
the Drupal Extension to Behat and Mink
Documentation

Release 1.1

Melissa Anderson

Nov 22, 2019

Contents

1 Testing your site with the Drupal Extension to Behat and Mink 3

2 System Requirements 5

3 Stand-alone installation 7

4 System-wide installation 11

5 Environment specific settings 15

6 Drupal Extension Drivers 17

7 Blackbox Driver 19

8 Drush Driver 23

9 Drupal API Driver 27

10 Contexts 31

11 Contributed Module Subcontexts 35

i

ii

the Drupal Extension to Behat and Mink Documentation, Release 1.1

Contents:

Contents 1

the Drupal Extension to Behat and Mink Documentation, Release 1.1

2 Contents

CHAPTER 1

Testing your site with the Drupal Extension to Behat and Mink

The Drupal Extension to Behat and Mink provides Drupal-specific functionality for the Behavior-Driven Development
testing frameworks of Behat and Mink.

1.1 What do Behat and Mink Do?

Behat and Mink allow you to describe the behavior of a web site in plain, but stylized language, and then turn that
description into an automated test that will visit the site and perform each step you describe. Such functional tests
can help site builders ensure that the added value they’ve created when building a Drupal site continues to behave as
expected after any sort of site change – security updates, new module versions, changes to custom code, etc.

1.2 What does the Drupal Extension add?

The Drupal Extension to Behat and Mink assists in the performance of these common Drupal testing tasks:

• Set up test data with Drush or the Drupal API

• Define theme regions and test data appears within them

• Clear the cache, log out, and other useful steps

• Detect and discover steps provided by contributed modules and themes

3

https://drupal.org/project/drupalextension
http://dannorth.net/introducing-bdd/
http://extensions.behat.org/mink/

the Drupal Extension to Behat and Mink Documentation, Release 1.1

4 Chapter 1. Testing your site with the Drupal Extension to Behat and Mink

CHAPTER 2

System Requirements

2.1 Meet the system requirements

1. Check your PHP version:

php --version

It must be higher than 5.3.5! Note: This means you cannot use the same version of PHP for testing that you
might use to run a Drupal 5 site.

PHP will also need to have the following libraries installed:

• curl

• mbstring

• xml

Check your current modules by running:

php -m

2. Check for Java:

java -version

It doesn’t necessarily matter what version, but it will be required for Selenium.

3. Directions are written to use command-line cURL. You can make sure it’s installed with:

curl --version

4. Selenium

Download the latest version of Selenium Server It’s under the heading Selenium Server (formerly the
Selenium RC Server). This is a single file which can be placed any where you like on your system and
run with the following command:

5

http://curl.haxx.se/libcurl/php/install.html
http://php.net/manual/en/mbstring.installation.php
http://www.php.net/manual/en/dom.setup.php#102046
http://docs.seleniumhq.org/download/

the Drupal Extension to Behat and Mink Documentation, Release 1.1

java -jar selenium-server-standalone-2.44.0.jar &
// replace with the name of the version you downloaded

6 Chapter 2. System Requirements

CHAPTER 3

Stand-alone installation

A stand-alone installation is recommended when you want your tests and testing environment to be portable, from
local development to CI server, to client infrastructure. It also makes documentation consistent and reliable.

1. Create a folder for your BDD tests:

mkdir projectfolder
cd projectfolder

All the commands that follow are written to install from the root of your project folder.

2. Install Composer, a php package manager:

curl -s https://getcomposer.org/installer | php

3. Create a composer.json file to tell Composer what to install. To do that, paste the following code into your editor
and save as composer.json. The Drupal Extension requires Behat, Mink, and the Mink Extension. They will all
be set up because they’re dependencies of the Drupal Extension, so you don’t have to specify them directly in
the composer.json file:

1 {
2 "require": {
3 "drupal/drupal-extension": "^3.2"
4 },
5 "config": {
6 "bin-dir": "bin/"
7 }
8 }

4. Run the following command to install the Drupal Extension and all those dependencies. This takes a while
before you start to see output:

php composer.phar install

5. Configure your testing environment by creating a file called behat.yml with the following. Be sure that you point
the base_url at the web site YOU intend to test. Do not include a trailing slash:

7

the Drupal Extension to Behat and Mink Documentation, Release 1.1

1 default:
2 suites:
3 default:
4 contexts:
5 - FeatureContext
6 - Drupal\DrupalExtension\Context\DrupalContext
7 - Drupal\DrupalExtension\Context\MinkContext
8 - Drupal\DrupalExtension\Context\MessageContext
9 - Drupal\DrupalExtension\Context\DrushContext

10 extensions:
11 Drupal\MinkExtension:
12 goutte: ~
13 selenium2: ~
14 base_url: http://seven.l
15 Drupal\DrupalExtension:
16 blackbox: ~

6. Initialize behat. This creates the features folder with some basic things to get you started, including your own
FeatureContext.php file:

bin/behat --init

7. This will generate a FeatureContext.php file that looks like:

1 <?php
2

3 use Behat\Behat\Tester\Exception\PendingException;
4 use Drupal\DrupalExtension\Context\RawDrupalContext;
5 use Behat\Gherkin\Node\PyStringNode;
6 use Behat\Gherkin\Node\TableNode;
7

8 /**
9 * Defines application features from the specific context.

