizers; for example, BigARTM CLI will raise an exception for
this input: bigartm -t obj:10,back:5 --regularizer "0.5 SparsePhi #obj*". There
shouldn’t be star sign in #obj*.

v0.8.0

• renamed --passes into --num-collection-passes

• renamed --num-inner-iterations into --num-document-passes

• removed --model-v06 option

• removed --use-dense-bow option

v0.7.x

See BigARTM v0.7.X Release Notes.

Changes in c_interface

v0.8.2

Warning: BigARTM 3rdparty dependency had been upgraded from protobuf 2.6.1 to protobuf
3.0.0. This may affect you upgrade from previous version of bigartm. Pelase report any issues at bigartm-
users@googlegroups.com.

7.3. Changes in BigARTM CLI 61

https://groups.google.com/group/bigartm-users
https://groups.google.com/group/bigartm-users

BigARTM Documentation, Release 1.0

• Change ArtmParseCollection to return CollectionParserInfo message

• Add APIs to enable JSON serialization for all input and output protobuf messages

– ArtmSetProtobufMessageFormatToJson()

– ArtmSetProtobufMessageFormatToBinary()

– ArtmProtobufMessageFormatIsJson()

The default setting is, as before, to serialize all message into binary buffer. Note that for with json se-
rialization one should use RegularizerConfig.config_json, ScoreConfig.config_json and
ScoreData.data_json instead of RegularizerConfig.config, ScoreConfig.config and
ScoreData.data.

• Revisit documentation for c_interface

• Change integer types in c_interface from int to int64_t (from stdint.h). This allows to validate 2 GB
limit for protobuf messages, and also to passing larger objects in ArtmCopyRequestedObject.

• Add ArtmReconfigureTopicName method to add/remove/reorder topic names

• Support sparse format for external retrieval of theta and phi matrices

v0.8.0

• Removed ArtmCreateMasterComponent and ArtmReconfigureMasterComponent

• Removed ArtmCreateModel and ArtmReconfigureModel

• Removed ArtmAddBatch, ArtmInvokeIteration, ArtmWaitIdle, ArtmSynchronizeModel

• Removed ArtmRequestRegularizerState

• Renamed ArtmCopyRequestResult into ArtmCopyRequestedMessage

• Renamed ArtmCopyRequestResultEx into ArtmCopyRequestedObject

• Added ArtmClearThetaCache and ArtmClearScoreCache

• Added ArtmRequestScoreArray and ArtmClearScoreArrayCache

• Added GetArtmVersion to query for the version; returns a string in “<MAJOR>.<MINOR>.<PATCH>”
format

v0.7.x

See BigARTM v0.7.X Release Notes.

BigARTM v0.7.X Release Notes

BigARTM v0.7.0 Release notes

We are happy to introduce BigARTM v0.7.0, which brings you the following changes:

• New-style models

• Network modus operandi is removed

• Coherence regularizer and scores (experimental)

62 Chapter 7. Release Notes

BigARTM Documentation, Release 1.0

New-style models

BigARTM v0.7.0 exposes new APIs to give you additional control over topic model inference:

• ProcessBatches

• MergeModel

• RegularizeModel

• NormalizeModel

Besides being more flexible, new APIs bring many additional benefits:

• Fully deterministic inference, no dependency on threads scheduling or random numbers generation

• Less bottlenecks for performance (DataLoader and Merger threads are removed)

• Phi-matrix regularizers can be implemented externally

• Capability to output Phi matrices directly into your NumPy matrices (scheduled for BigARTM v0.7.2)

• Capability for store Phi matrices in sparse format (scheduled for BigARTM v0.7.3)

• Capability for async ProcessBatches and non-blocking online algorithm (BigARTM v0.7.4)

• Form solid foundation for high performance networking (BigARTM v0.8.X)

The picture below illustrates scalability of BigARTM v0.7.0 vs v0.6.4. Top chart (in green) corresponds to CPU usage
at 28 cores on machine with 32 virtual cores (16 physical cores + hyper threading). As you see, new version is much
more stable. In addition, new version consumes less memory.

7.5. BigARTM v0.7.X Release Notes 63

BigARTM Documentation, Release 1.0

Refer to the following examples that demonstrate usage of new APIs for offline, online and regularized topic mod-
elling:

• example17_process_batches.py

• example18_merge_model.py

• example19_regularize_model.py

Models, tuned with the new API are referred to as new-style models, as opposite to old-style models inferred with
AddBatch, InvokeIteration, WaitIdle and SynchronizeModel APIs.

64 Chapter 7. Release Notes

https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example17_process_batches.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example18_merge_model.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example19_regularize_model.py

BigARTM Documentation, Release 1.0

Warning: For BigARTM v0.7.X we will continue to support old-style models. However, you should consider
upgrading to new-style models because old APIs (AddBatch, InvokeIteration, WaitIdle and SynchronizeModel)
are likely to be removed in future releases.

The following flow chart gives a typical use-case on new APIs in online regularized algorithm:

Notes on upgrading existing code to new-style models

1. New APIs can only read batches from disk. If your current script passes batches via memory (in Ad-
dBatchArgs.batch field) then you need to store batches on disk first, and then process them with ProcessBatches
method.

2. Initialize your model as follows:

• For python_interface: using MasterComponent.InitializeModel method

• For cpp_interface: using MasterComponent.InitializeModel method

• For c_interface: using ArtmInitializeModel method

Remember that you should not create ModelConfig in order to use this methods. Pass your topics_count (or
topic_name list) as arguments to InitializeModel method.

3. Learn the difference between Phi and Theta scores, as well as between Phi and Theta regularizes. The following
table gives an overview:

7.5. BigARTM v0.7.X Release Notes 65

BigARTM Documentation, Release 1.0

Object Theta Phi
Scores

• Perplexity
• SparsityTheta
• ThetaSnippet
• ItemsProcessed

• SparsityPhi
• TopTokens
• TopicKernel

Regularizers
• SmoothSparseTheta • DecorrelatorPhi

• ImproveCoherencePhi
• LabelRegularizationPhi
• SmoothSparsePhi
• SpecifiedSparsePhi

Phi regularizers needs to be calculated explicitly in RegularizeModel, and then applied in NormalizeModel
(via optional rwt argument). Theta regularizers needs to be enabled in ProcessBatchesArgs. Then they will be
automatically calculated and applied during ProcessBatches.

Phi scores can be calculated at any moment based on the new-style model (same as for old-style models). Theta
scores can be retrieved in two equivalend ways:

pwt_model = "pwt"
master.ProcessBatches(pwt_model, batches, "nwt")
perplexity_score.GetValue(pwt_model).value

or

pwt_model = "pwt"
process_batches_result = master.ProcessBatches(pwt_model, batches, "nwt")
perplexity_score.GetValue(scores = process_batches_result).value

Second way is more explicit. However, the first way allows you to combine aggregate scores accross multiple
ProcessBatches calls:

pwt_model = "pwt"
master.ProcessBatches(pwt_model, batches1, "nwt")
master.ProcessBatches(pwt_model, batches2, "nwt", reset_scores=False)
perplexity_score.GetValue(pwt_model).value

This works because BigARTM caches the result of ProcessBatches together (in association with pwt_model).
The reset_scores switch disables the default behaviour, which is to reset the cache for pwt_model at the begin-
ning of each ProcessBatch call.

4. Continue using GetThetaMatrix and GetTopicModel to retrieve results from the library. For GetThetaMatrix to
work you still need to enable cache_theta in master component. Remember to use the same model in GetTheta-
Matrix as you used as the input to ProcessBatches. You may also omit “target_nwt” argument in ProcessBatches
if you are not interested in getting this output.

master.ProcessBatches("pwt", batches)
theta_matrix = master.GetThetaMatrix("pwt")

5. Stop using certain APIs:

• For python_interface: stop using class Model and ModelConfig message

• For cpp_interface: stop using class Model and ModelConfig message

• For c_interface: stop using methods ArtmCreateModel, ArtmReconfigureModel, ArtmInvokeIteration,
ArtmAddBatch, ArtmWaitIdle, ArtmSynchronizeModel

66 Chapter 7. Release Notes

BigARTM Documentation, Release 1.0

Notes on models handling (reusing, sharing input and output, etc)

Is allowed to output the result of ProcessBatches, NormalizeModel, RegularizeModel and MergeModel into an existing
model. In this case the existing model will be fully overwritten by the result of the operation. For all operations except
ProcessBatches it is also allowed to use the same model in inputs and as an output. For example, typical usage of
MergeModel involves combining “nwt” and “nwt_hat” back into “nwt”. This scenario is fully supported. The output
and input of ProcessBatches must refer to two different models. Finally, note that MergeModel will ignore all non-
existing models in the input (and log a warning). However, if none of the input models exist then MergeModel will
thrown an error.

Known differences

1. Decorrelator regularizer will give slightly different result in the following scenario:

master.ProcessBatches("pwt", batches, "nwt")
master.RegularizeModel("pwt", "nwt", "rwt", phi_regularizers)
master.NormalizeModel("nwt", "pwt", "rwt")

To get the same result as from model.Synchronize() adjust your script as follows:

master.ProcessBatches("pwt", batches, "nwt")
master.NormalizeModel("nwt", "pwt_temp")
master.RegularizeModel("pwt_temp", "nwt", "rwt", phi_regularizers)
master.NormalizeModel("nwt", "pwt", "rwt")

2. You may use GetThetaMatrix(pwt) to retrieve Theta-matrix, previously calculated for new-style models inside
ProcessBatches. However, you can not use GetThetaMatrix(pwt, batch) for new models. They do not have
corresponding ModelConfig, and as a result you need to go through ProcessBatches to pass all parameters.

Network modus operandi is removed

Network modus operandi had been removed from BigARTM v0.7.0.

This decision had been taken because current implementation struggle from many issues, particularly from poor per-
formance and stability. We expect to re-implement this functionality on top of new-style models.

Please, let us know if this caused issues for you, and we will consider to re-introduce networking in v0.8.0.

Coherence regularizer and scores (experimental)

Refer to example in example16_coherence_score.py.

BigARTM v0.7.1 Release notes

We are happy to introduce BigARTM v0.7.1, which brings you the following changes:

• BigARTM noteboks — new source of information about BigARTM

• ArtmModel — a brand new Python API

• Much faster retrieval of Phi and Theta matrices from Python

• Much faster dictionary imports from Python

• Auto-detect and use all CPU cores by default

• Fixed Import/Export of topic models (was broken in v0.7.0)

• New capability to implement Phi-regularizers in Python code

7.5. BigARTM v0.7.X Release Notes 67

https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example16_coherence_score.py

BigARTM Documentation, Release 1.0

• Improvements in Coherence score

Before you upgrade to BigARTM v0.7.1 please review the changes that break backward compatibility.

BigARTM notebooks

BigARTM notebooks is your go-to links to read more ideas, examples and other information around BigARTM:

• BigARTM notebooks in English

• BigARTM notebooks in Russian

ArtmModel

Best thing about ArtmModel is that this API had been designed by BigARTM users. Not by BigARTM programmers.
This means that BigARTM finally has a nice, clean and easy-to-use programming interface for Python. Don’t believe
it? Just take a look and some examples:

• ArtmModel examples in English

• ArtmModel examples in Russian

That is cool, right? This new API allows you to load input data from several file formats, infer topic model, find topic
distribution for new documents, visualize scores, apply regularizers, and perform many other actions. Each action
typically takes one line to write, which allows you to work with BigARTM interactively from Python command line.

ArtmModel exposes most of BigARTM functionality, and it should be sufficiently powerful to cover 95% of all Bi-
gARTM use-cases. However, for the most advanced scenarios you might still need to go through the previous API
(artm.library). When in doubt which API to use, ask bigartm-users@googlegroups.com — we are there to help!

Coding Phi-regularizers in Python code

This is of course one of those very advanced scenarios where you need to go down to the old API :) Take a look at this
example:

• example19_regularize_model

• example20_attach_model

First one tells how to use Phi regularizers, built into BigARTM. Second one provides a new capability to manipulate
Phi matrix from Python. We call this Attach numpy matrix to the model, because this is similar to attaching debugger
(like gdb or Visual Studio) to a running application.

To implement your own Phi regularizer in Python you need to to attach to rwt model from the first example, and
update its values.

Other changes

Fast retrieval of Phi and Theta matrices. In BigARTM v0.7.1 dense Phi and Theta matrices will be retrieved to
Python as numpy matrices. All copying work will be done in native C++ code. This is much faster comparing to
current solution, where all data is transferred in a large Protobuf message which needs to be deserialized in Python.
ArtmModel already takes advantage of this performance improvements.

Fast dictionary import. BigARTM core now supports importing dictionary files from disk, so you no longer have to
load them to Python. ArtmModel already take advantage of this performance improvement.

68 Chapter 7. Release Notes

http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/Topic_Modeling_with_BigARTM.ipynb
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/Topic_Modeling_with_BigARTM_RU.ipynb
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_EN.ipynb
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_RU.ipynb
https://github.com/bigartm/bigartm/blob/master/python/artm/library.py
https://groups.google.com/forum/#!forum/bigartm-users
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example19_regularize_model.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example20_attach_model.py

BigARTM Documentation, Release 1.0

Auto-detect number of CPU cores. You no longer need to specify num_processors parameter. By default
BigARTM will detect the number of cores on your machine and load all of them. num_processors still can be
used to limit CPU resources used by BigARTM.

Fixed Import/Export of topic models. Export and Import of topic models will now work. As simple as this:

master.ExportModel("pwt", "file_on_disk.model")
master.ImportModel("pwt", "file_on_disk.model")

This will also take care of very large models above 1 GB that does not fit into single protobuf message.

Coherence scores. Ask bigartm-users@googlegroups.com if you are interested :)

Breaking changes

• Changes in Python methods MasterComponent.GetTopicModel and
MasterComponent.GetThetaMatrix

From BigARTM v0.7.1 and onwards method MasterComponent.GetTopicModel of the low-level
Python API will return a tuple, where first argument is of type TopicModel (protobuf message), and second
argument is a numpy matrix. TopicModel message will keep all fields as usual, except token_weights field
which will became empty. Information from token_weights field had been moved to numpy matrix (rows =
tokens, columns = topics).

Similarly, MasterComponent.GetThetaMatrix will also return a tuple, where first argument is of type
ThetaMatrix (protobuf message), and second argument is a numpy matrix. ThetaMatrix message will keep all
fields as usual, except item_weights field which will became empty. Information from item_weights field had
been moved to numpy matrix (rows = items, columns = topics).

Updated examples:

– example11_get_theta_matrix.py

– example12_get_topic_model

Warning: Use the followign syntax to restore the old behaviour:
– MasterComponent.GetTopicModel(use_matrix = False)
– MasterComponent.GetThetaMatrix(use_matrix = False)

This will return a complete protobuf message, without numpy matrix.

• Python method ParseCollectionOrLoadDictionary is now obsolete

– Use ParseCollection method to convert collection into a set of batches

– Use MasterComponent.ImportDictionary to load dictionary into BigARTM

– Updated example: example06_use_dictionaries.py

BigARTM v0.7.2 Release notes

We are happy to introduce BigARTM v0.7.2, which brings you the following changes:

• Enhancements in high-level python API (ArtmModel -> ARTM)

• Enhancements in low-level python API (library.py -> master_component.py)

• Enhancements in CLI interface (cpp_client)

• Status and information retrievals from BigARTM

7.5. BigARTM v0.7.X Release Notes 69

https://groups.google.com/forum/#!forum/bigartm-users
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example11_get_theta_matrix.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example12_get_topic_model.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example06_use_dictionaries.py

BigARTM Documentation, Release 1.0

• Allow float token counts (token_count -> token_weight)

• Allow custom weights for each batch (ProcessBatchesArgs.batch_weight)

• Bug fixes and cleanup in the online documentation

Enhancements in Python APIs

Note that ArtmModel had been renamed to ARTM. The naming conventions follow the same pattern as in scikit learn
(e.g. fit, transform and fit_transform methods).

Also note that all input data is now handled by BatchVectorizer class.

Refer to noteboods in English and in Russian for further details about ARTM interface.

Also note that previous low-level python API library.py is superseeded by a new API
master_component.py. For now both APIs are available, but the old one will be removed in future
releases. Refer to this folder for futher examples of the new low-level python API.

Remember that any use of low-level APIs is discouraged. Our recommendation is to always use the high-level python
API ARTM, and e-mail us know if some functionality is not exposed there.

Enhancements in CLI interface

BigARTM command line interface cpp_client had been enhanced with the following options:

• --load_model - to load model from file before processing

• --save_model - to save the model to binary file after processing

• --write_model_readable - to output the model in a human-readable format (CSV)

• --write_predictions - to write prediction in a human-readable format (CSV)

• --dictionary_min_df - to filter out tokens present in less than N documents / less than P% of documents

• --dictionary_max_df - filter out tokens present in less than N documents / less than P% of documents

• --tau0 - an option of the online algorith, describing the weight parameter in the online update formula.
Optional, defaults to 1024.

• --kappa - an option of the online algorithm, describing the exponent parameter in the online update formula.
Optional, defaults to 0.7.

Note that for --dictionary_min_df and --dictionary_max_df can be treated as number, fraction, percent.

• Use a percentage % sign to specify percentage value

• Use a floating value in [0, 1) range to specify a fraction

• Use an integer value (1 or greater) to indicate a number

BigARTM v0.7.3 Release notes

BigARTM v0.7.3 releases the following changes:

• New command line tool for BigARTM

• Support for classification in bigartm CLI

• Support for asynchronous processing of batches

• Improvements in coherence regularizer and coherence score

70 Chapter 7. Release Notes

http://scikit-learn.org
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_EN.ipynb
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_RU.ipynb
https://github.com/bigartm/bigartm/tree/master/python/tests/wrapper

BigARTM Documentation, Release 1.0

• New TopicMass score for phi matrix

• Support for documents markup

• New API for importing batches through memory

New command line tool for BigARTM

New CLI is named bigartm (or bigrtm.exe on Windows), and it supersedes previous CLI named cpp_client.
New CLI has the following features:

• Parse collection in one of the Formats

• Load dictionary

• Initialize a new model, or import previously created model

• Perform EM-iterations to fit the model

• Export predicted probabilities for all documents into CSV file

• Export model into a file

All command-line options are listed here, and you may see several exampels on BigARTM page at github. At the
moment full documentation is only available in Russian.

