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bert-as-service is a sentence encoding service for mapping a variable-length sentence to a fixed-length vector.
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CHAPTER 1

Installation

The best way to install the bert-as-service is via pip. Note that the server and client can be installed separately
or even on different machines:

pip install -U bert-serving-server bert-serving-client

Note: The server MUST be running on Python >= 3.5 with Tensorflow >= 1.10 (one-point-ten). Again, the server
does not support Python 2!

Note: The client can be running on both Python 2 and 3.
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CHAPTER 2

Table of Content

2.1 What is it

• Preliminary

• Highlights

2.1.1 Preliminary

BERT is a NLP model developed by Google for pre-training language representations. It leverages an enormous
amount of plain text data publicly available on the web and is trained in an unsupervised manner. Pre-training a BERT
model is a fairly expensive yet one-time procedure for each language. Fortunately, Google released several pre-trained
models where you can download from here.

Sentence Encoding/Embedding is a upstream task required in many NLP applications, e.g. sentiment analysis, text
classification. The goal is to represent a variable length sentence into a fixed length vector, e.g. hello world to [0.1,
0.3, 0.9]. Each element of the vector should “encode” some semantics of the original sentence.

Finally, bert-as-service uses BERT as a sentence encoder and hosts it as a service via ZeroMQ, allowing you
to map sentences into fixed-length representations in just two lines of code.

2.1.2 Highlights

• State-of-the-art: build on pretrained 12/24-layer BERT models released by Google AI, which is considered as a
milestone in the NLP community.

• Easy-to-use: require only two lines of code to get sentence/token-level encodes.

• Fast: 900 sentences/s on a single Tesla M40 24GB. Low latency, optimized for speed. See benchmark.
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• Scalable: scale nicely and smoothly on multiple GPUs and multiple clients without worrying about concurrency.
See benchmark.

More features: asynchronous encoding, multicasting, mix GPU & CPU workloads, graph optimization, tf.data friendly,
customized tokenizer, pooling strategy and layer, XLA support etc.

2.2 Getting Start

• Installation

• Download a Pre-trained BERT Model

• Start the BERT service

– Start the Bert service in a docker container

• Use Client to Get Sentence Encodes

– Use BERT Service Remotely

2.2.1 Installation

The best way to install the bert-as-service is via pip. Note that the server and client can be installed separately
or even on different machines:

pip install -U bert-serving-server bert-serving-client

Warning: The server MUST be running on Python >= 3.5 with Tensorflow >= 1.10 (one-point-ten). Again, the
server does not support Python 2!

Note: The client can be running on both Python 2 and 3.

2.2.2 Download a Pre-trained BERT Model

Download a model listed below, then uncompress the zip file into some folder, say /tmp/
english_L-12_H-768_A-12/

List of pretrained BERT models released by Google AI:
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BERT-Base, Uncased 12-layer, 768-hidden, 12-heads, 110M parameters
BERT-Large, Uncased 24-layer, 1024-hidden, 16-heads, 340M parameters
BERT-Base, Cased 12-layer, 768-hidden, 12-heads , 110M parameters
BERT-Large, Cased 24-layer, 1024-hidden, 16-heads, 340M parameters
BERT-Base, Multilingual Cased
(New)

104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters

BERT-Base, Multilingual Cased
(Old)

102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters

BERT-Base, Chinese Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M
parameters

Note: As an optional step, you can also fine-tune the model on your downstream task.

2.2.3 Start the BERT service

After installing the server, you should be able to use bert-serving-start CLI as follows:

bert-serving-start -model_dir /tmp/english_L-12_H-768_A-12/ -num_worker=4

This will start a service with four workers, meaning that it can handle up to four concurrent requests. More concurrent
requests will be queued in a load balancer.

Below shows what the server looks like when starting correctly:

Start the Bert service in a docker container

Alternatively, one can start the BERT Service in a Docker Container:

docker build -t bert-as-service -f ./docker/Dockerfile .
NUM_WORKER=1
PATH_MODEL=/PATH_TO/_YOUR_MODEL/
docker run --runtime nvidia -dit -p 5555:5555 -p 5556:5556 -v $PATH_MODEL:/model -t
→˓bert-as-service $NUM_WORKER

2.2.4 Use Client to Get Sentence Encodes

Now you can encode sentences simply as follows:

from bert_serving.client import BertClient
bc = BertClient()
bc.encode(['First do it', 'then do it right', 'then do it better'])

It will return a ndarray, in which each row is the fixed representation of a sentence. You can also let it return a pure
python object with type List[List[float]].

As a feature of BERT, you may get encodes of a pair of sentences by concatenating them with |||, e.g.

bc.encode(['First do it ||| then do it right'])

2.2. Getting Start 7
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Below shows what the server looks like while encoding:

Use BERT Service Remotely

One may also start the service on one (GPU) machine and call it from another (CPU) machine as follows:

# on another CPU machine
from bert_serving.client import BertClient
bc = BertClient(ip='xx.xx.xx.xx') # ip address of the GPU machine
bc.encode(['First do it', 'then do it right', 'then do it better'])

Note: You only need pip install -U bert-serving-client in this case, the server side is not required.

Want to learn more? Checkout our tutorials below:

2.3 Tutorials

The full list of examples can be found in here. You can run each via python example/example-k.py. Most
of examples require you to start a BertServer first.

Note: Although BertClient works universally on both Python 2.x and 3.x, examples are only tested on Python
3.6.

2.3.1 Building a QA semantic search engine in 3 minutes

Note: The complete example can be found example8.py.

As the first example, we will implement a simple QA search engine using bert-as-service in just three minutes.
No kidding! The goal is to find similar questions to user’s input and return the corresponding answer. To start, we
need a list of question-answer pairs. Fortunately, this README file already contains a list of FAQ, so I will just use
that to make this example perfectly self-contained. Let’s first load all questions and show some statistics.

prefix_q = '##### **Q:** '
with open('README.md') as fp:

questions = [v.replace(prefix_q, '').strip() for v in fp if v.strip() and v.
→˓startswith(prefix_q)]

print('%d questions loaded, avg. len of %d' % (len(questions), np.mean([len(d.
→˓split()) for d in questions])))

This gives 33 questions loaded, avg. len of 9. So looks like we have enough questions. Now start a
BertServer with uncased_L-12_H-768_A-12 pretrained BERT model:

bert-serving-start -num_worker=1 -model_dir=/data/cips/data/lab/data/model/uncased_L-
→˓12_H-768_A-12

Next, we need to encode our questions into vectors:

8 Chapter 2. Table of Content
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bc = BertClient(port=4000, port_out=4001)
doc_vecs = bc.encode(questions)

Finally, we are ready to receive new query and perform a simple “fuzzy” search against the existing questions. To do
that, every time a new query is coming, we encode it as a vector and compute its dot product with doc_vecs; sort
the result descendingly; and return the top-k similar questions as follows:

while True:
query = input('your question: ')
query_vec = bc.encode([query])[0]
# compute normalized dot product as score
score = np.sum(query_vec * doc_vecs, axis=1) / np.linalg.norm(doc_vecs, axis=1)
topk_idx = np.argsort(score)[::-1][:topk]
for idx in topk_idx:

print('> %s\t%s' % (score[idx], questions[idx]))

That’s it! Now run the code and type your query, see how this search engine handles fuzzy match:

2.3.2 Serving a fine-tuned BERT model

Pretrained BERT models often show quite “okayish” performance on many tasks. However, to release the true power
of BERT a fine-tuning on the downstream task (or on domain-specific data) is necessary. In this example, I will show
you how to serve a fine-tuned BERT model.