10 */
11 class FeatureContext extends RawDrupalContext {
12

13 /**
14 * Initializes context.
15 *
16 * Every scenario gets its own context instance.
17 * You can also pass arbitrary arguments to the
18 * context constructor through behat.yml.
19 */
20 public function __construct() {
21 }
22 }

This FeatureContext.php will be aware of both the Drupal Extension and the Mink Extension, so you’ll
be able to take advantage of their drivers add your own custom step definitions as well.

8. To ensure everything is set up appropriately, type:

bin/behat -dl

You’ll see a list of steps like the following, but longer, if you’ve installed everything successfully:

8 Chapter 3. Stand-alone installation

the Drupal Extension to Behat and Mink Documentation, Release 1.1

1 default | Given I am an anonymous user
2 default | Given I am not logged in
3 default | Given I am logged in as a user with the :role role(s)
4 default | Given I am logged in as :name

9

the Drupal Extension to Behat and Mink Documentation, Release 1.1

10 Chapter 3. Stand-alone installation

CHAPTER 4

System-wide installation

A system-wide installation allows you to maintain a single copy of the testing tool set and use it for multiple test
environments. Configuration is slightly more complex than the stand-alone installation but many people prefer the
flexibility and ease-of-maintenance this setup provides.

4.1 Overview

To install the Drupal Extension globally:

1. Install Composer

2. Install the Drupal Extension in /opt/drupalextension

3. Create an alias to the behat binary in /usr/local/bin

4. Create your test folder

4.2 Install Composer

Composer is a PHP dependency manager that will make sure all the pieces you need get installed. Full directions for
global installation and more information can be found on the Composer website.:

curl -sS https://getcomposer.org/installer |
php mv composer.phar /usr/local/bin/composer

4.3 Install the Drupal Extension

1. Make a directory in /opt (or wherever you choose) for the Drupal Extension:

11

http://getcomposer.org/doc/00-intro.md#globally
http://getcomposer.org/doc/00-intro.md#globally
http://getcomposer.org/

the Drupal Extension to Behat and Mink Documentation, Release 1.1

cd /opt/
sudo mkdir drupalextension
cd drupalextension/

2. Create a file called composer.json and include the following:

1 {
2 "require": {
3 "drupal/drupal-extension": "^3.2"
4 },
5 "config": {
6 "bin-dir": "bin/"
7 }
8 }

3. Run the install command:

composer install

It will be a bit before you start seeing any output. It will also suggest that you install additional tools, but
they’re not normally needed so you can safely ignore that message.

4. Test that your install worked by typing the following:

bin/behat --help

If you were successful, you’ll see the help output.

5. Make the binary available system-wide:

ln -s /opt/drupalextension/bin/behat /usr/local/bin/behat

4.4 Set up tests

1. Create the directory that will hold your tests. There is no technical reason this needs to be inside the Drupal
directory at all. It is best to keep them in the same version control repository so that the tests match the version
of the site they are written for.

One clear pattern is to keep them in the sites folder as follows:

Single site: sites/default/behat-tests

Multi-site or named single site: /sites/my.domain.com/behat-tests

2. Wherever you make your test folder, inside it create the behat.yml file:

1 default:
2 suites:
3 default:
4 contexts:
5 - FeatureContext
6 - Drupal\DrupalExtension\Context\DrupalContext
7 - Drupal\DrupalExtension\Context\MinkContext
8 - Drupal\DrupalExtension\Context\MessageContext
9 - Drupal\DrupalExtension\Context\DrushContext

10 extensions:
(continues on next page)

12 Chapter 4. System-wide installation

the Drupal Extension to Behat and Mink Documentation, Release 1.1

(continued from previous page)

11 Drupal\MinkExtension:
12 goutte: ~
13 selenium2: ~
14 base_url: http://seven.l
15 Drupal\DrupalExtension:
16 blackbox: ~

3. Initialize behat. This creates the features folder with some basic things to get you started:

bin/behat --init

4. This will generate a FeatureContext.php file that looks like:

1 <?php
2

3 use Behat\Behat\Tester\Exception\PendingException;
4 use Drupal\DrupalExtension\Context\RawDrupalContext;
5 use Behat\Gherkin\Node\PyStringNode;
6 use Behat\Gherkin\Node\TableNode;
7

8 /**
9 * Defines application features from the specific context.

