

BeeGFS Unofficial Documentation

BeeGFS is the leading parallel cluster file system. It has been
developed with a strong focus on maximum performance and scalability,
a high level of flexibility and designed for robustness and ease of
use.

BeeGFS is a software-defined storage based on the POSIX file system
interface, which means applications do not have to be rewritten or
modified to take advantage of BeeGFS. BeeGFS clients accessing the
data inside the file system, communicate with the storage servers via
network, via any TCP/IP based connection or via RDMA-capable networks
like InfiniBand (IB), Omni-Path (OPA) and RDMA over Converged Ethernet
(RoCE). This is similar for the communication between the BeeGFS
servers.

Furthermore, BeeGFS is a parallel file system. By transparently
spreading user data across multiple servers and increasing the number
of servers and disks in the system, the capacity and performance of
all disks and all servers is aggregated in a single namespace. That
way the file system performance and capacity can easily be scaled to
the level which is required for the specific use case, also later
while the system is in production.

BeeGFS is separating metadata from user file chunks on the
servers. The file chunks are provided by the storage service and
contain the data, which users want to store (i.e. the user file
contents), whereas the metadata is the “data about data”, such as
access permissions, file size and the information about how the user
file chunks are distributed across the storage servers. The moment a
client has got the metadata for a specific file or directory, it can
talk directly to the storage service to store or retrieve the file
chunks, so there is no further involvement of the metadata service in
read or write operations.

BeeGFS adresses everyone, who needs large and/or fast file
storage. While BeeGFS was originally developed for High Performance
Computing (HPC), it is used today in almost all areas of industry and
research, including but not limited to: Artificial Intelligence, Life
Sciences, Oil & Gas, Finance or Defense. The concept of seamless
scalability additionally allows users with a fast (but perhaps
irregular or unpredictable) growth to adapt easily to the situations
they are facing over time.

An important part of the philosophy behind BeeGFS is to reduce the
hurdles for its use as far as possible, so that the technology is
available to as many people as possible for their work. In the
following paragraphs we will explain, how this is achieved.

BeeGFS is open-source and the basic BeeGFS file system software is
available free of charge for end users. Thus, whoever wants to try or
use BeeGFS can download it from www.beegfs.io. The client is published
under the GPLv2, the server components are published under the BeeGFS
EULA.

The additional Enterprise Features (high-availability, quota
enforcement, and Access Control Lists) are also included for testing
and can be enabled for production by establishing a support contract
with ThinkParQ. Professional support contracts with ThinkParQ ensure,
that you get help when you need it for your production
environment. They also provide the financial basis for the continuous
development of new features, as well as the optimization of BeeGFS for
new hardware generations and new operating system releases. To provide
high quality support around the globe, ThinkParQ cooperates with
international solution partners.

System integrators offering turn-key solutions based on BeeGFS are
always required to establish support contracts with ThinkParQ for
their customers to ensure, that help is always available when needed.

Originally, BeeGFS was developed for Linux and all services, except
for the client are normal userspace processes. BeeGFS supports a wide
range of Linux distributions such as RHEL/Fedora, SLES/OpenSuse or
Debian/Ubuntu as well as a wide range of Linux kernels from ancient
2.6.18 up to the latest vanilla kernels. Additionally, a native
BeeGFS Windows client is currently under development to enable
seamless and fast data access in a shared environment.

Another important aspect of BeeGFS is the support for different
hardware platforms, including not only Intel/AMD x86_64, but also ARM,
OpenPOWER and others. As the BeeGFS network protocol is independent of
the hardware platform, hosts of different platforms can be mixed
within the same file system instance, ensuring that sysadmins can
always add systems of a new platform later throughout the life cycle
of the system.

Architecture

	General Architecture
	The Management Service

	The Metadata Service

	The Storage Service

	The Client Service

	Admon: Administration and Monitoring System

	Built-in Replication: Buddy Mirroring
	Storage Service Buddy Mirroring

	Buddy Groups

	Metadata Service Buddy Mirroring

	Define Stripe Pattern

	Enabling and disabling Mirroring

	Restoring Metadata and Storage Target Data after Failures

	Caveats of Storage Mirroring

	Storage Pools

	Cloud Integration

	Striping
	Buddy Mirroring

	Impact on network communication

	Client Tuning
	Parallel Network Requests

	Remote fsync

	Disable locate/mlocate/updatedb

Deployment

	Getting started and typical Configurations

	Installation and Setup
	General Notes

	GUI-based Installation and Service Management

	BeeOND: BeeGFS On Demand

Interface

	Admon
	Installation and basic Setup

	Admon GUI Start

	Admon Login

	Admon Main Menu

	Admon Menu Bar

	BeeGFS APIs Overview

Support

	Contact Information

	Licensing
	Admon Licensing

General Architecture

The BeeGFS architecture is composed of four main services:

	Management service

	A registry and watchdog for all other services

	Storage service

	Stores the distributed user file contents

	Metadata service

	Stores access permissions and striping information

	Client service

	Mounts the file system to access the stored data

In addition to the main services list above, BeeGFS also comes with an
optional graphical administration and monitoring service (the
so-called “admon”).

[image: _images/architecture.jpeg]
BeeGFS Architecture Overview

All BeeGFS services write a log file with the corresponding service
name to /var/log/beegfs-*.log

For high flexibility, it is possible to run multiple instances with
any BeeGFS service on the same machine. These instances can be part of
the same BeeGFS file system instance or as well of different file
system instances. One typical example is the client service, that can
mount two different BeeGFS file systems (e.g. an old one and a new
one) on the same compute node.

High flexibility and easy administration is also given since the
BeeGFS management, meta, and storage services do not access the disks
directly. Instead, they store data inside any local Linux POSIX file
system, such as ext4, xfs or zfs. This provides the flexibility to
choose the underlying file system which works best for the given
service, use case or hardware and makes it also easy to explore how
BeeGFS stores files.

The underlying file system in which the BeeGFS services store their
data are called management, metadata, or storage targets. These
correspond to the name of the BeeGFS service, that uses the target to
store its data. While the BeeGFS management and metadata service each
use a single target per service instance, the storage service supports
one or multiple storage targets for a single storage service instance.

