

 Navigation

 	
 index

 	
 next |

 	Bericht 0.1 documentation

Welcome to Bericht’s documentation!

“Bericht” is the codename for a custom django project, aiming to provide the
following to small or medium-sized communities:

	an RSS-aggregator with full-content archiving features.

	cms features to mix aggregated content with custom articles.

	a open calendar system with ical import and export.

	a forum in the style of popular question and answer sites.

Contents:

	General Overview

	Content Types
	Global Content Types

	Articles

	Q & A

	Event Calendar

	Dossier

	Live Ticker

	Bookmarks

	Content Handling
	Aggregator

	Artex: Article Extraction

	Source Re-Check

	Voting

	Installation Instructions
	Ansible

	Coding Guidelines
	PEP8

	Tests

	Third Party Packages

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Bericht team.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bericht 0.1 documentation

General Overview

Bericht is a platform that aims to provide a sort of “hub” for small to
medium communites. Core for this “hub” is de-centralized content and debates
around this content. Current plans include articles obtained from news feeds
(using the RSS and Atom file format) and calendars that provide iCalendar
export.

Besides imported content, articles and events can be created on the platform.
Users can pose Questions and provide Answers (Q&A). Furthermore, dossiers
provide a means to tie together topic-specific content from various sources
augmented with an introductory article. A live ticker should provide means to
cover live events on-line.

Users can register at the platform. In order to ensure that content on the
platform stays on topic, users are divided into three groups:

	Normal users can author non-imported content, i.e. comments and Q&A. They
can also propose new sources for imported content.

	Trusted users can vote on content from normal users and sources that are
not fully trusted. Their content is also subject to the vote of other trusted
users.

	Editors can put users into the trusted users group, can author articles
and static pages (e.g. terms of service, about, etc.) and organize the
content in various ways.

Content Types

This section details the individual content types.

Global Content Types

These content types form the backbone of the platform and are connected to
several other content types.

	Entry is an abstract concept that links to the more specific content type
(i.e. they sub-class Entry). The trust system (voting, etc.) is linked to
this content type and all inheriting classes. Every inheriting content type
has a method to return teaser-like HTML.

	Comment can be appended to any of the following content types: Article,
Q&A questions and answers, and events.

	Static Page are for some static stuff, like ‘About’, ‘Contact’, ‘Terms of
Service’, etc.

Static Pages and Comments are provided by mezzanine, Entry is, together
with the voting system and the front page contained in an app.

Articles

Articles are long(ish) texts with formatting, possibly multimedia, etc. They
are shown to the public and users. We decided not to use abstract article as a
common parent class to reduce complexity, instead use Entry (see at the top).

	Article is authored on Bericht

	ImportedArticle is created from a news feed item (FeedItem) and holds
the feed item’s link HTML

Q & A

This should provide questions & answers similar to the various
http://stackexchange.com sites. But here it should be the case that people ask
questions anonymously (to all but the administrators), i.e. the nickname should
not be visible. Answers and comments (except from the person who asked) are
with names. It is not yet clear if we include up- and down-voting of answers
and approval of “the correct” answer.

The sub-content for Q&A is

	Question

	Answer

Event Calendar

An event calendar that supports singular and recurring events. Input/Editing is
done on the EventDefinition while EventInstance is used for display (i.e. a
recurring event has several EventInstances for one EventDefinition). It should
support export for individual EventInstances, full calendars and all events
from all calendars (which is the collection of events from one user) in the
iCalendar format. Goal is also to support iCalendar import someday in the
future.

	EventDefintion holds most information about an event, including how/if
it is recurring

	EventInstance is used for display and can be N for 1 EventDefinition.
Title, Body, etc. is taken from EventDefinition, what changes is date (and
possibly time).

Dossier

A Dossier is a topic-specific collection of content with an introductory
text, a small number of manually curated “must-reads” and the possibility to
show a list of items based on keywords/tags. Dossiers should always have the
same url but the content is meant to be updated regularly. Content types that
can be connected are Articles, Q&A and Bookmarks. As it should be ‘timeless’,
no events (? up for debate). Multiple users should be able to edit dossiers,
revisions should be stored for a editing history (display of that history is
not a priority).

Live Ticker

A Live Ticker is a feature that should provide infrastructure to do live
coverage of events. As such it provides means to add updates and show these
in (reversed) chronological order with timestamps.

On the public front end, a live ticker is displayed on an mobile-optimized
page that automatically loads new updates at top using JavaScript/AJAX. If a
Live Ticker is finished, the representation is different in that the
updates are shown in chonological order.