Support for classification in BigARTM CLI

BigARTM CLI is now able to perform classification. The following example assumes that your batches have
target_class modality in addition to the default modality (@default_class).

Fit model
bigartm.exe --use-batches <your batches>

--use-modality @default_class,target_class
--topics 50
--dictionary-min-df 10
--dictionary-max-df 25%
--save-model model.bin

Apply model and output to text files
bigartm.exe --use-batches <your batches>

--use-modality @default_class,target_class
--topics 50
--passes 0
--load-model model.bin
--predict-class target_class
--write-predictions pred.txt
--write-class-predictions pred_class.txt
--csv-separator=tab
--score ClassPrecision

Support for asynchronous processing of batches

Asynchronous processing of batches enables applications to overlap EM-iterations better utilize CPU resources. The
following chart shows CPU utilization of bigartm.exe with (left-hand side) and without async flag (right-hand
side).

7.5. BigARTM v0.7.X Release Notes 71

http://docs.bigartm.org/en/latest/tutorials/bigartm_cli.html
http://github.com/bigartm/bigartm
https://github.com/bigartm/bigartm-book/blob/master/junk/cli/BigARTM_CommandLineInferface.ipynb

BigARTM Documentation, Release 1.0

TopicMass score for phi matrix

Topic mass score calculates cumulated topic mass for each topic. This is a useful metric to monitor balance between
topics.

Support for documents markup

Document markup provides topic distribution for each word in a document. Since BigARTM v0.7.3 it is posible to
extract this information to use it. A potential application includes color-highlighted maps of the document, where
every work is colored according to the most probable topic of the document.

In the code this feature is refered to as ptdw matrix. It is possible to extract and regularizer ptdw matrices. In future
versions it will be also possible to calculate scores based on ptdw matrix.

New API for importing batches through memory

New low-level APIs ArtmImportBatches and ArtmDisposeBatches allow to import batches from memory
into BigARTM. Those batches are saved in BigARTM, and can be used for batches processing.

BigARTM v0.7.4 Release notes

BigARTM v0.7.4 is a big release that includes major rework of dictionaries and MasterModel.

bigartm/stable branch

Up until now BigARTM has only one master branch, containing the latest code. This branch potentially includes
untested code and unfinished features. We are now introducing bigartm/stable branch, and encourage all users

72 Chapter 7. Release Notes

https://github.com/bigartm/bigartm/issues/325

BigARTM Documentation, Release 1.0

to stop using master and start fetching from stable. stable branch will be lagging behind master, and moved
forward to master as soon as mainteiners decide that it is ready. At the same point we will introduce a new tag
(something like v0.7.3) and produce a new release for Windows. In addition, stable branch also might receive
small urgent fixes in between releases, typically to address critical issues reported by our users. Such fixes will be also
included in master branch.

MasterModel

MasterModel is a new set of low-level APIs that allow users of C-interface to in-
fer models and apply them to new data. The APIs are ArtmCreateMasterModel,
ArtmReconfigureMasterModel, ArtmFitOfflineMasterModel, ArtmFitOnlineMasterModel
and ArtmRequestTransformMasterModel, togehter with corresponding protobuf messages. For a usage
example see src/bigartm/srcmain.cc.

This APIs should be easy to understand for the users who are familiar with Python interface. Basically, we take
ARTM class in Python, and push it down to the core. Now users can create their model via MasterModelConfig
(protobuf message), fit via ArtmFitOfflineMasterModel or ArtmFitOnlineMasterModel, and apply to
the new data via ArtmRequestTransformMasterModel. This means that the user no longer has to orchestrate
low-level building blocks such as ArtmProcessBatches, ArtmMergeModel, ArtmRegularizeModel and
ArtmNormalizeModel.

ArtmCreateMasterModel is similar to ArtmCreateMasterComponent in a sence that it returns
master_id, which can be later passed to all other APIs. This mean that most APIs will continue working as before.
This applies to ArtmRequestThetaMatrix, ArtmRequestTopicModel, ArtmRequestScore, and many
others.

Rework of dictionaries

Previous implementation of the dictionaries was really messy, and we are trying to clean this up. This effort is not
finished yet, however we decided to release current version because it is a major improvement comparing to the
previous version. At the low-level (c_interface), we now have the following methods to work with dictionaries:

• ArtmGatherDictionary collects a dictionary based on a folder with batches,

• ArtmFilterDictionary filter tokens from the dictinoary based on their term frequency or document fre-
quency,

• ArtmCreateDictionary creates a dictionary from a custom DictionaryData object (protobuf mes-
sage),

• ArtmRequestDictionary retrieves a dictionary as DictionaryData object (protobuf message),

• ArtmDisposeDictionary deletes dictionary object from BigARTM,

• ArtmImportDictionary import dictionary from binary file,

• ArtmExportDictionary expor tdictionary into binary file.

All dictionaries are identified by a string ID (dictionary_name). Dictionaries can be used to initialize the model,
in regularizers or in scores.

Note that ArtmImportDictionary and ArtmExportDictionary now uses a different format. For this reason
we require that all imported or exported files end with .dict extension. This limitation is only introduced to make
users aware of the change in binary format.

7.5. BigARTM v0.7.X Release Notes 73

https://github.com/bigartm/bigartm/tree/v0.7.3

BigARTM Documentation, Release 1.0

Warning: Please note that you have to re-generate all dictionaries, created in previous BigARTM versions. To
force this limitation we decided that ArtmImportDictionary and ArtmExportDictionary will require
all imported or exported files end with .dict extension. This limitation is only introduced to make users aware
of the change in binary format.
Please note that in the next version (BigARTM v0.8.0) we are planing to break dictionary format once again. This
is because we will introduce boost.serialize library for all import and export methods. From that point
boost.serialize library will allow us to upgrade formats without breaking backwards compatibility.

The following example illustrate how to work with new dictionaries from Python.

Parse collection in UCI format from D:\Datasets\docword.kos.txt and D:\Datasets\vocab.kos.txt
and store the resulting batches into D:\Datasets\kos_batches
batch_vectorizer = artm.BatchVectorizer(data_format='bow_uci',

data_path=r'D:\Datasets',
collection_name='kos',
target_folder=r'D:\Datasets\kos_batches')

Initialize the model. For now dictionaries exist within the model,
but we will address this in the future.
model = artm.ARTM(...)

Gather dictionary named `dict` from batches.
The resulting dictionary will contain all distinct tokens that occur
in those batches, and their term frequencies
model.gather_dictionary("dict", "D:\Datasets\kos_batches")

Filter dictionary by removing tokens with too high or too low term frequency
Save the result as `filtered_dict`"
model.filter_dictionary(dictionary_name='dict',

dictionary_target_name='filtered_dict',
min_df=10, max_df_rate=0.4)

Initialize model from `diltered_dict`
model.initialize("filtered_dict")

Import/export functionality
model.save_dictionary("filtered_dict", "D:\Datasets\kos.dict")
model.load_dictionary("filtered_dict2", "D:\Datasets\kos.dict")

Changes in the infrastructure

• Static linkage for bigartm command-line executable on Linux. To disable static linkage use cmake
-DBUILD_STATIC_BIGARTM=OFF ..

• Install BigARTM python API via python setup.py install

Changes in core functionality

• Custom transform function for KL-div regularizers

• Ability to initialize the model with custom seed

• TopicSelection regularizers

74 Chapter 7. Release Notes

BigARTM Documentation, Release 1.0

• PeakMemory score (Windows only)

• Different options to name batches when parsing collection (GUID as today, and CODE for sequential numbering)

Changes in Python API

• ARTM.dispose() method for managing native memory

• ARTM.get_info() method to retrieve internal state

• Performance fixes

• Expose class prediction functionality

Changes in C++ interface

• Consume MasterModel APIs in C++ interface. Going forward this is the only C++ interface that we will
support.

Changes in console interface

• Better options to work with dictionaries

• --write-dictionary-readable to export dictionary

• --force switch to let user overwrite existing files

• --help generates much better examples

• --model-v06 to experiment with old APIs (ArtmInvokeIteration / ArtmWaitIdle /
ArtmSynchronizeModel)

• --write-scores switch to export scores into file

• --time-limit option to time-box model inference(as an alternative to --passes switch)

7.5. BigARTM v0.7.X Release Notes 75

BigARTM Documentation, Release 1.0

76 Chapter 7. Release Notes

CHAPTER 8

BigARTM Developer’s Guide

These pages describe the development process of BigARTM library. If your intent to use BigARTM as a typical user,
please proceed to Basic BigARTM tutorial for Windows users or Basic BigARTM tutorial for Linux and Mac OS-X
users, depending on your operating system. If you intent is to contribute to the development BigARTM, please proceed
to the links below.

Downloads (Windows)

Download and install the following tools:

• Git for Windows from http://git-scm.com/download/win

– https://github.com/msysgit/msysgit/releases/download/Git-1.9.5-preview20141217/Git-1.9.5-
preview20141217.exe

• Github for Windows from https://windows.github.com/

– https://github-windows.s3.amazonaws.com/GitHubSetup.exe

• Visual Studio 2013 Express for Windows Desktop from https://www.visualstudio.com/en-us/products/visual-
studio-express-vs.aspx

• CMake from http://www.cmake.org/download/

– http://www.cmake.org/files/v3.0/cmake-3.0.2-win32-x86.exe

• Prebuilt Boost binaries from http://sourceforge.net/projects/boost/files/boost-binaries/, for example these two:

– http://sourceforge.net/projects/boost/files/boost-binaries/1.57.0/boost_1_57_0-msvc-12.0-
32.exe/download

– http://sourceforge.net/projects/boost/files/boost-binaries/1.57.0/boost_1_57_0-msvc-12.0-
64.exe/download

• Python from https://www.python.org/downloads/

– https://www.python.org/ftp/python/2.7.9/python-2.7.9.amd64.msi

– https://www.python.org/ftp/python/2.7.9/python-2.7.9.msi

• (optional) If you plan to build documentation, download and install sphinx-doc as described here: http://sphinx-
doc.org/latest/index.html

• (optional) 7-zip – http://www.7-zip.org/a/7z920-x64.msi

• (optional) Putty – http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

77

http://git-scm.com/download/win
https://github.com/msysgit/msysgit/releases/download/Git-1.9.5-preview20141217/Git-1.9.5-preview20141217.exe
https://github.com/msysgit/msysgit/releases/download/Git-1.9.5-preview20141217/Git-1.9.5-preview20141217.exe
https://windows.github.com/
https://github-windows.s3.amazonaws.com/GitHubSetup.exe
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
http://www.cmake.org/download/
http://www.cmake.org/files/v3.0/cmake-3.0.2-win32-x86.exe
http://sourceforge.net/projects/boost/files/boost-binaries/
http://sourceforge.net/projects/boost/files/boost-binaries/1.57.0/boost_1_57_0-msvc-12.0-32.exe/download
http://sourceforge.net/projects/boost/files/boost-binaries/1.57.0/boost_1_57_0-msvc-12.0-32.exe/download
http://sourceforge.net/projects/boost/files/boost-binaries/1.57.0/boost_1_57_0-msvc-12.0-64.exe/download
http://sourceforge.net/projects/boost/files/boost-binaries/1.57.0/boost_1_57_0-msvc-12.0-64.exe/download
https://www.python.org/downloads/
https://www.python.org/ftp/python/2.7.9/python-2.7.9.amd64.msi
https://www.python.org/ftp/python/2.7.9/python-2.7.9.msi
http://sphinx-doc.org/latest/index.html
http://sphinx-doc.org/latest/index.html
http://www.7-zip.org/a/7z920-x64.msi
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

BigARTM Documentation, Release 1.0

All explicit links are given just for convenience if you are setting up new environment. You are free to choose other
versions or tools, and most likely they will work just fine for BigARTM. Remember to match the following: * Visual
Studio version must match Boost binaries version, unless you build Boost yourself * Use the same configuration (32
bit or 64 bit) for your Python and BigARTM binaries

Source code

BigARTM is hosted in public GitHub repository:

https://github.com/bigartm/bigartm

We maintain two branches: master and stable. master branch is the latest source code, potentially including some
unfinished features. stable branch will be lagging behind master, and moved forward to master as soon as mainteiners
decide that it is ready. Typically this should happen at the end of each month. At the same point we will introduce a
new tag (something like v0.7.3) and produce a new release for Windows. In addition, stable branch also might receive
small urgent fixes in between releases, typically to address critical issues reported by our users. Such fixes will be also
included in master branch.

To contribute a fix you should fork the repository, code your fix and submit a pull request. against master branch. All
pull requests are regularly monitored by BigARTM maintainers and will be soon merged. Please, keep monitoring the
status of your pull request on travis, which is a continuous integration system used by BigARTM project.

Build C++ code on Windows

The following steps describe the procedure to build BigARTM’s C++ code on Windows.

• Download and install GitHub for Windows.

• Clone https://github.com/bigartm/bigartm/ repository to any location on your computer. This location is further
refered to as $(BIGARTM_ROOT).

• Download and install Visual Studio 2012 or any newer version. BigARTM will compile just fine with any
edition, including any Visual Studio Express edition (available at www.visualstudio.com).

• Install CMake (tested with cmake-3.0.1, Win32 Installer).

Make sure that CMake executable is added to the PATH environmental variable. To achieve this either select
the option “Add CMake to the system PATH for all users” during installation of CMake, or add it to the PATH
manually.

• Download and install Boost 1.55 or any newer version.

We suggest to use the Prebuilt Windows Binaries. Make sure to select version that match your version of Visual
Studio. You may choose to work with either x64 or Win32 configuration, both of them are supported.

• Configure system variables BOOST_ROOT and Boost_LIBRARY_DIR.

If you have installed boost from the link above, and used the default location, then the setting should look similar
to this:

setx BOOST_ROOT C:\local\boost_1_56_0
setx BOOST_LIBRARYDIR C:\local\boost_1_56_0\lib32-msvc-12.0

For all future details please refer to the documentation of FindBoost module. We also encourage new CMake
users to step through CMake tutorial.

78 Chapter 8. BigARTM Developer’s Guide

https://github.com/bigartm/bigartm
https://github.com/bigartm/bigartm/tree/master
https://github.com/bigartm/bigartm/tree/stable
https://github.com/bigartm/bigartm/tree/v0.7.3
https://help.github.com/articles/fork-a-repo
https://help.github.com/articles/using-pull-requests
https://travis-ci.org/bigartm/bigartm/pull_requests
http://windows.github.com/
https://github.com/bigartm/bigartm/
http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
http://www.cmake.org/cmake/resources/software.html
http://sourceforge.net/projects/boost/files/boost-binaries/
http://www.cmake.org/cmake/help/v3.0/module/FindBoost.html
http://www.cmake.org/cmake/help/cmake_tutorial.html

BigARTM Documentation, Release 1.0

• Install Python 2.7 (tested with Python 2.7.6).

You may choose to work with either x64 or Win32 version of the Python, but make sure this matches the
configuration of BigARTM you have choosed earlier. The x64 installation of python will be incompatible with
32 bit BigARTM, and virse versus.

• Use CMake to generate Visual Studio projects and solution files. To do so, open a command prompt, change
working directory to $(BIGARTM_ROOT) and execute the following commands:

mkdir build
cd build
cmake ..

You might have to explicitly specify the cmake generator, especially if you are working with x64 configuration.
To do so, use the following syntax:

cmake .. -G"Visual Studio 12 Win64"

CMake will generate Visual Studio under $(BIGARTM_ROOT)/build/.

• Open generated solution in Visual Studio and build it as you would usually build any other Visual Studio solu-
tion. You may also use MSBuild from Visual Studio command prompt.

The build will output result into the following folders:

– $(BIGARTM_ROOT)/build/bin/[Debug|Release] — binaries (.dll and .exe)

– $(BIGARTM_ROOT)/build/lib/[Debug|Release] — static libraries

At this point you should be able to run BigARTM tests, located here:
$(BIGARTM_ROOT)/build/bin/*/artm_tests.exe.

Python code on Windows

• Install Python 2.7 (this step is already done if you are following the instructions above),

• Add Python to the PATH environmental variable

http://stackoverflow.com/questions/6318156/adding-python-path-on-windows-7

• Follow the instructions in README file in directory $(BIGARTM_ROOT)/3rdparty/protobuf/python/.
In brief, this instructions ask you to run the following commands:

python setup.py build
python setup.py test
python setup.py install

On second step you fill see two failing tests:

Ran 216 tests in 1.252s
FAILED (failures=2)

This 2 failures are OK to ignore.

At this point you should be able to run BigARTM tests for Python, located under
$(BIGARTM_ROOT)/python/tests/.

• [Optional] Download and add to MSVS Python Tools 2.0. All necessary instructions can be found at
https://pytools.codeplex.com/. This will allow you debug you Python scripts using Visual Studio. You may
start with the following solution: $(BIGARTM_ROOT)/src/artm_vs2012.sln.

8.4. Python code on Windows 79

https://www.python.org/ftp/python/2.7.6/python-2.7.6.msi
http://www.cmake.org/cmake/help/v3.0/manual/cmake-generators.7.html
http://stackoverflow.com/questions/6318156/adding-python-path-on-windows-7
https://pytools.codeplex.com/

BigARTM Documentation, Release 1.0

Compiling .proto files on Windows

1. Open a new command prompt

2. Copy the following file into $(BIGARTM_ROOT)/src/

• $(BIGARTM_ROOT)/build/bin/CONFIG/protoc.exe

Here CONFIG can be either Debug or Release (both options will work equally well).