This software-based approach without any strict requirements for the
hardware provides the possibility to choose from a very wide range of
hardware components. In the following chapters, we will discuss the
BeeGFS services and flexibility in more detail.

The Management Service

[image: _images/management-service.png]
Management Service

The management service can be figured as a “meeting point” for the
BeeGFS metadata, storage, and client services. It is very light-weight
and typically not running on a dedicated machine, as it is not
critical for performance and stores no user data. It is watching all
registered services and checks their state. Therefore, it is the first
service, which needs to be setup in a newly deployed environment.

The management service maintains a list of all other BeeGFS services
and their state.

The Metadata Service

[image: _images/metadata-service.png]
Metadata Service

The metadata service stores information about the data e.g. directory
information, file and directory ownership and the location of user
file contents on storage targets. It provides information about the
location (the so-called “stripe pattern”) for an individual user file
to a client when the client opens the file, but afterwards the
metadata service is not involved in data access (i.e. for file read
and write operations) until the file is closed.

The BeeGFS metadata service is a scale-out service, meaning there can
be one or many metadata services in a BeeGFS file system. Each
metadata service is responsible for its exclusive fraction of the
global namespace, so that having more metadata servers improves the
overall system performance. Adding more metadata servers later is
always possible.

Each metadata service instance has exactly one metadata target to
store its data. On the metadata target, BeeGFS creates one metadata
file per user-created file. This is an important design decision of
BeeGFS to avoid the case of storing all metadata inside a single
database that could possibly get corrupted.

Usually, a metadata target is an ext4 file system based on a RAID1 or
RAID10 of flash drives, as low metadata access latency improves the
responsiveness of the file system. BeeGFS metadata is very small and
grows linear with the number of user-created files. 512GB of usable
metadata capacity are typically good for about 150 million user files.

As low metadata access latency is a major benefit for performance of
the overall system, faster CPU cores will improve latency.

The Storage Service

[image: _images/storage-service.png]
Storage Service

The storage service (sometimes also referred to as the “object storage
service”) is the main service to store striped user file contents,
also known as data chunk files.

Similar to the metadata service, the BeeGFS storage service is based
on a scale- out design. That means, you can have one or multiple
storage services per BeeGFS file system instance, so that each storage
service adds more capacity and especially also more performance to the
file system.

A storage service instance has one or multiple storage targets. While
such a storage target can generally be any directory on a local
filesystem, a storage target typically is a hardware RAID-6 (typically
composed of 8+2 or 10+2) or zfs RAIDz2 volume, of either internal or
externally attached drives.

The storage service works with any local Linux POSIX file
system. Usually, the storage targets are based on xfs in the case of
hardware RAID controllers.

In contrast to the metadata service, many people try to optimize the
traffic on the storage targets for large sequential access to have
optimal performance on spinning disks. However, as BeeGFS uses all the
available RAM on the storage servers (which is not otherwise allocated
by processes) automatically for caching, it can also aggregate small
IOs requests into larger blocks before writing the data out to
disk. Furthermore it is able to serve data from the cache if it has
already been recently requested by another client.

The capability to quickly write bursts of data into the server RAM
cache or to quickly read data from it is also the reason why it makes
sense to have a network that is significantly faster than the disk
streaming throughput of the servers.

To distribute the used space and to aggregate the performance of
multiple servers even for a single large file, BeeGFS uses striping,
which means the file gets split up into chunks of fixed size and those
chunks are distributed across multiple storage targets.

The chunksize and number of targets per file is decided by the
responsible metadata service when a file gets created. This
information is called the stripe pattern. The stripe pattern can be
configured per directory (e.g. by using the beegfs-ctl command line
tool) or even for individual files (e.g. by using the BeeGFS Striping
API).

The files on the storage targets containing the user data are called
chunk files. For each user file, there is exactly one chunk file on
the corresponding storage targets. To not waste space, BeeGFS only
creates chunk files when the client actually writes data to the
corresponding target. And also, for not wasting space, the chunk size
is not statically allocated, meaning when the user writes only a
single byte into the file, BeeGFS will also create only a single chunk
file of 1 byte in size.

By default, BeeGFS picks the storage targets for a file randomly, as
this has shown to provide best results in multi-user environments
where (from the point of view of the file system) the different users
are also concurrently creating a random mix of large and small
files. If necessary, (e.g. to have deterministic streaming benchmark
results) different target choosers are available in the metadata
service configuration file.

To prevent storage targets running out of free space, BeeGFS has three
different labels for free target capacity: normal, low and emergency
(the latter meaning only very little space left or the target is
unreachable). The target chooser running on the metadata service will
prefer targets labeled as normal. As long as such targets are
available, and it will not pick any target labeled as critical before
all targets entered that state. With this approach, BeeGFS can also
work with storage targets of different sizes. The thresholds for low
and emergency can be changed in the management service configuration
file.

The Client Service

BeeGFS comes with a client that registers natively with the virtual
file system interface of the Linux kernel for maximum
performance. This kernel module has to be compiled to match the used
kernel, but don’t worry: The kernel module source code is included in
the normal client package and compilation for the currently running
Linux kernel happens fully automatically, so there are no manual steps
required when you update your Linux kernel or when you update the
BeeGFS client service. The installation or a BeeGFS client update can
even be done without rebooting the machine.

The client kernel module uses an additional userspace helper daemon
for DNS lookups and to write the log file.

When the client is loaded, it will mount the file systems defined in
beegfs- mounts.conf instead of the usual Linux approach based on
/etc/fstab (which is also possible with BeeGFS, but not
recommended). This is an approach of starting the beegfs-client like
any other Linux service through a service start script. It enables the
automatic recompilation of the BeeGFS client module after system
updates and makes handling of the BeeGFS client service generally more
convenient.

The native BeeGFS client should be used on all hosts that are supposed
to access BeeGFS with maximum performance. However, it is also
possible to re-export a BeeGFS mountpoint through NFSv4 or through
Samba or to use BeeGFS as a drop- in replacement for Hadoop’s
HDFS. Upcoming releases of BeeGFS will also provide a native BeeGFS
client for Windows.