We follow the instruction in “Sentence (and sentence-pair) classification tasks” and use run_classifier.py
to fine tune uncased_L-12_H-768_A-12 model on MRPC task. The fine-tuned model is stored at /tmp/
mrpc_output/, which can be changed by specifying --output_dir of run_classifier.py.

If you look into /tmp/mrpc_output/, it contains something like:

checkpoint 128
eval 4.0K
eval_results.txt 86
eval.tf_record 219K
events.out.tfevents.1545202214.TENCENT64.site 6.1M
events.out.tfevents.1545203242.TENCENT64.site 14M
graph.pbtxt 9.0M
model.ckpt-0.data-00000-of-00001 1.3G
model.ckpt-0.index 23K
model.ckpt-0.meta 3.9M
model.ckpt-343.data-00000-of-00001 1.3G
model.ckpt-343.index 23K
model.ckpt-343.meta 3.9M
train.tf_record 2.0M

Don’t be afraid of those mysterious files, as the only important one to us is model.ckpt-343.
data-00000-of-00001 (looks like my training stops at the 343 step. One may get model.ckpt-123.
data-00000-of-00001 or model.ckpt-9876.data-00000-of-00001 depending on the total training
steps). Now we have collected all three pieces of information that are needed for serving this fine-tuned model:

• The pretrained model is downloaded to /path/to/bert/uncased_L-12_H-768_A-12

• Our fine-tuned model is stored at /tmp/mrpc_output/;

• Our fine-tuned model checkpoint is named as model.ckpt-343 something something.

2.3. Tutorials 9
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Now start a BertServer by putting three pieces together:

bert-serving-start -model_dir=/pretrained/uncased_L-12_H-768_A-12 -tuned_model_dir=/
→˓tmp/mrpc_output/ -ckpt_name=model.ckpt-343

After the server started, you should find this line in the log:

I:GRAPHOPT:[gra:opt: 50]:checkpoint (override by fine-tuned model): /tmp/mrpc_output/
→˓model.ckpt-343

Which means the BERT parameters is overrode and successfully loaded from our fine-tuned /tmp/mrpc_output/
model.ckpt-343. Done!

In short, find your fine-tuned model path and checkpoint name, then feed them to -tuned_model_dir and
-ckpt_name, respectively.

2.3.3 Getting ELMo-like contextual word embedding

Start the server with pooling_strategy set to NONE.

bert-serving-start -pooling_strategy NONE -model_dir /tmp/english_L-12_H-768_A-12/

To get the word embedding corresponds to every token, you can simply use slice index as follows:

# max_seq_len = 25
# pooling_strategy = NONE

bc = BertClient()
vec = bc.encode(['hey you', 'whats up?'])

vec # [2, 25, 768]
vec[0] # [1, 25, 768], sentence embeddings for `hey you`
vec[0][0] # [1, 1, 768], word embedding for `[CLS]`
vec[0][1] # [1, 1, 768], word embedding for `hey`
vec[0][2] # [1, 1, 768], word embedding for `you`
vec[0][3] # [1, 1, 768], word embedding for `[SEP]`
vec[0][4] # [1, 1, 768], word embedding for padding symbol
vec[0][25] # error, out of index!

Note that no matter how long your original sequence is, the service will always return a [max_seq_len, 768]
matrix for every sequence. When using slice index to get the word embedding, beware of the special tokens padded to
the sequence, i.e. [CLS], [SEP], 0_PAD.

2.3.4 Using your own tokenizer

Often you want to use your own tokenizer to segment sentences instead of the default one from BERT. Simply call
encode(is_tokenized=True) on the client slide as follows:

texts = ['hello world!', 'good day']

# a naive whitespace tokenizer
texts2 = [s.split() for s in texts]

vecs = bc.encode(texts2, is_tokenized=True)
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This gives [2, 25, 768] tensor where the first [1, 25, 768] corresponds to the token-level encoding of “hello
world!”. If you look into its values, you will find that only the first four elements, i.e. [1, 0:3, 768] have values,
all the others are zeros. This is due to the fact that BERT considers “hello world!” as four tokens: [CLS] hello
world! [SEP], the rest are padding symbols and are masked out before output.

Note: There is no need to start a separate server for handling tokenized/untokenized sentences. The server can tell
and handle both cases automatically.

Warning: The pretrained BERT Chinese from Google is character-based, i.e. its vocabulary is made of single
Chinese characters. Therefore it makes no sense if you use word-level segmentation algorithm to pre-process the
data and feed to such model.

2.3.5 Using BertClient with tf.data API

Note: The complete example can be found example4.py. There is also an example in Keras.

The tf.data API enables you to build complex input pipelines from simple, reusable pieces. One can also use
BertClient to encode sentences on-the-fly and use the vectors in a downstream model. Here is an example:

batch_size = 256
num_parallel_calls = 4

# start a thead-safe client to support num_parallel_calls in tf.data API
bc = ConcurrentBertClient(num_parallel_calls)

def get_encodes(x):
# x is `batch_size` of lines, each of which is a json object
samples = [json.loads(l) for l in x]
text = [s['raw_text'] for s in samples] # List[List[str]]
labels = [s['label'] for s in samples] # List[str]
features = bc.encode(text)
return features, labels

ds = (tf.data.TextLineDataset(train_fp).batch(batch_size)
.map(lambda x: tf.py_func(get_encodes, [x], [tf.float32, tf.string]), num_

→˓parallel_calls=num_parallel_calls)
.map(lambda x, y: {'feature': x, 'label': y})
.make_one_shot_iterator().get_next())

The trick here is to start a pool of BertClient and reuse them one by one. In this way, we can fully harness the
power of num_parallel_calls in Dataset.map() API.

2.3.6 Training a text classifier using BERT features and tf.estimator API

Note: The complete example can be found example5.py, in which a simple MLP is built on BERT features for
predicting the relevant articles according to the fact description in the law documents. The problem is a part of the

2.3. Tutorials 11
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Chinese AI and Law Challenge Competition.

Following the last example, we can easily extend it to a full classifier using tf.estimator API. One only need
minor change on the input function as follows:

estimator = DNNClassifier(
hidden_units=[512],
feature_columns=[tf.feature_column.numeric_column('feature', shape=(768,))],
n_classes=len(laws),
config=run_config,
label_vocabulary=laws_str,
dropout=0.1)

input_fn = lambda fp: (tf.data.TextLineDataset(fp)
.apply(tf.contrib.data.shuffle_and_repeat(buffer_size=10000))
.batch(batch_size)
.map(lambda x: tf.py_func(get_encodes, [x], [tf.float32, tf.

→˓string]), num_parallel_calls=num_parallel_calls)
.map(lambda x, y: ({'feature': x}, y))
.prefetch(20))

train_spec = TrainSpec(input_fn=lambda: input_fn(train_fp))
eval_spec = EvalSpec(input_fn=lambda: input_fn(eval_fp), throttle_secs=0)
train_and_evaluate(estimator, train_spec, eval_spec)

2.3.7 Saving and loading with TFRecord data

Note: The complete example can be found example6.py.

