
BeeGFS unofficial documentation

Sep 24, 2019

Architecture

1 General Architecture 3
1.1 The Management Service . 5
1.2 The Metadata Service . 5
1.3 The Storage Service . 5
1.4 The Client Service . 7
1.5 Admon: Administration and Monitoring System . 7

2 Built-in Replication: Buddy Mirroring 9
2.1 Storage Service Buddy Mirroring . 10
2.2 Buddy Groups . 10
2.3 Metadata Service Buddy Mirroring . 11
2.4 Define Stripe Pattern . 11
2.5 Enabling and disabling Mirroring . 12
2.6 Restoring Metadata and Storage Target Data after Failures . 13
2.7 Caveats of Storage Mirroring . 14

3 Storage Pools 17

4 Cloud Integration 19

5 Striping 21
5.1 Buddy Mirroring . 21
5.2 Impact on network communication . 22

6 Client Tuning 23
6.1 Parallel Network Requests . 23
6.2 Remote fsync . 23
6.3 Disable locate/mlocate/updatedb . 24

7 Getting started and typical Configurations 25

8 Installation and Setup 27
8.1 General Notes . 27
8.2 GUI-based Installation and Service Management . 28

9 BeeOND: BeeGFS On Demand 29

10 Admon 31

i

10.1 Installation and basic Setup . 31
10.2 Admon GUI Start . 32
10.3 Admon Login . 32
10.4 Admon Main Menu . 32
10.5 Admon Menu Bar . 34

11 BeeGFS APIs Overview 35

12 Contact Information 37

13 Licensing 39
13.1 Admon Licensing . 39

ii

BeeGFS unofficial documentation

BeeGFS is the leading parallel cluster file system. It has been developed with a strong focus on maximum performance
and scalability, a high level of flexibility and designed for robustness and ease of use.

BeeGFS is a software-defined storage based on the POSIX file system interface, which means applications do not
have to be rewritten or modified to take advantage of BeeGFS. BeeGFS clients accessing the data inside the file
system, communicate with the storage servers via network, via any TCP/IP based connection or via RDMA-capable
networks like InfiniBand (IB), Omni-Path (OPA) and RDMA over Converged Ethernet (RoCE). This is similar for the
communication between the BeeGFS servers.

Furthermore, BeeGFS is a parallel file system. By transparently spreading user data across multiple servers and
increasing the number of servers and disks in the system, the capacity and performance of all disks and all servers is
aggregated in a single namespace. That way the file system performance and capacity can easily be scaled to the level
which is required for the specific use case, also later while the system is in production.

BeeGFS is separating metadata from user file chunks on the servers. The file chunks are provided by the storage
service and contain the data, which users want to store (i.e. the user file contents), whereas the metadata is the “data
about data”, such as access permissions, file size and the information about how the user file chunks are distributed
across the storage servers. The moment a client has got the metadata for a specific file or directory, it can talk directly
to the storage service to store or retrieve the file chunks, so there is no further involvement of the metadata service in
read or write operations.

BeeGFS adresses everyone, who needs large and/or fast file storage. While BeeGFS was originally developed for
High Performance Computing (HPC), it is used today in almost all areas of industry and research, including but not
limited to: Artificial Intelligence, Life Sciences, Oil & Gas, Finance or Defense. The concept of seamless scalability
additionally allows users with a fast (but perhaps irregular or unpredictable) growth to adapt easily to the situations
they are facing over time.

An important part of the philosophy behind BeeGFS is to reduce the hurdles for its use as far as possible, so that the
technology is available to as many people as possible for their work. In the following paragraphs we will explain, how
this is achieved.

BeeGFS is open-source and the basic BeeGFS file system software is available free of charge for end users. Thus,
whoever wants to try or use BeeGFS can download it from www.beegfs.io. The client is published under the GPLv2,
the server components are published under the BeeGFS EULA.

The additional Enterprise Features (high-availability, quota enforcement, and Access Control Lists) are also included
for testing and can be enabled for production by establishing a support contract with ThinkParQ. Professional support
contracts with ThinkParQ ensure, that you get help when you need it for your production environment. They also
provide the financial basis for the continuous development of new features, as well as the optimization of BeeGFS
for new hardware generations and new operating system releases. To provide high quality support around the globe,
ThinkParQ cooperates with international solution partners.

System integrators offering turn-key solutions based on BeeGFS are always required to establish support contracts
with ThinkParQ for their customers to ensure, that help is always available when needed.

Originally, BeeGFS was developed for Linux and all services, except for the client are normal userspace processes.
BeeGFS supports a wide range of Linux distributions such as RHEL/Fedora, SLES/OpenSuse or Debian/Ubuntu as
well as a wide range of Linux kernels from ancient 2.6.18 up to the latest vanilla kernels. Additionally, a native BeeGFS
Windows client is currently under development to enable seamless and fast data access in a shared environment.

Another important aspect of BeeGFS is the support for different hardware platforms, including not only Intel/AMD
x86_64, but also ARM, OpenPOWER and others. As the BeeGFS network protocol is independent of the hardware
platform, hosts of different platforms can be mixed within the same file system instance, ensuring that sysadmins can
always add systems of a new platform later throughout the life cycle of the system.

Architecture 1

BeeGFS unofficial documentation

2 Architecture

CHAPTER 1

General Architecture

The BeeGFS architecture is composed of four main services:

Management service A registry and watchdog for all other services

Storage service Stores the distributed user file contents

Metadata service Stores access permissions and striping information

Client service Mounts the file system to access the stored data

In addition to the main services list above, BeeGFS also comes with an optional graphical administration and moni-
toring service (the so-called “admon”).

All BeeGFS services write a log file with the corresponding service name to /var/log/beegfs-*.log

For high flexibility, it is possible to run multiple instances with any BeeGFS service on the same machine. These
instances can be part of the same BeeGFS file system instance or as well of different file system instances. One typical
example is the client service, that can mount two different BeeGFS file systems (e.g. an old one and a new one) on the
same compute node.

High flexibility and easy administration is also given since the BeeGFS management, meta, and storage services do
not access the disks directly. Instead, they store data inside any local Linux POSIX file system, such as ext4, xfs or
zfs. This provides the flexibility to choose the underlying file system which works best for the given service, use case
or hardware and makes it also easy to explore how BeeGFS stores files.

The underlying file system in which the BeeGFS services store their data are called management, metadata, or storage
targets. These correspond to the name of the BeeGFS service, that uses the target to store its data. While the BeeGFS
management and metadata service each use a single target per service instance, the storage service supports one or
multiple storage targets for a single storage service instance.

This software-based approach without any strict requirements for the hardware provides the possibility to choose from
a very wide range of hardware components. In the following chapters, we will discuss the BeeGFS services and
flexibility in more detail.

3

BeeGFS unofficial documentation

Fig. 1: BeeGFS Architecture Overview

Fig. 2: Management Service

4 Chapter 1. General Architecture

BeeGFS unofficial documentation

1.1 The Management Service

The management service can be figured as a “meeting point” for the BeeGFS metadata, storage, and client services. It
is very light-weight and typically not running on a dedicated machine, as it is not critical for performance and stores
no user data. It is watching all registered services and checks their state. Therefore, it is the first service, which needs
to be setup in a newly deployed environment.