Admon: Administration and Monitoring System

[image: _images/admon.png]
Admon GUI - Client Operation Statistics

In addition to the beegfs-ctl command line tool, the optional BeeGFS
Administration and Monitoring system (short: admon) provides a
graphical interface to perform basic administrative tasks and to
monitor the state of the file system and its components.

The BeeGFS admon consists of two parts:

	The admon backend service, which runs on any machine with network
access to the metadata and storage services. This service gathers
the status information of the other BeeGFS services and stores it in
a database.

	The graphical Java-based client, which runs on your workstation. It
connects to the remote admon daemon via http.

Built-in Replication: Buddy Mirroring

With BeeGFS being a high-performance file system, many BeeGFS users
try to optimize their systems for best performance for the given
budget. This is because with an underlying RAID-6, the risk of loosing
data on the servers is already very low. So the only remaining risk
for data availability is the relatively low risk of server hardware
issues like mainboard failures. But even in this case, data is not
lost, but only temporarily unavailable. Clients that need to access
the data of unavailable servers will wait for a configurable amount of
time (usually several minutes). If the server is available again
within this time, the client will continue transparently for the
application. This mechanism also enables transparent rolling
updates. If the server does not come back within this time frame, the
client will report an error to the application. This is useful to
prevent the system from hanging completely when a server is down.

However, there are of course systems where this small risk of data
unavailability is not acceptable.

The classic approach to this is hardware shared storage, where pairs
of two servers have shared access to the same external JBOD. While
this approach is possible with BeeGFS, it complicates the system
administration due to the shared disks and it requires extra services
like pacemaker to manage the failover. This approach also only moves
the availability problem from the servers to the shared JBOD and does
not reduce the risk of data loss if there is a problem with a RAID-6
volume.

Thus, BeeGFS comes with a different mechanism that is fully integrated
(meaning no extra services are required) and which does not rely on
special hardware like physically shared storage. This approach is
called Buddy Mirroring, based on the concept of pairs of servers (the
so-called buddies) that internally replicate each other and that help
each other in case one of them has a problem.

Compared to the classic shared storage approach, Buddy Mirroring has
the advantage that the two buddies of a group can be placed in
different hardware failure domains, such as different racks or even
different adjacent server rooms, so that your data even survives if
there is a fire in one of the server rooms. Buddy Mirroring also
increases the level of fault tolerance compared to the classic
approach of shared RAID-6 volumes, because even if the complete RAID-6
volume of one buddy is lost, the other buddy still has all the data.

For high flexibility, Buddy Mirroring can be enabled for all data or
only for subsets of the data, e.g. based on individual directory
settings, which are automatically derived by newly created
subdirectories. Buddy Mirroring can also be enabled anytime later
while data is already stored on the system.

Buddy Mirroring is synchronous (which is important for transparent
failovers), meaning the application receives the I/O completion
information after both buddies of a group received the data. The
replication happens over the normal network connection, so no extra
network connection is required to use Buddy Mirroring.

Buddy Mirroring can be enabled individually for the metadata service
and the storage service.

Storage Service Buddy Mirroring

A storage service buddy group is a pair of two targets that internally
manages data replication between each other. In typical setups with an
even number of servers and targets, the buddy group approach allows up
to a half of all servers in a system to fail with all data still being
accessible.

Storage buddy mirroring can also be used with an odd number of storage
servers. This works, because BeeGFS buddy groups are composed of
individual storage targets, independent of their assignment to
servers, as shown in the following example graphic with 3 servers and
2 storage targets per server. (In general, a storage buddy group could
even be composed of two targets that are attached to the same server.)

In normal operation, one of the storage targets (or metadata servers)
in a buddy group is labeled as primary, whereas the other is labeled
as secondary. These roles can switch dynamically when the primary
fails. To prevent the client from sending the data twice (and thus
reducing the maximum client network throughput), modifying operations
will always be sent to the primary by the client, which then takes
care of the internal data forwarding to the secondary, taking
advantage of the full-duplex capability of modern networks.

If the primary storage target of a buddy group is unreachable, it will
get marked as offline and a failover to the secondary will be
issued. In this case, the former secondary is going to be the new
primary. Such a failover is transparent and happens without any loss
of data for running applications. The failover will happen after a
short delay to guarantee the consistency of the system while the
change information is propagated to all nodes.

If a failed buddy comes back, it will automatically resynchronize with
the primary. To reduce the time for synchronization, the storage
buddies only synchronize files that have changed while the other
machine was down.

The beegfs-ctl command line tool can be used to configure the buddy
groups, enable or disable mirroring and to check the state of the
buddies.

Buddy Groups

Mirror buddy groups are numeric IDs, just like the numeric IDs of the
storage targets. Please note that buddy group IDs don’t conflict with
target IDs, i.e. they don’t need to be distinct from storage target
IDs.

There are basically two different ways to define buddy groups. They
can be defined manually or you can tell BeeGFS to create them
automatically.

Of course, defining groups manually gives you greater control and
allows you to create more detailed configuration. For example, the
automatic mode won’t consider targets that are not equally sized. It
also doesn’t know about the topology of your system, so if you, for
example, want to make sure that members of buddy groups are placed in
different physical locations you have to define them manually.

Define Buddy Groups automatically

Automatic creation of buddy groups can be done beegfs-ctl, separately
for metadata and for storage servers:

$ beegfs-ctl --addmirrorgroup --automatic --nodetype=meta

$ beegfs-ctl --addmirrorgroup --automatic --nodetype=storage

Please see the help of beegfs-ctl for more information on available
parameters:

$ beegfs-ctl --addmirrorgroup --help

Define Buddy Groups manually

Manual definition of mirror buddy groups can be useful if you want to
set custom group IDs or if you want to make sure that the buddies are
in different failure domains (e.g. different racks). Manual definition
of mirror buddy groups is done with the beegfs-ctl tool. By using the
following command, you can create a buddy group with the ID 100,
consisting of targets 1 and 2:

$ beegfs-ctl --addmirrorgroup --nodetype=storage --primary=1 --secondary=2 --groupid=100

Please see the help of beegfs-ctl for more information on available
parameters:

$ beegfs-ctl --addmirrorgroup --help

When creating mirror buddy groups for metadata manually and one of
them contains the root directory, it is necessary to set this one as
primary.