The TFRecord file format is a simple record-oriented binary format that many TensorFlow applications use for training
data. You can also pre-encode all your sequences and store their encodings to a TFRecord file, then later load it to
build a tf.Dataset. For example, to write encoding into a TFRecord file:

bc = BertClient()
list_vec = bc.encode(lst_str)
list_label = [0 for _ in lst_str] # a dummy list of all-zero labels

# write to tfrecord
with tf.python_io.TFRecordWriter('tmp.tfrecord') as writer:

def create_float_feature(values):
return tf.train.Feature(float_list=tf.train.FloatList(value=values))

def create_int_feature(values):
return tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))

for (vec, label) in zip(list_vec, list_label):
features = {'features': create_float_feature(vec), 'labels': create_int_

→˓feature([label])}
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())

Now we can load from it and build a tf.Dataset:

12 Chapter 2. Table of Content
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def _decode_record(record):
"""Decodes a record to a TensorFlow example."""
return tf.parse_single_example(record, {

'features': tf.FixedLenFeature([768], tf.float32),
'labels': tf.FixedLenFeature([], tf.int64),

})

ds = (tf.data.TFRecordDataset('tmp.tfrecord').repeat().shuffle(buffer_size=100).apply(
tf.contrib.data.map_and_batch(lambda record: _decode_record(record), batch_

→˓size=64))
.make_one_shot_iterator().get_next())

To save word/token-level embedding to TFRecord, one needs to first flatten [max_seq_len, num_hidden]
tensor into an 1D array as follows:

def create_float_feature(values):
return tf.train.Feature(float_list=tf.train.FloatList(value=values.reshape(-1)))

And later reconstruct the shape when loading it:

name_to_features = {
"feature": tf.FixedLenFeature([max_seq_length * num_hidden], tf.float32),
"label_ids": tf.FixedLenFeature([], tf.int64),

}

def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
example['feature'] = tf.reshape(example['feature'], [max_seq_length, -1])
return example

Be careful, this will generate a huge TFRecord file.

2.3.8 Asynchronous encoding

Note: The complete example can be found example2.py.

BertClient.encode() offers a nice synchronous way to get sentence encodes. However, sometimes we want to
do it in an asynchronous manner by feeding all textual data to the server first, fetching the encoded results later. This
can be easily done by:

# an endless data stream, generating data in an extremely fast speed
def text_gen():

while True:
yield lst_str # yield a batch of text lines

bc = BertClient()

# get encoded vectors
for j in bc.encode_async(text_gen(), max_num_batch=10):

print('received %d x %d' % (j.shape[0], j.shape[1]))

2.3. Tutorials 13
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2.3.9 Broadcasting to multiple clients

Note: The complete example can be found example3.py.

The encoded result is routed to the client according to its identity. If you have multiple clients with same identity, then
they all receive the results! You can use this multicast feature to do some cool things, e.g. training multiple different
models (some using scikit-learn some using tensorflow) in multiple separated processes while only call
BertServer once. In the example below, bc and its two clones will all receive encoded vector.

# clone a client by reusing the identity
def client_clone(id, idx):

bc = BertClient(identity=id)
for j in bc.listen():

print('clone-client-%d: received %d x %d' % (idx, j.shape[0], j.shape[1]))

bc = BertClient()
# start two cloned clients sharing the same identity as bc
for j in range(2):

threading.Thread(target=client_clone, args=(bc.identity, j)).start()

for _ in range(3):
bc.encode(lst_str)

2.3.10 Monitoring the service status in a dashboard

Note: The complete example can be found in plugin/dashboard/.

As a part of the infrastructure, one may also want to monitor the service status and show it in a dashboard. To do that,
we can use:

bc = BertClient(ip='server_ip')

json.dumps(bc.server_status, ensure_ascii=False)

This gives the current status of the server including number of requests, number of clients, etc. in JSON format. The
only thing remained is to start a HTTP server for returning this JSON to the frontend that renders it.

plugin/dashboard/index.html shows a simple dashboard based on Bootstrap and Vue.js.
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2.3.11 Using bert-as-service to serve HTTP requests in JSON

Besides calling bert-as-service from Python, one can also call it via HTTP request in JSON. It is quite useful
especially when low transport layer is prohibited. Behind the scene, bert-as-service spawns a Flask server in a
separate process and then reuse a BertClient instance as a proxy to communicate with the ventilator.

To enable this feature, we need to first install some Python dependencies:

pip install -U bert-serving-client flask flask-compress flask-cors flask-json

Then simply start the server with:

bert-serving-start -model_dir=/YOUR_MODEL -http_port 8125

Your server is now listening HTTP and TCP requests at port 8125 simultaneously!

To send a HTTP request, first package payload in JSON as following:

{
"id": 123,
"texts": ["hello world", "good day!"],
"is_tokenized": false

}

, where id is a unique identifier helping you to synchronize the results; is_tokenized follows the meaning in
`BertClient API‘_ and false by default.

Then simply call the server via HTTP POST request. You can use javascript or whatever, here is an example using
curl:

curl -X POST http://xx.xx.xx.xx:8125/encode \
-H 'content-type: application/json' \
-d '{"id": 123,"texts": ["hello world"], "is_tokenized": false}'

2.3. Tutorials 15
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, which returns a JSON:

{
"id": 123,
"results": [[768 float-list], [768 float-list]],
"status": 200

}

To get the server’s status and client’s status, you can send GET requests at /status/server and /status/
client, respectively.

Finally, one may also config CORS to restrict the public access of the server by specifying -cors when starting
bert-serving-start. By default -cors=*, meaning the server is public accessible.

2.4 Using BertClient

• Installation

• Client-side API

2.4.1 Installation

The best way to install the client is via pip. Note that the client can be installed separately from BertServer or even on
a different machine:

pip install bert-serving-client

Note: The client can be running on both Python 2 and 3.

2.4.2 Client-side API

class client.BertClient(ip=’localhost’, port=5555, port_out=5556, output_fmt=’ndarray’,
show_server_config=False, identity=None, check_version=True,
check_length=True, check_token_info=True, ignore_all_checks=False,
timeout=-1)

Bases: object

A client object connected to a BertServer

Create a BertClient that connects to a BertServer. Note, server must be ready at the moment you are calling this
function. If you are not sure whether the server is ready, then please set ignore_all_checks=True

You can also use it as a context manager:

with BertClient() as bc:
bc.encode(...)

# bc is automatically closed out of the context

Parameters
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• ip (str) – the ip address of the server

• port (int) – port for pushing data from client to server, must be consistent with the server
side config

• port_out (int) – port for publishing results from server to client, must be consistent
with the server side config

• output_fmt (str) – the output format of the sentence encodes, either in numpy array or
python List[List[float]] (ndarray/list)

• show_server_config (bool) – whether to show server configs when first connected

• identity (str) – the UUID of this client

• check_version (bool) – check if server has the same version as client, raise Attribu-
teError if not the same

• check_length (bool) – check if server max_seq_len is less than the sentence length
before sent

• check_token_info (bool) – check if server can return tokenization

• ignore_all_checks (bool) – ignore all checks, set it to True if you are not sure
whether the server is ready when constructing BertClient()

• timeout (int) – set the timeout (milliseconds) for receive operation on the client, -1
means no timeout and wait until result returns

close()
Gently close all connections of the client. If you are using BertClient as context manager, then this is not
necessary.

encode(texts, blocking=True, is_tokenized=False, show_tokens=False)
Encode a list of strings to a list of vectors

texts should be a list of strings, each of which represents a sentence. If is_tokenized is set to True, then
texts should be list[list[str]], outer list represents sentence and inner list represent tokens in the sentence.
Note that if blocking is set to False, then you need to fetch the result manually afterwards.

with BertClient() as bc:
# encode untokenized sentences
bc.encode(['First do it',

'then do it right',
'then do it better'])

# encode tokenized sentences
bc.encode([['First', 'do', 'it'],

['then', 'do', 'it', 'right'],
['then', 'do', 'it', 'better']], is_tokenized=True)

Parameters

• is_tokenized (bool) – whether the input texts is already tokenized

• show_tokens (bool) – whether to include tokenization result from the server. If true,
the return of the function will be a tuple

• texts (list[str] or list[list[str]]) – list of sentence to be encoded.
Larger list for better efficiency.
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• blocking (bool) – wait until the encoded result is returned from the server. If false,
will immediately return.