The management service maintains a list of all other BeeGFS services and their state.

1.2 The Metadata Service

Fig. 3: Metadata Service

The metadata service stores information about the data e.g. directory information, file and directory ownership and
the location of user file contents on storage targets. It provides information about the location (the so-called “stripe
pattern”) for an individual user file to a client when the client opens the file, but afterwards the metadata service is not
involved in data access (i.e. for file read and write operations) until the file is closed.

The BeeGFS metadata service is a scale-out service, meaning there can be one or many metadata services in a BeeGFS
file system. Each metadata service is responsible for its exclusive fraction of the global namespace, so that having more
metadata servers improves the overall system performance. Adding more metadata servers later is always possible.

Each metadata service instance has exactly one metadata target to store its data. On the metadata target, BeeGFS
creates one metadata file per user-created file. This is an important design decision of BeeGFS to avoid the case of
storing all metadata inside a single database that could possibly get corrupted.

Usually, a metadata target is an ext4 file system based on a RAID1 or RAID10 of flash drives, as low metadata access
latency improves the responsiveness of the file system. BeeGFS metadata is very small and grows linear with the
number of user-created files. 512GB of usable metadata capacity are typically good for about 150 million user files.

As low metadata access latency is a major benefit for performance of the overall system, faster CPU cores will improve
latency.

1.3 The Storage Service

The storage service (sometimes also referred to as the “object storage service”) is the main service to store striped user
file contents, also known as data chunk files.

Similar to the metadata service, the BeeGFS storage service is based on a scale- out design. That means, you can have
one or multiple storage services per BeeGFS file system instance, so that each storage service adds more capacity and
especially also more performance to the file system.

1.1. The Management Service 5

BeeGFS unofficial documentation

Fig. 4: Storage Service

A storage service instance has one or multiple storage targets. While such a storage target can generally be any
directory on a local filesystem, a storage target typically is a hardware RAID-6 (typically composed of 8+2 or 10+2)
or zfs RAIDz2 volume, of either internal or externally attached drives.

The storage service works with any local Linux POSIX file system. Usually, the storage targets are based on xfs in the
case of hardware RAID controllers.

In contrast to the metadata service, many people try to optimize the traffic on the storage targets for large sequential
access to have optimal performance on spinning disks. However, as BeeGFS uses all the available RAM on the
storage servers (which is not otherwise allocated by processes) automatically for caching, it can also aggregate small
IOs requests into larger blocks before writing the data out to disk. Furthermore it is able to serve data from the cache
if it has already been recently requested by another client.

The capability to quickly write bursts of data into the server RAM cache or to quickly read data from it is also the
reason why it makes sense to have a network that is significantly faster than the disk streaming throughput of the
servers.

To distribute the used space and to aggregate the performance of multiple servers even for a single large file, BeeGFS
uses striping, which means the file gets split up into chunks of fixed size and those chunks are distributed across
multiple storage targets.

The chunksize and number of targets per file is decided by the responsible metadata service when a file gets created.
This information is called the stripe pattern. The stripe pattern can be configured per directory (e.g. by using the
beegfs-ctl command line tool) or even for individual files (e.g. by using the BeeGFS Striping API).

The files on the storage targets containing the user data are called chunk files. For each user file, there is exactly
one chunk file on the corresponding storage targets. To not waste space, BeeGFS only creates chunk files when the
client actually writes data to the corresponding target. And also, for not wasting space, the chunk size is not statically
allocated, meaning when the user writes only a single byte into the file, BeeGFS will also create only a single chunk
file of 1 byte in size.

By default, BeeGFS picks the storage targets for a file randomly, as this has shown to provide best results in multi-user
environments where (from the point of view of the file system) the different users are also concurrently creating a
random mix of large and small files. If necessary, (e.g. to have deterministic streaming benchmark results) different
target choosers are available in the metadata service configuration file.

To prevent storage targets running out of free space, BeeGFS has three different labels for free target capacity: normal,
low and emergency (the latter meaning only very little space left or the target is unreachable). The target chooser
running on the metadata service will prefer targets labeled as normal. As long as such targets are available, and it
will not pick any target labeled as critical before all targets entered that state. With this approach, BeeGFS can also
work with storage targets of different sizes. The thresholds for low and emergency can be changed in the management
service configuration file.

6 Chapter 1. General Architecture

BeeGFS unofficial documentation

1.4 The Client Service

BeeGFS comes with a client that registers natively with the virtual file system interface of the Linux kernel for max-
imum performance. This kernel module has to be compiled to match the used kernel, but don’t worry: The kernel
module source code is included in the normal client package and compilation for the currently running Linux kernel
happens fully automatically, so there are no manual steps required when you update your Linux kernel or when you
update the BeeGFS client service. The installation or a BeeGFS client update can even be done without rebooting the
machine.

The client kernel module uses an additional userspace helper daemon for DNS lookups and to write the log file.

When the client is loaded, it will mount the file systems defined in beegfs- mounts.conf instead of the usual Linux
approach based on /etc/fstab (which is also possible with BeeGFS, but not recommended). This is an approach of
starting the beegfs-client like any other Linux service through a service start script. It enables the automatic recompi-
lation of the BeeGFS client module after system updates and makes handling of the BeeGFS client service generally
more convenient.

The native BeeGFS client should be used on all hosts that are supposed to access BeeGFS with maximum performance.
However, it is also possible to re-export a BeeGFS mountpoint through NFSv4 or through Samba or to use BeeGFS as
a drop- in replacement for Hadoop’s HDFS. Upcoming releases of BeeGFS will also provide a native BeeGFS client
for Windows.

1.5 Admon: Administration and Monitoring System

Fig. 5: Admon GUI - Client Operation Statistics

In addition to the beegfs-ctl command line tool, the optional BeeGFS Administration and Monitoring system (short:
admon) provides a graphical interface to perform basic administrative tasks and to monitor the state of the file system
and its components.

The BeeGFS admon consists of two parts:

• The admon backend service, which runs on any machine with network access to the metadata and storage
services. This service gathers the status information of the other BeeGFS services and stores it in a database.

• The graphical Java-based client, which runs on your workstation. It connects to the remote admon daemon via
http.

1.4. The Client Service 7

BeeGFS unofficial documentation

8 Chapter 1. General Architecture

CHAPTER 2

Built-in Replication: Buddy Mirroring

With BeeGFS being a high-performance file system, many BeeGFS users try to optimize their systems for best per-
formance for the given budget. This is because with an underlying RAID-6, the risk of loosing data on the servers is
already very low. So the only remaining risk for data availability is the relatively low risk of server hardware issues
like mainboard failures. But even in this case, data is not lost, but only temporarily unavailable. Clients that need
to access the data of unavailable servers will wait for a configurable amount of time (usually several minutes). If the
server is available again within this time, the client will continue transparently for the application. This mechanism
also enables transparent rolling updates. If the server does not come back within this time frame, the client will report
an error to the application. This is useful to prevent the system from hanging completely when a server is down.