List defined Mirror Buddy Groups

Configured mirror buddy groups can be listed with beegfs-ctl (don’t
forget to specify the node type):

$ beegfs-ctl --listmirrorgroups --nodetype=storage

$ beegfs-ctl --listmirrorgroups --nodetype=meta

It’s also possible to list mirror buddy groups alongside other target
information:

$ beegfs-ctl --listtargets --mirrorgroups

Please see the help of beegfs-ctl for more information on available
parameters:

$ beegfs-ctl --listtargets --help

Metadata Service Buddy Mirroring

As described in Storage Service Buddy Mirroring the same concept
and methodology can be used for metadata service buddy mirroring.

Note that odd numbers of storage this is not possible with metadata
servers, since there are no metadata targets in BeeGFS. An even number
of metadata server is needed so that every metadata server can belong
to a buddy group.

Define Stripe Pattern

After defining storage buddy mirror groups in your system, you have to
define a data stripe pattern that uses it.

Enabling and disabling Mirroring

By default, mirroring is disabled for a new file system instance. Both
types of mirroring can be enabled with the beegfs-ctl command line
tool. (The beegfs-ctl tool is contained in the beegfs-utils package
and is usually run from a client node.)

Before metaadata or storage mirroring can be enabled, buddy groups
need to be defined, as these are the basis for mirroring.

Storage mirroring can be enabled on a per-directory basis, so that
some data in the file system can be mirrored while other data might
not be mirrored. On the medatada side, it is also possible to activate
or deactivate mirroring per directory, but certain logical
restrictions apply. For example, for a directory to be mirrored
effectively, the whole path to it must also be mirrored.

Mirroring settings of a directory will be applied to new file entries
and will be derived by new subdirectories. For instance, if metadata
mirroring is enabled for directory /mnt/beegfs/mydir1, then a new
subdirectory /mnt/beegfs/mydir1/mydir2 will also automatically have
metadata mirroring enabled.

After metadata mirroring is enabled for a file system using the
beegfs-ctl –mirrormd command, the metadata of the root directory will
be mirrored by default. Therefore, newly created directories under the
root will also have metadata mirroring enabled. It is possible to
exclude new folders from metadata mirroring by creating them using
beegfs-ctl –createdir –nomirror.

To enable file contents mirroring for a certain directory, see the
built-in help of the beegfs-ctl tool.

$ beegfs-ctl --setpattern --buddymirror --help

File contents mirroring can be disabled afterwards by using beegfs-ctl
mode –setpattern without the –buddymirror option. However, files
that were already created while mirroring was enabled will remain
mirrored.

To check the metadata and file contents mirroring settings of a
certain directory or file, use:

$ beegfs-ctl --getentryinfo /mnt/beegfs/mydir/myfile

To check target states of storage targets, use:

$ beegfs-ctl --listtargets --nodetype=storage --state

Activating Metadata Mirroring

After metadata server buddy groups have been defined as described
under Management of Mirror Buddy Groups, metadata mirroring can be
activated on the file system.

Note

When applying the beegfs-ctl –mirrormd command, no clients
may be mounted. This can be achieved by stopping the
beegfs-client service beforehand, and starting it again
after beegfs-ctl –mirrormd was successfully performed. In
addition, please restart the beegfs-meta service on all
nodes afterwards.

To active metadata mirroring, use the beegfs-ctl tool:

$ beegfs-ctl --mirrormd

In order to synchronize all information across the various components
of BeeGFS correctly, the clients can not be mounted during this
process, and the metadata servers must be restarted afterwards.

The full series of steps in an already running system is: stop all
clients, execute beegfs-ctl –mirrormd, restart all metadata servers,
then restart all clients.

Please see the help of beegfs-ctl for more information on available
parameters:

$ beegfs-ctl --mirrormd --help

Running this command will enable metadata mirroring for the root
directory of the BeeGFS, as well as all the files contained in
it. Note that existing directories except for the root directory will
not be mirrored automatically. Please check Migrating Existing
Metadata to find out how to mirror existing directories.

New files and directories created inside a directory with active
metadata mirroring will also have metadata mirroring activated. There
might be situations where it is desirable to deactivate metadata
mirroring for part of the file systems. This gives a slight
performance boost, but the data will not be preserved in the event of
a server failure. A directory without metadata mirroring can be
created using beegfs-ctl:

$ beegfs-ctl --createdir --nomirror <name>

For information about additional command line parameters, please see
the beegfs-ctl help:

$ beegfs-ctl --createdir --help

Directories and files created inside a directory without metadata
mirroring will have metadata mirroring disabled.

Migrating Existing Metadata

If a file is moved into a directory with active metadata mirroring, it
will have its metadata mirrored. On the other hand, directories will
not automatically be mirrored when moved. For a directory to be
mirrored, it is therefore necessary to freshly create a directory
inside a mirrored directory. The easiest way to enable mirroring for a
whole directory tree is to do a recursive copy:

$ cp -a <directory> <mirrored-dir>

This will also copy the file contents, therefore it is possible to use
it for enabling metadata and storage mirroring at the same time.

Restoring Metadata and Storage Target Data after Failures

If a storage target or metadata server is not reachable it will be
marked as offline and won’t get data updates. Usually, when the target
or server re-registers it will automatically be synchronized from the
remaining mirror in the buddy group (self-healing). However, in some
cases it might be necessary that you manually start a synchronization
process.

Automatic Resynchronization

In general, if a secondary target or server is considered to be
out-of-sync, it is automatically set to the consistency state needs
resync (see “Target and Node States” for more information on states)
by the the management daemon.