10 */
11 class FeatureContext extends RawDrupalContext {
12

13 /**
14 * Initializes context.
15 *
16 * Every scenario gets its own context instance.
17 * You can also pass arbitrary arguments to the
18 * context constructor through behat.yml.
19 */
20 public function __construct() {
21 }
22 }

This will make your FeatureContext.php aware of both the Drupal Extension and the Mink Extension, so
you’ll be able to take advantage of their drivers and step definitions and add your own custom step defini-
tions here. The FeatureContext.php file must be in the same directory as your behat.yml file otherwise in
step 5 you will get the following error:

[BehatBehatContextExceptionContextNotFoundException] FeatureContext context class not
found and can not be used.

5. To ensure everything is set up appropriately, type:

behat -dl

You’ll see a list of steps like the following, but longer, if you’ve installed everything successfully:

1 default | Given I am an anonymous user
2 default | Given I am not logged in
3 default | Given I am logged in as a user with the :role role(s)
4 default | Given I am logged in as :name

4.4. Set up tests 13

the Drupal Extension to Behat and Mink Documentation, Release 1.1

14 Chapter 4. System-wide installation

CHAPTER 5

Environment specific settings

Some of the settings in behat.yml are environment specific. For example the base URL may be http://
mysite.localhost on your local development environment, while on a test server it might be http://127.0.
0.1:8080. Some other environment specific settings are the Drupal root path and the paths to search for subcontexts.

If you intend to run your tests on different environments these settings should not be committed to behat.yml. In-
stead they should be exported in an environment variable. Before running tests Behat will check the BEHAT_PARAMS
environment variable and add these settings to the ones that are present in behat.yml. This variable should contain
a JSON object with your settings.

Example JSON object:

{
"extensions": {

"Drupal\\MinkExtension": {
"base_url": "http://myproject.localhost"

},
"Drupal\\DrupalExtension": {

"drupal": {
"drupal_root": "/var/www/myproject"

}
}

}
}

To export this into the BEHAT_PARAMS environment variable, squash the JSON object into a single line and surround
with single quotes:

$ export BEHAT_PARAMS='{"extensions":{"Drupal\\MinkExtension":{"base_url":"http://
→˓myproject.localhost"},"Drupal\\DrupalExtension":{"drupal":{"drupal_root":"/var/www/
→˓myproject"}}}}'

You must also remove (or comment out) the entries that you use in behat.yml for the values in BEHAT_PARAMS to
take affect.

15

the Drupal Extension to Behat and Mink Documentation, Release 1.1

default:
suites:
default:

contexts:
- FeatureContext
- Drupal\DrupalExtension\Context\DrupalContext
- Drupal\DrupalExtension\Context\MinkContext
- Drupal\DrupalExtension\Context\MessageContext
- Drupal\DrupalExtension\Context\DrushContext

extensions:
Drupal\MinkExtension:

goutte: ~
selenium2: ~

Must comment out for BEHAT_PARAMS to be effective.
base_url: http://seven.l

Drupal\DrupalExtension:
Anything used in BEHAT_PARAMS must be removed or commented.
drupal:

drupal_root: /var/www
drush:

alias: '@site'
blackbox: ~

You can use profiles if you wish to allow users to run tests locally.
Usage:
bin/behat --profile=local
local:

extensions:
Drupal\MinkExtension:
base_url: 'localhost'
Drupal\DrupalExtension:

drush:
alias: '@self'

drupal:
drupal_root: '../web'

There is also a Drush extension that can help you generate these environment variables.

16 Chapter 5. Environment specific settings

https://github.com/pfrenssen/drush-bde-env

CHAPTER 6

Drupal Extension Drivers

The Drupal Extension provides drivers for interacting with your site which are compatible with Drupal 6, 7, and 8.
Each driver has its own limitations.

Feature Blackbox Drush Drupal API
Map Regions Yes Yes Yes
Create users No Yes Yes
Create nodes No Yes [*] Yes
Create vocabularies No Yes [*] Yes
Create taxonomy terms No Yes [*] Yes
Run tests and site on different servers Yes Yes No

[*] Requires that the Behat Drush Endpoint be installed on the Drupal site under test.

17

https://github.com/drush-ops/behat-drush-endpoint

the Drupal Extension to Behat and Mink Documentation, Release 1.1

18 Chapter 6. Drupal Extension Drivers

CHAPTER 7

Blackbox Driver

The blackbox driver assumes no privileged access to the site. You can run the tests on a local or remote server, and
all the actions will take place through the site’s user interface. This driver was enabled as part of the installation
instructions by lines 13 and 14, highlighted below.