However, there are of course systems where this small risk of data unavailability is not acceptable.

The classic approach to this is hardware shared storage, where pairs of two servers have shared access to the same
external JBOD. While this approach is possible with BeeGFS, it complicates the system administration due to the
shared disks and it requires extra services like pacemaker to manage the failover. This approach also only moves the
availability problem from the servers to the shared JBOD and does not reduce the risk of data loss if there is a problem
with a RAID-6 volume.

Thus, BeeGFS comes with a different mechanism that is fully integrated (meaning no extra services are required) and
which does not rely on special hardware like physically shared storage. This approach is called Buddy Mirroring,
based on the concept of pairs of servers (the so-called buddies) that internally replicate each other and that help each
other in case one of them has a problem.

Compared to the classic shared storage approach, Buddy Mirroring has the advantage that the two buddies of a group
can be placed in different hardware failure domains, such as different racks or even different adjacent server rooms,
so that your data even survives if there is a fire in one of the server rooms. Buddy Mirroring also increases the level
of fault tolerance compared to the classic approach of shared RAID-6 volumes, because even if the complete RAID-6
volume of one buddy is lost, the other buddy still has all the data.

For high flexibility, Buddy Mirroring can be enabled for all data or only for subsets of the data, e.g. based on individual
directory settings, which are automatically derived by newly created subdirectories. Buddy Mirroring can also be
enabled anytime later while data is already stored on the system.

Buddy Mirroring is synchronous (which is important for transparent failovers), meaning the application receives the
I/O completion information after both buddies of a group received the data. The replication happens over the normal
network connection, so no extra network connection is required to use Buddy Mirroring.

9

BeeGFS unofficial documentation

Buddy Mirroring can be enabled individually for the metadata service and the storage service.

2.1 Storage Service Buddy Mirroring

A storage service buddy group is a pair of two targets that internally manages data replication between each other. In
typical setups with an even number of servers and targets, the buddy group approach allows up to a half of all servers
in a system to fail with all data still being accessible.

Storage buddy mirroring can also be used with an odd number of storage servers. This works, because BeeGFS
buddy groups are composed of individual storage targets, independent of their assignment to servers, as shown in the
following example graphic with 3 servers and 2 storage targets per server. (In general, a storage buddy group could
even be composed of two targets that are attached to the same server.)

In normal operation, one of the storage targets (or metadata servers) in a buddy group is labeled as primary, whereas
the other is labeled as secondary. These roles can switch dynamically when the primary fails. To prevent the client
from sending the data twice (and thus reducing the maximum client network throughput), modifying operations will
always be sent to the primary by the client, which then takes care of the internal data forwarding to the secondary,
taking advantage of the full-duplex capability of modern networks.

If the primary storage target of a buddy group is unreachable, it will get marked as offline and a failover to the
secondary will be issued. In this case, the former secondary is going to be the new primary. Such a failover is
transparent and happens without any loss of data for running applications. The failover will happen after a short delay
to guarantee the consistency of the system while the change information is propagated to all nodes.

If a failed buddy comes back, it will automatically resynchronize with the primary. To reduce the time for synchro-
nization, the storage buddies only synchronize files that have changed while the other machine was down.

The beegfs-ctl command line tool can be used to configure the buddy groups, enable or disable mirroring and to check
the state of the buddies.

2.2 Buddy Groups

Mirror buddy groups are numeric IDs, just like the numeric IDs of the storage targets. Please note that buddy group
IDs don’t conflict with target IDs, i.e. they don’t need to be distinct from storage target IDs.

There are basically two different ways to define buddy groups. They can be defined manually or you can tell BeeGFS
to create them automatically.

Of course, defining groups manually gives you greater control and allows you to create more detailed configuration.
For example, the automatic mode won’t consider targets that are not equally sized. It also doesn’t know about the
topology of your system, so if you, for example, want to make sure that members of buddy groups are placed in
different physical locations you have to define them manually.

2.2.1 Define Buddy Groups automatically

Automatic creation of buddy groups can be done beegfs-ctl, separately for metadata and for storage servers:

$ beegfs-ctl --addmirrorgroup --automatic --nodetype=meta

$ beegfs-ctl --addmirrorgroup --automatic --nodetype=storage

Please see the help of beegfs-ctl for more information on available parameters:

10 Chapter 2. Built-in Replication: Buddy Mirroring

BeeGFS unofficial documentation

$ beegfs-ctl --addmirrorgroup --help

2.2.2 Define Buddy Groups manually

Manual definition of mirror buddy groups can be useful if you want to set custom group IDs or if you want to make
sure that the buddies are in different failure domains (e.g. different racks). Manual definition of mirror buddy groups
is done with the beegfs-ctl tool. By using the following command, you can create a buddy group with the ID 100,
consisting of targets 1 and 2:

$ beegfs-ctl --addmirrorgroup --nodetype=storage --primary=1 --secondary=2 --
→˓groupid=100

Please see the help of beegfs-ctl for more information on available parameters:

$ beegfs-ctl --addmirrorgroup --help

When creating mirror buddy groups for metadata manually and one of them contains the root directory, it is necessary
to set this one as primary.

2.2.3 List defined Mirror Buddy Groups

Configured mirror buddy groups can be listed with beegfs-ctl (don’t forget to specify the node type):

$ beegfs-ctl --listmirrorgroups --nodetype=storage

$ beegfs-ctl --listmirrorgroups --nodetype=meta

It’s also possible to list mirror buddy groups alongside other target information:

$ beegfs-ctl --listtargets --mirrorgroups

Please see the help of beegfs-ctl for more information on available parameters:

$ beegfs-ctl --listtargets --help

2.3 Metadata Service Buddy Mirroring

As described in Storage Service Buddy Mirroring the same concept and methodology can be used for metadata service
buddy mirroring.

Note that odd numbers of storage this is not possible with metadata servers, since there are no metadata targets in
BeeGFS. An even number of metadata server is needed so that every metadata server can belong to a buddy group.

2.4 Define Stripe Pattern

After defining storage buddy mirror groups in your system, you have to define a data stripe pattern that uses it.

2.3. Metadata Service Buddy Mirroring 11

BeeGFS unofficial documentation

2.5 Enabling and disabling Mirroring

By default, mirroring is disabled for a new file system instance. Both types of mirroring can be enabled with the
beegfs-ctl command line tool. (The beegfs-ctl tool is contained in the beegfs-utils package and is usually run from a
client node.)

Before metaadata or storage mirroring can be enabled, buddy groups need to be defined, as these are the basis for
mirroring.

Storage mirroring can be enabled on a per-directory basis, so that some data in the file system can be mirrored while
other data might not be mirrored. On the medatada side, it is also possible to activate or deactivate mirroring per
directory, but certain logical restrictions apply. For example, for a directory to be mirrored effectively, the whole path
to it must also be mirrored.

Mirroring settings of a directory will be applied to new file entries and will be derived by new subdirecto-
ries. For instance, if metadata mirroring is enabled for directory /mnt/beegfs/mydir1, then a new subdirectory
/mnt/beegfs/mydir1/mydir2 will also automatically have metadata mirroring enabled.