The storage target resynchronization process for self-healing is
coordinated by the primary target. The standard process tries to avoid
unnecessary transfer of files. Therefore the primary target saves the
time of the last successful communication with the secondary
target. Only files which where modified after this timestamp will be
resynchronized by default. To avoid losing cached data, a short safety
threshold timespan will be added (defined by
sysResyncSafetyThresholdMins in beegfs-storage.conf).

Since metadata are much smaller than storage contents, there is no
timestamp-based mechanism in place, and instead the full mirrored
metadata of the metadata server will be sent to its buddy during the
resynchronization process.

Manual Resynchronization

In some cases it might be useful or even neccessary to manually
trigger resynchronization of a storage target or metadata server. One
case, for example, is a storage system on the secondary target that is
damaged beyond repair. In this scenario all data of that target might
be lost and a new target needs to be brought up with the old
target ID. The automatic resync won’t be sufficient then, because it
would only consider files after the last successful communication of
the targets. Another case for a manual resync override is when a fsck
of the underlying local file system (e.g. xfs_repair) has removed old
files.

The beegfs-ctl tool can be used to manually set a storage target or
metadata server to the needs resync state. Please note that this does
not trigger a resync immediately, but does only inform the management
daemon about the new state. The resync process then will be started by
the primary of that buddy group a few moments later.

As said before, the primary target saves the time of the last
successful communication with the secondary target. Without additional
parameters, this timestamp will be used to shorten resynchronization
times as much as possible. But it is also possible to override this
timestamp to resynchronize a longer timespan or to resynchronize
everything in the case described previously.

Please see the help of beegfs-ctl for more information on available
parameters:

$ beegfs-ctl --startresync --help

If a resynchronization is already running and you want to abort it and
start anew, you can do so by passing the –restart parameter to
beegfs-ctl. If you don’t, the current process keeps running and your
request will be ignored. This is particularly useful if the system
started an automatic resynchronization after a secondary target became
reachable again, but you know that the timestamp-based approach is not
sufficient. For example, this might be the case if your complete
underlying filesystem broke before the secondary target was started,
i.e. the target is completely empty and needs a full
synchronization. Note that restarting a running resync is only
possible for storage targets because metadata servers never do a
partial resynchronization.

The following command could be used to stop the automatic
resynchronization and start a full resynchronization instead.

$ beegfs-ctl --startresync --nodetype=storage --targetid=X --timestamp=0 --restart

Display Resynchronization Information

The beegfs-ctl command line tool can be used to display information on
an ongoing resynchronization process.

Please see the built-in help of beegfs-ctl for more information on
available parameters:

$ beegfs-ctl --resyncstats --help

Caveats of Storage Mirroring

Storage buddy mirroring provides protection against many failure modes
of a distributed system, such as drives failing, servers failing,
networks being unstable or failing, and a number of other modes. It
does not provide perfect protection if a system is degraded, mostly
only for the degraded part of the system. If any storage buddy group
is in degraded state, another failure may cause data
loss. Administrative actions can also cause data loss or corruption if
the system is in an unstable or degraded state. These actions should
be avoided if at all possible, for example by ensuring that no access
to the system is possible while the actions are performed.

Setting states of active storage targets

When manually changing the state of a storage target from GOOD to
NEEDS_RESYNC, clients accessing files during a period of propagation
“see” different versions of the global state. This influences data and
file locks. Propagation happens every 30 seconds, so the period will
not take longer than a minute. This may happen because the state is
not synchronously propagated to all clients, which makes the following
sequence of events possible:

	An administrator sets the state of an active storage target which
is the secondary of a buddy group to NEEDS_RESYNC with beegfs-ctl
–startresync.

	The state is propagated to the primary of the buddy group. The
primary will no longer forward written data to the secondary.

	A client writes data to a file residing on the buddy group. The
data is not forwarded to the secondary.

	A different client reads data from the file. If the client attempts
to read from the primary, no data loss occurs. If the client
attempts to read from the secondary, which is possible without
problems in a stable system, the client will receive stale data.

If the two clients in this example used the file system to
communicate, eg by calling flock for the file they share, the second
client will not see the expected data. Accesses to the file will only
stop considering the secondary as a source once all clients have
received the updated state information, which may take up to 30
seconds.

Setting the state of a primary storage target may exhibit the same
effects. Setting states for targets that are currently GOOD, and by
that triggering a switchover, must be avoided while clients are still
able to access data on the target. Propagation of the switchover takes
some time during which clients may attempt to access data on the
target that was set to non-GOOD. If the access was a write, that write
may be lost.

Fsync may fail without setting targets to NEEDS_RESYNC

When fsync is configured to propagate to the storage servers and
trigger an fsync on the storage servers, an error during fsync may
leave the system in an unpredictable state if the error occurred on
the secondary of a buddy group. If the fsync operation failed on the
secondary due to a disk error the error may be detected only during
the next operation of the secondary. If a failover happens before the
error is detected the automatic resync from the new primary (old
secondary, which has failed) to the new secondary (old primary) may
cause data loss.

Storage Pools

While all-flash systems usually are still too expensive for systems
that require large capacity, a certain amount of flash drives is
typically affordable in addition to the spinning disks for high
capacity. The goal of a high-performance storage system should then be
to take optimal advantage of the flash drives to provide optimum
access speed for the projects on which the users are currently
working.

One way to take advantage of flash drives in combination with spinning
disks is to use the flash drives as a transparent cache. Hardware RAID
controllers typically allow adding SSDs as transparent block level
cache and also zfs supports a similar functionality through the L2ARC
and ZIL. While this approach is also possible with BeeGFS, the
effectiveness of the flash drives in this case is rather limited, as
the transparent cache never knows which files will be accessed next by
the user and how long the user will be working with those files. Thus,
most of the time the applications will still be bound by the access to
the spinning disks.

To enable users to get the full all-flash performance for the projects
on which they are currently working, the BeeGFS storage pools feature
makes the flash drives explicitly available to the users. This way,
users can request from BeeGFS (through the beegfs-ctl command line
tool) to move the current project to the flash drives and thus all
access to the project files will be served directly and exclusively
from the flash drives without any access to the spinning disks until
the user decides to move the project back to the spinning disks.