1 default:
2 suites:
3 default:
4 contexts:
5 - FeatureContext
6 - Drupal\DrupalExtension\Context\DrupalContext
7 - Drupal\DrupalExtension\Context\MinkContext
8 extensions:
9 Drupal\MinkExtension:

10 goutte: ~
11 selenium2: ~
12 base_url: http://seven.l
13 Drupal\DrupalExtension:
14 blackbox: ~

7.1 Region steps

It may be really important that a block is in the correct region, or you may have a link or button that doesn’t have a
unique label. The blackbox driver allows you to create a map between a CSS selector and a user-readable region name
so you can use steps like the following without having to write any custom PHP:

I press "Search" in the "header" region
I fill in "a value" for "a field" in the "content" region
I fill in "a field" with "Stuff" in the "header" region
I click "About us" in the "footer" region

19

the Drupal Extension to Behat and Mink Documentation, Release 1.1

7.1.1 Example:

A stock Drupal 7 installation has a footer area identified by the CSS Id “footer”. By editing the behat.yml file and
adding lines 15 and 16 below:

1 default:
2 suites:
3 default:
4 contexts:
5 - FeatureContext
6 - Drupal\DrupalExtension\Context\DrupalContext
7 - Drupal\DrupalExtension\Context\MinkContext
8 extensions:
9 Drupal\MinkExtension:

10 goutte: ~
11 selenium2: ~
12 base_url: http://seven.l
13 Drupal\DrupalExtension:
14 blackbox: ~
15 region_map:
16 footer: "#footer"

You can use a step like the following without writing any custom PHP:

When I click "About us" in the "footer" region.

Using the blackbox driver configured with the regions of your site, you can access the following region-related steps:

Note:

These examples won’t work unless you define the appropriate regions in your behat.yml file.

1 Feature: Test DrupalContext
2 In order to prove the Drupal context using the blackbox driver is working properly
3 As a developer
4 I need to use the step definitions of this context
5

6 Scenario: Test the ability to find a heading in a region
7 Given I am on the homepage
8 When I click "Download & Extend"
9 Then I should see the heading "Core" in the "content" region

10

11 Scenario: Clicking content in a region
12 Given I am at "download"
13 When I click "About Distributions" in the "content" region
14 Then I should see "Page status" in the "right sidebar"
15 And I should see the link "Drupal News" in the "footer" region
16

17 Scenario: Viewing content in a region
18 Given I am on the homepage
19 Then I should see "Come for the software, stay for the community" in the "left

→˓header"
20

21 Scenario: Test ability to find text that should not appear in a region
22 Given I am on the homepage
23 Then I should not see the text "Proprietary software is cutting edge" in the

→˓"left header"
(continues on next page)

20 Chapter 7. Blackbox Driver

the Drupal Extension to Behat and Mink Documentation, Release 1.1

(continued from previous page)

24

25 Scenario: Submit a form in a region
26 Given I am on the homepage
27 When I fill in "Search Drupal.org" with "Views" in the "right header" region
28 And I press "Search" in the "right header" region
29 Then I should see the text "Search again" in the "right sidebar" region
30

31 Scenario: Check a link should not exist in a region
32 Given I am on the homepage
33 Then I should not see the link "This link should never exist in a default Drupal

→˓install" in the "right header"
34

35 Scenario: Find a button
36 Given I am on the homepage
37 Then I should see the "Search" button
38

39 Scenario: Find a button in a region
40 Given I am on the homepage
41 Then I should see the "Search" button in the "right header"
42

43 Scenario: Find an element in a region
44 Given I am on the homepage
45 Then I should see the "h1" element in the "left header"
46

47 Scenario: Element not in region
48 Given I am on the homepage
49 Then I should not see the "h1" element in the "footer"
50

51 Scenario: Text not in element in region
52 Given I am on the homepage
53 Then I should not see "DotNetNuke" in the "h1" element in the "left header"
54

55 Scenario: Find an element with an attribute in a region
56 Given I am on the homepage
57 Then I should see the "h1" element with the "id" attribute set to "site-name" in

→˓the "left header" region
58

59 Scenario: Find text in an element with an attribute in a region
60 Given I am on the homepage
61 Then I should see "Drupal" in the "h1" element with the "id" attribute set to

→˓"site-name" in the "left header" region

7.2 Message selectors

The Drupal Extension makes use of three selectors for message. If your CSS values are different than the defaults
(shown below), you’ll need to update your behat.yml file:

1 Drupal\DrupalExtension:
2 selectors:
3 message_selector: '.messages'
4 error_message_selector: '.messages.messages-error'
5 success_message_selector: '.messages.messages-status'

Message-related steps include:

7.2. Message selectors 21

the Drupal Extension to Behat and Mink Documentation, Release 1.1

1 Scenario: Error messages
2 Given I am on "/user"
3 When I press "Log in"
4 Then I should see the error message "Password field is required"
5 And I should not see the error message "Sorry, unrecognized username or password"
6 And I should see the following error messages:
7 | error messages |
8 | Username field is required |
9 | Password field is required |