After metadata mirroring is enabled for a file system using the beegfs-ctl –mirrormd command, the metadata of the
root directory will be mirrored by default. Therefore, newly created directories under the root will also have metadata
mirroring enabled. It is possible to exclude new folders from metadata mirroring by creating them using beegfs-ctl
–createdir –nomirror.

To enable file contents mirroring for a certain directory, see the built-in help of the beegfs-ctl tool.

$ beegfs-ctl --setpattern --buddymirror --help

File contents mirroring can be disabled afterwards by using beegfs-ctl mode –setpattern without the –buddymirror
option. However, files that were already created while mirroring was enabled will remain mirrored.

To check the metadata and file contents mirroring settings of a certain directory or file, use:

$ beegfs-ctl --getentryinfo /mnt/beegfs/mydir/myfile

To check target states of storage targets, use:

$ beegfs-ctl --listtargets --nodetype=storage --state

2.5.1 Activating Metadata Mirroring

After metadata server buddy groups have been defined as described under Management of Mirror Buddy Groups,
metadata mirroring can be activated on the file system.

Note: When applying the beegfs-ctl –mirrormd command, no clients may be mounted. This can be achieved by stop-
ping the beegfs-client service beforehand, and starting it again after beegfs-ctl –mirrormd was successfully performed.
In addition, please restart the beegfs-meta service on all nodes afterwards.

To active metadata mirroring, use the beegfs-ctl tool:

$ beegfs-ctl --mirrormd

In order to synchronize all information across the various components of BeeGFS correctly, the clients can not be
mounted during this process, and the metadata servers must be restarted afterwards.

The full series of steps in an already running system is: stop all clients, execute beegfs-ctl –mirrormd, restart all
metadata servers, then restart all clients.

12 Chapter 2. Built-in Replication: Buddy Mirroring

BeeGFS unofficial documentation

Please see the help of beegfs-ctl for more information on available parameters:

$ beegfs-ctl --mirrormd --help

Running this command will enable metadata mirroring for the root directory of the BeeGFS, as well as all the files
contained in it. Note that existing directories except for the root directory will not be mirrored automatically. Please
check Migrating Existing Metadata to find out how to mirror existing directories.

New files and directories created inside a directory with active metadata mirroring will also have metadata mirroring
activated. There might be situations where it is desirable to deactivate metadata mirroring for part of the file systems.
This gives a slight performance boost, but the data will not be preserved in the event of a server failure. A directory
without metadata mirroring can be created using beegfs-ctl:

$ beegfs-ctl --createdir --nomirror <name>

For information about additional command line parameters, please see the beegfs-ctl help:

$ beegfs-ctl --createdir --help

Directories and files created inside a directory without metadata mirroring will have metadata mirroring disabled.

2.5.2 Migrating Existing Metadata

If a file is moved into a directory with active metadata mirroring, it will have its metadata mirrored. On the other hand,
directories will not automatically be mirrored when moved. For a directory to be mirrored, it is therefore necessary to
freshly create a directory inside a mirrored directory. The easiest way to enable mirroring for a whole directory tree is
to do a recursive copy:

$ cp -a <directory> <mirrored-dir>

This will also copy the file contents, therefore it is possible to use it for enabling metadata and storage mirroring at the
same time.

2.6 Restoring Metadata and Storage Target Data after Failures

If a storage target or metadata server is not reachable it will be marked as offline and won’t get data updates. Usually,
when the target or server re-registers it will automatically be synchronized from the remaining mirror in the buddy
group (self-healing). However, in some cases it might be necessary that you manually start a synchronization process.

2.6.1 Automatic Resynchronization

In general, if a secondary target or server is considered to be out-of-sync, it is automatically set to the consistency state
needs resync (see “Target and Node States” for more information on states) by the the management daemon.

The storage target resynchronization process for self-healing is coordinated by the primary target. The standard process
tries to avoid unnecessary transfer of files. Therefore the primary target saves the time of the last successful commu-
nication with the secondary target. Only files which where modified after this timestamp will be resynchronized by
default. To avoid losing cached data, a short safety threshold timespan will be added (defined by sysResyncSafe-
tyThresholdMins in beegfs-storage.conf).

Since metadata are much smaller than storage contents, there is no timestamp-based mechanism in place, and instead
the full mirrored metadata of the metadata server will be sent to its buddy during the resynchronization process.

2.6. Restoring Metadata and Storage Target Data after Failures 13

BeeGFS unofficial documentation

2.6.2 Manual Resynchronization

In some cases it might be useful or even neccessary to manually trigger resynchronization of a storage target or
metadata server. One case, for example, is a storage system on the secondary target that is damaged beyond repair. In
this scenario all data of that target might be lost and a new target needs to be brought up with the old target ID. The
automatic resync won’t be sufficient then, because it would only consider files after the last successful communication
of the targets. Another case for a manual resync override is when a fsck of the underlying local file system (e.g.
xfs_repair) has removed old files.

The beegfs-ctl tool can be used to manually set a storage target or metadata server to the needs resync state. Please
note that this does not trigger a resync immediately, but does only inform the management daemon about the new
state. The resync process then will be started by the primary of that buddy group a few moments later.

As said before, the primary target saves the time of the last successful communication with the secondary target.
Without additional parameters, this timestamp will be used to shorten resynchronization times as much as possible.
But it is also possible to override this timestamp to resynchronize a longer timespan or to resynchronize everything in
the case described previously.

Please see the help of beegfs-ctl for more information on available parameters:

$ beegfs-ctl --startresync --help

If a resynchronization is already running and you want to abort it and start anew, you can do so by passing the –restart
parameter to beegfs-ctl. If you don’t, the current process keeps running and your request will be ignored. This is
particularly useful if the system started an automatic resynchronization after a secondary target became reachable
again, but you know that the timestamp-based approach is not sufficient. For example, this might be the case if your
complete underlying filesystem broke before the secondary target was started, i.e. the target is completely empty and
needs a full synchronization. Note that restarting a running resync is only possible for storage targets because metadata
servers never do a partial resynchronization.

The following command could be used to stop the automatic resynchronization and start a full resynchronization
instead.

$ beegfs-ctl --startresync --nodetype=storage --targetid=X --timestamp=0 --restart

2.6.3 Display Resynchronization Information

The beegfs-ctl command line tool can be used to display information on an ongoing resynchronization process.

Please see the built-in help of beegfs-ctl for more information on available parameters:

$ beegfs-ctl --resyncstats --help

2.7 Caveats of Storage Mirroring

Storage buddy mirroring provides protection against many failure modes of a distributed system, such as drives failing,
servers failing, networks being unstable or failing, and a number of other modes. It does not provide perfect protection
if a system is degraded, mostly only for the degraded part of the system. If any storage buddy group is in degraded
state, another failure may cause data loss. Administrative actions can also cause data loss or corruption if the system
is in an unstable or degraded state. These actions should be avoided if at all possible, for example by ensuring that no
access to the system is possible while the actions are performed.