• timeout (bool) – throw a timeout error when the encoding takes longer than the pre-
defined timeout.

Returns encoded sentence/token-level embeddings, rows correspond to sentences

Return type numpy.ndarray or list[list[float]]

encode_async(batch_generator, max_num_batch=None, delay=0.1, **kwargs)
Async encode batches from a generator

Parameters

• delay – delay in seconds and then run fetcher

• batch_generator – a generator that yields list[str] or list[list[str]] (for
is_tokenized=True) every time

• max_num_batch – stop after encoding this number of batches

• **kwargs – the rest parameters please refer to encode()

Returns a generator that yields encoded vectors in ndarray, where the request id can be used to
determine the order

Return type Iterator[tuple(int, numpy.ndarray)]

fetch(delay=0.0)
Fetch the encoded vectors from server, use it with encode(blocking=False)

Use it after encode(texts, blocking=False). If there is no pending requests, will return None. Note that
fetch() does not preserve the order of the requests! Say you have two non-blocking requests, R1 and R2,
where R1 with 256 samples, R2 with 1 samples. It could be that R2 returns first.

To fetch all results in the original sending order, please use fetch_all(sort=True)

Parameters delay (float) – delay in seconds and then run fetcher

Returns a generator that yields request id and encoded vector in a tuple, where the request id
can be used to determine the order

Return type Iterator[tuple(int, numpy.ndarray)]

fetch_all(sort=True, concat=False)
Fetch all encoded vectors from server, use it with encode(blocking=False)

Use it encode(texts, blocking=False). If there is no pending requests, it will return None.

Parameters

• sort (bool) – sort results by their request ids. It should be True if you want to preserve
the sending order

• concat (bool) – concatenate all results into one ndarray

Returns encoded sentence/token-level embeddings in sending order

Return type numpy.ndarray or list[list[float]]

server_config

Get the current configuration of the server connected to this client

Returns a dictionary contains the current configuration of the server connected to this client
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Return type dict[str, str]

server_status

Get the current status of the server connected to this client

Returns a dictionary contains the current status of the server connected to this client

Return type dict[str, str]

status

Get the status of this BertClient instance

Return type dict[str, str]

Returns a dictionary contains the status of this BertClient instance

class client.ConcurrentBertClient(max_concurrency=10, **kwargs)
Bases: client.BertClient

A thread-safe client object connected to a BertServer

Create a BertClient that connects to a BertServer. Note, server must be ready at the moment you are call-
ing this function. If you are not sure whether the server is ready, then please set check_version=False and
check_length=False

Parameters max_concurrency (int) – the maximum number of concurrent connections al-
lowed

close()
Gently close all connections of the client. If you are using BertClient as context manager, then this is not
necessary.

encode(**kwargs)
Encode a list of strings to a list of vectors

texts should be a list of strings, each of which represents a sentence. If is_tokenized is set to True, then
texts should be list[list[str]], outer list represents sentence and inner list represent tokens in the sentence.
Note that if blocking is set to False, then you need to fetch the result manually afterwards.

with BertClient() as bc:
# encode untokenized sentences
bc.encode(['First do it',

'then do it right',
'then do it better'])

# encode tokenized sentences
bc.encode([['First', 'do', 'it'],

['then', 'do', 'it', 'right'],
['then', 'do', 'it', 'better']], is_tokenized=True)

Parameters

• is_tokenized (bool) – whether the input texts is already tokenized

• show_tokens (bool) – whether to include tokenization result from the server. If true,
the return of the function will be a tuple

• texts (list[str] or list[list[str]]) – list of sentence to be encoded.
Larger list for better efficiency.

2.4. Using BertClient 19



bert-as-service Documentation, Release 1.6.1

• blocking (bool) – wait until the encoded result is returned from the server. If false,
will immediately return.

• timeout (bool) – throw a timeout error when the encoding takes longer than the pre-
defined timeout.

Returns encoded sentence/token-level embeddings, rows correspond to sentences

Return type numpy.ndarray or list[list[float]]

encode_async(**kwargs)
Async encode batches from a generator

Parameters

• delay – delay in seconds and then run fetcher

• batch_generator – a generator that yields list[str] or list[list[str]] (for
is_tokenized=True) every time

• max_num_batch – stop after encoding this number of batches

• **kwargs – the rest parameters please refer to encode()

Returns a generator that yields encoded vectors in ndarray, where the request id can be used to
determine the order

Return type Iterator[tuple(int, numpy.ndarray)]

fetch(**kwargs)
Fetch the encoded vectors from server, use it with encode(blocking=False)

Use it after encode(texts, blocking=False). If there is no pending requests, will return None. Note that
fetch() does not preserve the order of the requests! Say you have two non-blocking requests, R1 and R2,
where R1 with 256 samples, R2 with 1 samples. It could be that R2 returns first.

To fetch all results in the original sending order, please use fetch_all(sort=True)

Parameters delay (float) – delay in seconds and then run fetcher

Returns a generator that yields request id and encoded vector in a tuple, where the request id
can be used to determine the order

Return type Iterator[tuple(int, numpy.ndarray)]

fetch_all(**kwargs)
Fetch all encoded vectors from server, use it with encode(blocking=False)

Use it encode(texts, blocking=False). If there is no pending requests, it will return None.

Parameters

• sort (bool) – sort results by their request ids. It should be True if you want to preserve
the sending order

• concat (bool) – concatenate all results into one ndarray

Returns encoded sentence/token-level embeddings in sending order

Return type numpy.ndarray or list[list[float]]

server_config
Get the current configuration of the server connected to this client

Returns a dictionary contains the current configuration of the server connected to this client

Return type dict[str, str]

20 Chapter 2. Table of Content



bert-as-service Documentation, Release 1.6.1

server_status
Get the current status of the server connected to this client

Returns a dictionary contains the current status of the server connected to this client

Return type dict[str, str]

status
Get the status of this BertClient instance

Return type dict[str, str]

Returns a dictionary contains the status of this BertClient instance

2.5 Using BertServer

• Installation

• Command Line Interface

• Server-side API

– Named Arguments

– File Paths

– BERT Parameters

– Serving Configs

• Server-side Benchmark

– Named Arguments

– File Paths

– BERT Parameters

– Serving Configs

– Benchmark parameters

2.5.1 Installation

The best way to install the server is via pip. Note that the server can be installed separately from BertClient or even on
a different machine:

pip install bert-serving-server

Warning: The server MUST be running on Python >= 3.5 with Tensorflow >= 1.10 (one-point-ten). Again, the
server does not support Python 2!