The placement of the data is fully transparent to applications. Data
stays inside the same directory when it is moved to a different pool
and files can be accessed directly without any implicit movement, no
matter which pool the data is currently assigned to. To prevent users
from putting all their data on the flash pool, different quota levels
exist for the different pools, based on which a sysadmin could also
implement a time-limited reservation mechanism for the flash pool.

However, while the concept of storage pools was originally developed
to take optimum advantage of flash drives in a system with high
capacity based on spinning disks, the concept is not limited to this
particular use-case. The sysadmin can group arbitrary storage targets
in such pools, no matter which storage media they use and there can
also be more than just two pools.

A storage pool simply consists of one or multiple storage targets. If
storage buddy mirroring is enabled, both targets of a mirror buddy
group must be in the same pool, and the mirror buddy group itself must
also be in the same storage pool.

Cloud Integration

BeeGFS is available on the Amazon Web Services (AWS) as well as on
Microsoft Azure.

For the Amazon Web Services integration, it comes in two flavors: The
community support edition is completely free of software charges,
while the professional support edition adds a monthly fee. The BeeGFS
instances can be launched directly from AWS Marketplace, where you can
also find details on pricing model.

Launching BeeGFS on AWS will result in a fully working BeeGFS setup,
which is readily available to store your large data sets for high
performance access.

By default, the BeeGFS instances on AWS use Elastic Block Storage
(EBS) volumes to preserve your data even when all virtual machines are
shut down, so that you can come back later to resume working with your
data sets and don’t need to keep your virtual machines running while
you are not using them.

The Microsoft Azure implementation provides Resource Manager templates
that will help deploying a BeeGFS instance based on CentOS 7.2.

Of course, if you are moving your datacenter into the cloud, it is
also possible to perform your own BeeGFS installation for full
flexibility instead of using the predefined templates and to get a
normal BeeGFS professional support contract like on-premise setups.

Striping

Striping in BeeGFS can be configured on a per-directory and per-file
basis. Each directory has a specific stripe pattern configuration,
which will be derived to new subdirectories and applied to any file
created inside a directory. There are currently two basic parameters
that can be configured for stripe patterns: the desired number of
storage targets for each file and the chunk size (or block size) for
each file stripe.

The stripe pattern parameters of BeeGFS can be configured with the
Admon GUI or the command-line control tool. The command-line tool
allows you to view or change the stripe pattern details of each file
or directory in the file system at runtime.

The following command will show you the current stripe settings of
your BeeGFS mount root directory (in this case “/mnt/beegfs”):

$ beegfs-ctl --getentryinfo /mnt/beegfs

Use mode setpattern to apply new striping settings to a directory (in
this case “stripe files across 4 storage targets with a chunksize of 1
MB”):

$ beegfs-ctl --setpattern --numtargets=4 --chunksize=1m /mnt/beegfs

Stripe settings will be applied to new files, not to existing files in
the directory. With time, as files are continuously overwritten,
moved, copied, removed, and recreated, the new stripe pattern will
gradually be applied to all files in the directory.

Buddy Mirroring

If you have buddy mirror groups defined in your system, you can set
the stripe pattern to use buddy groups as stripe targets, instead of
individual storage targets. In order to do that, add the
option –buddymirror to the command, as follows. In this particular
example, the data will be striped across 4 buddy groups with a chunk
size of 1 MB.

$ beegfs-ctl --setpattern --numtargets=4 --chunksize=1m --buddymirror /mnt/beegfs

In BeeGFS version 7, this option has been replaced
with –pattern=buddymirror.

Impact on network communication

The data chunk size has an impact on the communication between client
and storage servers in several ways, as follows.

	When a process writes data on a file located on BeeGFS, the client
identifies the storage targets that contain the data chunks that
will be modified (by querying the metadata servers) and send
modification messages to the storage servers containing the modified
data. The maximum size of such messages is determined by the data
chunk size of the file.

If you define chunksize=1m, 1 MB will be the maximum size of each
message. If the amount of data written to the file is larger than
the maximum message size, more messages will have to be sent to the
servers and this may cause performance loss. So, slightly increasing
the chunk size to a few MB has the effect of reducing the amount of
messages and this can have a positive performance impact, even in a
system with a single target.

	In addition, it is important to make sure that a data chunk
fits the RDMA buffers available on the client, in
order to prevent the messages from being split, in order to be
transmitted over RDMA.

	You also have to consider the file cache settings. When the client
is using the buffered cache (tuneFileCacheType = buffered), it uses
a file cache buffer of 512 KB to accumulate changes on the same
data. This data is sent to the servers only when data from outside
the boundaries of that buffer is needed by the client. So, the
larger this buffer, the less communication will be needed between
the client and the servers. You should set this buffer size to a
multiple of the data chunk size. For example, adding
tuneFileCacheBufSize = 2097152 to the BeeGFS client configuration
file will raise the file cache buffer size to 2 MB.

Client Tuning

Parallel Network Requests

	Each BeeGFS client establishes multiple network connections to the
same server, which allows the client to have multiple network
requests in flight to this server

	The number of connections from a particular client to the same
server can be configured by setting the value of
connMaxInternodeNum in /etc/beegfs/beegfs-client.conf

	Increasing the number of connections may improve performance and
responsiveness for certain workloads.

	When increasing the value, it is extremely important keep the
resulting RAM usage for network buffers on the servers in mind,
especially for Infiniband and larger cluster setups. Make sure to
read the comments for connMaxInternodeNum and connRDMABufSize in
beegfs-client.conf to learn more about the server-side RAM usage.

	On a compute node, it usually doesn’t make sense to set this
number higher than the number of CPU cores.

	On a cluster login node, setting this value higher than the number
of CPU cores may help to improve responsiveness when multiple
users are active.

	BeeGFS clients establish connections only when they are needed (and
drop them after some idle time). Use the command beegfs-net on a
client to see the number of currently established connections to
each of the servers.

	beegfs-net is contained in the beegfs-utils package.