3. Change working directory to $(BIGARTM_ROOT)/src/

4. Run the following commands

.\protoc.exe --cpp_out=. --python_out=. .\artm\messages.proto

.\protoc.exe --cpp_out=. .\artm\core\internals.proto

Working with iPython notebooks remotely

It turned out to be common scenario to run BigARTM on a Linux server (for example on Amazon EC2), while
connecting to it from Windows through putty. Here is a convenient way to use ipython notebook in this
scenario:

1. Connect to the Linux machine via putty. Putty needs to be configured with dynamic tunnel for port 8888 as
describe here on this page (port 8888 is a default port for ipython notebook). The same page describes
how to configure internet properties:

Clicking on Settings in Internet Explorer, or Proxy Settings in Google Chrome, should open this dialogue.
Navigate through to the Advanced Proxy section and add localhost:9090 as a SOCKS Proxy.

2. Start ipython notebook in your putty terminal.

3. Open your favourite browser on Windows, and go to http://localhost:8888. Enjoy your notebook while the
engine runs on remotely :)

80 Chapter 8. BigARTM Developer’s Guide

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
https://anapnea.net/tut_putty_tunneling.php
http://localhost:8888

BigARTM Documentation, Release 1.0

Build C++ code on Linux

Refer to Basic BigARTM tutorial for Linux and Mac OS-X users.

Code style

Configure Visual Studio

Open Tools / Text Editor / All languages / Tabs and configure as follows:
• Indenting - smart,
• Tab size - 2,
• Indent size - 2,
• Select “insert spaces”.

We also suggest to configure Visual Studio to show space and tab crlf characters (shortcut: Ctrl+R, Ctrl+W), and
enable vertical line at 120 characters.

In the code we follow google code style with the following changes:

• Exceptions are allowed

• Indentation must be 2 spaces. Tabs are not allowed.

• No lines should exceed 120 characters.

All .h and .cpp files under $(BIGARTM_ROOT)/src/artm/ must be verified for code style with cpplint.py script.
Files, generated by protobuf compiler, are the only exceptions from this rule.

8.7. Build C++ code on Linux 81

http://stackoverflow.com/questions/4065815/how-to-turn-off-showing-whitespace-characters-in-visual-studio-ide
http://stackoverflow.com/questions/9894397/100-characters-line-marker-in-visual-studio
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
https://raw.githubusercontent.com/google/styleguide/gh-pages/cpplint/cpplint.py

BigARTM Documentation, Release 1.0

To run the script you need some version of Python installed on your machine. Then execute the script like this:

python cpplint.py --linelength=120 <filename>

On Windows you may run this master-script to check all required files:

$(BIGARTM_ROOT/utils/cpplint_all.bat.

Wiki pages:

• Create New Regularizer

• Q & A

82 Chapter 8. BigARTM Developer’s Guide

https://github.com/bigartm/bigartm/wiki/Creating-new-regularizers
https://github.com/bigartm/bigartm/wiki/Q&A

CHAPTER 9

Legacy documentation pages

Legacy pages are kept to preserve existing user’s links (favourites in browser, etc).

Basic BigARTM tutorial for Linux and Mac OS-X users

Currently there is no distribution package of BigARTM for Linux. BigARTM had been tested on several Linux OS,
and it is known to work well, but you have to get the source code and compile it locally on your machine.

Download sources and build

Clone the latest BigARTM code from our github repository, and build it via CMake as in the following script.

sudo apt-get install git make cmake build-essential libboost-all-dev
cd ~
git clone --branch=stable https://github.com/bigartm/bigartm.git
cd bigartm
mkdir build && cd build
cmake ..
make

Running BigARTM from command line

There is a simple utility bigartm, which allows you to run BigARTM from command line. To experiment with
this tool you need a small dataset, which you can get via the following script. More datasets are available through
Downloads page.

cd ~/bigartm
mkdir datasets && cd datasets
wget https://s3-eu-west-1.amazonaws.com/artm/docword.kos.txt.gz
wget https://s3-eu-west-1.amazonaws.com/artm/vocab.kos.txt
gunzip docword.kos.txt.gz
../build/src/bigartm/bigartm -d docword.kos.txt -v vocab.kos.txt

83

BigARTM Documentation, Release 1.0

Configure BigARTM Python API

For more advanced scenarios you need to configure Python interface for BigARTM. To use BigARTM from Python
you need to use Google Protobuf. We recommend to use ‘protobuf 2.5.1-pre’, included in bigartm/3rdparty.

Step 1 - add BigARTM python bindings to PYTHONPATH
export PYTHONPATH=~/bigartm/python:$PYTHONPATH

Step 2 - install google protobuf
cd ~/bigartm
cp build/3rdparty/protobuf-cmake/protoc/protoc 3rdparty/protobuf/src/
cd 3rdparty/protobuf/python
python setup.py build
sudo python setup.py install

Step 3 - point ARTM_SHARED_LIBRARY variable to libartm.so (libartm.dylib) location
export ARTM_SHARED_LIBRARY=~/bigartm/build/src/artm/libartm.so # for linux
export ARTM_SHARED_LIBRARY=~/bigartm/build/src/artm/libartm.dylib # for Mac OS X

At this point you may run examples under ~/bigartm/python/examples.

Troubleshooting

>python setup.py build
File "setup.py", line 52

print "Generating %s..." % output

SyntaxError: Missing parentheses in call to `print`

This error may happen during google protobuf installation. It indicates that you are using Python 3, which is not
supported by BigARTM. (see this question on StackOverflow for more details on the error around print). Please use
Python 2.7.9 to workaround this issue.

ubuntu@192.168.0.1:~/bigartm/python/examples$ python example01_synthetic_collection.py
Traceback (most recent call last):

File "example01_synthetic_collection.py", line 6, in <module>
import artm.messages_pb2, artm.library, random, uuid

ImportError: No module named artm.messages_pb2

This error indicate that python is unable to locate messages_pb2.py and ‘‘library.py files. Please verify
if you executed Step #1 in the instructions above.

ubuntu@192.168.0.1:~/bigartm/python/examples$ python example01_synthetic_collection.py
Traceback (most recent call last):

File "example01_synthetic_collection.py", line 6, in <module>
import artm.messages_pb2, artm.library, random, uuid

File "/home/ubuntu/bigartm/python/messages_pb2.py", line 4, in <module>
from google.protobuf import descriptor as _descriptor

ImportError: No module named google.protobuf

This error indicated that python is unable to locate protobuf library. Please verify if you ex-
ecuted Step #2 in the instructions above. If you do not have permissions to execute sudo
python setup.py install step, you may also try to update PYTHONPATH manually:
PYTHONPATH="/home/ubuntu/bigartm/3rdparty/protobuf/python:/home/ubuntu/bigartm/python:$PYTHONPATH".

84 Chapter 9. Legacy documentation pages

http://stackoverflow.com/questions/826948/syntax-error-on-print-with-python-3

BigARTM Documentation, Release 1.0

ubuntu@192.168.0.1:~/bigartm/python/examples$ python example01_synthetic_collection.py
libartm.so: cannot open shared object file: No such file or directory,
fall back to ARTM_SHARED_LIBRARY environment variable
Traceback (most recent call last):

File "example01_synthetic_collection.py", line 27, in <module>
with artm.library.MasterComponent() as master:

File "/home/ubuntu/bigartm/python/artm/library.py", line 179, in __init__
lib = Library().lib_

File "/home/ubuntu/bigartm/python/artm/library.py", line 107, in __init__
self.lib_ = ctypes.CDLL(os.environ['ARTM_SHARED_LIBRARY'])

File "/usr/lib/python2.7/UserDict.py", line 23, in __getitem__
raise KeyError(key)

KeyError: 'ARTM_SHARED_LIBRARY'

This error indicate that BigARTM’s python interface can not locate libartm.so (libartm.dylib) files. Please verify if
you executed Step #3 correctly.

BigARTM on Travis-CI

To get a live usage example of BigARTM you may check BigARTM’s .travis.yml script and the latest continuous
integration build.

Basic BigARTM tutorial for Windows users

This tutorial gives guidelines for installing and running existing BigARTM examples via command-line interface and
from Python environment.

Download

Download latest binary distribution of BigARTM from https://github.com/bigartm/bigartm/releases. Explicit down-
load links can be found at Downloads section (for 32 bit and 64 bit configurations).

The distribution will contain pre-build binaries, command-line interface and BigARTM API for Python. The distribu-
tion also contains a simple dataset and few python examples that we will be running in this tutorial. More datasets in
BigARTM-compatible format are available in the Downloads section.

Refer to Windows distribution for details about other files, included in the binary distribution package.

Running BigARTM from command line

No installation steps are required to run BigARTM from command line. After unpacking binary distribution sim-
ply open command prompt (cmd.exe), change current directory to bin folder inside BigARTM package, and run
cpp_client.exe application as in the following example. As an optional step, we recommend to add bin folder
of the BigARTM distribution to your PATH system variable.

>C:\BigARTM\bin>set PATH=%PATH%;C:\BigARTM\bin
>C:\BigARTM\bin>cpp_client.exe -v ../python/examples/vocab.kos.txt -d ../python/examples/docword.kos.txt -t 4
Parsing text collection... OK.
Iteration 1 took 197 milliseconds.

Test perplexity = 7108.35,
Train perplexity = 7106.18,

9.2. Basic BigARTM tutorial for Windows users 85

https://raw.githubusercontent.com/bigartm/bigartm/master/.travis.yml
https://travis-ci.org/bigartm/bigartm
https://travis-ci.org/bigartm/bigartm
https://github.com/bigartm/bigartm/releases

BigARTM Documentation, Release 1.0

Test spatsity theta = 0,
Train sparsity theta = 0,
Spatsity phi = 0.000144802,
Test items processed = 343,
Train items processed = 3087,
Kernel size = 5663,
Kernel purity = 0.958901,
Kernel contrast = 0.292389

Iteration 2 took 195 milliseconds.
Test perplexity = 2563.31,
Train perplexity = 2517.07,
Test spatsity theta = 0,
Train sparsity theta = 0,
Spatsity phi = 0.000144802,
Test items processed = 343,
Train items processed = 3087,
Kernel size = 5559.5,
Kernel purity = 0.956709,
Kernel contrast = 0.298198

...
#1: november(0.054) poll(0.015) bush(0.013) kerry(0.012) polls(0.012) governor(0.011)
#2: bush(0.0083) president(0.0059) republicans(0.0047) house(0.0042) people(0.0039) administration(0.0036)
#3: bush(0.031) iraq(0.018) war(0.012) kerry(0.0096) president(0.0078) administration(0.0076)
#4: kerry(0.018) democratic(0.013) dean(0.012) campaign(0.0097) poll(0.0095) race(0.0082)
ThetaMatrix (last 7 processed documents, ids = 1995,1996,1997,1998,1992,2000,1994):
Topic0: 0.02104 0.02155 0.00604 0.00835 0.00965 0.00006 0.91716
Topic1: 0.15441 0.76643 0.06484 0.11643 0.20409 0.00006 0.00957
Topic2: 0.00399 0.16135 0.00093 0.03890 0.10498 0.00001 0.00037
Topic3: 0.82055 0.05066 0.92819 0.83632 0.68128 0.99987 0.07289

We recommend to download larger datasets, available in Downloads section. All docword and vocab files can be
consumed by BigARTM exactly as in the previous example.

Internally BigARTM always parses such files into batches format (for example, enron_1k (7.1 MB)). If you have
downloaded such pre-parsed collection, you may feed it into BigARTM as follows:

>C:\BigARTM\bin>cpp_client.exe --batch_folder C:\BigARTM\enron
Reuse 40 batches in folder 'enron'
Loading dictionary file... OK.
Iteration 1 took 2502 milliseconds.

For more information about cpp_client.exe refer to /ref/cpp_client section.

Configure BigARTM Python API

1. Install Python, for example from the following links:

• Python 2.7.9, 64 bit – https://www.python.org/ftp/python/2.7.9/python-2.7.9.amd64.msi, or

• Python 2.7.9, 32 bit – https://www.python.org/ftp/python/2.7.9/python-2.7.9.msi

Remember that the version of BigARTM package must match your version Python installed on your machine.
If you have 32 bit operating system then you must select 32 bit for Python and BigARTM package. If you have
64 bit operating system then you are free to select either version. However, please note that memory usage of
32 bit processes is limited by 2 GB. For this reason we recommend to select 64 bit configurations.

Also you need to have several Python libraries to be installed on your machine:

86 Chapter 9. Legacy documentation pages

https://s3-eu-west-1.amazonaws.com/artm/enron_1k.7z
https://www.python.org/ftp/python/2.7.9/python-2.7.9.amd64.msi
https://www.python.org/ftp/python/2.7.9/python-2.7.9.msi

BigARTM Documentation, Release 1.0

• numpy >= 1.9.2

• scipy >= 0.15.0

• pandas >= 0.16.2

• scikit-learn >= 0.16.1

2. Add C:\BigARTM\bin folder to your PATH system variable, and add C:\BigARTM\python to your
PYTHONPATH system variable:

set PATH=%PATH%;C:\BigARTM\bin
set PATH=%PATH%;C:\Python27;C:\Python27\Scripts
set PYTHONPATH=%PYTHONPATH%;C:\BigARTM\Python

Remember to change C:\BigARTM and C:\Python27 with your local folders.

3. Setup Google Protocol Buffers library, included in the BigARTM release package.

• Copy C:\BigARTM\bin\protoc.exe file into C:\BigARTM\protobuf\src folder

• Run the following commands from command prompt

cd C:\BigARTM\protobuf\Python
python setup.py build
python setup.py install

Avoid python setup.py test step, as it produces several confusing errors. Those errors are harmless.
For further details about protobuf installation refer to protobuf/python/README.

If you are getting errors when configuring or using Python API, please refer to Troubleshooting chapter in Basic
BigARTM tutorial for Linux and Mac OS-X users. The list of issues is common between Windows and Linux.

Running BigARTM from Python API

Refer to ARTM notebook (in Russian or in English), which describes high-level Python API of BigARTM.

Enabling Basic BigARTM Regularizers

This paper describes the experiment with topic model regularization in BigARTM library using experiment02_artm.py.
The script provides the possibility to learn topic model with three regularizers (sparsing Phi, sparsing Theta and
pairwise topic decorrelation in Phi). It also allows the monitoring of learning process by using quality measures as
hold-out perplexity, Phi and Theta sparsity and average topic kernel characteristics.

Warning: Note that perplexity estimation can influence the learning process in the online algorithm, so we
evaluate perplexity only once per 20 synchronizations to avoid this influence. You can change the frequency using
test_every variable.

We suggest you to have BigARTM installed in $YOUR_HOME_DIRECTORY. To proceed the experiment you need to
execute the following steps:

1. Download the collection, represented as BigARTM batches:

• https://s3-eu-west-1.amazonaws.com/artm/enwiki-20141208_1k.7z

• https://s3-eu-west-1.amazonaws.com/artm/enwiki-20141208_10k.7z

9.3. Enabling Basic BigARTM Regularizers 87

https://raw.githubusercontent.com/bigartm/bigartm/master/3rdparty/protobuf/python/README.txt
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_RU.ipynb
http://nbviewer.ipython.org/github/bigartm/bigartm-book/blob/master/BigARTM_example_EN.ipynb
https://raw.githubusercontent.com/bigartm/bigartm/master/python/experiments/experiment02_artm.py
https://s3-eu-west-1.amazonaws.com/artm/enwiki-20141208_1k.7z
https://s3-eu-west-1.amazonaws.com/artm/enwiki-20141208_10k.7z

BigARTM Documentation, Release 1.0

This data represents a complete dump of the English Wikipedia (approximately 3.7 million documents). The size
of one batch in first version is 1000 documents and 10000 in the second one. We used 10000. The decompressed
folder with batches should be put into $YOUR_HOME_DIRECTORY. You also need to move there the dictionary
file from the batches folder.

The batch, you’d like to use for hold-out perplexity estimation, also must be
placed into $YOUR_HOME_DIRECTORY. In our experiment we used the batch named
243af5b8-beab-4332-bb42-61892df5b044.batch.

2. The next step is the script preparation. Open it’s code and find the declaration(-s) of variable(-s)

• home_folder (line 8) and assign it the path $YOUR_HOME_DIRECTORY;

• batch_size (line 28) and assign it the chosen size of batch;

• batches_disk_path (line 36) and replace the string ‘wiki_10k’ with the name of your directory with
batches;

• test_batch_name (line 43) and replace the string with direct batch’s name with the name of your test
batch;

• tau_decor, tau_phi and tau_theta (lines 57-59) and substitute the values you’d like to use.

3. If you want to estimate the final perplexity on another, larger test sample, put chosen batches into test folder
(in $YOUR_HOME_DIRECTORY directory). Then find in the code of the script the declaration of variable
save_and_test_model (line 30) and assign it True.

4. After all launch the script. Current measures values will be printed into console. Note, that after synchroniza-
tions without perplexity estimation it’s value will be replaced with string ‘NO’. The results of synchronizations
with perplexity estimation in addition will be put in corresponding files in results folder. The file format is
general for all measures: the set of strings «(accumulated number of processed documents, measure value)»:

(10000, 0.018)
(220000, 0.41)
(430000, 0.456)
(640000, 0.475)
...

These files can be used for plot building.

If desired, you can easy change values of any variable in the code of script since it’s sense is clearly commented. If
you used all parameters and data identical our experiment you should get the results, close to these ones

88 Chapter 9. Legacy documentation pages

BigARTM Documentation, Release 1.0

Here you can see the results of comparison between ARTM and LDA models. To make the experiment with LDA
instead of ARTM you only need to change the values of variables tau_decor, tau_phi and tau_theta to 0, 1 / topics_count
and 1 / topics_count respectively and run the script again.

Warning: Note, that we used machine with 8 cores and 15 Gb RAM for our experiment.

BigARTM as a Service

The following diagram shows a suggested topology for a query service that involve topic modelling on Big Data.