2.5.2 Command Line Interface

Once installed, you can use the command line interface to start a bert server:
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bert-serving-server -model_dir /uncased_bert_model -num_worker 4

2.5.3 Server-side API

Server-side is a CLI bert-serving-start, you can get the latest usage via:

bert-serving-start --help

Start a BertServer for serving

usage: bert-serving-server [-h] -model_dir MODEL_DIR
[-tuned_model_dir TUNED_MODEL_DIR]
[-ckpt_name CKPT_NAME] [-config_name CONFIG_NAME]
[-graph_tmp_dir GRAPH_TMP_DIR]
[-max_seq_len MAX_SEQ_LEN] [-cased_tokenization]
[-pooling_layer POOLING_LAYER [POOLING_LAYER ...]]
[-pooling_strategy {NONE,REDUCE_MAX,REDUCE_MEAN,REDUCE_

→˓MEAN_MAX,FIRST_TOKEN,LAST_TOKEN,CLS_POOLED}]
[-mask_cls_sep] [-no_special_token]
[-show_tokens_to_client] [-no_position_embeddings]
[-port PORT] [-port_out PORT_OUT]
[-http_port HTTP_PORT]
[-http_max_connect HTTP_MAX_CONNECT] [-cors CORS]
[-num_worker NUM_WORKER]
[-max_batch_size MAX_BATCH_SIZE]
[-priority_batch_size PRIORITY_BATCH_SIZE] [-cpu]
[-xla] [-fp16]
[-gpu_memory_fraction GPU_MEMORY_FRACTION]
[-device_map DEVICE_MAP [DEVICE_MAP ...]]
[-prefetch_size PREFETCH_SIZE]
[-fixed_embed_length] [-verbose] [-version]

Named Arguments

-verbose turn on tensorflow logging for debug

Default: False

-version show program’s version number and exit

File Paths

config the path, checkpoint and filename of a pretrained/fine-tuned BERT model

-model_dir directory of a pretrained BERT model

-tuned_model_dir directory of a fine-tuned BERT model

-ckpt_name filename of the checkpoint file. By default it is “bert_model.ckpt”, but for a fine-
tuned model the name could be different.

Default: “bert_model.ckpt”

-config_name filename of the JSON config file for BERT model.

Default: “bert_config.json”
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-graph_tmp_dir path to graph temp file

BERT Parameters

config how BERT model and pooling works

-max_seq_len maximum length of a sequence, longer sequence will be trimmed on the right
side. set it to NONE for dynamically using the longest sequence in a (mini)batch.

Default: 25

-cased_tokenization Whether tokenizer should skip the default lowercasing and accent re-
moval.Should be used for e.g. the multilingual cased pretrained BERT model.

Default: True

-pooling_layer the encoder layer(s) that receives pooling. Give a list in order to concatenate
several layers into one

Default: [-2]

-pooling_strategy Possible choices: NONE, REDUCE_MAX, REDUCE_MEAN, RE-
DUCE_MEAN_MAX, FIRST_TOKEN, LAST_TOKEN, CLS_POOLED

the pooling strategy for generating encoding vectors

Default: REDUCE_MEAN

-mask_cls_sep masking the embedding on [CLS] and [SEP] with zero. When pooling_strategy
is in {CLS_TOKEN, FIRST_TOKEN, SEP_TOKEN, LAST_TOKEN} then the
embedding is preserved, otherwise the embedding is masked to zero before pool-
ing

Default: False

-no_special_token add [CLS] and [SEP] in every sequence, put sequence to the model without [CLS]
and [SEP] when True and is_tokenized=True in Client

Default: False

-show_tokens_to_client sending tokenization results to client

Default: False

-no_position_embeddings Whether to add position embeddings for the position of each token in the
sequence.

Default: False

Serving Configs

config how server utilizes GPU/CPU resources

-port, -port_in, -port_data server port for receiving data from client

Default: 5555

-port_out, -port_result server port for sending result to client

Default: 5556

-http_port server port for receiving HTTP requests
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-http_max_connect maximum number of concurrent HTTP connections

Default: 10

-cors setting “Access-Control-Allow-Origin” for HTTP requests

Default: “*”

-num_worker number of server instances

Default: 1

-max_batch_size maximum number of sequences handled by each worker

Default: 256

-priority_batch_size batch smaller than this size will be labeled as high priority,and jumps forward in
the job queue

Default: 16

-cpu running on CPU (default on GPU)

Default: False

-xla enable XLA compiler (experimental)

Default: False

-fp16 use float16 precision (experimental)

Default: False

-gpu_memory_fraction determine the fraction of the overall amount of memory that each visible GPU
should be allocated per worker. Should be in range [0.0, 1.0]

Default: 0.5

-device_map specify the list of GPU device ids that will be used (id starts from 0). If
num_worker > len(device_map), then device will be reused; if num_worker <
len(device_map), then device_map[:num_worker] will be used

Default: []

-prefetch_size the number of batches to prefetch on each worker. When running on a CPU-only
machine, this is set to 0 for comparability

Default: 10

-fixed_embed_length when “max_seq_len” is set to None, the server determines the “max_seq_len”
according to the actual sequence lengths within each batch. When “pool-
ing_strategy=NONE”, this may cause two “.encode()” from the same client re-
sults in different sizes [B, T, D].Turn this on to fix the “T” in [B, T, D] to
“max_position_embeddings” in bert json config.

Default: False

2.5.4 Server-side Benchmark

If you want to benchmark the speed, you may use:

bert-serving-benchmark --help

Benchmark BertServer locally
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usage: bert-serving-benchmark [-h] -model_dir MODEL_DIR
[-tuned_model_dir TUNED_MODEL_DIR]
[-ckpt_name CKPT_NAME]
[-config_name CONFIG_NAME]
[-graph_tmp_dir GRAPH_TMP_DIR]
[-max_seq_len MAX_SEQ_LEN] [-cased_tokenization]
[-pooling_layer POOLING_LAYER [POOLING_LAYER ...]]
[-pooling_strategy {NONE,REDUCE_MAX,REDUCE_MEAN,REDUCE_

→˓MEAN_MAX,FIRST_TOKEN,LAST_TOKEN,CLS_POOLED}]
[-mask_cls_sep] [-no_special_token]
[-show_tokens_to_client]
[-no_position_embeddings] [-port PORT]
[-port_out PORT_OUT] [-http_port HTTP_PORT]
[-http_max_connect HTTP_MAX_CONNECT]
[-cors CORS] [-num_worker NUM_WORKER]
[-max_batch_size MAX_BATCH_SIZE]
[-priority_batch_size PRIORITY_BATCH_SIZE]
[-cpu] [-xla] [-fp16]
[-gpu_memory_fraction GPU_MEMORY_FRACTION]
[-device_map DEVICE_MAP [DEVICE_MAP ...]]
[-prefetch_size PREFETCH_SIZE]
[-fixed_embed_length] [-verbose] [-version]
[-test_client_batch_size [TEST_CLIENT_BATCH_SIZE [TEST_

→˓CLIENT_BATCH_SIZE ...]]]
[-test_max_batch_size [TEST_MAX_BATCH_SIZE [TEST_MAX_

→˓BATCH_SIZE ...]]]
[-test_max_seq_len [TEST_MAX_SEQ_LEN [TEST_MAX_SEQ_LEN .

→˓..]]]
[-test_num_client [TEST_NUM_CLIENT [TEST_NUM_CLIENT ...