	The total space used by the buffers (connRDMABufSize x
connRDMABufNum) should be larger or equal to the data chunk size, so
that the messages exchanged between client and storage servers do
not need to be split to fit into the buffers available. The default
RDMA settings (connRDMABufSize = 64 KB, connRDMABufNum = 12) are OK
for the default chunk size of 512 KB. If you set a chunk size of 1
MB and a buffer size of 64 KB, the number of buffers should be at
least 1 MB / 64 KB + 4 additional buffers for protocol, so 20 in
this example.

Remote fsync

	BeeGFS clients have a configuration option to control behavior when
a user application calls fsync()

	The option is called tuneRemoteFSync in
/etc/beegfs/beegfs-client.conf

	The client can either enforce that data is committed to the server
disks on fsync() (=> tuneRemoteFSync=true) or only make sure that
data is transferred to the server-side cache (=>
tuneRemoteFSync=false).

	Disabling remote fsync can significantly reduce disk seeks and thus
improves performance for applications that use a lot of fsync()
calls.

Disable locate/mlocate/updatedb

	Some Linux distributions install a locate tool by default, which
scans all file systems once per day to build a database of existing
files.

	In a cluster, you certainly would not want to have all of your
compute nodes scan the entire BeeGFS file system each day.

	Either deactivate this service if you don’t need it or edit the file
/etc/updatedb.conf to make sure that the “beegfs” file system type
is contained in the “PRUNEFS” list and you BeeGFS mountpoint is
contained in the PRUNEPATHS list.

Getting started and typical Configurations

To get started with BeeGFS, all you need is a Linux machine to
download the packages from www.beegfs.io and to install them on. If
you want to, you can start with only a single machine and a single
drive to do some initial evaluation. In this case, the single drive
would be your management, metadata and storage target at the same
time. The quickstart walk-through guide will show
you all the necessary steps.

Typically, the smallest reasonable production system as dedicated
storage is a single machine with two SSDs in RAID1 to store the
metadata and a couple of spinning disks (or SSDs) in a hardware RAID6
or software zfs RAID-z2 to store file contents. A fast network (such
as 10GbE, OmniPath or InfiniBand) is beneficial but not strictly
necessary. With such a simple and basic setup, it will be possible to
scale in terms of capacity and/or performance by just adding disks or
more machines.

Often, BeeGFS configurations for a high number of clients in cluster
or enterprise environments consist of fat servers with 24 to 72 disks
per server in several RAID6 groups, usually 10 or 12 drives per RAID6
group. A network, usually InfiniBand, is used to provide high
throughput and low latency to the clients.

In smaller setups (and with fast network interconnects), the BeeGFS
metadata service can be running on the same machines as the BeeGFS
storage service. For large systems, the BeeGFS metadata service is
usually running on dedicated machines, which also allows independent
scaling of metadata capacity and performance.

Installation and Setup

There are two ways to install BeeGFS: GUI-based (using a graphical
Java interface) or manually (using shell commands).

The graphical installation is based on the BeeGFS Admon
(“Administration and Monitoring”) service, to which the graphical Java
interface connects. In general, the GUI-based installation is
recommended only for inexperienced users, because it does not provide
the full flexibility of a manual installation (e.g. several
configuration settings are not available and installation into an
image is not supported by the GUI-based installation procedure).

If you are familiar with the Linux command line, it is recommended to
perform the manual installation. Of course, you can still use the
graphical interface to view usage statistics after a manual
installation, if you want to.

General Notes

Installation Paths

BeeGFS binaries and libraries will be installed to /opt/beegfs. The
configuration files are located in the directory /etc/beegfs. Each
service (including the client) comes with an init script in
/etc/init.d.

Log Files

BeeGFS services create log files in /var/log.

Runtime Compatibility of different Versions

Different versions of BeeGFS clients and servers are compatible if
they are part of the same major release series (e.g. all v6.x
versions are part of the same major release v6).

Storage Format Compatibility

Some new major releases of BeeGFS may introduce new storage format
features, which might require upgrades of on-disk data
structures. Upgrade tools will be provided in these cases to convert
existing data to the new format in place. See release changelog for
compatibility notes.

Compiler

The GNU C compiler (gcc) must be installed on client machines to
build the BeeGFS client kernel modules.

Infiniband Libraries

For native Infiniband support, you need to have the ibverbs and
rdmacm libraries of OFED 1.2 or higher installed. (Most Linux
distributions also ship with sufficiently recent versions of these
libraries.)

GUI-based Installation and Service Management

Graphical installation is performed through the BeeGFS Admon
(“Administration and Monitoring”). It consists of a Java GUI and a
beegfs-admon service, to which the graphical interface connects. The
beegfs-admon service uses ssh to run installation commands on the
other BeeGFS nodes. Thus, passwordless ssh login from the host running
the beegfs-admon service to all BeeGFS nodes for user root is required
(including the node where the beegfs-admon service is running).

Note

If you don’t know how to configure ssh without password, you
might want to have a look at the tool ssh-keygen to create a
public/private key pair (without a passphrase) and then use
ssh-copy-id to copy the new key to the other nodes, or use
your favorite search engine to search for “passwordless
ssh”.

Download and Installation of the Admon service

Download the appropriate BeeGFS repository file for your Linux
distribution from the table below.

	Admon is the administration and monitoring service of BeeGFS.

	The Admon service typically runs on a cluster master node.

	
Linux Base

Distribution

	Version

	Package
Manager

	Repository
File (Save
to…)

	
Red Hat

Linux (and
derivatives,
e.g. Fedora)

	6.x

	yum

	
Download (Save

to:
/etc/yum.repos.d/)

	7.x

	

	
	
	
	

	
	
	
	

	
	
	
	

BeeOND: BeeGFS On Demand

Nowadays, compute nodes of a cluster typically are equipped with
internal flash drives to store the operating system and to provide a
local temporary data store for applications. But using a local
temporary data store is often inconvenient or not useful for
distributed applications at all, as they require shared access to the
data from different compute nodes and thus the high bandwidth and high
IOPS of the SSDs is wasted.