10 And I should not see the following error messages:
11 | error messages |
12 | Sorry, unrecognized username or password |
13 | Unable to send e-mail. Contact the site administrator if the problem persists |
14

15 Scenario: Messages
16 Given I am on "/user/register"
17 When I press "Create new account"
18 Then I should see the message "Username field is required"
19 But I should not see the message "Registration successful. You are now logged in"

7.3 Override text strings

The Drupal Extension relies on default text for certain steps. If you have customized the label visible to users, you can
change that text as follows:

Drupal\DrupalExtension:
text:
login_url: "/user"
logout_url: "/user/logout"
log_out: "Sign out"
log_in: "Sign in"
password_field: "Enter your password"
username_field: "Nickname"

22 Chapter 7. Blackbox Driver

CHAPTER 8

Drush Driver

Many tests require that a user logs into the site. With the blackbox driver, all user creation and login would have to
take place via the user interface, which quickly becomes tedious and time consuming. You can use the Drush driver to
add users, reset passwords, and log in by following the steps below, again, without having to write custom PHP. You
can also do this with the Drupal API driver. The main advantage of the Drush driver is that it can work when your
tests run on a different server than the site being tested.

8.1 Install Drush

See the Drush project page for installation directions.

8.2 Install the Behat Drush Endpoint

The Behat Drush Endpoint is a Drush-based service that the Drush Driver uses in order to create content on the Drupal
site being tested. See the Behat Drush Endpoint project page for instructions on how to install it with your Drupal site.

8.3 Point Drush at your Drupal site

8.3.1 Drupal Alias (For local or remote sites)

You’ll need ssh-key access to a remote server to use Drush. If Drush and Drush aliases are new to you, see the Drush
site for detailed examples

The alias for our example looks like:

1 <?php
2 $aliases['local'] = array(
3 'root' => '/var/www/seven/drupal',

(continues on next page)

23

https://drupal.org/project/drush
https://github.com/drush-ops/behat-drush-endpoint
http://drush.org
http://drush.org
http://docs.drush.org/en/master/usage/#site-aliases

the Drupal Extension to Behat and Mink Documentation, Release 1.1

(continued from previous page)

4 'uri' => 'seven.l'
5);
6 $aliases['git7site'] = array(
7 'uri' => 'git7site.devdrupal.org',
8 'host' => 'git7site.devdrupal.org'
9);

8.3.2 Path to Drupal (local sites only)

If you’ll only be running drush commands to access a site on the same machine, you can specify the path to your
Drupal root:

1 Drupal\DrupalExtension:
2 blackbox: ~
3 drush:
4 root: /my/path/to/drupal

8.4 Enable the Drush driver

In the behat.yml file:

1 default:
2 suites:
3 default:
4 contexts:
5 - FeatureContext
6 - Drupal\DrupalExtension\Context\DrupalContext
7 - Drupal\DrupalExtension\Context\MinkContext
8 extensions:
9 Drupal\MinkExtension:

10 goutte: ~
11 selenium2: ~
12 base_url: http://seven.l
13 Drupal\DrupalExtension:
14 blackbox: ~
15 api_driver: 'drush'
16 drush:
17 alias: 'local'
18 region_map:
19 footer: "#footer"

Note: Line 15 isn’t strictly necessary for the Drush driver, which is the default for the API.

8.5 Calling the Drush driver

Untagged tests use the blackbox driver. To invoke the Drush driver, tag the scenario with @api

24 Chapter 8. Drush Driver

the Drupal Extension to Behat and Mink Documentation, Release 1.1

1 Feature: Drush alias
2 In order to demonstrate the Drush driver
3 As a trainer
4 I need to show how to tag scenarios
5

6 Scenario: Untagged scenario uses blackbox driver and fails
7 Given I am logged in as a user with the "authenticated user" role
8 When I click "My account"
9 Then I should see the heading "History"

10

11 @api
12 Scenario: Tagged scenario uses Drush driver and succeeds
13 Given I am logged in as a user with the "authenticated user" role
14 When I click "My account"
15 Then I should see the heading "History"

If you try to run a test without that tag, it will fail.

8.5.1 Example:

1 Feature: Drush alias
2 In order to demonstrate the Drush driver
3 As a trainer
4 I need to show how to tag scenarios
5

6 Scenario: Untagged scenario uses blackbox driver and fails
7 # features/drush.feature:6
8 Given I am logged in as a user with the "authenticated user" role
9 # FeatureContext::iAmLoggedInWithRole()

10 No ability to create users in Drupal\Driver\BlackboxDriver.
11 Put `@api` into your feature and add an api driver
12 (ex: `api_driver: drupal`) in behat.yml.
13 When I click "My account"
14 # FeatureContext::iClick()
15 Then I should see the heading "History"
16 # FeatureContext::assertHeading()
17