→˓]]]
[-test_pooling_layer [TEST_POOLING_LAYER [TEST_POOLING_

→˓LAYER ...]]]
[-wait_till_ready WAIT_TILL_READY]
[-client_vocab_file CLIENT_VOCAB_FILE]
[-num_repeat NUM_REPEAT]

Named Arguments

-verbose turn on tensorflow logging for debug

Default: False

-version show program’s version number and exit

File Paths

config the path, checkpoint and filename of a pretrained/fine-tuned BERT model

-model_dir directory of a pretrained BERT model

-tuned_model_dir directory of a fine-tuned BERT model

-ckpt_name filename of the checkpoint file. By default it is “bert_model.ckpt”, but for a fine-
tuned model the name could be different.

Default: “bert_model.ckpt”
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-config_name filename of the JSON config file for BERT model.

Default: “bert_config.json”

-graph_tmp_dir path to graph temp file

BERT Parameters

config how BERT model and pooling works

-max_seq_len maximum length of a sequence, longer sequence will be trimmed on the right
side. set it to NONE for dynamically using the longest sequence in a (mini)batch.

Default: 25

-cased_tokenization Whether tokenizer should skip the default lowercasing and accent re-
moval.Should be used for e.g. the multilingual cased pretrained BERT model.

Default: True

-pooling_layer the encoder layer(s) that receives pooling. Give a list in order to concatenate
several layers into one

Default: [-2]

-pooling_strategy Possible choices: NONE, REDUCE_MAX, REDUCE_MEAN, RE-
DUCE_MEAN_MAX, FIRST_TOKEN, LAST_TOKEN, CLS_POOLED

the pooling strategy for generating encoding vectors

Default: REDUCE_MEAN

-mask_cls_sep masking the embedding on [CLS] and [SEP] with zero. When pooling_strategy
is in {CLS_TOKEN, FIRST_TOKEN, SEP_TOKEN, LAST_TOKEN} then the
embedding is preserved, otherwise the embedding is masked to zero before pool-
ing

Default: False

-no_special_token add [CLS] and [SEP] in every sequence, put sequence to the model without [CLS]
and [SEP] when True and is_tokenized=True in Client

Default: False

-show_tokens_to_client sending tokenization results to client

Default: False

-no_position_embeddings Whether to add position embeddings for the position of each token in the
sequence.

Default: False

Serving Configs

config how server utilizes GPU/CPU resources

-port, -port_in, -port_data server port for receiving data from client

Default: 5555

-port_out, -port_result server port for sending result to client

Default: 5556
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-http_port server port for receiving HTTP requests

-http_max_connect maximum number of concurrent HTTP connections

Default: 10

-cors setting “Access-Control-Allow-Origin” for HTTP requests

Default: “*”

-num_worker number of server instances

Default: 1

-max_batch_size maximum number of sequences handled by each worker

Default: 256

-priority_batch_size batch smaller than this size will be labeled as high priority,and jumps forward in
the job queue

Default: 16

-cpu running on CPU (default on GPU)

Default: False

-xla enable XLA compiler (experimental)

Default: False

-fp16 use float16 precision (experimental)

Default: False

-gpu_memory_fraction determine the fraction of the overall amount of memory that each visible GPU
should be allocated per worker. Should be in range [0.0, 1.0]

Default: 0.5

-device_map specify the list of GPU device ids that will be used (id starts from 0). If
num_worker > len(device_map), then device will be reused; if num_worker <
len(device_map), then device_map[:num_worker] will be used

Default: []

-prefetch_size the number of batches to prefetch on each worker. When running on a CPU-only
machine, this is set to 0 for comparability

Default: 10

-fixed_embed_length when “max_seq_len” is set to None, the server determines the “max_seq_len”
according to the actual sequence lengths within each batch. When “pool-
ing_strategy=NONE”, this may cause two “.encode()” from the same client re-
sults in different sizes [B, T, D].Turn this on to fix the “T” in [B, T, D] to
“max_position_embeddings” in bert json config.

Default: False

Benchmark parameters

config the experiments of the benchmark

-test_client_batch_size Default: [1, 16, 256, 4096]

-test_max_batch_size Default: [8, 32, 128, 512]
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-test_max_seq_len Default: [32, 64, 128, 256]

-test_num_client Default: [1, 4, 16, 64]

-test_pooling_layer Default: [[-1], [-2], [-3], [-4], [-5], [-6], [-7], [-8], [-9], [-10], [-11], [-12]]

-wait_till_ready seconds to wait until server is ready to serve

Default: 30

-client_vocab_file file path for building client vocabulary

Default: “README.md”

-num_repeat number of repeats per experiment (must >2), as the first two results are omitted
for warm-up effect

Default: 10

2.6 Frequently Asked Questions

• Where is the BERT code come from?

• How large is a sentence vector?

• How do you get the fixed representation? Did you do pooling or something?

• Are you suggesting using BERT without fine-tuning?

• Can I get a concatenation of several layers instead of a single layer ?

• What are the available pooling strategies?

• Why not use the hidden state of the first token as default strategy, i.e. the [CLS]?

• BERT has 12/24 layers, so which layer are you talking about?

• Why not the last hidden layer? Why second-to-last?

• So which layer and which pooling strategy is the best?

• Could I use other pooling techniques?

• Can I start multiple clients and send requests to one server simultaneously?

• How many requests can one service handle concurrently?

• So one request means one sentence?

• How about the speed? Is it fast enough for production?

• Did you benchmark the efficiency?

• What is backend based on?

• What is the parallel processing model behind the scene?

• Why does the server need two ports?

• Do I need Tensorflow on the client side?

• Can I use multilingual BERT model provided by Google?

• Can I use my own fine-tuned BERT model?
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• Can I run it in python 2?

• Do I need to do segmentation for Chinese?

• Why my (English) word is tokenized to ##something?

• Can I use my own tokenizer?

• I encounter zmq.error.ZMQError: Operation cannot be accomplished in current
state when using BertClient, what should I do?

• After running the server, I have several garbage tmpXXXX folders. How can I change this behavior ?

• The cosine similarity of two sentence vectors is unreasonably high (e.g. always > 0.8), what’s wrong?

• I’m getting bad performance, what should I do?

• Can I run the server side on CPU-only machine?

• How can I choose num_worker?

• Can I specify which GPU to use?

2.6.1 Where is the BERT code come from?

BERT code of this repo is forked from the original BERT repo with necessary modification, especially in ex-
tract_features.py.

2.6.2 How large is a sentence vector?

In general, each sentence is translated to a 768-dimensional vector. Depending on the pretrained BERT you are using,
pooling_strategy and pooling_layer the dimensions of the output vector could be different.

2.6.3 How do you get the fixed representation? Did you do pooling or something?

Yes, pooling is required to get a fixed representation of a sentence. In the default strategy REDUCE_MEAN, I take the
second-to-last hidden layer of all of the tokens in the sentence and do average pooling.

2.6.4 Are you suggesting using BERT without fine-tuning?

Yes and no. On the one hand, Google pretrained BERT on Wikipedia data, thus should encode enough prior knowledge
of the language into the model. Having such feature is not a bad idea. On the other hand, these prior knowledge is not
specific to any particular domain. It should be totally reasonable if the performance is not ideal if you are using it on, for
example, classifying legal cases. Nonetheless, you can always first fine-tune your own BERT on the downstream task
and then use bert-as-service to extract the feature vectors efficiently. Keep in mind that bert-as-service
is just a feature extraction service based on BERT. Nothing stops you from using a fine-tuned BERT.