Here the main use for Hadoop / MapReduce is to process your Big Unstructured Data into a compact bag-of-words
representation. Due to out-of-core design and extreme performance BigARTM will be able to handle this data on a
single compute-optimized node. The resulting topic model should be replicated on all query instances that serve user
requests.

To avoid query-time dependency on BigARTM component you may want to infer topic distributions theta_{td}
for new documents in your code. This can be done as follows. Start from uniform topic assigment theta_{td} =
1 / |T| and update it in the following loop:

9.4. BigARTM as a Service 89

BigARTM Documentation, Release 1.0

where n_dw is the number of word w occurences in document d, phi_wt is an element of the Phi matrix. In
BigARTM the loop is repeated ModelConfig.inner_iterations_count times (defaulst to 10). To precisely
replicate BigARTM behavior one needs to account for class weights and include regularizers. Please contact us if you
need more details.

BigARTM: The Algorithm Under The Hood

ToDo: link BigARTM to online batch PLSA algorithm.

ToDo: explain the notation in the algorithm.

ToDo: update the algortihm with regularization.

In this algorithm most CPU resources are consumed on steps 8-11 to infer topic distribution for each document. This
operation can be executed concurrently across documents or batches. In BigARTM this parallelization is done across
batches to avoid splitting the work into too small junks.

Processing each batch produces counters $tilde n_{wt}$ and $tilde n_{t}$, which should be then merged with the
corresponding counters coming from other batches. Since this information is produced by multiple concurrent threads
the merging process should be thread-safe and properly synchronised. Our solution is to store all counters $tilde

90 Chapter 9. Legacy documentation pages

BigARTM Documentation, Release 1.0

n_{wt}$ and $tilde n_{t}$ into a single queue, from where they can be picked up by a single merger thread. This
thread will then accumulate the counters without any locking.

Further in this text the term outer iteration loop stands for the loop at the step 2, and the term emph{inner iteration
loop} stands for the loop at step 8. Instead of “repeat until it converges” criteria current implementation uses a fixed
number of iterations, which is configured manually by the user.

Step 15 is incorporated into all steps that require phi_{wt} (e.g. into steps 9, 10 and 11). These steps utilize counters
from the previous iteration (n^{i-1}_wt and n^{i-1}_t), which are no longer updated by the merger thread, hence
they represent read-only data and can be accessed from multiple threads without any synchronization. At the same time
the merger thread will accumulate counters for n^i_{wt} and n^i_t for the current iteration, again in a lock-free
manner.

Messages

This document explains all protobuf messages that can be transfered between the user code and BigARTM library.

Warning: Remember that all fields is marked as optional to enhance backwards compatibility of the binary
protobuf format. Some fields will result in run-time exception when not specified. Please refer to the documentation
of each field for more details.

Note that we discourage any usage of fields marked as obsolete. Those fields will be removed in future releases.

DoubleArray

class messages_pb2.DoubleArray

Represents an array of double-precision floating point values.

message DoubleArray {
repeated double value = 1 [packed = true];

}

FloatArray

class messages_pb2.FloatArray

Represents an array of single-precision floating point values.

message FloatArray {
repeated float value = 1 [packed = true];

}

BoolArray

class messages_pb2.BoolArray

Represents an array of boolean values.

9.6. Messages 91

BigARTM Documentation, Release 1.0

message BoolArray {
repeated bool value = 1 [packed = true];

}

IntArray

class messages_pb2.IntArray

Represents an array of integer values.

message IntArray {
repeated int32 value = 1 [packed = true];

}

Item

class messages_pb2.Item

Represents a unit of textual information. A typical example of an item is a document that belongs to some text
collection.

message Item {
optional int32 id = 1;
repeated Field field = 2;
optional string title = 3;

}

Item.id
An integer identifier of the item.

Item.field
A set of all fields withing the item.

Item.title
An optional title of the item.

Field

class messages_pb2.Field

Represents a field withing an item. The idea behind fields is that each item might have its title, author, body, abstract,
actual text, links, year of publication, etc. Each of this entities should be represented as a Field. The topic model
defines how those fields should be taken into account when BigARTM infers a topic model. Currently each field is
represented as “bag-of-words” — each token is listed together with the number of its occurrences. Note that each
Field is always part of an Item, Item is part of a Batch, and a batch always contains a list of tokens. Therefore, each
Field just lists the indexes of tokens in the Batch.

message Field {
optional string name = 1 [default = "@body"];
repeated int32 token_id = 2;
repeated int32 token_count = 3;
repeated int32 token_offset = 4;

92 Chapter 9. Legacy documentation pages

BigARTM Documentation, Release 1.0

optional string string_value = 5;
optional int64 int_value = 6;
optional double double_value = 7;
optional string date_value = 8;

repeated string string_array = 16;
repeated int64 int_array = 17;
repeated double double_array = 18;
repeated string date_array = 19;

}

Batch

class messages_pb2.Batch

Represents a set of items. In BigARTM a batch is never split into smaller parts. When it comes to concurrency this
means that each batch goes to a single processor. Two batches can be processed concurrently, but items in one batch
are always processed sequentially.

message Batch {
repeated string token = 1;
repeated Item item = 2;
repeated string class_id = 3;
optional string description = 4;
optional string id = 5;

}

Batch.token
A set value that defines all tokens than may appear in the batch.

Batch.item
A set of items of the batch.

Batch.class_id
A set of values that define for classes (modalities) of tokens. This repeated field must have the same length as
token. This value is optional, use an empty list indicate that all tokens belong to the default class.

Batch.description
An optional text description of the batch. You may describe for example the source of the batch, preprocessing
technique and the structure of its fields.

Batch.id
Unique identifier of the batch in a form of a GUID (example:
4fb38197-3f09-4871-9710-392b14f00d2e). This field is required.

Stream

class messages_pb2.Stream

Represents a configuration of a stream. Streams provide a mechanism to split the entire collection into virtual subsets
(for example, the ‘train’ and ‘test’ streams).

message Stream {
enum Type {
Global = 0;

9.6. Messages 93

BigARTM Documentation, Release 1.0

ItemIdModulus = 1;
}

optional Type type = 1 [default = Global];
optional string name = 2 [default = "@global"];
optional int32 modulus = 3;
repeated int32 residuals = 4;

}

Stream.type
A value that defines the type of the stream.

Global

Defines a stream containing all items in the
collection.

ItemIdModulus

Defines a stream containing all items with ID that
matches modulus and residuals. An item belongs to
the
stream iff the modulo reminder of item ID is
contained
in the residuals field.

Stream.name
A value that defines the name of the stream. The name must be unique across all streams defined in the master
component.

MasterComponentConfig

class messages_pb2.MasterComponentConfig

Represents a configuration of a master component.

message MasterComponentConfig {
optional string disk_path = 2;
repeated Stream stream = 3;
optional bool compact_batches = 4 [default = true];
optional bool cache_theta = 5 [default = false];
optional int32 processors_count = 6 [default = 1];
optional int32 processor_queue_max_size = 7 [default = 10];
optional int32 merger_queue_max_size = 8 [default = 10];
repeated ScoreConfig score_config = 9;
optional bool online_batch_processing = 13 [default = false]; // obsolete in BigARTM v0.5.8
optional string disk_cache_path = 15;

}

MasterComponentConfig.disk_path
A value that defines the disk location to store or load the collection.

MasterComponentConfig.stream
A set of all data streams to configure in master component. Streams can overlap if needed.

94 Chapter 9. Legacy documentation pages

BigARTM Documentation, Release 1.0

MasterComponentConfig.compact_batches
A flag indicating whether to compact batches in AddBatch() operation. Compaction is a process that shrinks the
dictionary of each batch by removing all unused tokens.

MasterComponentConfig.cache_theta
A flag indicating whether to cache theta matrix. Theta matrix defines the discrete probability distribution of
each document across the topics in topic model. By default BigARTM infers this distribution every time it
processes the document. Option ‘cache_theta’ allows to cache this theta matrix and re-use theha values when
the same document is processed on the next iteration. This option must be set to ‘true’ before calling method
ArtmRequestThetaMatrix().

MasterComponentConfig.processors_count
A value that defines the number of concurrent processor components. The number of processors should normally
not exceed the number of CPU cores.

MasterComponentConfig.processor_queue_max_size
A value that defines the maximal size of the processor queue. Processor queue contains batches, prefetch from
disk into memory. Recommendations regarding the maximal queue size are as follows:

•the queue size should be at least as large as the number of concurrent processors;

MasterComponentConfig.merger_queue_max_size
A value that defines the maximal size of the merger queue. Merger queue size contains an incremental updates
of topic model, produced by processor components. Try reducing this parameter if BigARTM consumes too
much memory.

MasterComponentConfig.score_config
A set of all scores, available for calculation.

MasterComponentConfig.online_batch_processing
Obsolete in BigARTM v0.5.8.

MasterComponentConfig.disk_cache_path
A value that defines a writtable disk location where this master component can store some temporary files. This
can reduce memory usage, particularly when cache_theta option is enabled. Note that on clean shutdown
master component will will be cleaned this folder automatically, but otherwise it is your responsibility to clean
this folder to avoid running out of disk.

ModelConfig

class messages_pb2.ModelConfig

Represents a configuration of a topic model.

message ModelConfig {
optional string name = 1 [default = "@model"];
optional int32 topics_count = 2 [default = 32];
repeated string topic_name = 3;
optional bool enabled = 4 [default = true];
optional int32 inner_iterations_count = 5 [default = 10];
optional string field_name = 6 [default = "@body"]; // obsolete in BigARTM v0.5.8
optional string stream_name = 7 [default = "@global"];
repeated string score_name = 8;
optional bool reuse_theta = 9 [default = false];
repeated string regularizer_name = 10;
repeated double regularizer_tau = 11;
repeated string class_id = 12;
repeated float class_weight = 13;

9.6. Messages 95

BigARTM Documentation, Release 1.0

optional bool use_sparse_bow = 14 [default = true];
optional bool use_random_theta = 15 [default = false];
optional bool use_new_tokens = 16 [default = true];
optional bool opt_for_avx = 17 [default = true];

}

ModelConfig.name
A value that defines the name of the topic model. The name must be unique across all models defined in the
master component.

ModelConfig.topics_count
A value that defines the number of topics in the topic model.

ModelConfig.topic_name
A repeated field that defines the names of the topics. All topic names must be unique within each topic model.
This field is optional, but either topics_count or topic_name must be specified. If both specified,
then topics_count will be ignored, and the number of topics in the model will be based on the length
of topic_name field. When topic_name is not specified the names for all topics will be autogenerated.

ModelConfig.enabled
A flag indicating whether to update the model during iterations.

ModelConfig.inner_iterations_count
A value that defines the fixed number of iterations, performed to infer the theta distribution for each document.

ModelConfig.field_name
Obsolete in BigARTM v0.5.8

ModelConfig.stream_name
A value that defines which stream the model should use.

ModelConfig.score_name
A set of names that defines which scores should be calculated for the model.

ModelConfig.reuse_theta
A flag indicating whether the model should reuse theta values cached on the previous iterations. This option
require cache_theta flag to be set to ‘true’ in MasterComponentConfig.

ModelConfig.regularizer_name
A set of names that define which regularizers should be enabled for the model. This repeated field must have
the same length as regularizer_tau.

ModelConfig.regularizer_tau
A set of values that define the regularization coefficients of the corresponding regularizer. This repeated field
must have the same length as regularizer_name.

ModelConfig.class_id
A set of values that define for which classes (modalities) to build topic model. This repeated field must have the
same length as class_weight.

ModelConfig.class_weight
A set of values that define the weights of the corresponding classes (modalities). This repeated field must have
the same length as class_id. This value is optional, use an empty list to set equal weights for all classes.

ModelConfig.use_sparse_bow
A flag indicating whether to use sparse representation of the Bag-of-words data. The default setting
(use_sparse_bow = true) is best suited for processing textual collections where every token is represented in
a small fraction of all documents. Dense representation (use_sparse_bow = false) better fits for non-textual
collections (for example for matrix factorization).

Note that class_weight and class_id must not be used together with use_sparse_bow=false.

96 Chapter 9. Legacy documentation pages

BigARTM Documentation, Release 1.0

ModelConfig.use_random_theta
A flag indicating whether to initialize p(t|d) distribution with random uniform distribution. The default
setting (use_random_theta = false) sets p(t|d) = 1/T, where T stands for topics_count. Note that
reuse_theta flag takes priority over use_random_theta flag, so that if reuse_theta = true and there is a
cache entry from previous iteration the cache entry will be used regardless of use_random_theta flag.

ModelConfig.use_new_tokens
A flag indicating whether to automatically include new tokens into the topic model. This setting is set to True
by default. As a result, every new token observed in batches is automatically incorporated into topic model
during the next model synchronization (ArtmSynchronizeModel()). The n_wt_ weights for new tokens
randomly generated from [0..1] range.

ModelConfig.opt_for_avx
An experimental flag that allows to disable AVX optimization in processor. By default this option is enabled
as on average it adds ca. 40% speedup on physical hardware. You may want to disable this option if you
are running on Windows inside virtual machine, or in situation when BigARTM performance degrades from
iteration to interation.

This option does not affect the results, and is only intended for advanced users experimenting with BigARTM
performance.

RegularizerConfig

class messages_pb2.RegularizerConfig

Represents a configuration of a general regularizer.

message RegularizerConfig {
enum Type {
SmoothSparseTheta = 0;
SmoothSparsePhi = 1;
DecorrelatorPhi = 2;
LabelRegularizationPhi = 4;

}

optional string name = 1;
optional Type type = 2;
optional bytes config = 3;

}

RegularizerConfig.name
A value that defines the name of the regularizer. The name must be unique across all names defined in the master
component.

RegularizerConfig.type
A value that defines the type of the regularizer.

SmoothSparseTheta Smooth-sparse regularizer for theta matrix
SmoothSparsePhi Smooth-sparse regularizer for phi matrix
DecorrelatorPhi Decorrelator regularizer for phi matrix
LabelRegularizationPhi Label regularizer for phi matrix

RegularizerConfig.config
A serialized protobuf message that describes regularizer config for the specific regularizer type.

9.6. Messages 97

BigARTM Documentation, Release 1.0

SmoothSparseThetaConfig

class messages_pb2.SmoothSparseThetaConfig

Represents a configuration of a SmoothSparse Theta regularizer.

message SmoothSparseThetaConfig {
repeated string topic_name = 1;
repeated float alpha_iter = 2;

}

SmoothSparseThetaConfig.topic_name
A set of topic names that defines which topics in the model should be regularized. This value is optional, use an
empty list to regularize all topics.

SmoothSparseThetaConfig.alpha_iter
A field of the same length as ModelConfig.inner_iterations_count that defines relative regular-
ization weight for every iteration inner iterations. The actual regularization value is calculated as product of
alpha_iter[i] and ModelConfig.regularizer_tau.

To specify different regularization weight for different topics create multiple regularizers with different
topic_name set, and use different values of ModelConfig.regularizer_tau.

SmoothSparsePhiConfig

class messages_pb2.SmoothSparsePhiConfig

Represents a configuration of a SmoothSparse Phi regularizer.

message SmoothSparsePhiConfig {
repeated string topic_name = 1;
repeated string class_id = 2;
optional string dictionary_name = 3;

}

SmoothSparsePhiConfig.topic_name
A set of topic names that defines which topics in the model should be regularized. This value is optional, use an
empty list to regularize all topics.

SmoothSparsePhiConfig.class_id
This set defines which classes in the model should be regularized. This value is optional, use an empty list to
regularize all classes.

SmoothSparsePhiConfig.dictionary_name
An optional value defining the name of the dictionary to use. The entries of the dictionary are expected to have
DictionaryEntry.key_token, DictionaryEntry.class_id and DictionaryEntry.value
fields. The actual regularization value will be calculated as a product of DictionaryEntry.value and
ModelConfig.regularizer_tau.

This value is optional, if no dictionary is specified than all tokens will be regularized with the same weight.

DecorrelatorPhiConfig

class messages_pb2.DecorrelatorPhiConfig

Represents a configuration of a Decorrelator Phi regularizer.

98 Chapter 9. Legacy documentation pages

BigARTM Documentation, Release 1.0

message DecorrelatorPhiConfig {
repeated string topic_name = 1;
repeated string class_id = 2;

}

DecorrelatorPhiConfig.topic_name
A set of topic names that defines which topics in the model should be regularized. This value is optional, use an
empty list to regularize all topics.

DecorrelatorPhiConfig.class_id
This set defines which classes in the model should be regularized. This value is optional, use an empty list to
regularize all classes.

LabelRegularizationPhiConfig

class messages_pb2.LabelRegularizationPhiConfig

Represents a configuration of a Label Regularizer Phi regularizer.

message LabelRegularizationPhiConfig {
repeated string topic_name = 1;
repeated string class_id = 2;
optional string dictionary_name = 3;

}

LabelRegularizationPhiConfig.topic_name
A set of topic names that defines which topics in the model should be regularized.

LabelRegularizationPhiConfig.class_id
This set defines which classes in the model should be regularized. This value is optional, use an empty list to
regularize all classes.

LabelRegularizationPhiConfig.dictionary_name
An optional value defining the name of the dictionary to use.

RegularizerInternalState

class messages_pb2.RegularizerInternalState

Represents an internal state of a general regularizer.

message RegularizerInternalState {
enum Type {
MultiLanguagePhi = 5;

}

optional string name = 1;
optional Type type = 2;
optional bytes data = 3;

}

9.6. Messages 99

BigARTM Documentation, Release 1.0

DictionaryConfig

class messages_pb2.DictionaryConfig

Represents a static dictionary.

message DictionaryConfig {
optional string name = 1;
repeated DictionaryEntry entry = 2;
optional int32 total_token_count = 3;
optional int32 total_items_count = 4;

}

DictionaryConfig.name
A value that defines the name of the dictionary. The name must be unique across all dictionaries defined in the
master component.