It is possible to put the Live Ticker on the front page (showing the latest
k updates) and also show it as breaking, i.e. always on the top of the page
on Bericht, unless the user decides to hide it (clicking on an ‘x’).

On the back end, an interface is provided that is tailored to quick data
entry, setting the time to the current time as default and providing
autocomplete for the optional metadata of the updates (based on previous
updates). It is also well usable from mobile devices.

A Live Ticker can be created by everyone with a certain trust level
(either editors or trusted users) and the creator can add any users as
contributors. This information is not shown publicly.

A Live Ticker constists of the following content types:

	LiveTicker provides a description of the event covered and optional
information that is always visible at top as long as the ticker is active.
It also holds information about who created the ticker and who is allowed
to post updates.

	Update is an individual update and provides a timestamp, the update
content and a field for optional additional data that can be used for
location information.

Bookmarks

Bookmarks provides the possibility for users to post links that they think
are of interest to the community.

For every Bookmark it is required that the user states, with a comment, why
this link is interesting. Users are encouraged to add tags to a Bookmark.
Bookmarks are subject to voting and the link’s HTML is fetched for archival
purposes and article extraction is run on the HTML. This extracted article
is not shown in full (mainly due to copyright issues), but used for search
and the start of the article is used as a teaser.

The content type is thus as follows:

	Bookmark holds the link, user comment, HTML, extracted article and
metadata.

Content Handling

Content on Bericht is often imported from external sources and much of the
content needs approval from trusted users. A few words on how imported content
is handled and how the workflow for user-interaction is currently designed.

Aggregator

Aggregator takes care of importing content from news feeds. This should be as
much separated from ImportedArticle as possible: Aggregator models store the
“original” data from the news feed, while ImportedArticle (which is created
from FeedItem) fetches the link’s HTML and runs the article extraction.
ImportedArticle is what is being displayed and maybe edited/augmented (with
additional tags, better teaser, fixed content, etc.)

	FeedFile stores the feed file and archives it, time-stamped

	Feed stores the parsed feed

	FeedItem holds individual feed items

Artex: Article Extraction

Artex extracts articles from HTML pages. It is based on readability-lxml [https://github.com/buriy/python-readability/]
which itself is based on the readability library from arc90 [http://lab.arc90.com/2009/03/02/readability/]. Because many
news feeds provide only teasers, we decided to use article extraction for
all news feed items. Article extraction is done when creating an
ImportedArticle from a FeedItem: The linked website’s HTML is fetched,
stored and then artex is run on the HTML.

Artex wraps around the readability-lxml library and adds parameters that
proved useful during our tests. First are additional ‘negative’ keywords
that can are stored in settings.ARTEX_NEGATIVE_KEYWORDS and are used to
identify non-article HTML elements. Another are the
settings.ARTEX_METADATA_TERMS that are used to identify HTML elements at
the start and end of an article that contain article metadata (or ads).

Source Re-Check

Often it happens that blog posts, articles, etc. get modified (shortly) after
their first publishing. Often these changes are meaningful, e.g. correction
of facts, additional relevant information, etc.

The goal for bericht is, on the one hand, to quickly show new content. On the
other hand, we want to reflect these changes. To accomplish this, we re-run
the article extraction n hours after the first import.

As editors can manually edit an ImportedArticle, these manual changes could
get lost if the content was simply overridden. To prevent this, the editors
get a notification if there is an update at the source for a manually edited
article. The changes are then shown in a diff-like view (highlighting
additions and deletions between the current local article and the updated
source article).

Voting

We decided to use a customized fork of django_voting [https://github.com/jezdez/django-voting], after we looked into
a bunch of available solutions, because we need to record different types of
votes - yes, no, veto and abstain - not just up- and downvotes which could be
represented by integer values.

A Vote is its own database object and has a one-to-one relationship to
the Entry, or theoretically any other object, voted upon. A custom model
manager provides methods to record a vote, get a users vote and to get all
votes on a given object.

The decision what to do with those votes is up to the model on which the
vote was casted, you can find an example in Entry.is_public

 Copyright 2013, Bericht team.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bericht 0.1 documentation

Installation Instructions

Bericht is currently written in python 2, because mezzanine has not
been ported to python 3 so far. So you need at least python 2 (including
development headers) and pip, pythons package manager as well as two
libraries for xml-parsing, libxml and libxslt. On Debian(-based)
systems the following should be sufficient::

apt-get install python python-dev python-pip libxml2-dev libxslt-dev

Tip

Usage of virtualenv [https://pypi.python.org/pypi/virtualenv] is strongly
recommended!