18 @api
19 Scenario: Tagged scenario uses Drush driver and succeeds
20 # features/drush.feature:12
21 Given I am logged in as a user with the "authenticated user" role
22 # FeatureContext::iAmLoggedInWithRole()
23 When I click "My account"
24 # FeatureContext::iClick()

The Drush driver gives you access to all the blackbox steps, plus those used in each of the following examples:

1 @api
2 Feature: Drush driver
3 In order to show functionality added by the Drush driver
4 As a trainer
5 I need to use the step definitions it supports
6

7 Scenario: Drush alias
8 Given I am logged in as a user with the "authenticated user" role
9 When I click "My account"

(continues on next page)

8.5. Calling the Drush driver 25

the Drupal Extension to Behat and Mink Documentation, Release 1.1

(continued from previous page)

10 Then I should see the heading "History"
11

12 Scenario: Target links within table rows
13 Given I am logged in as a user with the "administrator" role
14 When I am at "admin/structure/types"
15 And I click "manage fields" in the "Article" row
16 Then I should be on "admin/structure/types/manage/article/fields"
17 And I should see text matching "Add new field"
18

19 Scenario: Clear cache
20 Given the cache has been cleared
21 When I am on the homepage
22 Then I should get a "200" HTTP response

If the Behat Drush Endpoint is installed on the Drupal site being tested, then you will also have access to all of the
examples shown for the Drupal API driver.

26 Chapter 8. Drush Driver

CHAPTER 9

Drupal API Driver

The Drupal API Driver is the fastest and the most powerful of the three drivers. Its biggest limitation is that the tests
must run on the same server as the Drupal site.

9.1 Enable the Drupal API Driver

To enable the Drupal API driver, edit the behat.yml file, change the api_driver to drupal and add the path to the local
Drupal installation as shown below:

1 default:
2 suites:
3 default:
4 contexts:
5 - FeatureContext
6 - Drupal\DrupalExtension\Context\DrupalContext
7 - Drupal\DrupalExtension\Context\MinkContext
8 extensions:
9 Drupal\MinkExtension:

10 goutte: ~
11 selenium2: ~
12 base_url: http://seven.l
13 Drupal\DrupalExtension:
14 blackbox: ~
15 api_driver: 'drupal'
16 drush:
17 alias: 'local'
18 drupal:
19 drupal_root: '/var/www/seven/drupal'
20 region_map:
21 footer: "#footer"

Note: It’s fine to leave the information for the drush driver in the file. It’s the api_driver value that declares which

27

the Drupal Extension to Behat and Mink Documentation, Release 1.1

setting will be used for scenarios tagged @api.

Using this driver, you gain the ability to use all the steps in the examples below (and more).

1 @api
2 Scenario: Create a node
3 Given I am logged in as a user with the "administrator" role
4 When I am viewing an "article" content with the title "My article"
5 Then I should see the heading "My article"
6

7 Scenario: Run cron
8 Given I am logged in as a user with the "administrator" role
9 When I run cron

10 And am on "admin/reports/dblog"
11 Then I should see the link "Cron run completed"
12

13 Scenario: Create many nodes
14 Given "page" content:
15 | title |
16 | Page one |
17 | Page two |
18 And "article" content:
19 | title |
20 | First article |
21 | Second article |
22 And I am logged in as a user with the "administrator" role
23 When I go to "admin/content"
24 Then I should see "Page one"
25 And I should see "Page two"
26 And I should see "First article"
27 And I should see "Second article"
28

29 Scenario: Create nodes with fields
30 Given "article" content:
31 | title | promote | body |
32 | First article with fields | 1 | PLACEHOLDER BODY |
33 When I am on the homepage
34 And follow "First article with fields"
35 Then I should see the text "PLACEHOLDER BODY"
36

37 Scenario: Create and view a node with fields
38 Given I am viewing an "Article" content:
39 | title | My article with fields! |
40 | body | A placeholder |
41 Then I should see the heading "My article with fields!"
42 And I should see the text "A placeholder"
43

44 Scenario: Create users
45 Given users:
46 | name | mail | status |
47 | Joe User | joe@example.com | 1 |
48 And I am logged in as a user with the "administrator" role
49 When I visit "admin/people"
50 Then I should see the link "Joe User"
51

52 Scenario: Login as a user created during this scenario
53 Given users:

(continues on next page)

28 Chapter 9. Drupal API Driver

the Drupal Extension to Behat and Mink Documentation, Release 1.1

(continued from previous page)

54 | name | status |
55 | Test user | 1 |
56 When I am logged in as "Test user"
57 Then I should see the link "Log out"
58

59 Scenario: Create a term
60 Given I am logged in as a user with the "administrator" role
61 When I am viewing a "tags" term with the name "My tag"
62 Then I should see the heading "My tag"
63