DictionaryConfig.entry
A list of all entries of the dictionary.

DictionaryConfig.total_token_count
A sum of DictionaryEntry.token_count across all entries in this dictionary. The value is optional and
might be missing when all entries in the dictionary does not carry the DictionaryEntry.token_count
attribute.

DictionaryConfig.total_items_count
A sum of DictionaryEntry.items_count across all entries in this dictionary. The value is optional and
might be missing when all entries in the dictionary does not carry the DictionaryEntry.items_count
attribute.

DictionaryEntry

class messages_pb2.DictionaryEntry

Represents one entry in a static dictionary.

message DictionaryEntry {
optional string key_token = 1;
optional string class_id = 2;
optional float value = 3;
repeated string value_tokens = 4;
optional FloatArray values = 5;
optional int32 token_count = 6;
optional int32 items_count = 7;

}

DictionaryEntry.key_token
A token that defines the key of the entry.

DictionaryEntry.class_id
The class of the DictionaryEntry.key_token.

DictionaryEntry.value
An optional generic value, associated with the entry. The meaning of this value depends on the usage of the
dictionary.

DictionaryEntry.token_count
An optional value, indicating the overall number of token occurrences in some collection.

100 Chapter 9. Legacy documentation pages

BigARTM Documentation, Release 1.0

DictionaryEntry.items_count
An optional value, indicating the overall number of documents containing the token.

ScoreConfig

class messages_pb2.ScoreConfig

Represents a configuration of a general score.

message ScoreConfig {
enum Type {
Perplexity = 0;
SparsityTheta = 1;
SparsityPhi = 2;
ItemsProcessed = 3;
TopTokens = 4;
ThetaSnippet = 5;
TopicKernel = 6;

}

optional string name = 1;
optional Type type = 2;
optional bytes config = 3;

}

ScoreConfig.name
A value that defines the name of the score. The name must be unique across all names defined in the master
component.

ScoreConfig.type
A value that defines the type of the score.

Perplexity Defines a config of the Perplexity score
SparsityTheta Defines a config of the SparsityTheta score
SparsityPhi Defines a config of the SparsityPhi score
ItemsProcessed Defines a config of the ItemsProcessed score
TopTokens Defines a config of the TopTokens score
ThetaSnippet Defines a config of the ThetaSnippet score
TopicKernel Defines a config of the TopicKernel score

ScoreConfig.config
A serialized protobuf message that describes score config for the specific score type.

ScoreData

class messages_pb2.ScoreData

Represents a general result of score calculation.

message ScoreData {
enum Type {
Perplexity = 0;
SparsityTheta = 1;
SparsityPhi = 2;
ItemsProcessed = 3;
TopTokens = 4;

9.6. Messages 101

BigARTM Documentation, Release 1.0

ThetaSnippet = 5;
TopicKernel = 6;

}

optional string name = 1;
optional Type type = 2;
optional bytes data = 3;

}

ScoreData.name
A value that describes the name of the score. This name will match the name of the corresponding score config.

ScoreData.type
A value that defines the type of the score.

Perplexity Defines a Perplexity score data
SparsityTheta Defines a SparsityTheta score data
SparsityPhi Defines a SparsityPhi score data
ItemsProcessed Defines a ItemsProcessed score data
TopTokens Defines a TopTokens score data
ThetaSnippet Defines a ThetaSnippet score data
TopicKernel Defines a TopicKernel score data

ScoreData.data
A serialized protobuf message that provides the specific score result.

PerplexityScoreConfig

class messages_pb2.PerplexityScoreConfig

Represents a configuration of a perplexity score.

message PerplexityScoreConfig {
enum Type {
UnigramDocumentModel = 0;
UnigramCollectionModel = 1;

}

optional string field_name = 1 [default = "@body"]; // obsolete in BigARTM v0.5.8
optional string stream_name = 2 [default = "@global"];
optional Type model_type = 3 [default = UnigramDocumentModel];
optional string dictionary_name = 4;
optional float theta_sparsity_eps = 5 [default = 1e-37];
repeated string theta_sparsity_topic_name = 6;

}

PerplexityScoreConfig.field_name
Obsolete in BigARTM v0.5.8

PerplexityScoreConfig.stream_name
A value that defines which stream should be used in perplexity calculation.

PerplexityScore

class messages_pb2.PerplexityScore

102 Chapter 9. Legacy documentation pages

BigARTM Documentation, Release 1.0

Represents a result of calculation of a perplexity score.

message PerplexityScore {
optional double value = 1;
optional double raw = 2;
optional double normalizer = 3;
optional int32 zero_words = 4;
optional double theta_sparsity_value = 5;
optional int32 theta_sparsity_zero_topics = 6;
optional int32 theta_sparsity_total_topics = 7;

}

PerplexityScore.value
A perplexity value which is calculated as exp(-raw/normalizer).

PerplexityScore.raw
A numerator of perplexity calculation. This value is equal to the likelihood of the topic model.

PerplexityScore.normalizer
A denominator of perplexity calculation. This value is equal to the total number of tokens in all processed items.

PerplexityScore.zero_words
A number of tokens that have zero probability p(w|t,d) in a document. Such tokens are evaluated based on to
unigram document model or unigram colection model.

PerplexityScore.theta_sparsity_value
A fraction of zero entries in the theta matrix.

SparsityThetaScoreConfig

class messages_pb2.SparsityThetaScoreConfig

Represents a configuration of a theta sparsity score.

message SparsityThetaScoreConfig {
optional string field_name = 1 [default = "@body"]; // obsolete in BigARTM v0.5.8
optional string stream_name = 2 [default = "@global"];
optional float eps = 3 [default = 1e-37];
repeated string topic_name = 4;

}

SparsityThetaScoreConfig.field_name
Obsolete in BigARTM v0.5.8

SparsityThetaScoreConfig.stream_name
A value that defines which stream should be used in theta sparsity calculation.

SparsityThetaScoreConfig.eps
A small value that defines zero threshold for theta probabilities. Theta values below the threshold will be counted
as zeros when calculating theta sparsity score.

SparsityThetaScoreConfig.topic_name
A set of topic names that defines which topics should be used for score calculation. The names correspond to
ModelConfig.topic_name. This value is optional, use an empty list to calculate the score for all topics.

9.6. Messages 103

BigARTM Documentation, Release 1.0

SparsityThetaScore

class messages_pb2.SparsityThetaScoreConfig

Represents a result of calculation of a theta sparsity score.

message SparsityThetaScore {
optional double value = 1;
optional int32 zero_topics = 2;
optional int32 total_topics = 3;

}

SparsityThetaScore.value
A value of theta sparsity that is calculated as zero_topics / total_topics.

SparsityThetaScore.zero_topics
A numerator of theta sparsity score. A number of topics that have zero probability in a topic-item distribution.

SparsityThetaScore.total_topics
A denominator of theta sparsity score. A total number of topics in a topic-item distributions that are used in
theta sparsity calculation.

SparsityPhiScoreConfig

class messages_pb2.SparsityPhiScoreConfig

Represents a configuration of a sparsity phi score.

message SparsityPhiScoreConfig {
optional float eps = 1 [default = 1e-37];
optional string class_id = 2;
repeated string topic_name = 3;

}

SparsityPhiScoreConfig.eps
A small value that defines zero threshold for phi probabilities. Phi values below the threshold will be counted
as zeros when calculating phi sparsity score.

SparsityPhiScoreConfig.class_id
A value that defines the class of tokens to use for score calculation. This value corresponds to
ModelConfig.class_id field. This value is optional. By default the score will be calculated for the
default class (‘@default_class‘).

SparsityPhiScoreConfig.topic_name
A set of topic names that defines which topics should be used for score calculation. This value is optional, use
an empty list to calculate the score for all topics.

SparsityPhiScore

class messages_pb2.SparsityPhiScore

Represents a result of calculation of a phi sparsity score.

104 Chapter 9. Legacy documentation pages

mailto:'@default_class

BigARTM Documentation, Release 1.0

message SparsityPhiScore {
optional double value = 1;
optional int32 zero_tokens = 2;
optional int32 total_tokens = 3;

}

SparsityPhiScore.value
A value of phi sparsity that is calculated as zero_tokens / total_tokens.

SparsityPhiScore.zero_tokens
A numerator of phi sparsity score. A number of tokens that have zero probability in a token-topic distribution.

SparsityPhiScore.total_tokens
A denominator of phi sparsity score. A total number of tokens in a token-topic distributions that are used in phi
sparsity calculation.

ItemsProcessedScoreConfig

class messages_pb2.ItemsProcessedScoreConfig

Represents a configuration of an items processed score.

message ItemsProcessedScoreConfig {
optional string field_name = 1 [default = "@body"]; // obsolete in BigARTM v0.5.8
optional string stream_name = 2 [default = "@global"];

}

ItemsProcessedScoreConfig.field_name
Obsolete in BigARTM v0.5.8

ItemsProcessedScoreConfig.stream_name
A value that defines which stream should be used in calculation of processed items.

ItemsProcessedScore

class messages_pb2.ItemsProcessedScore

Represents a result of calculation of an items processed score.

message ItemsProcessedScore {
optional int32 value = 1;

}

ItemsProcessedScore.value
A number of items that belong to the stream ItemsProcessedScoreConfig.stream_name and have
been processed during iterations. Currently this number is aggregated throughout all iterations.

TopTokensScoreConfig

class messages_pb2.TopTokensScoreConfig

Represents a configuration of a top tokens score.

9.6. Messages 105

BigARTM Documentation, Release 1.0

message TopTokensScoreConfig {
optional int32 num_tokens = 1 [default = 10];
optional string class_id = 2;
repeated string topic_name = 3;

}

TopTokensScoreConfig.num_tokens
A value that defines how many top tokens should be retrieved for each topic.

TopTokensScoreConfig.class_id
A value that defines for which class of the model to collect top tokens. This value corresponds to
ModelConfig.class_id field.

This parameter is optional. By default tokens will be retrieved for the default class (‘@default_class‘).

TopTokensScoreConfig.topic_name
A set of values that represent the names of the topics to include in the result. The names correspond to
ModelConfig.topic_name.

This parameter is optional. By default top tokens will be calculated for all topics in the model.

TopTokensScore

class messages_pb2.TopTokensScore

Represents a result of calculation of a top tokens score.

message TopTokensScore {
optional int32 num_entries = 1;
repeated string topic_name = 2;
repeated int32 topic_index = 3;
repeated string token = 4;
repeated float weight = 5;

}

The data in this score is represented in a table-like format. sorted on topic_index. The following code block gives a
typical usage example. The loop below is guarantied to process all top-N tokens for the first topic, then for the second
topic, etc.

for (int i = 0; i < top_tokens_score.num_entries(); i++) {
// Gives a index from 0 to (model_config.topics_size() - 1)
int topic_index = top_tokens_score.topic_index(i);

// Gives one of the topN tokens for topic 'topic_index'
std::string token = top_tokens_score.token(i);

// Gives the weight of the token
float weight = top_tokens_score.weight(i);

}

TopTokensScore.num_entries
A value indicating the overall number of entries in the score. All the remaining repeated fiels in this score will
have this length.

TopTokensScore.token
A repeated field of num_entries elements, containing tokens with high probability.

106 Chapter 9. Legacy documentation pages

mailto:'@default_class

BigARTM Documentation, Release 1.0

TopTokensScore.weight
A repeated field of num_entries elements, containing the p(t|w) probabilities.

TopTokensScore.topic_index
A repeated field of num_entries elements, containing integers between 0 and
(ModelConfig.topics_count - 1).

TopTokensScore.topic_name
A repeated field of num_entries elements, corresponding to the values of ModelConfig.topic_name
field.

ThetaSnippetScoreConfig

class messages_pb2.ThetaSnippetScoreConfig

Represents a configuration of a theta snippet score.

message ThetaSnippetScoreConfig {
optional string field_name = 1 [default = "@body"]; // obsolete in BigARTM v0.5.8
optional string stream_name = 2 [default = "@global"];
repeated int32 item_id = 3 [packed = true]; // obsolete in BigARTM v0.5.8
optional int32 item_count = 4 [default = 10];

}

ThetaSnippetScoreConfig.field_name
Obsolete in BigARTM v0.5.8

ThetaSnippetScoreConfig.stream_name
A value that defines which stream should be used in calculation of a theta snippet.

ThetaSnippetScoreConfig.item_id
Obsolete in BigARTM v0.5.8.

ThetaSnippetScoreConfig.item_count
The number of items to retrieve. ThetaSnippetScore will select last item_count processed items and return their
theta vectors.

ThetaSnippetScore

class messages_pb2.ThetaSnippetScore

Represents a result of calculation of a theta snippet score.

message ThetaSnippetScore {
repeated int32 item_id = 1;
repeated FloatArray values = 2;

}

ThetaSnippetScore.item_id
A set of item ids for which theta snippet have been calculated. Items are identified by the item id.

ThetaSnippetScore.values
A set of values that define topic probabilities for each item. The length of these repeated values will match the
number of item ids specified in ThetaSnippetScore.item_id. Each repeated field contains float array
of topic probabilities in the natural order of topic ids.

9.6. Messages 107

BigARTM Documentation, Release 1.0

TopicKernelScoreConfig

class messages_pb2.TopicKernelScoreConfig

Represents a configuration of a topic kernel score.

message TopicKernelScoreConfig {
optional float eps = 1 [default = 1e-37];
optional string class_id = 2;
repeated string topic_name = 3;
optional double probability_mass_threshold = 4 [default = 0.1];

}

• Kernel of a topic model is defined as the list of all tokens such that the probability p(t | w) exceeds proba-
bility mass threshold.

• Kernel size of a topic t is defined as the number of tokens in its kernel.

• Topic purity of a topic t is defined as the sum of p(w | t) across all tokens w in the kernel.

• Topic contrast of a topic t is defined as the sum of p(t | w) across all tokens w in the kernel defided by the
size of the kernel.

TopicKernelScoreConfig.eps
Defines the minimum threshold on kernel size. In most cases this parameter should be kept at the default value.

TopicKernelScoreConfig.class_id
A value that defines the class of tokens to use for score calculation. This value corresponds to
ModelConfig.class_id field. This value is optional. By default the score will be calculated for the
default class (‘@default_class‘).

TopicKernelScoreConfig.topic_name
A set of topic names that defines which topics should be used for score calculation. This value is optional, use
an empty list to calculate the score for all topics.

TopicKernelScoreConfig.probability_mass_threshold
Defines the probability mass threshold (see the definition of kernel above).

TopicKernelScore

class messages_pb2.TopicKernelScore

Represents a result of calculation of a topic kernel score.

message TopicKernelScore {
optional DoubleArray kernel_size = 1;
optional DoubleArray kernel_purity = 2;
optional DoubleArray kernel_contrast = 3;
optional double average_kernel_size = 4;
optional double average_kernel_purity = 5;
optional double average_kernel_contrast = 6;

}

TopicKernelScore.kernel_size
Provides the kernel size for all requested topics. The length of this DoubleArray is always equal to the overall
number of topics. The values of -1 correspond to non-calculated topics. The remaining values carry the kernel
size of the requested topics.

108 Chapter 9. Legacy documentation pages

mailto:'@default_class

BigARTM Documentation, Release 1.0

TopicKernelScore.kernel_purity
Provides the kernel purity for all requested topics. The length of this DoubleArray is always equal to the overall
number of topics. The values of -1 correspond to non-calculated topics. The remaining values carry the kernel
size of the requested topics.

TopicKernelScore.kernel_contrast
Provides the kernel contrast for all requested topics. The length of this DoubleArray is always equal to the
overall number of topics. The values of -1 correspond to non-calculated topics. The remaining values carry the
kernel contrast of the requested topics.

TopicKernelScore.average_kernel_size
Provides the average kernel size across all the requested topics.

TopicKernelScore.average_kernel_purity
Provides the average kernel purity across all the requested topics.

TopicKernelScore.average_kernel_contrast
Provides the average kernel contrast across all the requested topics.

TopicModel

class messages_pb2.TopicModel

Represents a topic model. This message can contain data in either dense or sparse format. The key idea be-
hind sparse format is to avoid storing zero p(w|t) elements of the Phi matrix. Please refer to the description of
TopicModel.topic_index field for more details.

To distinguish between these two formats check whether repeated field TopicModel.topic_index is empty.
An empty field indicate a dense format, otherwise the message contains data in a sparse format. To request
topic model in a sparse format set GetTopicModelArgs.use_sparse_format field to True when calling
ArtmRequestTopicModel().

message TopicModel {
enum OperationType {
Initialize = 0;
Increment = 1;
Overwrite = 2;
Remove = 3;
Ignore = 4;

}

optional string name = 1 [default = "@model"];
optional int32 topics_count = 2;
repeated string topic_name = 3;
repeated string token = 4;
repeated FloatArray token_weights = 5;
repeated string class_id = 6;

message TopicModelInternals {
repeated FloatArray n_wt = 1;
repeated FloatArray r_wt = 2;

}

optional bytes internals = 7; // obsolete in BigARTM v0.6.3
repeated IntArray topic_index = 8;
repeated OperationType operation_type = 9;

}

9.6. Messages 109

BigARTM Documentation, Release 1.0

TopicModel.name
A value that describes the name of the topic model (TopicModel.name).

TopicModel.topics_count
A value that describes the number of topics in this message.

TopicModel.topic_name
A value that describes the names of the topics included in given TopicModel message. This values will rep-
resent a subset of topics, defined by GetTopicModelArgs.topic_name message. In case of empty
GetTopicModelArgs.topic_name this values will correspond to the entire set of topics, defined in
ModelConfig.topic_name field.

TopicModel.token
The set of all tokens, included in the topic model.

TopicModel.token_weights
A set of token weights. The length of this repeated field will match the length of the repeated field
TopicModel.token. The length of each FloatArray will match the TopicModel.topics_count field
(in dense representation), or the length of the corresponding IntArray from TopicModel.topic_index
field (in sparse representation).