Install the requirements:

pip install -r requirements.txt

Create a local_settings.py file:

DEBUG = True
DATABASES = {
 "default": {
 "ENGINE": "django.db.backends.sqlite3",
 "NAME": "dev.db",
 }
}

Initialize the database:

python manage.py createdb --nodata
python manage.py migrate

Run the development server:

python manage.py runserver

Have fun!

Ansible

We deploy our systems using ansible [http://ansible.com], the scripts are
tested to run on debian stable and included in deploy/. Change bericht.dev
in deploy/hosts to the IP or hostname of your debian server and run:

ansible-playbook -i deploy/hosts -K deploy/site.yml

 Copyright 2013, Bericht team.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bericht 0.1 documentation

Coding Guidelines

You probably read this because you decided to contribute to Bericht. That’s
nice and highly appreciated, but please make sure that your code respects the
following conventions before you push code into our repositories.

PEP8

Python comes with its own opinionated style guide, which is called
pep8 [http://www.python.org/dev/peps/pep-0008/] and available online.
We use flake8 [https://pypi.python.org/pypi/flake8] to check if our code
respects pep8 and does not contain known symptoms of common problems (“code
smell”).

Note

It is strongly recommended to use a git hook to ensure that you are only
committing code which does satisfy flake8. We might reject code that does
not!

To use such a git hook, create a file in .git/hooks/pre-commit with
the following contents:

#!/usr/bin/env python

import os
import subprocess
import sys

def system(*args, **kwargs):
 kwargs.setdefault('stdout', subprocess.PIPE)
 proc = subprocess.Popen(args, **kwargs)
 out, err = proc.communicate()
 return out

def main():
 project_dir = os.path.dirname(os.path.dirname(
 os.path.dirname(os.path.realpath(__file__))))
 print(project_dir)
 output = system('flake8', '.', cwd=project_dir)
 if output:
 print output,
 sys.exit(1)

if __name__ == '__main__':
 main()

and make it executable:

chmod +x .git/hooks/pre-commit

Hint

If you are absolutely certain that a file should not be checked, add
flake8: noqa to the beginning of that file. This should only
be used for configuration of used tools or auto-generated code like
migrations, never for production code!

Tests

Please write tests whenever you add or change functionality and run existing
tests before you push. We use Djangos [https://docs.djangoproject.com/en/1.6/topics/testing/overview/] tools which are based on Pythons
unittest [http://docs.python.org/2.7/library/unittest.html#module-unittest]
module for unit tests and behave [http://pythonhosted.org/behave/] and
splinter [http://splinter.cobrateam.info/docs/] for acceptance testing.

Run unit tests for the aggregator app with:

python manage.py test aggregator

...and acceptance tests with:

python manage.py test aggregator --testrunner=bericht.utils.test_runner.AcceptanceTestSuiteRunner

A test suite for client-side javascript tests must yet be chosen.

 Copyright 2013, Bericht team.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	
 previous |

 	Bericht 0.1 documentation

Third Party Packages

Bericht uses a lot of software written by other people. For reference, links to
their documentation are collected here. Please make sure that the right version
is linked where available if you upgrade a package.

	Python 2.7 [http://docs.python.org/2.7/]

	Django 1.5.5 [https://docs.djangoproject.com/en/1.5/]

	Mezzanine [http://mezzanine.readthedocs.org/]

	requests [http://docs.python-requests.org/en/latest/]

	feedparser [http://pythonhosted.org/feedparser/]

	django-taggit [http://django-taggit.readthedocs.org/en/latest/]

	South [http://south.readthedocs.org/en/latest/]

	Sphinx [http://sphinx-doc.org/latest/]

	BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/bs3/documentation.html]

	django-debug-toolbar [http://django-debug-toolbar.readthedocs.org/en/1.0/]

	django-extensions [http://django-extensions.readthedocs.org/en/latest/]

	django-filter [https://django-filter.readthedocs.org/en/latest/]

	djang-rest-framework [http://www.django-rest-framework.org/]

 Copyright 2013, Bericht team.
 Created using Sphinx 1.3b2.

 Navigation

 	
 index

 	Bericht 0.1 documentation

Index

 Copyright 2013, Bericht team.
 Created using Sphinx 1.3b2.

 _static/down.png

_static/comment-close.png

_static/minus.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		Bericht 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Bericht team.
 Created using Sphinx 1.3b2.

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/up.png

_static/plus.png

_static/up-pressed.png

_static/down-pressed.png