2.6.5 Can I get a concatenation of several layers instead of a single layer ?

Sure! Just use a list of the layer you want to concatenate when calling the server. Example:

bert-serving-start -pooling_layer -4 -3 -2 -1 -model_dir /tmp/english_L-12_H-768_A-12/
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2.6.6 What are the available pooling strategies?

Here is a table summarizes all pooling strategies I implemented. Choose your favorite one by specifying
bert-serving-start -pooling_strategy.

Strategy Description
NONE no pooling at all, useful when you want to use word embedding instead of sentence embed-

ding. This will results in a [max_seq_len, 768] encode matrix for a sequence.
REDUCE_MEAN take the average of the hidden state of encoding layer on the time axis
REDUCE_MAX take the maximum of the hidden state of encoding layer on the time axis
REDUCE_MEAN_MAXdo REDUCE_MEAN and REDUCE_MAX separately and then concat them together on the last

axis, resulting in 1536-dim sentence encodes
CLS_TOKEN or
FIRST_TOKEN

get the hidden state corresponding to [CLS], i.e. the first token

SEP_TOKEN or
LAST_TOKEN

get the hidden state corresponding to [SEP], i.e. the last token

2.6.7 Why not use the hidden state of the first token as default strategy, i.e. the
[CLS]?

Because a pre-trained model is not fine-tuned on any downstream tasks yet. In this case, the hidden state of [CLS] is
not a good sentence representation. If later you fine-tune the model, you may use [CLS] as well.

2.6.8 BERT has 12/24 layers, so which layer are you talking about?

By default this service works on the second last layer, i.e. pooling_layer=-2. You can change it by setting
pooling_layer to other negative values, e.g. -1 corresponds to the last layer.

2.6.9 Why not the last hidden layer? Why second-to-last?

The last layer is too closed to the target functions (i.e. masked language model and next sentence prediction) during
pre-training, therefore may be biased to those targets. If you question about this argument and want to use the last
hidden layer anyway, please feel free to set pooling_layer=-1.

2.6.10 So which layer and which pooling strategy is the best?

It depends. Keep in mind that different BERT layers capture different information. To see that more clearly, here is a
visualization on UCI-News Aggregator Dataset, where I randomly sample 20K news titles; get sentence encodes from
different layers and with different pooling strategies, finally reduce it to 2D via PCA (one can of course do t-SNE as
well, but that’s not my point). There are only four classes of the data, illustrated in red, blue, yellow and green. To
reproduce the result, please run example7.py.
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Intuitively, pooling_layer=-1 is close to the training output, so it may be biased to the training targets. If you
don’t fine tune the model, then this could lead to a bad representation. pooling_layer=-12 is close to the word
embedding, may preserve the very original word information (with no fancy self-attention etc.). On the other hand,
you may achieve the very same performance by simply using a word-embedding only. That said, anything in-between
[-1, -12] is then a trade-off.

2.6.11 Could I use other pooling techniques?

For sure. But if you introduce new tf.variables to the graph, then you need to train those variables before using
the model. You may also want to check some pooling techniques I mentioned in my blog post.

2.6.12 Can I start multiple clients and send requests to one server simultaneously?

Yes! That’s the purpose of this repo. In fact you can start as many clients as you want. One server can handle all of
them (given enough time).

2.6.13 How many requests can one service handle concurrently?

The maximum number of concurrent requests is determined by num_worker in bert-serving-start. If you
a sending more than num_worker requests concurrently, the new requests will be temporally stored in a queue until
a free worker becomes available.
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2.6.14 So one request means one sentence?

No. One request means a list of sentences sent from a client. Think the size of a request as the batch size. A request
may contain 256, 512 or 1024 sentences. The optimal size of a request is often determined empirically. One large
request can certainly improve the GPU utilization, yet it also increases the overhead of transmission. You may run
python example/example1.py for a simple benchmark.

2.6.15 How about the speed? Is it fast enough for production?

It highly depends on the max_seq_len and the size of a request. On a single Tesla M40 24GB with
max_seq_len=40, you should get about 470 samples per second using a 12-layer BERT. In general, I’d suggest
smaller max_seq_len (25) and larger request size (512/1024).

2.6.16 Did you benchmark the efficiency?

Yes. See Benchmark.

To reproduce the results, please run ‘‘bert-serving-benchmark –help‘‘.

2.6.17 What is backend based on?

ZeroMQ.
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2.6.18 What is the parallel processing model behind the scene?

2.6.19 Why does the server need two ports?

One port is for pushing text data into the server, the other port is for publishing the encoded result to the client(s).
In this way, we get rid of back-chatter, meaning that at every level recipients never talk back to senders. The overall
message flow is strictly one-way, as depicted in the above figure. Killing back-chatter is essential to real scalability,
allowing us to use BertClient in an asynchronous way.
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2.6.20 Do I need Tensorflow on the client side?

No. Think of BertClient as a general feature extractor, whose output can be fed to any ML models, e.g.
scikit-learn, pytorch, tensorflow.

2.6.21 Can I use multilingual BERT model provided by Google?

Yes.

2.6.22 Can I use my own fine-tuned BERT model?

Yes. In fact, this is suggested. Make sure you have the following three items in model_dir:

• A TensorFlow checkpoint (bert_model.ckpt) containing the pre-trained weights (which is actually 3 files).

• A vocab file (vocab.txt) to map WordPiece to word id.

• A config file (bert_config.json) which specifies the hyperparameters of the model.

2.6.23 Can I run it in python 2?

Server side no, client side yes. This is based on the consideration that python 2.x might still be a major piece in some
tech stack. Migrating the whole downstream stack to python 3 for supporting bert-as-service can take quite
some effort. On the other hand, setting up BertServer is just a one-time thing, which can be even run in a docker
container. To ease the integration, we support python 2 on the client side so that you can directly use BertClient
as a part of your python 2 project, whereas the server side should always be hosted with python 3.

2.6.24 Do I need to do segmentation for Chinese?

No, if you are using the pretrained Chinese BERT released by Google you don’t need word segmentation. As this
Chinese BERT is character-based model. It won’t recognize word/phrase even if you intentionally add space in-
between. To see that more clearly, this is what the BERT model actually receives after tokenization:

bc.encode(['hey you', 'whats up?', '', ' '])

tokens: [CLS] hey you [SEP]
input_ids: 101 13153 8357 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
input_mask: 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

tokens: [CLS] what ##s up ? [SEP]
input_ids: 101 9100 8118 8644 136 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
input_mask: 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

tokens: [CLS] [SEP]
input_ids: 101 872 1962 720 8043 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
input_mask: 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

tokens: [CLS] [SEP]
input_ids: 101 2769 6820 1377 809 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
input_mask: 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

That means the word embedding is actually the character embedding for Chinese-BERT.
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2.6.25 Why my (English) word is tokenized to ##something?

Because your word is out-of-vocabulary (OOV). The tokenizer from Google uses a greedy longest-match-first algo-
rithm to perform tokenization using the given vocabulary.

For example:

input = "unaffable"
tokenizer_output = ["un", "##aff", "##able"]

2.6.26 Can I use my own tokenizer?

Yes. If you already tokenize the sentence on your own, simply send use encode with List[List[Str]] as input
and turn on is_tokenized, i.e. bc.encode(texts, is_tokenized=True).