TopicModel.class_id
A set values that specify the class (modality) of the tokens. The length of this repeated field will match the
length of the repeated field TopicModel.token.

TopicModel.internals
Obsolete in BigARTM v0.6.3.

TopicModel.topic_index
A repeated field used for sparse topic model representation. This field has the same length as
TopicModel.token, TopicModel.class_id and TopicModel.token_weights. Each element
in topic_index is an instance of IntArray message, containing a list of values between 0 and the length of
TopicModel.topic_name field. This values correspond to the indices in TopicModel.topic_name
array, and tell which topics has non-zero p(w|t) probabilities for a given token. The actual p(w|t)
values can be found in TopicModel.token_weights field. The length of each IntArray message
in TopicModel.topic_index field equals to the length of the corresponding FloatArray message in
TopicModel.token_weights field.

Warning: Be careful with TopicModel.topic_index when this message represents a subset of top-
ics, defined by GetTopicModelArgs.topic_name. In this case indices correspond to the selected
subset of topics, which might not correspond to topic indices in the original ModelConfig message.

TopicModel.operation_type
A set of values that define operation to perform on each token when topic model is used as an argument of
ArtmOverwriteTopicModel().

InitializeIndicates that a new token should be added to the topic model. Initial n_wt counter will be
initialized with random value from [0, 1] range. TopicModel.token_weights is
ignored. This operation is ignored if token already exists.

IncrementIndicates that n_wt counter of the token should be increased by values, specified in
TopicModel.token_weights field. A new token will be created if it does not exist yet.

OverwriteIndicates that n_wt counter of the token should be set to the value, specified in
TopicModel.token_weights field. A new token will be created if it does not exist yet.

Remove Indicates that the token should be removed from the topic model.
TopicModel.token_weights is ignored.

Ignore Indicates no operation for the token. The effect is the same as if the token is not present in this
message.

110 Chapter 9. Legacy documentation pages

BigARTM Documentation, Release 1.0

ThetaMatrix

class messages_pb2.ThetaMatrix

Represents a theta matrix. This message can contain data in either dense or sparse format. The key idea behind
sparse format is to avoid storing zero p(t|d) elements of the Theta matrix. Sparse representation of Theta matrix
is equivalent to sparse representation of Phi matrix. Please, refer to TopicModel for detailed description of the sparse
format.

message ThetaMatrix {
optional string model_name = 1 [default = "@model"];
repeated int32 item_id = 2;
repeated FloatArray item_weights = 3;
repeated string topic_name = 4;
optional int32 topics_count = 5;
repeated string item_title = 6;
repeated IntArray topic_index = 7;

}

ThetaMatrix.model_name
A value that describes the name of the topic model. This name will match the name of the corresponding model
config.

ThetaMatrix.item_id
A set of item IDs corresponding to Item.id values.

ThetaMatrix.item_weights
A set of item ID weights. The length of this repeated field will match the length of
the repeated field ThetaMatrix.item_id. The length of each FloatArray will match the
ThetaMatrix.topics_count field (in dense representation), or the length of the corresponding IntAr-
ray from ThetaMatrix.topic_index field (in sparse representation).

ThetaMatrix.topic_name
A value that describes the names of the topics included in given ThetaMatrix message. This values will rep-
resent a subset of topics, defined by GetThetaMatrixArgs.topic_name message. In case of empty
GetTopicModelArgs.topic_name this values will correspond to the entire set of topics, defined in
ModelConfig.topic_name field.

ThetaMatrix.topics_count
A value that describes the number of topics in this message.

ThetaMatrix.item_title
A set of item titles, corresponding to Item.title values. Beware that this field might be empty (e.g. of zero
length) if all items did not have title specified in Item.title.

ThetaMatrix.topic_index
A repeated field used for sparse theta matrix representation. This field has the same length as
ThetaMatrix.item_id, ThetaMatrix.item_weights and ThetaMatrix.item_title. Each
element in topic_index is an instance of IntArray message, containing a list of values between 0 and the length of
TopicModel.topic_name field. This values correspond to the indices in ThetaMatrix.topic_name
array, and tell which topics has non-zero p(t|d) probabilities for a given item. The actual p(t|d)
values can be found in ThetaMatrix.item_weights field. The length of each IntArray message in
ThetaMatrix.topic_index field equals to the length of the corresponding FloatArray message in
ThetaMatrix.item_weights field.

Warning: Be careful with ThetaMatrix.topic_index when this message represents a subset of
topics, defined by GetThetaMatrixArgs.topic_name. In this case indices correspond to the selected
subset of topics, which might not correspond to topic indices in the original ModelConfig message.

9.6. Messages 111

BigARTM Documentation, Release 1.0

CollectionParserConfig

class messages_pb2.CollectionParserConfig

Represents a configuration of a collection parser.

message CollectionParserConfig {
enum Format {
BagOfWordsUci = 0;
MatrixMarket = 1;

}

optional Format format = 1 [default = BagOfWordsUci];
optional string docword_file_path = 2;
optional string vocab_file_path = 3;
optional string target_folder = 4;
optional string dictionary_file_name = 5;
optional int32 num_items_per_batch = 6 [default = 1000];
optional string cooccurrence_file_name = 7;
repeated string cooccurrence_token = 8;
optional bool use_unity_based_indices = 9 [default = true];

}

CollectionParserConfig.format
A value that defines the format of a collection to be parsed.

112 Chapter 9. Legacy documentation pages

BigARTM Documentation, Release 1.0

BagOfWordsUci

A bag-of-words collection, stored in UCI format.
UCI format must have two files - vocab.*.txt
and docword.*.txt, defined by
docword_file_path

and vocab_file_path.
The format of the docword.*.txt file is 3 header
lines, followed by NNZ triples:

D
W
NNZ
docID wordID count
docID wordID count
...
docID wordID count

The file must be sorted on docID.
Values of wordID must be unity-based (not
zero-based).
The format of the vocab.*.txt file is line containing
wordID=n.
Note that words must not have spaces or tabs.
In vocab.*.txt file it is also possible to specify
Batch.class_id for tokens, as it is shown in
this example:

token1 @default_class
token2 custom_class
token3 @default_class
token4

Use space or tab to separate token from its class.
Token that are not followed by class label
automatically
get ‘’@default_class‘’ as a lable (see ‘’token4” in
the example).

MatrixMarket

See the description at
http://math.nist.gov/MatrixMarket/formats.html
In this mode parameter docword_file_path
must refer to a file
in Matrix Market format. Parameter
vocab_file_path

is also required and must refer to a dictionary file
exported in
gensim format (dictionary.save_as_text()).

CollectionParserConfig.docword_file_path

9.6. Messages 113

mailto:''@default_class
http://math.nist.gov/MatrixMarket/formats.html
http://radimrehurek.com/gensim/corpora/dictionary.html#gensim.corpora.dictionary.Dictionary.save_as_text

BigARTM Documentation, Release 1.0

A value that defines the disk location of a docword.*.txt file (the bag of words file in sparse format).

CollectionParserConfig.vocab_file_path
A value that defines the disk location of a vocab.*.txt file (the file with the vocabulary of the collection).

CollectionParserConfig.target_folder
A value that defines the disk location where to stores all the results after parsing the colleciton. Usu-
ally the resulting location will contain a set of batches, and a DictionaryConfig that contains all
unique tokens occured in the collection. Such location can be further passed MasterComponent via
MasterComponentConfig.disk_path.

CollectionParserConfig.dictionary_file_name
A file name where to save the DictionaryConfig message that contains all unique tokens occured in the collec-
tion. The file will be created in target_folder.

This parameter is optional. The dictionary will be still collected even when this parameter is not provided, but
the resulting dictionary will be only returned as the result of ArtmRequestParseCollection, but it will not be
stored to disk.

In the resulting dictionary each entry will have the following fields:

•DictionaryEntry.key_token - the textual representation of the token,

•DictionaryEntry.class_id - the label of the default class (“@DefaultClass”),

•DictionaryEntry.token_count - the overall number of occurrences of the token in the collection,

•DictionaryEntry.items_count - the number of documents in the collection, containing the to-
ken.

•DictionaryEntry.value - the ratio between token_count and total_token_count.

Use ArtmRequestLoadDictionary method to load the resulting dictionary.

CollectionParserConfig.num_items_per_batch
A value indicating the desired number of items per batch.

CollectionParserConfig.cooccurrence_file_name
A file name where to save the DictionaryConfig message that contains information about co-occurrence of all
pairs of tokens in the collection. The file will be created in target_folder.

This parameter is optional. No cooccurrence information will be collected if the filename is not provided.

In the resulting dictionary each entry will correspond to two tokens (‘<first>’ and ‘<second>’), and carry the
information about co-occurrence of this tokens in the collection.

•DictionaryEntry.key_token - a string of the form ‘<first>~<second>’, produced by concatena-
tion of two tokens together via the tilde symbol (‘~’). <first> tokens is guarantied lexicographic less than
the <second> token.

•DictionaryEntry.class_id - the label of the default class (“@DefaultClass”).

•DictionaryEntry.items_count - the number of documents in the collection, containing both
tokens (‘<first>’ and ‘<second>’)

Use ArtmRequestLoadDictionary method to load the resulting dictionary.

CollectionParserConfig.cooccurrence_token
A list of tokens to collect cooccurrence information. A cooccurrence of the pair <first>~<second> will be
collected only when both tokens are present in CollectionParserConfig.cooccurrence_token.

CollectionParserConfig.use_unity_based_indices
A flag indicating whether to interpret indices in docword file as unity-based or as zero-based. By default
‘use_unity_based_indices = True‘, as required by UCI bag-of-words format.

114 Chapter 9. Legacy documentation pages

BigARTM Documentation, Release 1.0

SynchronizeModelArgs

class messages_pb2.SynchronizeModelArgs

Represents an argument of synchronize model operation.

message SynchronizeModelArgs {
optional string model_name = 1;
optional float decay_weight = 2 [default = 0.0];
optional bool invoke_regularizers = 3 [default = true];
optional float apply_weight = 4 [default = 1.0];

}

SynchronizeModelArgs.model_name
The name of the model to be synchronized. This value is optional. When not set, all models will be synchronized
with the same decay weight.

SynchronizeModelArgs.decay_weight
The decay weight and apply_weight define how to combine existing topic model with all increments, cal-
culated since the last ArtmSynchronizeModel(). This is best described by the following formula:

n_wt_new = n_wt_old * decay_weight + n_wt_inc * apply_weight,

where n_wt_old describe current topic model, n_wt_inc describe increment calculated since last
ArtmSynchronizeModel(), n_wt_new define the resulting topic model.

Expected values of both parameters are between 0.0 and 1.0. Here are some examples:

•Combination of decay_weight=0.0 and apply_weight=1.0 states that the previous Phi matrix of the topic
model will be disregarded completely, and the new Phi matrix will be formed based on new increments
gathered since last model synchronize.

•Combination of decay_weight=1.0 and apply_weight=1.0 states that new increments will be appended to
the current Phi matrix without any decay.

•Combination of decay_weight=1.0 and apply_weight=0.0 states that new increments will be disregarded,
and current Phi matrix will stay unchanged.

•To reproduce Online variational Bayes for LDA algorighm by Matthew D. Hoffman set decay_weight =
1 - rho and apply_weight = rho, where parameter rho is defined as rho = exp(tau + t, -kappa). See Online
Learning for Latent Dirichlet Allocation for further details.

SynchronizeModelArgs.apply_weight
See decay_weight for the description.

SynchronizeModelArgs.invoke_regularizers
A flag indicating whether to invoke all phi-regularizers.

InitializeModelArgs

class messages_pb2.InitializeModelArgs

Represents an argument of ArtmInitializeModel() operation. Please refer to exam-
ple14_initialize_topic_model.py for further information.

message InitializeModelArgs {
enum SourceType {
Dictionary = 0;
Batches = 1;

9.6. Messages 115

https://www.cs.princeton.edu/~blei/papers/HoffmanBleiBach2010b.pdf
https://www.cs.princeton.edu/~blei/papers/HoffmanBleiBach2010b.pdf
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example14_initialize_topic_model.py
https://raw.githubusercontent.com/bigartm/bigartm/master/python/examples/example14_initialize_topic_model.py

BigARTM Documentation, Release 1.0

}

message Filter {
optional string class_id = 1;
optional float min_percentage = 2;
optional float max_percentage = 3;
optional int32 min_items = 4;
optional int32 max_items = 5;
optional int32 min_total_count = 6;
optional int32 min_one_item_count = 7;

}

optional string model_name = 1;
optional string dictionary_name = 2;
optional SourceType source_type = 3 [default = Dictionary];

optional string disk_path = 4;
repeated Filter filter = 5;

}

InitializeModelArgs.model_name
The name of the model to be initialized.

InitializeModelArgs.dictionary_name
The name of the dictionary containing all tokens that should be initialized.

GetTopicModelArgs

Represents an argument of ArtmRequestTopicModel() operation.

message GetTopicModelArgs {
enum RequestType {
Pwt = 0;
Nwt = 1;

}

optional string model_name = 1;
repeated string topic_name = 2;
repeated string token = 3;
repeated string class_id = 4;
optional bool use_sparse_format = 5;
optional float eps = 6 [default = 1e-37];
optional RequestType request_type = 7 [default = Pwt];

}

GetTopicModelArgs.model_name
The name of the model to be retrieved.

GetTopicModelArgs.topic_name
The list of topic names to be retrieved. This value is optional. When not provided, all topics will be retrieved.

GetTopicModelArgs.token
The list of tokens to be retrieved. The length of this field must match the length of class_id field. This field
is optional. When not provided, all tokens will be retrieved.

116 Chapter 9. Legacy documentation pages

BigARTM Documentation, Release 1.0

GetTopicModelArgs.class_id
The list of classes corresponding to all tokens. The length of this field must match the length of token field.
This field is only required together with token, otherwise it is ignored.

GetTopicModelArgs.use_sparse_format
An optional flag that defines whether to use sparse format for the resulting TopicModel message. See
TopicModelmessage for additional information about the sparse format. Note that setting use_sparse_format
= true results in empty TopicModel.internals field.

GetTopicModelArgs.eps
A small value that defines zero threshold for p(w|t) probabilities. This field is only used in sparse format.
p(w|t) below the threshold will be excluded from the resulting Phi matrix.

GetTopicModelArgs.request_type
An optional value that defines what kind of data to retrieve in this operation.

Pwt Indicates that the resulting TopicModel message should contain p(w|t) probabilities. This values
are normalized to form a probability distribution (sum_w p(w|t) = 1 for all topics t).

Nwt Indicates that the resulting TopicModel message should contain internal n_wt counters of the topic
model. This values represent an internal state of the topic model.

Default setting is to retrieve p(w|t) probabilities. This probabilities are sufficient to infer p(t|d) distribu-
tions using this topic model.

n_wt counters allow you to restore the precise state of the topic model. By passing this values in
ArtmOverwriteTopicModel() operation you are guarantied to get the model in the same state as you
retrieved it. As the result you may continue topic model inference from the point you have stopped it last time.

p(w|t) values can be also restored via c:func:ArtmOverwriteTopicModel operation. The resulting model will
give the same p(t|d) distributions, however you should consider this model as read-only, and do not call
ArtmSynchronizeModel() on it.

GetThetaMatrixArgs

Represents an argument of ArtmRequestThetaMatrix() operation.

message GetThetaMatrixArgs {
optional string model_name = 1;
optional Batch batch = 2;
repeated string topic_name = 3;
repeated int32 topic_index = 4;
optional bool clean_cache = 5 [default = false];
optional bool use_sparse_format = 6 [default = false];
optional float eps = 7 [default = 1e-37];

}

GetThetaMatrixArgs.model_name
The name of the model to retrieved theta matrix for.

GetThetaMatrixArgs.batch
The Batch to classify with the model.

GetThetaMatrixArgs.topic_name
The list of topic names, describing which topics to include in the Theta matrix. The values of this field should
correspond to values in ModelConfig.topic_name. This field is optional, by default all topics will be
included.

9.6. Messages 117

BigARTM Documentation, Release 1.0

GetThetaMatrixArgs.topic_index
The list of topic indices, describing which topics to include in the Theta matrix. The values of this field should
be an integers between 0 and (ModelConfig.topics_count - 1). This field is optional, by default all
topics will be included.

Note that this field acts similar to GetThetaMatrixArgs.topic_name. It is not allowed to specify both
topic_index and topic_name at the same time. The recommendation is to use topic_name.

GetThetaMatrixArgs.clean_cache
An optional flag that defines whether to clear the theta matrix cache after this operation. Setting this value to
True will clear the cache for a topic model, defined by GetThetaMatrixArgs.model_name. This value
is only applicable when MasterComponentConfig.cache_theta is set to True.

GetThetaMatrixArgs.use_sparse_format
An optional flag that defines whether to use sparse format for the resulting ThetaMatrix message. See
ThetaMatrix message for additional information about the sparse format.

GetThetaMatrixArgs.eps
A small value that defines zero threshold for p(t|d) probabilities. This field is only used in sparse format.
p(t|d) below the threshold will be excluded from the resulting Theta matrix.

GetScoreValueArgs

Represents an argument of get score operation.

message GetScoreValueArgs {
optional string model_name = 1;
optional string score_name = 2;
optional Batch batch = 3;

}

GetScoreValueArgs.model_name
The name of the model to retrieved score for.

GetScoreValueArgs.score_name
The name of the score to retrieved.

GetScoreValueArgs.batch
The Batch to calculate the score. This option is only applicable to cumulative scores. When not provided the
score will be reported for all batches processed since last ArtmInvokeIteration().

AddBatchArgs

Represents an argument of ArtmAddBatch() operation.

message AddBatchArgs {
optional Batch batch = 1;
optional int32 timeout_milliseconds = 2 [default = -1];
optional bool reset_scores = 3 [default = false];
optional string batch_file_name = 4;

}

AddBatchArgs.batch
The Batch to add.