14 Chapter 2. Built-in Replication: Buddy Mirroring

BeeGFS unofficial documentation

2.7.1 Setting states of active storage targets

When manually changing the state of a storage target from GOOD to NEEDS_RESYNC, clients accessing files during
a period of propagation “see” different versions of the global state. This influences data and file locks. Propagation
happens every 30 seconds, so the period will not take longer than a minute. This may happen because the state is not
synchronously propagated to all clients, which makes the following sequence of events possible:

1. An administrator sets the state of an active storage target which is the secondary of a buddy group to
NEEDS_RESYNC with beegfs-ctl –startresync.

2. The state is propagated to the primary of the buddy group. The primary will no longer forward written data to
the secondary.

3. A client writes data to a file residing on the buddy group. The data is not forwarded to the secondary.

4. A different client reads data from the file. If the client attempts to read from the primary, no data loss occurs. If
the client attempts to read from the secondary, which is possible without problems in a stable system, the client
will receive stale data.

If the two clients in this example used the file system to communicate, eg by calling flock for the file they share, the
second client will not see the expected data. Accesses to the file will only stop considering the secondary as a source
once all clients have received the updated state information, which may take up to 30 seconds.

Setting the state of a primary storage target may exhibit the same effects. Setting states for targets that are currently
GOOD, and by that triggering a switchover, must be avoided while clients are still able to access data on the target.
Propagation of the switchover takes some time during which clients may attempt to access data on the target that was
set to non-GOOD. If the access was a write, that write may be lost.

2.7.2 Fsync may fail without setting targets to NEEDS_RESYNC

When fsync is configured to propagate to the storage servers and trigger an fsync on the storage servers, an error during
fsync may leave the system in an unpredictable state if the error occurred on the secondary of a buddy group. If the
fsync operation failed on the secondary due to a disk error the error may be detected only during the next operation
of the secondary. If a failover happens before the error is detected the automatic resync from the new primary (old
secondary, which has failed) to the new secondary (old primary) may cause data loss.

2.7. Caveats of Storage Mirroring 15

BeeGFS unofficial documentation

16 Chapter 2. Built-in Replication: Buddy Mirroring

CHAPTER 3

Storage Pools

While all-flash systems usually are still too expensive for systems that require large capacity, a certain amount of
flash drives is typically affordable in addition to the spinning disks for high capacity. The goal of a high-performance
storage system should then be to take optimal advantage of the flash drives to provide optimum access speed for the
projects on which the users are currently working.

One way to take advantage of flash drives in combination with spinning disks is to use the flash drives as a transparent
cache. Hardware RAID controllers typically allow adding SSDs as transparent block level cache and also zfs supports a
similar functionality through the L2ARC and ZIL. While this approach is also possible with BeeGFS, the effectiveness
of the flash drives in this case is rather limited, as the transparent cache never knows which files will be accessed next
by the user and how long the user will be working with those files. Thus, most of the time the applications will still be
bound by the access to the spinning disks.

To enable users to get the full all-flash performance for the projects on which they are currently working, the BeeGFS
storage pools feature makes the flash drives explicitly available to the users. This way, users can request from BeeGFS
(through the beegfs-ctl command line tool) to move the current project to the flash drives and thus all access to the
project files will be served directly and exclusively from the flash drives without any access to the spinning disks until
the user decides to move the project back to the spinning disks.

The placement of the data is fully transparent to applications. Data stays inside the same directory when it is moved
to a different pool and files can be accessed directly without any implicit movement, no matter which pool the data is
currently assigned to. To prevent users from putting all their data on the flash pool, different quota levels exist for the
different pools, based on which a sysadmin could also implement a time-limited reservation mechanism for the flash
pool.

However, while the concept of storage pools was originally developed to take optimum advantage of flash drives in a
system with high capacity based on spinning disks, the concept is not limited to this particular use-case. The sysadmin
can group arbitrary storage targets in such pools, no matter which storage media they use and there can also be more
than just two pools.

A storage pool simply consists of one or multiple storage targets. If storage buddy mirroring is enabled, both targets
of a mirror buddy group must be in the same pool, and the mirror buddy group itself must also be in the same storage
pool.

17

BeeGFS unofficial documentation

18 Chapter 3. Storage Pools

CHAPTER 4

Cloud Integration

BeeGFS is available on the Amazon Web Services (AWS) as well as on Microsoft Azure.

For the Amazon Web Services integration, it comes in two flavors: The community support edition is completely free
of software charges, while the professional support edition adds a monthly fee. The BeeGFS instances can be launched
directly from AWS Marketplace, where you can also find details on pricing model.

Launching BeeGFS on AWS will result in a fully working BeeGFS setup, which is readily available to store your large
data sets for high performance access.

By default, the BeeGFS instances on AWS use Elastic Block Storage (EBS) volumes to preserve your data even when
all virtual machines are shut down, so that you can come back later to resume working with your data sets and don’t
need to keep your virtual machines running while you are not using them.

The Microsoft Azure implementation provides Resource Manager templates that will help deploying a BeeGFS in-
stance based on CentOS 7.2.

Of course, if you are moving your datacenter into the cloud, it is also possible to perform your own BeeGFS installation
for full flexibility instead of using the predefined templates and to get a normal BeeGFS professional support contract
like on-premise setups.

19

BeeGFS unofficial documentation

20 Chapter 4. Cloud Integration

CHAPTER 5

Striping

Striping in BeeGFS can be configured on a per-directory and per-file basis. Each directory has a specific stripe pattern
configuration, which will be derived to new subdirectories and applied to any file created inside a directory. There
are currently two basic parameters that can be configured for stripe patterns: the desired number of storage targets for
each file and the chunk size (or block size) for each file stripe.

The stripe pattern parameters of BeeGFS can be configured with the Admon GUI or the command-line control tool.
The command-line tool allows you to view or change the stripe pattern details of each file or directory in the file system
at runtime.

The following command will show you the current stripe settings of your BeeGFS mount root directory (in this case
“/mnt/beegfs”):

$ beegfs-ctl --getentryinfo /mnt/beegfs

Use mode setpattern to apply new striping settings to a directory (in this case “stripe files across 4 storage targets with
a chunksize of 1 MB”):

$ beegfs-ctl --setpattern --numtargets=4 --chunksize=1m /mnt/beegfs

Stripe settings will be applied to new files, not to existing files in the directory. With time, as files are continuously
overwritten, moved, copied, removed, and recreated, the new stripe pattern will gradually be applied to all files in the
directory.

5.1 Buddy Mirroring

If you have buddy mirror groups defined in your system, you can set the stripe pattern to use buddy groups as stripe
targets, instead of individual storage targets. In order to do that, add the option –buddymirror to the command, as
follows. In this particular example, the data will be striped across 4 buddy groups with a chunk size of 1 MB.

$ beegfs-ctl --setpattern --numtargets=4 --chunksize=1m --buddymirror /mnt/beegfs

In BeeGFS version 7, this option has been replaced with –pattern=buddymirror.

21

BeeGFS unofficial documentation

5.2 Impact on network communication

The data chunk size has an impact on the communication between client and storage servers in several ways, as
follows.