2.6.27 I encounter zmq.error.ZMQError: Operation cannot be
accomplished in current state when using BertClient, what should
I do?

This is often due to the misuse of BertClient in multi-thread/process environment. Note that you can’t reuse one
BertClient among multiple threads/processes, you have to make a separate instance for each thread/process. For
example, the following won’t work at all:

This is often due to the misuse of BertClient in multi-thread/process environment. Note that you can’t reuse one
BertClient among multiple threads/processes, you have to make a separate instance for each thread/process. For
example, the following won’t work at all:

# BAD example
bc = BertClient()

# in Proc1/Thread1 scope:
bc.encode(lst_str)

# in Proc2/Thread2 scope:
bc.encode(lst_str)

Instead, please do:

# in Proc1/Thread1 scope:
bc1 = BertClient()
bc1.encode(lst_str)

# in Proc2/Thread2 scope:
bc2 = BertClient()
bc2.encode(lst_str)

2.6.28 After running the server, I have several garbage tmpXXXX folders. How can I
change this behavior ?

These folders are used by ZeroMQ to store sockets. You can choose a different location by setting the environment
variable ZEROMQ_SOCK_TMP_DIR : export ZEROMQ_SOCK_TMP_DIR=/tmp/

2.6. Frequently Asked Questions 35



bert-as-service Documentation, Release 1.6.1

2.6.29 The cosine similarity of two sentence vectors is unreasonably high (e.g. al-
ways > 0.8), what’s wrong?

A decent representation for a downstream task doesn’t mean that it will be meaningful in terms of cosine distance.
Since cosine distance is a linear space where all dimensions are weighted equally. if you want to use cosine distance
anyway, then please focus on the rank not the absolute value. Namely, do not use:

if cosine(A, B) > 0.9, then A and B are similar

Please consider the following instead:

if cosine(A, B) > cosine(A, C), then A is more similar to B than C.

The graph below illustrates the pairwise similarity of 3000 Chinese sentences randomly sampled from web (char.
length < 25). We compute cosine similarity based on the sentence vectors and Rouge-L based on the raw text. The
diagonal (self-correlation) is removed for the sake of clarity. As one can see, there is some positive correlation between
these two metrics.

2.6.30 I’m getting bad performance, what should I do?

This often suggests that the pretrained BERT could not generate a descent representation of your downstream task.
Thus, you can fine-tune the model on the downstream task and then use bert-as-service to serve the fine-tuned
BERT. Note that, bert-as-service is just a feature extraction service based on BERT. Nothing stops you from
using a fine-tuned BERT.

2.6.31 Can I run the server side on CPU-only machine?

Yes, please run bert-serving-start -cpu -max_batch_size 16. Note that, CPU does not scale as good
as GPU on large batches, therefore the max_batch_size on the server side needs to be smaller, e.g. 16 or 32.

2.6.32 How can I choose num_worker?

Generally, the number of workers should be less than or equal to the number of GPU/CPU you have. Otherwise,
multiple workers will be allocated to one GPU/CPU, which may not scale well (and may cause out-of-memory on
GPU).
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2.6.33 Can I specify which GPU to use?

Yes, you can specifying -device_map as follows:

bert-serving-start -device_map 0 1 4 -num_worker 4 -model_dir ...

This will start four workers and allocate them to GPU0, GPU1, GPU4 and again GPU0, respectively. In general, if
num_worker > device_map, then devices will be reused and shared by the workers (may scale suboptimally or
cause OOM); if num_worker < device_map, only device_map[:num_worker] will be used.

Note, device_map is ignored when running on CPU.

2.7 Benchmark

• Speed wrt. max_seq_len

• Speed wrt. client_batch_size

• Speed wrt. num_client

• Speed wrt. max_batch_size

• Speed wrt. pooling_layer

The primary goal of benchmarking is to test the scalability and the speed of this service, which is crucial for using it
in a dev/prod environment. Benchmark was done on Tesla M40 24GB, experiments were repeated 10 times and the
average value is reported.

To reproduce the results, please run

bert-serving-benchmark --help

Common arguments across all experiments are:

Parameter Value
num_worker 1,2,4
max_seq_len 40
client_batch_size 2048
max_batch_size 256
num_client 1

2.7.1 Speed wrt. max_seq_len

max_seq_len is a parameter on the server side, which controls the maximum length of a sequence that a BERT
model can handle. Sequences larger than max_seq_len will be truncated on the left side. Thus, if your client want
to send long sequences to the model, please make sure the server can handle them correctly.

Performance-wise, longer sequences means slower speed and more chance of OOM, as the multi-head self-attention
(the core unit of BERT) needs to do dot products and matrix multiplications between every two symbols in the se-
quence.
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max_seq_len 1 GPU 2 GPU 4 GPU
20 903 1774 3254
40 473 919 1687
80 231 435 768
160 119 237 464
320 54 108 212

2.7.2 Speed wrt. client_batch_size

client_batch_size is the number of sequences from a client when invoking encode(). For performance
reason, please consider encoding sequences in batch rather than encoding them one by one.

For example, do:

# prepare your sent in advance
bc = BertClient()
my_sentences = [s for s in my_corpus.iter()]
# doing encoding in one-shot
vec = bc.encode(my_sentences)

DON’T:

bc = BertClient()
vec = []
for s in my_corpus.iter():

vec.append(bc.encode(s))

It’s even worse if you put BertClient() inside the loop. Don’t do that.
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client_batch_size 1 GPU 2 GPU 4 GPU
1 75 74 72
4 206 205 201
8 274 270 267
16 332 329 330
64 365 365 365
256 382 383 383
512 432 766 762
1024 459 862 1517
2048 473 917 1681
4096 481 943 1809

2.7.3 Speed wrt. num_client

num_client represents the number of concurrent clients connected to the server at the same time.
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num_client 1 GPU 2 GPU 4 GPU
1 473 919 1759
2 261 512 1028
4 133 267 533
8 67 136 270
16 34 68 136
32 17 34 68

As one can observe, 1 clients 1 GPU = 381 seqs/s, 2 clients 2 GPU 402 seqs/s, 4 clients 4 GPU 413 seqs/s. This shows
the efficiency of our parallel pipeline and job scheduling, as the service can leverage the GPU time more exhaustively
as concurrent requests increase.

2.7.4 Speed wrt. max_batch_size

max_batch_size is a parameter on the server side, which controls the maximum number of samples per batch per
worker. If a incoming batch from client is larger than max_batch_size, the server will split it into small batches
so that each of them is less or equal than max_batch_size before sending it to workers.
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max_batch_size 1 GPU 2 GPU 4 GPU
32 450 887 1726
64 459 897 1759
128 473 931 1816
256 473 919 1688
512 464 866 1483

2.7.5 Speed wrt. pooling_layer

pooling_layer determines the encoding layer that pooling operates on. For example, in a 12-layer BERT model,
-1 represents the layer closed to the output, -12 represents the layer closed to the embedding layer. As one can
observe below, the depth of the pooling layer affects the speed.
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pooling_layer 1 GPU 2 GPU 4 GPU
[-1] 438 844 1568
[-2] 475 916 1686
[-3] 516 995 1823
[-4] 569 1076 1986
[-5] 633 1193 2184
[-6] 711 1340 2430
[-7] 820 1528 2729
[-8] 945 1772 3104
[-9] 1128 2047 3622
[-10] 1392 2542 4241
[-11] 1523 2737 4752
[-12] 1568 2985 5303
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