118 Chapter 9. Legacy documentation pages

BigARTM Documentation, Release 1.0

AddBatchArgs.timeout_milliseconds
Timeout in milliseconds for this operation.

AddBatchArgs.reset_scores
An optional flag that defines whether to reset all scores before this operation.

AddBatchArgs.batch_file_name
An optional value that defines disk location of the batch to add. You must choose between parameters
batch_file_name or batch (either of them has to be specified, but not both at the same time).

InvokeIterationArgs

Represents an argument of ArtmInvokeIteration() operation.

message InvokeIterationArgs {
optional int32 iterations_count = 1 [default = 1];
optional bool reset_scores = 2 [default = true];
optional string disk_path = 3;

}

InvokeIterationArgs.iterations_count
An integer value describing how many iterations to invoke.

InvokeIterationArgs.reset_scores
An optional flag that defines whether to reset all scores before this operation.

InvokeIterationArgs.disk_path
A value that defines the disk location with batches to process on this iteration.

WaitIdleArgs

Represents an argument of ArtmWaitIdle() operation.

message WaitIdleArgs {
optional int32 timeout_milliseconds = 1 [default = -1];

}

WaitIdleArgs.timeout_milliseconds
Timeout in milliseconds for this operation.

ExportModelArgs

Represents an argument of ArtmExportModel() operation.

message ExportModelArgs {
optional string file_name = 1;
optional string model_name = 2;

}

ExportModelArgs.file_name
A target file name where to store topic model.

9.6. Messages 119

BigARTM Documentation, Release 1.0

ExportModelArgs.model_name
A value that describes the name of the topic model. This name will match the name of the corresponding model
config.

ImportModelArgs

Represents an argument of ArtmImportModel() operation.

message ImportModelArgs {
optional string file_name = 1;
optional string model_name = 2;

}

ImportModelArgs.file_name
A target file name from where to load topic model.

ImportModelArgs.model_name
A value that describes the name of the topic model. This name will match the name of the corresponding model
config.

C++ interface

BigARTM C++ interface is currently not documented. The main entry point is MasterModel class from
src/artm/cpp_interface.cc. Please referto src/bigartm//srcmain.cc for usage examples, and ask
questions at bigartm-users or open a new issue.

class MasterModel {
public:
explicit MasterModel(const MasterModelConfig& config);
~MasterModel();

int id() const { return id_; }
MasterComponentInfo info() const; // misc. diagnostics information

const MasterModelConfig& config() const { return config_; }
MasterModelConfig* mutable_config() { return &config_; }
void Reconfigure(); // apply MasterModel::config()

// Operations to work with dictionary through disk
void GatherDictionary(const GatherDictionaryArgs& args);
void FilterDictionary(const FilterDictionaryArgs& args);
void ImportDictionary(const ImportDictionaryArgs& args);
void ExportDictionary(const ExportDictionaryArgs& args);
void DisposeDictionary(const std::string& dictionary_name);

// Operations to work with dictinoary through memory
void CreateDictionary(const DictionaryData& args);
DictionaryData GetDictionary(const GetDictionaryArgs& args);

// Operatinos to work with batches through memory
void ImportBatches(const ImportBatchesArgs& args);
void DisposeBatch(const std::string& batch_name);

// Operations to work with model

120 Chapter 9. Legacy documentation pages

https://groups.google.com/group/bigartm-users
https://github.com/bigartm/bigartm/issues

BigARTM Documentation, Release 1.0

void InitializeModel(const InitializeModelArgs& args);
void ImportModel(const ImportModelArgs& args);
void ExportModel(const ExportModelArgs& args);
void FitOnlineModel(const FitOnlineMasterModelArgs& args);
void FitOfflineModel(const FitOfflineMasterModelArgs& args);

// Apply model to batches
ThetaMatrix Transform(const TransformMasterModelArgs& args);
ThetaMatrix Transform(const TransformMasterModelArgs& args, Matrix* matrix);

// Retrieve operations
TopicModel GetTopicModel(const GetTopicModelArgs& args);
TopicModel GetTopicModel(const GetTopicModelArgs& args, Matrix* matrix);
ThetaMatrix GetThetaMatrix(const GetThetaMatrixArgs& args);
ThetaMatrix GetThetaMatrix(const GetThetaMatrixArgs& args, Matrix* matrix);

// Retrieve scores
ScoreData GetScore(const GetScoreValueArgs& args);
template <typename T>
T GetScoreAs(const GetScoreValueArgs& args);

Warning: What follows below in this page is really outdated.

In addition to this page consider to look at Low-level API in C, python_interface or Messages. These docu-
mentation files are also to certain degree relevant for C++ interface, because C++ interface is quite similar to Python
interface and share the same Protobuf messages.

MasterComponent

class MasterComponent

MasterComponent(const MasterComponentConfig &config)
Creates a master component with configuration defined by MasterComponentConfig message.

void Reconfigure(const MasterComponentConfig &config)
Updates the configuration of the master component.

const MasterComponentConfig &config() const
Returns current configuration of the master component.

MasterComponentConfig *mutable_config()
Returns mutable configuration of the master component. Remember to call Reconfigure() to propa-
gate your changes to master component.

void InvokeIteration(int iterations_count = 1)
Invokes certain number of iterations.

bool AddBatch(const Batch &batch, bool reset_scores)
Adds batch to the processing queue.

bool WaitIdle(int timeout = -1)
Waits for iterations to be completed. Returns true if BigARTM completed before the specific timeout,
otherwise false.

std::shared_ptr<TopicModel> GetTopicModel(const std::string &model_name)
Retrieves Phi matrix of a specific topic model. The resulting message TopicModel will contain information

9.7. C++ interface 121

BigARTM Documentation, Release 1.0

about token weights distribution across topics.

std::shared_ptr<TopicModel> GetTopicModel(const GetTopicModelArgs &args)
Retrieves Phi matrix based on extended parameters, specified in GetTopicModelArgs message. The re-
sulting message TopicModel will contain information about token weights distribution across topics.

std::shared_ptr<ThetaMatrix> GetThetaMatrix(const std::string &model_name)
Retrieves Theta matrix of a specific topic model. The resulting message ThetaMa-
trix will contain information about items distribution across topics. Remember to set
MasterComponentConfig.cache_theta prior to the last iteration in order to gather Theta
matrix.

std::shared_ptr<ThetaMatrix> GetThetaMatrix(const GetThetaMatrixArgs &args)
Retrieves Theta matrix based on extended parameters, specified in GetThetaMatrixArgs message. The
resulting message ThetaMatrix will contain information about items distribution across topics.

std::shared_ptr<T> GetScoreAs<T>(const Model &model, const std::string &score_name)
Retrieves given score for a specific model. Template argument must match the specific ScoreData type of
the score (for example, PerplexityScore).

Model

class Model

Model(const MasterComponent &master_component, const ModelConfig &config)
Creates a topic model defined by ModelConfig inside given MasterComponent.

void Reconfigure(const ModelConfig &config)
Updates the configuration of the model.

const std::string &name() const
Returns the name of the model.

const ModelConfig &config() const
Returns current configuration of the model.

ModelConfig *mutable_config()
Returns mutable configuration of the model. Remember to call Reconfigure() to propagate your
changes to the model.

void Overwrite(const TopicModel &topic_model, bool commit = true)
Updates the model with new Phi matrix, defined by topic_model. This operation can be used to provide
an explicit initial approximation of the topic model, or to adjust the model in between iterations.

Depending on the commit flag the change can be applied immediately (commit = true) or queued (commit
= false). The default setting is to use commit = true. You may want to use commit = false if your
model is too big to be updated in a single protobuf message. In this case you should split your model
into parts, each part containing subset of all tokens, and then submit each part in separate Overwrite
operation with commit = false. After that remember to call MasterComponent::WaitIdle() and
Synchronize() to propagate your change.

void Initialize(const Dictionary &dictionary)
Initialize topic model based on the Dictionary . Each token from the dictionary will be included in the
model with randomly generated weight.

void Export(const string &file_name)
Exports topic model into a file.

122 Chapter 9. Legacy documentation pages

BigARTM Documentation, Release 1.0

void Import(const string &file_name)
Imports topic model from a file.

void Synchronize(double decay_weight, double apply_weight, bool invoke_regularizers)
Synchronize the model.

This operation updates the Phi matrix of the topic model with all model increments, collected since the
last call to Synchronize() method. The weights in the Phi matrix are set according to decay_weight
and apply_weight values (refer to SynchronizeModelArgs.decay_weight for more details). De-
pending on invoke_regularizers parameter this operation may also invoke all regularizers.

Remember to call Model::Synchronize() operation every time after calling
MasterComponent::WaitIdle().

void Synchronize(const SynchronizeModelArgs &args)
Synchronize the model based on extended arguments SynchronizeModelArgs.

Regularizer

class Regularizer

Regularizer(const MasterComponent &master_component, const RegularizerConfig &config)
Creates a regularizer defined by RegularizerConfig inside given MasterComponent.

void Reconfigure(const RegularizerConfig &config)
Updates the configuration of the regularizer.

const RegularizerConfig &config() const
Returns current configuration of the regularizer.

RegularizerConfig *mutable_config()
Returns mutable configuration of the regularizer. Remember to call Reconfigure() to propagate your
changes to the regularizer.

Dictionary

class Dictionary

Dictionary(const MasterComponent &master_component, const DictionaryConfig &config)
Creates a dictionary defined by DictionaryConfig inside given MasterComponent.

void Reconfigure(const DictionaryConfig &config)
Updates the configuration of the dictionary.

const std::string name() const
Returns the name of the dictionary.

const DictionaryConfig &config() const
Returns current configuration of the dictionary.

Utility methods

void SaveBatch(const Batch &batch, const std::string &disk_path)
Saves Batch into a specific folder. The name of the resulting file will be autogenerated, and the extention set to
.batch

9.7. C++ interface 123

BigARTM Documentation, Release 1.0

std::shared_ptr<DictionaryConfig> LoadDictionary(const std::string &filename)
Loads the DictionaryConfig message from a specific file on disk. filename must represent full disk path to the
dictionary file.

std::shared_ptr<Batch> LoadBatch(const std::string &filename)
Loads the Batch message from a specific file on disk. filename must represent full disk path to the batch file,
including .batch extention.

std::shared_ptr<DictionaryConfig> ParseCollection(const CollectionParserConfig &config)
Parses a text collection as defined by CollectionParserConfig message. Returns an instance of DictionaryConfig
which carry all unique words in the collection and their frequencies.

Windows distribution

This chapter describes content of BigARTM distribution package for Windows, available at
https://github.com/bigartm/bigartm/releases.

124 Chapter 9. Legacy documentation pages

https://github.com/bigartm/bigartm/releases

BigARTM Documentation, Release 1.0

bin/

Precompiled binaries of BigARTM for Windows.
This folder must be added to PATH system variable.

bin/artm.dll

Core functionality of the BigARTM library.

bin/cpp_client.exe

Command line utility allows to perform simple
experiments
with BigARTM. Remember that not all BigARTM
features are
available through cpp_client, but it can serve as a good
starting point to learn basic functionality. For further
details refer to /ref/cpp_client.

protobuf/

A minimalistic version of Google Protocol Buffers
(https://code.google.com/p/protobuf/)
library, required to run BigARTM from Python.
To setup this package follow the instructions in
protobuf/python/README file.

python/artm/

Python programming interface to BigARTM library.
This folder must be added to PYTHONPATH
system variable.

library.py

Implements all classes of BigARTM python interface.

messages_pb2.py

Contains all protobuf messages that can be transfered in
and out BigARTM core library. Most common features
are
exposed with their own API methods, so normally you
do not use python protobuf messages to operate
BigARTM.

python/examples/

Python examples of how to use BigARTM:

Files docword.kos.txt and vocab.kos.txt
represent
a simple collection of text files in Bag-Of-Words
format.
The files are taken from UCI Machine Learning
Repository

(https://archive.ics.uci.edu/ml/datasets/Bag+of+Words).

src/

Several programming interfaces to BigARTM library.

src/c_interface.h

Low-level BigARTM interface in C.

cpp_interface.h,cc

C++ interface of BigARTM

messages.pb.h,cc

Protobuf messages for C++ interface

messages.proto

Protobuf description for all messages that appear in the
API of BigARTM. Documented here.

LICENSE License file of BigARTM.

9.8. Windows distribution 125

https://code.google.com/p/protobuf/
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words

BigARTM Documentation, Release 1.0

126 Chapter 9. Legacy documentation pages

Python Module Index

a
artm, 43
artm.score_tracker, 45

127

BigARTM Documentation, Release 1.0

128 Python Module Index

Index

Symbols
__init__() (artm.ARTM method), 25
__init__() (artm.BackgroundTokensRatioScore method),

45
__init__() (artm.BatchVectorizer method), 36
__init__() (artm.ClassPrecisionScore method), 45
__init__() (artm.DecorrelatorPhiRegularizer method), 40
__init__() (artm.Dictionary method), 37
__init__() (artm.ImproveCoherencePhiRegularizer

method), 42
__init__() (artm.ItemsProcessedScore method), 43
__init__() (artm.KlFunctionInfo method), 39
__init__() (artm.LDA method), 30
__init__() (artm.LabelRegularizationPhiRegularizer

method), 41
__init__() (artm.MasterComponent method), 49
__init__() (artm.PerplexityScore method), 43
__init__() (artm.SmoothPtdwRegularizer method), 42
__init__() (artm.SmoothSparsePhiRegularizer method),

39
__init__() (artm.SmoothSparseThetaRegularizer

method), 40
__init__() (artm.SparsityPhiScore method), 43
__init__() (artm.SparsityThetaScore method), 44
__init__() (artm.SpecifiedSparsePhiRegularizer method),

41
__init__() (artm.ThetaSnippetScore method), 44
__init__() (artm.TopTokensScore method), 44
__init__() (artm.TopicKernelScore method), 44
__init__() (artm.TopicMassPhiScore method), 45
__init__() (artm.TopicSegmentationPtdwRegularizer

method), 43
__init__() (artm.TopicSelectionThetaRegularizer

method), 42
__init__() (artm.hARTM method), 33
__init__() (artm.score_tracker.BackgroundTokensRatioScoreTracker

method), 48
__init__() (artm.score_tracker.ClassPrecisionScoreTracker

method), 48
__init__() (artm.score_tracker.ItemsProcessedScoreTracker

method), 47
__init__() (artm.score_tracker.PerplexityScoreTracker

method), 46
__init__() (artm.score_tracker.SparsityPhiScoreTracker

method), 45
__init__() (artm.score_tracker.SparsityThetaScoreTracker

method), 46
__init__() (artm.score_tracker.ThetaSnippetScoreTracker

method), 47
__init__() (artm.score_tracker.TopTokensScoreTracker

method), 46
__init__() (artm.score_tracker.TopicKernelScoreTracker

method), 47
__init__() (artm.score_tracker.TopicMassPhiScoreTracker

method), 48

A
add_level() (artm.hARTM method), 34
alpha_iter (SmoothSparseThetaConfig attribute), 98
apply_weight (SynchronizeModelArgs attribute), 115
ARTM (class in artm), 25
artm (module), 25, 30, 33, 36, 37, 39, 43, 48
artm.score_tracker (module), 45
artm::Dictionary (C++ class), 123
artm::Dictionary::config (C++ function), 123
artm::Dictionary::Dictionary (C++ function), 123
artm::Dictionary::name (C++ function), 123
artm::Dictionary::Reconfigure (C++ function), 123
artm::LoadBatch (C++ function), 124
artm::LoadDictionary (C++ function), 123
artm::MasterComponent (C++ class), 121
artm::MasterComponent::AddBatch (C++ function), 121
artm::MasterComponent::config (C++ function), 121
artm::MasterComponent::GetScoreAs<T> (C++ func-

tion), 122
artm::MasterComponent::GetThetaMatrix (C++ func-

tion), 122
artm::MasterComponent::GetTopicModel (C++ func-

tion), 121, 122
artm::MasterComponent::InvokeIteration (C++ function),

121

129

BigARTM Documentation, Release 1.0

artm::MasterComponent::MasterComponent (C++ func-
tion), 121

artm::MasterComponent::mutable_config (C++ func-
tion), 121

artm::MasterComponent::Reconfigure (C++ function),
121

artm::MasterComponent::WaitIdle (C++ function), 121
artm::Model (C++ class), 122
artm::Model::config (C++ function), 122
artm::Model::Export (C++ function), 122
artm::Model::Import (C++ function), 122
artm::Model::Initialize (C++ function), 122
artm::Model::Model (C++ function), 122
artm::Model::mutable_config (C++ function), 122
artm::Model::name (C++ function), 122
artm::Model::Overwrite (C++ function), 122
artm::Model::Reconfigure (C++ function), 122
artm::Model::Synchronize (C++ function), 123
artm::ParseCollection (C++ function), 124
artm::Regularizer (C++ class), 123
artm::Regularizer::config (C++ function), 123
artm::Regularizer::mutable_config (C++ function), 123
artm::Regularizer::Reconfigure (C++ function), 123
artm::Regularizer::Regularizer (C++ function), 123
artm::SaveBatch (C++ function), 123
ARTM_ARGUMENT_OUT_OF_RANGE (C macro), 23
ARTM_CORRUPTED_MESSAGE (C macro), 23
ARTM_DISK_READ_ERROR (C macro), 23
ARTM_DISK_WRITE_ERROR (C macro), 23
ARTM_INTERNAL_ERROR (C macro), 23
ARTM_INVALID_MASTER_ID (C macro), 23
ARTM_INVALID_OPERATION (C macro), 23
ARTM_STILL_WORKING (C macro), 23
ARTM_SUCCESS (C macro), 23
ArtmGetLastErrorMessage (C function), 22
attach_model() (artm.MasterComponent method), 49
average_kernel_contrast (TopicKernelScore attribute),

109
average_kernel_purity (TopicKernelScore attribute), 109
average_kernel_size (TopicKernelScore attribute), 109