• When a process writes data on a file located on BeeGFS, the client identifies the storage targets that contain
the data chunks that will be modified (by querying the metadata servers) and send modification messages to the
storage servers containing the modified data. The maximum size of such messages is determined by the data
chunk size of the file.

If you define chunksize=1m, 1 MB will be the maximum size of each message. If the amount of data written
to the file is larger than the maximum message size, more messages will have to be sent to the servers and this
may cause performance loss. So, slightly increasing the chunk size to a few MB has the effect of reducing the
amount of messages and this can have a positive performance impact, even in a system with a single target.

• In addition, it is important to make sure that a data chunk fits the RDMA buffers available on the client, in order
to prevent the messages from being split, in order to be transmitted over RDMA.

• You also have to consider the file cache settings. When the client is using the buffered cache (tuneFileCacheType
= buffered), it uses a file cache buffer of 512 KB to accumulate changes on the same data. This data is sent to
the servers only when data from outside the boundaries of that buffer is needed by the client. So, the larger this
buffer, the less communication will be needed between the client and the servers. You should set this buffer
size to a multiple of the data chunk size. For example, adding tuneFileCacheBufSize = 2097152 to the BeeGFS
client configuration file will raise the file cache buffer size to 2 MB.

22 Chapter 5. Striping

CHAPTER 6

Client Tuning

6.1 Parallel Network Requests

• Each BeeGFS client establishes multiple network connections to the same server, which allows the client to
have multiple network requests in flight to this server

– The number of connections from a particular client to the same server can be configured by setting the
value of connMaxInternodeNum in /etc/beegfs/beegfs-client.conf

• Increasing the number of connections may improve performance and responsiveness for certain workloads.

– When increasing the value, it is extremely important keep the resulting RAM usage for network buffers on
the servers in mind, especially for Infiniband and larger cluster setups. Make sure to read the comments for
connMaxInternodeNum and connRDMABufSize in beegfs-client.conf to learn more about the server-side
RAM usage.

– On a compute node, it usually doesn’t make sense to set this number higher than the number of CPU cores.

– On a cluster login node, setting this value higher than the number of CPU cores may help to improve
responsiveness when multiple users are active.

• BeeGFS clients establish connections only when they are needed (and drop them after some idle time). Use the
command beegfs-net on a client to see the number of currently established connections to each of the servers.

– beegfs-net is contained in the beegfs-utils package.

• The total space used by the buffers (connRDMABufSize x connRDMABufNum) should be larger or equal to
the data chunk size, so that the messages exchanged between client and storage servers do not need to be split to
fit into the buffers available. The default RDMA settings (connRDMABufSize = 64 KB, connRDMABufNum
= 12) are OK for the default chunk size of 512 KB. If you set a chunk size of 1 MB and a buffer size of 64 KB,
the number of buffers should be at least 1 MB / 64 KB + 4 additional buffers for protocol, so 20 in this example.

6.2 Remote fsync

• BeeGFS clients have a configuration option to control behavior when a user application calls fsync()

23

BeeGFS unofficial documentation

– The option is called tuneRemoteFSync in /etc/beegfs/beegfs-client.conf

– The client can either enforce that data is committed to the server disks on fsync() (=> tuneRemoteF-
Sync=true) or only make sure that data is transferred to the server-side cache (=> tuneRemoteFSync=false).

• Disabling remote fsync can significantly reduce disk seeks and thus improves performance for applications that
use a lot of fsync() calls.

6.3 Disable locate/mlocate/updatedb

• Some Linux distributions install a locate tool by default, which scans all file systems once per day to build a
database of existing files.

• In a cluster, you certainly would not want to have all of your compute nodes scan the entire BeeGFS file system
each day.

• Either deactivate this service if you don’t need it or edit the file /etc/updatedb.conf to make sure that the
“beegfs” file system type is contained in the “PRUNEFS” list and you BeeGFS mountpoint is contained in
the PRUNEPATHS list.

24 Chapter 6. Client Tuning

CHAPTER 7

Getting started and typical Configurations

To get started with BeeGFS, all you need is a Linux machine to download the packages from www.beegfs.io and to
install them on. If you want to, you can start with only a single machine and a single drive to do some initial evaluation.
In this case, the single drive would be your management, metadata and storage target at the same time. The quickstart
walk-through guide will show you all the necessary steps.

Typically, the smallest reasonable production system as dedicated storage is a single machine with two SSDs in RAID1
to store the metadata and a couple of spinning disks (or SSDs) in a hardware RAID6 or software zfs RAID-z2 to store
file contents. A fast network (such as 10GbE, OmniPath or InfiniBand) is beneficial but not strictly necessary. With
such a simple and basic setup, it will be possible to scale in terms of capacity and/or performance by just adding disks
or more machines.

Often, BeeGFS configurations for a high number of clients in cluster or enterprise environments consist of fat servers
with 24 to 72 disks per server in several RAID6 groups, usually 10 or 12 drives per RAID6 group. A network, usually
InfiniBand, is used to provide high throughput and low latency to the clients.

In smaller setups (and with fast network interconnects), the BeeGFS metadata service can be running on the same
machines as the BeeGFS storage service. For large systems, the BeeGFS metadata service is usually running on
dedicated machines, which also allows independent scaling of metadata capacity and performance.

25

BeeGFS unofficial documentation

26 Chapter 7. Getting started and typical Configurations

CHAPTER 8

Installation and Setup

There are two ways to install BeeGFS: GUI-based (using a graphical Java interface) or manually (using shell com-
mands).

The graphical installation is based on the BeeGFS Admon (“Administration and Monitoring”) service, to which the
graphical Java interface connects. In general, the GUI-based installation is recommended only for inexperienced
users, because it does not provide the full flexibility of a manual installation (e.g. several configuration settings are not
available and installation into an image is not supported by the GUI-based installation procedure).

If you are familiar with the Linux command line, it is recommended to perform the manual installation. Of course,
you can still use the graphical interface to view usage statistics after a manual installation, if you want to.

8.1 General Notes

Installation Paths

BeeGFS binaries and libraries will be installed to /opt/beegfs. The configuration files are located in the
directory /etc/beegfs. Each service (including the client) comes with an init script in /etc/init.d.

Log Files

BeeGFS services create log files in /var/log.

Runtime Compatibility of different Versions

Different versions of BeeGFS clients and servers are compatible if they are part of the same major release
series (e.g. all v6.x versions are part of the same major release v6).

Storage Format Compatibility

Some new major releases of BeeGFS may introduce new storage format features, which might require
upgrades of on-disk data structures. Upgrade tools will be provided in these cases to convert existing data
to the new format in place. See release changelog for compatibility notes.

Compiler

27

BeeGFS unofficial documentation

The GNU C compiler (gcc) must be installed on client machines to build the BeeGFS client kernel mod-
ules.

Infiniband Libraries

For native Infiniband support, you need to have the ibverbs and rdmacm libraries of OFED 1.2 or higher
installed. (Most Linux distributions also ship with sufficiently recent versions of these libraries.)