64 Scenario: Create many terms
65 Given "tags" terms:
66 | name |
67 | Tag one |
68 | Tag two |
69 And I am logged in as a user with the "administrator" role
70 When I go to "admin/structure/taxonomy/tags"
71 Then I should see "Tag one"
72 And I should see "Tag two"
73

74 Scenario: Create nodes with specific authorship
75 Given users:
76 | name | mail | status |
77 | Joe User | joe@example.com | 1 |
78 And "article" content:
79 | title | author | body | promote |
80 | Article by Joe | Joe User | PLACEHOLDER BODY | 1 |
81 When I am logged in as a user with the "administrator" role
82 And I am on the homepage
83 And I follow "Article by Joe"
84 Then I should see the link "Joe User"
85

86 Scenario: Create an article with multiple term references
87 Given "tags" terms:
88 | name |
89 | Tag one |
90 | Tag two |
91 | Tag three |
92 | Tag four |
93 And "article" content:
94 | title | field_tags |
95 | My first article | Tag one |
96 | My second article | Tag two, Tag three |
97 | My third article | Tag two, Tag three, Tag four |

9.1. Enable the Drupal API Driver 29

the Drupal Extension to Behat and Mink Documentation, Release 1.1

30 Chapter 9. Drupal API Driver

CHAPTER 10

Contexts

Before Behat 3, each test suite was limited to a single context class. As of Behat 3, it is possible to flexibly structure
your code by using multiple contexts in a single test suite.

10.1 Available Contexts

In accordance with this new capability, The Drupal Extension includes the following contexts:

RawDrupalContext A context that provides no step definitions, but all of the necessary functionality for interacting
with Drupal, and with the browser via Mink sessions.

DrupalContext Provides step-definitions for creating users, terms, and nodes.

MinkContext Builds on top of the Mink Extension and adds steps specific to regions and forms.

MarkupContext Contains step definitions that deal with low-level markup (such as tags, classes, and attributes).

MessageContext Step-definitions that are specific to Drupal messages that get displayed (notice, warning, and error).

RandomContext Contains transforms that allow for use of placeholders such as <?title> that will be replaced with a
random string when the scenario is run: Given I am viewing an “Article” with the title “<?title>”

DrushContext Allows steps to directly call drush commands.

BatchContext Steps for creating batch items and ensuring a batch is finished processing.

10.2 Custom Contexts

You can structure your own code with additional contexts. See Behat’s testing features documentation for a detailed
discussion of how contexts work.

Important: Every context you want to use in a suite must be declared in the behat.yml file.

31

http://docs.behat.org/en/latest/guides/4.contexts.html

the Drupal Extension to Behat and Mink Documentation, Release 1.1

10.2.1 Example

In this example, you would have access to:

• pre-written step definitions for users, terms, and nodes (from the DrupalContext)

• steps you’ve implemented in the main features/bootstrap/FeatureContext.php file

• steps you’ve implemented in the CustomContext class

You would not have access to the steps from the MarkupContext, MessageContext, or DrushContext,
however.

1 default:
2 suites:
3 default:
4 contexts:
5 - Drupal\DrupalExtension\Context\DrupalContext
6 - FeatureContext
7 - CustomContext

10.3 Context communication

Since Behat 3 can have many concurrent contexts active, communication between those contexts can be important.

The following will gather any specified contexts before a given scenario is run:

1 <?php
2

3 // Snippet to demonstrate context communications.
4

5 /**
6 * Gather any contexts needed.
7 *
8 * @BeforeScenario
9 */

10 public function gatherContexts(BeforeScenarioScope $scope) {
11 $environment = $scope->getEnvironment();
12

13 $this->drupalContext = $environment->getContext(
→˓'Drupal\DrupalExtension\Context\DrupalContext');

14 $this->minkContext = $environment->getContext(
→˓'Drupal\DrupalExtension\Context\MinkContext');

15 }

10.4 Drupal Extension Hooks

In addition to the hooks provided by Behat, the Drupal Extension provides three additional ways to tag the methods in
your CustomContext class in order to have them fire before certain events.

1. @beforeNodeCreate

2. @beforeTermCreate

3. @beforeUserCreate

32 Chapter 10. Contexts

http://behat.readthedocs.org/en/v2.5/guides/3.hooks.html

the Drupal Extension to Behat and Mink Documentation, Release 1.1

10.4.1 Example

1 use Drupal\DrupalExtension\Hook\Scope\EntityScope;
2 ...
3 /**
4 * Call this function before nodes are created.
5 *
6 * @beforeNodeCreate
7 */
8 public function alterNodeObject(EntityScope $scope) {
9 $node = $scope->getEntity();

10 // Alter node object as needed.
11 }

10.4. Drupal Extension Hooks 33

the Drupal Extension to Behat and Mink Documentation, Release 1.1

34 Chapter 10. Contexts

CHAPTER 11

Contributed Module Subcontexts

Although not yet a wide-spread practice, the Drupal Extension to Behat and Mink makes it easy for maintainers to
include custom step definitions in their contributed projects.