B
BackgroundTokensRatioScore (class in artm), 45
BackgroundTokensRatioScoreTracker (class in

artm.score_tracker), 48
batch (AddBatchArgs attribute), 118
batch (GetScoreValueArgs attribute), 118
batch (GetThetaMatrixArgs attribute), 117
batch_file_name (AddBatchArgs attribute), 119
batch_size (artm.BatchVectorizer attribute), 37
batches_list (artm.BatchVectorizer attribute), 37
BatchVectorizer (class in artm), 36

C
cache_theta (MasterComponentConfig attribute), 95
class_id (Batch attribute), 93
class_id (DecorrelatorPhiConfig attribute), 99
class_id (DictionaryEntry attribute), 100
class_id (GetTopicModelArgs attribute), 116
class_id (LabelRegularizationPhiConfig attribute), 99
class_id (ModelConfig attribute), 96
class_id (SmoothSparsePhiConfig attribute), 98
class_id (SparsityPhiScoreConfig attribute), 104
class_id (TopicKernelScoreConfig attribute), 108
class_id (TopicModel attribute), 110
class_id (TopTokensScoreConfig attribute), 106
class_weight (ModelConfig attribute), 96
ClassPrecisionScore (class in artm), 45
ClassPrecisionScoreTracker (class in artm.score_tracker),

48
clean_cache (GetThetaMatrixArgs attribute), 118
clear_score_array_cache() (artm.MasterComponent

method), 49
clear_score_cache() (artm.MasterComponent method),

49
clear_theta_cache() (artm.MasterComponent method), 49
compact_batches (MasterComponentConfig attribute), 94
config (RegularizerConfig attribute), 97
config (ScoreConfig attribute), 101
cooccurrence_file_name (CollectionParserConfig at-

tribute), 114
cooccurrence_token (CollectionParserConfig attribute),

114
copy() (artm.Dictionary method), 38
create() (artm.Dictionary method), 38
create_dictionary() (artm.MasterComponent method), 49
create_regularizer() (artm.MasterComponent method), 49
create_score() (artm.MasterComponent method), 50

D
data (ScoreData attribute), 102
data_path (artm.BatchVectorizer attribute), 37
decay_weight (SynchronizeModelArgs attribute), 115
DecorrelatorPhiRegularizer (class in artm), 40
del_level() (artm.hARTM method), 34
description (Batch attribute), 93
dictionary (artm.BatchVectorizer attribute), 37
Dictionary (class in artm), 37
dictionary_file_name (CollectionParserConfig attribute),

114
dictionary_name (InitializeModelArgs attribute), 116
dictionary_name (LabelRegularizationPhiConfig at-

tribute), 99
dictionary_name (SmoothSparsePhiConfig attribute), 98
disk_cache_path (MasterComponentConfig attribute), 95
disk_path (InvokeIterationArgs attribute), 119
disk_path (MasterComponentConfig attribute), 94

130 Index

BigARTM Documentation, Release 1.0

dispose() (artm.ARTM method), 26
dispose() (artm.hARTM method), 34
docword_file_path (CollectionParserConfig attribute),

113

E
enabled (ModelConfig attribute), 96
entry (DictionaryConfig attribute), 100
eps (GetThetaMatrixArgs attribute), 118
eps (GetTopicModelArgs attribute), 117
eps (SparsityPhiScoreConfig attribute), 104
eps (SparsityThetaScoreConfig attribute), 103
eps (TopicKernelScoreConfig attribute), 108
export_dictionary() (artm.MasterComponent method), 50
export_model() (artm.MasterComponent method), 50

F
field (Item attribute), 92
field_name (ItemsProcessedScoreConfig attribute), 105
field_name (ModelConfig attribute), 96
field_name (PerplexityScoreConfig attribute), 102
field_name (SparsityThetaScoreConfig attribute), 103
field_name (ThetaSnippetScoreConfig attribute), 107
file_name (ExportModelArgs attribute), 119
file_name (ImportModelArgs attribute), 120
filter() (artm.Dictionary method), 38
filter_dictionary() (artm.MasterComponent method), 50
fit_offline() (artm.ARTM method), 26
fit_offline() (artm.hARTM method), 34
fit_offline() (artm.LDA method), 31
fit_offline() (artm.MasterComponent method), 50
fit_online() (artm.ARTM method), 26
fit_online() (artm.LDA method), 31
fit_online() (artm.MasterComponent method), 50
format (CollectionParserConfig attribute), 112

G
gather() (artm.Dictionary method), 38
gather_dictionary() (artm.MasterComponent method), 51
get_dictionary() (artm.MasterComponent method), 51
get_info() (artm.MasterComponent method), 51
get_level() (artm.hARTM method), 34
get_phi() (artm.ARTM method), 27
get_phi() (artm.hARTM method), 35
get_phi_info() (artm.MasterComponent method), 51
get_phi_matrix() (artm.MasterComponent method), 51
get_phi_sparse() (artm.ARTM method), 27
get_score() (artm.ARTM method), 27
get_score() (artm.MasterComponent method), 51
get_score_array() (artm.MasterComponent method), 51
get_theta() (artm.ARTM method), 28
get_theta() (artm.hARTM method), 35
get_theta() (artm.LDA method), 31
get_theta_info() (artm.MasterComponent method), 52

get_theta_matrix() (artm.MasterComponent method), 52
get_theta_sparse() (artm.ARTM method), 28
get_top_tokens() (artm.LDA method), 31

H
hARTM (class in artm), 33

I
id (Batch attribute), 93
id (Item attribute), 92
import_dictionary() (artm.MasterComponent method), 52
import_model() (artm.MasterComponent method), 52
ImproveCoherencePhiRegularizer (class in artm), 42
info (artm.ARTM attribute), 28
initialize() (artm.ARTM method), 28
initialize() (artm.LDA method), 32
initialize_model() (artm.MasterComponent method), 52
inner_iterations_count (ModelConfig attribute), 96
internals (TopicModel attribute), 110
invoke_regularizers (SynchronizeModelArgs attribute),

115
item (Batch attribute), 93
item_count (ThetaSnippetScoreConfig attribute), 107
item_id (ThetaMatrix attribute), 111
item_id (ThetaSnippetScore attribute), 107
item_id (ThetaSnippetScoreConfig attribute), 107
item_title (ThetaMatrix attribute), 111
item_weights (ThetaMatrix attribute), 111
items_count (DictionaryEntry attribute), 101
ItemsProcessedScore (class in artm), 43
ItemsProcessedScoreTracker (class in

artm.score_tracker), 47
iterations_count (InvokeIterationArgs attribute), 119

K
kernel_contrast (TopicKernelScore attribute), 109
kernel_purity (TopicKernelScore attribute), 108
kernel_size (TopicKernelScore attribute), 108
key_token (DictionaryEntry attribute), 100
KlFunctionInfo (class in artm), 39

L
LabelRegularizationPhiRegularizer (class in artm), 41
LDA (class in artm), 30
library_version (artm.ARTM attribute), 28
library_version (artm.hARTM attribute), 35
load() (artm.ARTM method), 28
load() (artm.Dictionary method), 39
load() (artm.hARTM method), 35
load() (artm.LDA method), 32
load_text() (artm.Dictionary method), 39

M
MasterComponent (class in artm), 48

Index 131

BigARTM Documentation, Release 1.0

merge_model() (artm.MasterComponent method), 52
merger_queue_max_size (MasterComponentConfig at-

tribute), 95
messages_pb2.Batch (built-in class), 93
messages_pb2.BoolArray (built-in class), 91
messages_pb2.CollectionParserConfig (built-in class),

112
messages_pb2.DecorrelatorPhiConfig (built-in class), 98
messages_pb2.DictionaryConfig (built-in class), 100
messages_pb2.DictionaryEntry (built-in class), 100
messages_pb2.DoubleArray (built-in class), 91
messages_pb2.Field (built-in class), 92
messages_pb2.FloatArray (built-in class), 91
messages_pb2.InitializeModelArgs (built-in class), 115
messages_pb2.IntArray (built-in class), 92
messages_pb2.Item (built-in class), 92
messages_pb2.ItemsProcessedScore (built-in class), 105
messages_pb2.ItemsProcessedScoreConfig (built-in

class), 105
messages_pb2.LabelRegularizationPhiConfig (built-in

class), 99
messages_pb2.MasterComponentConfig (built-in class),

94
messages_pb2.ModelConfig (built-in class), 95
messages_pb2.PerplexityScore (built-in class), 102
messages_pb2.PerplexityScoreConfig (built-in class),

102
messages_pb2.RegularizerConfig (built-in class), 97
messages_pb2.RegularizerInternalState (built-in class),

99
messages_pb2.ScoreConfig (built-in class), 101
messages_pb2.ScoreData (built-in class), 101
messages_pb2.SmoothSparsePhiConfig (built-in class),

98
messages_pb2.SmoothSparseThetaConfig (built-in class),

98
messages_pb2.SparsityPhiScore (built-in class), 104
messages_pb2.SparsityPhiScoreConfig (built-in class),

104
messages_pb2.SparsityThetaScoreConfig (built-in class),

103, 104
messages_pb2.Stream (built-in class), 93
messages_pb2.SynchronizeModelArgs (built-in class),

115
messages_pb2.ThetaMatrix (built-in class), 111
messages_pb2.ThetaSnippetScore (built-in class), 107
messages_pb2.ThetaSnippetScoreConfig (built-in class),

107
messages_pb2.TopicKernelScore (built-in class), 108
messages_pb2.TopicKernelScoreConfig (built-in class),

108
messages_pb2.TopicModel (built-in class), 109
messages_pb2.TopTokensScore (built-in class), 106

messages_pb2.TopTokensScoreConfig (built-in class),
105

model_name (ExportModelArgs attribute), 119
model_name (GetScoreValueArgs attribute), 118
model_name (GetThetaMatrixArgs attribute), 117
model_name (GetTopicModelArgs attribute), 116
model_name (ImportModelArgs attribute), 120
model_name (InitializeModelArgs attribute), 116
model_name (SynchronizeModelArgs attribute), 115
model_name (ThetaMatrix attribute), 111

N
name (DictionaryConfig attribute), 100
name (ModelConfig attribute), 96
name (RegularizerConfig attribute), 97
name (ScoreConfig attribute), 101
name (ScoreData attribute), 102
name (Stream attribute), 94
name (TopicModel attribute), 109
normalize_model() (artm.MasterComponent method), 52
normalizer (PerplexityScore attribute), 103
num_batches (artm.BatchVectorizer attribute), 37
num_entries (TopTokensScore attribute), 106
num_items_per_batch (CollectionParserConfig attribute),

114
num_tokens (TopTokensScoreConfig attribute), 106

O
online_batch_processing (MasterComponentConfig at-

tribute), 95
operation_type (TopicModel attribute), 110
opt_for_avx (ModelConfig attribute), 97

P
PerplexityScore (class in artm), 43
PerplexityScoreTracker (class in artm.score_tracker), 46
probability_mass_threshold (TopicKernelScoreConfig at-

tribute), 108
process_batches() (artm.MasterComponent method), 53
processor_queue_max_size (MasterComponentConfig at-

tribute), 95
processors_count (MasterComponentConfig attribute), 95

R
raw (PerplexityScore attribute), 103
reconfigure() (artm.MasterComponent method), 53
reconfigure_regularizer() (artm.MasterComponent

method), 53
reconfigure_score() (artm.MasterComponent method), 53
reconfigure_topic_name() (artm.MasterComponent

method), 53
regularize_model() (artm.MasterComponent method), 53
regularizer_name (ModelConfig attribute), 96

132 Index

BigARTM Documentation, Release 1.0

regularizer_tau (ModelConfig attribute), 96
remove_theta() (artm.ARTM method), 29
remove_theta() (artm.LDA method), 32
request_type (GetTopicModelArgs attribute), 117
reset_scores (AddBatchArgs attribute), 119
reset_scores (InvokeIterationArgs attribute), 119
reshape_topics() (artm.ARTM method), 29
reuse_theta (ModelConfig attribute), 96

S
save() (artm.ARTM method), 29
save() (artm.Dictionary method), 39
save() (artm.hARTM method), 36
save() (artm.LDA method), 32
save_text() (artm.Dictionary method), 39
score_config (MasterComponentConfig attribute), 95
score_name (GetScoreValueArgs attribute), 118
score_name (ModelConfig attribute), 96
SmoothPtdwRegularizer (class in artm), 42
SmoothSparsePhiRegularizer (class in artm), 39
SmoothSparseThetaRegularizer (class in artm), 40
SparsityPhiScore (class in artm), 43
SparsityPhiScoreTracker (class in artm.score_tracker), 45
SparsityThetaScore (class in artm), 44
SparsityThetaScoreTracker (class in artm.score_tracker),

46
SpecifiedSparsePhiRegularizer (class in artm), 41
stream (MasterComponentConfig attribute), 94
stream_name (ItemsProcessedScoreConfig attribute), 105
stream_name (ModelConfig attribute), 96
stream_name (PerplexityScoreConfig attribute), 102
stream_name (SparsityThetaScoreConfig attribute), 103
stream_name (ThetaSnippetScoreConfig attribute), 107

T
target_folder (CollectionParserConfig attribute), 114
theta_sparsity_value (PerplexityScore attribute), 103
ThetaSnippetScore (class in artm), 44
ThetaSnippetScoreTracker (class in artm.score_tracker),

47
timeout_milliseconds (AddBatchArgs attribute), 118
timeout_milliseconds (WaitIdleArgs attribute), 119
title (Item attribute), 92
token (Batch attribute), 93
token (GetTopicModelArgs attribute), 116
token (TopicModel attribute), 110
token (TopTokensScore attribute), 106
token_count (DictionaryEntry attribute), 100
token_weights (TopicModel attribute), 110
topic_index (GetThetaMatrixArgs attribute), 117
topic_index (ThetaMatrix attribute), 111
topic_index (TopicModel attribute), 110
topic_index (TopTokensScore attribute), 107
topic_name (DecorrelatorPhiConfig attribute), 99

topic_name (GetThetaMatrixArgs attribute), 117
topic_name (GetTopicModelArgs attribute), 116
topic_name (LabelRegularizationPhiConfig attribute), 99
topic_name (ModelConfig attribute), 96
topic_name (SmoothSparsePhiConfig attribute), 98
topic_name (SmoothSparseThetaConfig attribute), 98
topic_name (SparsityPhiScoreConfig attribute), 104
topic_name (SparsityThetaScoreConfig attribute), 103
topic_name (ThetaMatrix attribute), 111
topic_name (TopicKernelScoreConfig attribute), 108
topic_name (TopicModel attribute), 110
topic_name (TopTokensScore attribute), 107
topic_name (TopTokensScoreConfig attribute), 106
topic_names (artm.ARTM attribute), 29
TopicKernelScore (class in artm), 44
TopicKernelScoreTracker (class in artm.score_tracker),

47
TopicMassPhiScore (class in artm), 45
TopicMassPhiScoreTracker (class in artm.score_tracker),

48
topics_count (ModelConfig attribute), 96
topics_count (ThetaMatrix attribute), 111
topics_count (TopicModel attribute), 110
TopicSegmentationPtdwRegularizer (class in artm), 43
TopicSelectionThetaRegularizer (class in artm), 42
TopTokensScore (class in artm), 44
TopTokensScoreTracker (class in artm.score_tracker), 46
total_items_count (DictionaryConfig attribute), 100
total_token_count (DictionaryConfig attribute), 100
total_tokens (SparsityPhiScore attribute), 105
total_topics (SparsityThetaScore attribute), 104
transform() (artm.ARTM method), 29
transform() (artm.hARTM method), 36
transform() (artm.LDA method), 32
transform() (artm.MasterComponent method), 54
transform_sparse() (artm.ARTM method), 30
type (RegularizerConfig attribute), 97
type (ScoreConfig attribute), 101
type (ScoreData attribute), 102
type (Stream attribute), 94

U
use_new_tokens (ModelConfig attribute), 97
use_random_theta (ModelConfig attribute), 96
use_sparse_bow (ModelConfig attribute), 96
use_sparse_format (GetThetaMatrixArgs attribute), 118
use_sparse_format (GetTopicModelArgs attribute), 117
use_unity_based_indices (CollectionParserConfig at-

tribute), 114

V
value (DictionaryEntry attribute), 100
value (ItemsProcessedScore attribute), 105
value (PerplexityScore attribute), 103

Index 133

BigARTM Documentation, Release 1.0

value (SparsityPhiScore attribute), 105
value (SparsityThetaScore attribute), 104
values (ThetaSnippetScore attribute), 107
vocab_file_path (CollectionParserConfig attribute), 114

W
weight (TopTokensScore attribute), 106
weights (artm.BatchVectorizer attribute), 37

Z
zero_tokens (SparsityPhiScore attribute), 105
zero_topics (SparsityThetaScore attribute), 104
zero_words (PerplexityScore attribute), 103

134 Index

	Introduction
	Downloads
	Formats
	Installation
	Installation for Windows users
	Installation for Linux and Mac OS-X users

	Tutorial references
	BigARTM command line utility
	Running BigARTM from Python API
	Low-level API in C

	Python Interface
	ARTM model
	LDA model
	hARTM
	Batches Utils
	Dictionary
	Regularizers
	Scores
	Score Tracker
	Master Component

	Release Notes
	Changes in Python API
	Changes in Protobuf Messages
	Changes in BigARTM CLI
	Changes in c_interface
	BigARTM v0.7.X Release Notes

	BigARTM Developer's Guide
	Downloads (Windows)
	Source code
	Build C++ code on Windows
	Python code on Windows
	Compiling .proto files on Windows
	Working with iPython notebooks remotely
	Build C++ code on Linux
	Code style

	Legacy documentation pages
	Basic BigARTM tutorial for Linux and Mac OS-X users
	Basic BigARTM tutorial for Windows users
	Enabling Basic BigARTM Regularizers
	BigARTM as a Service
	BigARTM: The Algorithm Under The Hood
	Messages
	C++ interface
	Windows distribution

	Python Module Index