8.2 GUI-based Installation and Service Management

Graphical installation is performed through the BeeGFS Admon (“Administration and Monitoring”). It consists of
a Java GUI and a beegfs-admon service, to which the graphical interface connects. The beegfs-admon service uses
ssh to run installation commands on the other BeeGFS nodes. Thus, passwordless ssh login from the host running
the beegfs-admon service to all BeeGFS nodes for user root is required (including the node where the beegfs-admon
service is running).

Note: If you don’t know how to configure ssh without password, you might want to have a look at the tool ssh-keygen
to create a public/private key pair (without a passphrase) and then use ssh-copy-id to copy the new key to the other
nodes, or use your favorite search engine to search for “passwordless ssh”.

8.2.1 Download and Installation of the Admon service

Download the appropriate BeeGFS repository file for your Linux distribution from the table below.

• Admon is the administration and monitoring service of BeeGFS.

• The Admon service typically runs on a cluster master node.

Linux Base
Distribution

Version Package Manager Repository File (Save
to. . .)

Red Hat
Linux (and derivatives,
e.g. Fedora)

6.x yum
Download
(Save

to: /etc/yum.repos.d/)
7.x

28 Chapter 8. Installation and Setup

CHAPTER 9

BeeOND: BeeGFS On Demand

Nowadays, compute nodes of a cluster typically are equipped with internal flash drives to store the operating system
and to provide a local temporary data store for applications. But using a local temporary data store is often inconvenient
or not useful for distributed applications at all, as they require shared access to the data from different compute nodes
and thus the high bandwidth and high IOPS of the SSDs is wasted.

BeeOND (dubbed “beyond” and short for “BeeGFS On Demand”) was developed to solve this problem by enabling
the creation of a shared parallel file system for compute jobs on such internal disks. The BeeOND instances exist
temporary exactly for the runtime of the compute job exactly on the nodes that are allocated for the job. This provides
a fast, shared all-flash file system for the jobs as a very elegant way of burst buffering or as the perfect place to store
temporary data. This can also be used to remove a lot of nasty I/O accesses that would otherwise hit the spinning disks
of your global file system.

BeeOND is based on the normal BeeGFS services, meaning your compute nodes will also run the BeeGFS storage
and metadata services to provide the shared access to their internal drives. As BeeOND does not exclusively access
the internal drives and instead only stores data in a subdirectory of the internal drives, the internal drives are also still
available for direct local access by applications.

While it is recommended to use BeeOND in combination with a global BeeGFS file system, it can be used independent
of whether the global shared cluster file system is based on BeeGFS or on any other technology. BeeOND simply
creates a new separate mount point for the compute job. Any of the standard tools (like cp or rsync) can be used to
transfer data into and out of BeeOND, but the BeeOND package also contains a parallel copy tool to transfer data
between BeeOND instances and another file system, such as your persistent global BeeGFS.

BeeOND instances can be created and destroyed with just a single simple command, which can easily be integrated
into the prolog and epilog script of the cluster batch system, such as Torque, Slurm or Univa Grid Engine.

29

BeeGFS unofficial documentation

30 Chapter 9. BeeOND: BeeGFS On Demand

CHAPTER 10

Admon

The BeeGFS Administration and Monitoring System (short: Admon) provides a graphical interface to perform admin-
istrative management tasks and to monitor the state of the file system and its components.

The BeeGFS Administration and Monitoring System consists of two parts:

• The Admon daemon, which can run on any machine with network access to the metadata and storage servers.
This daemon gathers the status information of the other BeeGFS services and stores it in a database.

• The graphical Java-based client, which can run on your workstation. It connects to the remote Admon daemon
via http.

Note: It is recommend to use Oracle Java Runtime Environment 7 (formerly known as Sun JRE 7) or higher to run
the BeeGFS Admon GUI. Other Java runtime environments may work, but are not fully tested.

10.1 Installation and basic Setup

The Administration and Monitoring System for BeeGFS is contained in the optional beegfs-admon package.

The package is available either from the general BeeGFS repository or via direct download.

The package provides an init script to start the Admon daemon (/etc/init.d/beegfs-admon) and a configuration file
(/etc/beegfs/beegfs-admon.conf).

Note: If you installed BeeGFS manually (i.e. not via the Admon GUI), you need to edit the beegfs-admon.conf file
and set the parameter sysMgmtdHost to the hostname of your management server.

After installation, start the daemon:

$ /etc/init.d/beegfs-admon start

31

http://www.java.com/de/download/manual.jsp

BeeGFS unofficial documentation

The graphical user interface for BeeGFS Admon comes packaged together with the Admon daemon and is located in
/opt/beegfs/beegfs-admon-gui.

10.2 Admon GUI Start

If your BeegFS Admon daemon is not running yet, start it as described here: Admon Installation and basic setup

By default, TCP port 8000 will be opened by the daemon for HTTP connections.

To get the GUI, point your browser to http://Host_Where_The_Admon_Runs:8000 and download the jar-file from
there.

The GUI can be started by double clicking from a file browser or by using the java -jar command (depending on your
operating system and configuration). If you want to run the GUI from its default location on the Admon host, use the
following command:

$ java -jar /opt/beegfs/beegfs-admon-gui/beegfs-admon-gui.jar

At first start, you will be prompted to provide the hostname and port (default: 8000) of the host on which the Admon
daemon is running. It is also possible to change the resolution of the internal desktop of the GUI and the default log
level of the GUI.

Note: It is recommend to use Oracle Java Runtime Environment 7 (formerly known as Sun JRE 7) or higher to run
the BeeGFS Admon GUI. Other Java runtime environments may work, but are not fully tested.

10.3 Admon Login

The login mechanism is based on two predefined users.

The user “Information” (which has the initial password “information”) is only able to view statistics, whereas the user
“Administrator” (which has the initial password “admin”) is also able to perform administrative tasks.

It is highly recommended that the first thing you do is to log in using the administrative account and change the
predefined passwords.

A user with administrative privileges can also turn off the need for authentication for the informational user.

10.4 Admon Main Menu

The menu is a tree-like view on the left hand side and the associated windows will open on double-click. The following
sections will give a short overview of the different items.

The menu is a tree-like view on the left hand side and the associated windows will open on double-click. The following
sections will give a short overview of the different items.

10.4.1 Metadata Nodes

The menu item “Metadata Nodes” contains an overview page, as well as a dedicated page for each metadata node in
the system.

The overview shows basic information, the status of all nodes and the total number of metadata requests in the system.

32 Chapter 10. Admon

http://Host_Where_The_Admon_Runs:8000
http://www.java.com/de/download/manual.jsp

BeeGFS unofficial documentation

The page for a specific metadata node shows some general information on the node itself, the status of the node and
the number of work requests to this node.

10.4.2 Storage Nodes

Like the meta nodes menu, the menu item “Storage Nodes” also consists of an overview page, as well as a dedicated
page for each storage node in the system.

Values which can be retrieved on these pages include the general status information, as well as disk space usage and
data throughput.

For disk performance, four values are displayed. While the read and write graphs are very exact (measured every
second), they are also very erratic. The averaged graphs are better suited to identify a tendency. These graphs are
always an average of the last 30 values. You can easily hide each throughput line by disabling the appropriate checkbox
under the graphic.