11.1 Discovering SubContexts

In order to use contributed step definitions, define the search path in the behat.yml

// sites/default/behat-tests/behat.yml

1 default:
2 suites:
3 default:
4 contexts:
5 - FeatureContext
6 - Drupal\DrupalExtension\Context\DrupalContext
7 - Drupal\DrupalExtension\Context\MinkContext
8 paths:
9 - "./path_to_module/features"

10 extensions:
11 Drupal\MinkExtension:
12 goutte: ~
13 selenium2: ~
14 base_url: http://seven.l
15 Drupal\DrupalExtension:
16 blackbox: ~
17 api_driver: 'drupal'
18 drush:
19 alias: 'local'
20 drupal:
21 drupal_root: '/var/www/seven/drupal'
22 region_map:
23 footer: "#footer"

(continues on next page)

35

the Drupal Extension to Behat and Mink Documentation, Release 1.1

(continued from previous page)

24 subcontexts:
25 paths:
26 - "/var/www/seven/drupal/sites/all"

The Drupal Extension will search recursively within the directory or directories specified to discover and load any file
ending in .behat.inc. This system, although created with Drupal contrib projects in mind, searches where it’s pointed,
so you can also use it for your own subcontexts, a strategy you might employ to re-use step definitions particular
to your shop or company’s development patterns. The paths key allows running tests located in features within the
features directory of a contributed/custom module.

11.2 Disable autoloading

Autoloading can be disabled in the behat.yml file temporarily with the following:

1 default:
2 suites:
3 default:
4 contexts:
5 - FeatureContext
6 - Drupal\DrupalExtension\Context\DrupalContext
7 - Drupal\DrupalExtension\Context\MinkContext
8 extensions:
9 Drupal\MinkExtension:

10 goutte: ~
11 selenium2: ~
12 base_url: http://seven.l
13 Drupal\DrupalExtension:
14 blackbox: ~
15 api_driver: 'drupal'
16 drush:
17 alias: 'local'
18 drupal:
19 drupal_root: '/var/www/seven/drupal'
20 region_map:
21 footer: "#footer"
22 subcontexts:
23 paths:
24 - "/var/www/seven/drupal/sites/all"
25 autoload: 0

11.3 For Contributors

Behat subcontexts are no longer supported in version 3. The Drupal Extension, however, continues to support saving
module-specific contexts in a file ending with .behat.inc

Just like functions, preface the filename with the project’s machine name to prevent namespace collisions.

1 <?php
2

3 /**
4 * Contains \FooFoo.
5 */

(continues on next page)

36 Chapter 11. Contributed Module Subcontexts

http://docs.behat.org/guides/4.context.html#using-subcontexts

the Drupal Extension to Behat and Mink Documentation, Release 1.1

(continued from previous page)

6

7 use Behat\Behat\Hook\Scope\BeforeScenarioScope;
8 use Behat\Behat\Tester\Exception\PendingException;
9 use Drupal\DrupalExtension\Context\DrupalSubContextBase;

10 use Drupal\DrupalExtension\Context\DrupalSubContextInterface;
11

12 /**
13 * Example subcontext.
14 */
15 class FooFoo extends DrupalSubContextBase implements

→˓DrupalSubContextInterface {
16

17 /**
18 * @var \Drupal\DrupalExtension\Context\DrupalContext
19 */
20 protected $drupalContext;
21

22 /**
23 * @var \Drupal\DrupalExtension\Context\MinkContext
24 */
25 protected $minkContext;
26

27 /**
28 * @BeforeScenario
29 */
30 public function gatherContexts(BeforeScenarioScope $scope) {
31 $environment = $scope->getEnvironment();
32

33 $this->drupalContext = $environment->getContext(
→˓'Drupal\DrupalExtension\Context\DrupalContext');

34 $this->minkContext = $environment->getContext(
→˓'Drupal\DrupalExtension\Context\MinkContext');

35 }
36

37 /**
38 * @Given I create a(an) :arg1 content type
39 */
40 public function CreateAContentType($arg1) {
41 $this->minkContext->assertAtPath("admin/structure/types/add");
42 $node = [
43 'title' => 'Test content!',
44];
45 $this->drupalContext->nodeCreate($node);
46 }
47

48 /**
49 * @Then /^I should have a subcontext definition$/
50 */
51 public function assertSubContextDefinition() {
52 throw new PendingException();
53 }
54

55 }

11.3. For Contributors 37

	Testing your site with the Drupal Extension to Behat and Mink
	System Requirements
	Stand-alone installation
	System-wide installation
	Environment specific settings
	Drupal Extension Drivers
	Blackbox Driver
	Drush Driver
	Drupal API Driver
	Contexts
	Contributed Module Subcontexts