Note that only the 10 min history view is based on the exact one second interval. The other history views are based on
more coarse-grained (averaged) values.

10.4.3 Client statistics

The pages contains the client statistics for metadata operations (create, stat, . . .) or the clients statistics for the storage
operations (read, write, . . .).

10.4.4 User statistics

The pages contains the user statistics for metadata operations (create, stat, . . .) or the user statistics for the storage
operations (read, write, . . .).

10.4.5 Management

The management pages contain elements for administrative tasks. The page “Known Problems” is designed as a quick
overview of the system’s health. All problems related to the status of the nodes and their interconnection are listed
here. The “Start/Stop Daemon” page allows start or stop all daemons and clients. The item “Log Files” opens a
window which shows the log files of all daemons and clients.

10.4.6 FS Operations

The menu item “FS Operations”->”Stripe Settings” allows you to view and change the striping information in your file
system. In BeeGFS, it is possible to define the chunk-size of data that will be written, as well as the number of storage
targets, over which one file will typically be distributed. The corresponding information can be retrieved on this page.
Furthermore, if you logged in with administrative privileges, the system will allow you to change these settings for
each directory in the file system.

With the file browser you can browse through the global BeeGFS and retrieve information on the stored files. Please
note, that although you are able to see directories and files, you will not be able to view the content.

10.4. Admon Main Menu 33

BeeGFS unofficial documentation

10.4.7 Installation

The management pages contain elements for automation and simplification of the installation/uninstallation tasks.
Please refer to the BeeGFS installation guide for a detailed description. Also the installation log file is available in this
menu.

10.5 Admon Menu Bar

The menu bar contains options which are not required for the installation and the day by day administration.

10.5.1 Admon

The menu item “Change Settings” contains the configuration options of the GUI. Also the logout option and the close
option for the GUI.

10.5.2 Administration

The options inside the menu item “User Settings” allow you to change the login passwords and to disable the password
for the Information user. The effect of the latter is that users can view the web-frontend without being asked for a
password. (The administrative account is not affected by this setting).

The menu item “Mail Settings” lets you define some values for e-Mail notifications by the software. If configured
accordingly, an administrator can receive an e-Mail whenever a node in the system appears to be down. These pages
are only accessible by the user “Administrator”.

34 Chapter 10. Admon

CHAPTER 11

BeeGFS APIs Overview

Besides the POSIX interface, BeeGFS provides other APIs to take more control of data placement, query additional
information or access data through other interfaces.

1. The ‘Striping API‘_ allows the application developers to create files with individual stripe patterns, which are
adjusted for the access pattern of a particular file. It also allows querying of stripe pattern details of files.

2. The ‘Cache API‘_ provides functions to copy data between a fast BeeGFS cache file system (typically a
BeeOND instance) and a global BeeGFS. Prefetching and flushing of data to and from the cache file system
can be done synchronously and asynchronously. The asynchronous prefetch/flush offloads the copy task to a
cache daemon, which copies the data with multiple threads to speed up the data transfer.

3. With the ‘Hadoop BeeGFS Connector‘_, BeeGFS can be used as an alternative to the Hadoop file system
(HDFS). Hadoop applications can use the general Hadoop file system API to access BeeGFS.

35

BeeGFS unofficial documentation

36 Chapter 11. BeeGFS APIs Overview

CHAPTER 12

Contact Information

If you want to keep up to date regarding news, events and features of BeeGFS, you should subscribe to the monthly
newsletter at thinkparq.com/news or follow us on twitter. On the ThinkParQ news page, you will also find the release
announcement list, a special low volume mailing list where you get a notification when a new BeeGFS release becomes
available.

If you want to become part of the BeeGFS community, you can also join the BeeGFS user mailing list by subscribing
at beegfs.io/support. On the public mailing list, users can ask other users for help or discuss interesting topics. Note
that the development team does not regularly check the posts on the public mailing list, as this is only part of the
professional support.

If you are interested in more information, need help building your first BeeGFS storage system or want to become a
BeeGFS partner for turn-key solutions, you can contact us at: info@thinkparq.com

37

mailto:info@thinkparq.com

BeeGFS unofficial documentation

38 Chapter 12. Contact Information

CHAPTER 13

Licensing

The BeeGFS client module is licensed under the GPLv2 <http://www.gnu.org/licenses/gpl-2.0.html>.

All other BeeGFS components are licensed under the BeeGFS EULA <https://www.beegfs.io/docs/BeeGFS_EULA.txt>.

13.1 Admon Licensing

The BeeGFS Administration and Monitoring System is licensed under the terms of the BeeGFS End User License
Agreement.

The software makes use of the following third party libraries, which are all used unmodified:

• OpenSSL (http://www.openssl.org), which is licensed under the OpenSSL License (http://www.openssl.org/
source/license.html).

• Sqlite (http://www.sqlite.org), which was given to the public domain by the authors.

• Mongoose (http://code.google.com/p/mongoose), which is licensed under MIT license (http://www.opensource.
org/licenses/mit-license.php)

• TinyXML++ (http://code.google.com/p/ticpp), which is licensed under MIT license (http://www.opensource.
org/licenses/mit-license.php)

• JChart2D (http://jchart2d.sourceforge.net), which is licensed under the GNU Lesser General Public License
(http://www.gnu.org/copyleft/lesser.txt)

39

https://www.beegfs.io/docs/BeeGFS_EULA.txt
https://www.beegfs.io/docs/BeeGFS_EULA.txt
http://www.openssl.org
http://www.openssl.org/source/license.html
http://www.openssl.org/source/license.html
http://www.sqlite.org
http://code.google.com/p/mongoose
http://www.opensource.org/licenses/mit-license.php
http://www.opensource.org/licenses/mit-license.php
http://code.google.com/p/ticpp
http://www.opensource.org/licenses/mit-license.php
http://www.opensource.org/licenses/mit-license.php
http://jchart2d.sourceforge.net
http://www.gnu.org/copyleft/lesser.txt

	General Architecture
	The Management Service
	The Metadata Service
	The Storage Service
	The Client Service
	Admon: Administration and Monitoring System

	Built-in Replication: Buddy Mirroring
	Storage Service Buddy Mirroring
	Buddy Groups
	Metadata Service Buddy Mirroring
	Define Stripe Pattern
	Enabling and disabling Mirroring
	Restoring Metadata and Storage Target Data after Failures
	Caveats of Storage Mirroring

	Storage Pools
	Cloud Integration
	Striping
	Buddy Mirroring
	Impact on network communication

	Client Tuning
	Parallel Network Requests
	Remote fsync
	Disable locate/mlocate/updatedb

	Getting started and typical Configurations
	Installation and Setup
	General Notes
	GUI-based Installation and Service Management

	BeeOND: BeeGFS On Demand
	Admon
	Installation and basic Setup
	Admon GUI Start
	Admon Login
	Admon Main Menu
	Admon Menu Bar

	BeeGFS APIs Overview
	Contact Information
	Licensing
	Admon Licensing