BeeOND (dubbed “beyond” and short for “BeeGFS On Demand”) was
developed to solve this problem by enabling the creation of a shared
parallel file system for compute jobs on such internal disks. The
BeeOND instances exist temporary exactly for the runtime of the
compute job exactly on the nodes that are allocated for the job. This
provides a fast, shared all-flash file system for the jobs as a very
elegant way of burst buffering or as the perfect place to store
temporary data. This can also be used to remove a lot of nasty I/O
accesses that would otherwise hit the spinning disks of your global
file system.

BeeOND is based on the normal BeeGFS services, meaning your compute
nodes will also run the BeeGFS storage and metadata services to
provide the shared access to their internal drives. As BeeOND does not
exclusively access the internal drives and instead only stores data in
a subdirectory of the internal drives, the internal drives are also
still available for direct local access by applications.

While it is recommended to use BeeOND in combination with a global
BeeGFS file system, it can be used independent of whether the global
shared cluster file system is based on BeeGFS or on any other
technology. BeeOND simply creates a new separate mount point for the
compute job. Any of the standard tools (like cp or rsync) can be used
to transfer data into and out of BeeOND, but the BeeOND package also
contains a parallel copy tool to transfer data between BeeOND
instances and another file system, such as your persistent global
BeeGFS.

BeeOND instances can be created and destroyed with just a single
simple command, which can easily be integrated into the prolog and
epilog script of the cluster batch system, such as Torque, Slurm or
Univa Grid Engine.

Admon

The BeeGFS Administration and Monitoring System (short: Admon)
provides a graphical interface to perform administrative management
tasks and to monitor the state of the file system and its components.

The BeeGFS Administration and Monitoring System consists of two parts:

	The Admon daemon, which can run on any machine with network access
to the metadata and storage servers. This daemon gathers the status
information of the other BeeGFS services and stores it in a
database.

	The graphical Java-based client, which can run on your
workstation. It connects to the remote Admon daemon via http.

Note

It is recommend to use Oracle Java Runtime Environment 7 [http://www.java.com/de/download/manual.jsp] (formerly
known as Sun JRE 7) or higher to run the BeeGFS Admon
GUI. Other Java runtime environments may work, but are not
fully tested.

Installation and basic Setup

The Administration and Monitoring System for BeeGFS is contained in
the optional beegfs-admon package.

The package is available either from the general BeeGFS repository or
via direct download.

The package provides an init script to start the Admon daemon
(/etc/init.d/beegfs-admon) and a configuration file
(/etc/beegfs/beegfs-admon.conf).

Note

If you installed BeeGFS manually (i.e. not via the Admon
GUI), you need to edit the beegfs-admon.conf file and set
the parameter sysMgmtdHost to the hostname of your
management server.

After installation, start the daemon:

$ /etc/init.d/beegfs-admon start

The graphical user interface for BeeGFS Admon comes packaged together
with the Admon daemon and is located in /opt/beegfs/beegfs-admon-gui.

Admon GUI Start

If your BeegFS Admon daemon is not running yet, start it as described
here: Admon Installation and basic setup

By default, TCP port 8000 will be opened by the daemon for HTTP
connections.

To get the GUI, point your browser to
http://Host_Where_The_Admon_Runs:8000 and download the jar-file from
there.

The GUI can be started by double clicking from a file browser or by
using the java -jar command (depending on your operating system and
configuration). If you want to run the GUI from its default location
on the Admon host, use the following command:

$ java -jar /opt/beegfs/beegfs-admon-gui/beegfs-admon-gui.jar

At first start, you will be prompted to provide the hostname and port
(default: 8000) of the host on which the Admon daemon is running. It
is also possible to change the resolution of the internal desktop of
the GUI and the default log level of the GUI.

Note

It is recommend to use Oracle Java Runtime Environment 7 [http://www.java.com/de/download/manual.jsp] (formerly
known as Sun JRE 7) or higher to run the BeeGFS Admon
GUI. Other Java runtime environments may work, but are not
fully tested.

Admon Login

The login mechanism is based on two predefined users.

The user “Information” (which has the initial password “information”)
is only able to view statistics, whereas the user “Administrator”
(which has the initial password “admin”) is also able to perform
administrative tasks.

It is highly recommended that the first thing you do is to log in
using the administrative account and change the predefined passwords.

A user with administrative privileges can also turn off the need for
authentication for the informational user.

Admon Main Menu

The menu is a tree-like view on the left hand side and the associated
windows will open on double-click. The following sections will give a
short overview of the different items.

The menu is a tree-like view on the left hand side and the associated
windows will open on double-click. The following sections will give a
short overview of the different items.

Metadata Nodes

The menu item “Metadata Nodes” contains an overview page, as well as a
dedicated page for each metadata node in the system.

The overview shows basic information, the status of all nodes and the
total number of metadata requests in the system.

The page for a specific metadata node shows some general information
on the node itself, the status of the node and the number of work
requests to this node.

Storage Nodes

Like the meta nodes menu, the menu item “Storage Nodes” also consists
of an overview page, as well as a dedicated page for each storage node
in the system.

Values which can be retrieved on these pages include the general
status information, as well as disk space usage and data throughput.

For disk performance, four values are displayed. While the read and
write graphs are very exact (measured every second), they are also
very erratic. The averaged graphs are better suited to identify a
tendency. These graphs are always an average of the last 30
values. You can easily hide each throughput line by disabling the
appropriate checkbox under the graphic.

Note that only the 10 min history view is based on the exact one
second interval. The other history views are based on more
coarse-grained (averaged) values.

Client statistics

The pages contains the client statistics for metadata operations
(create, stat, …) or the clients statistics for the storage
operations (read, write, …).

User statistics

The pages contains the user statistics for metadata operations
(create, stat, …) or the user statistics for the storage operations
(read, write, …).

Management

The management pages contain elements for administrative tasks. The
page “Known Problems” is designed as a quick overview of the system’s
health. All problems related to the status of the nodes and their
interconnection are listed here. The “Start/Stop Daemon” page allows
start or stop all daemons and clients. The item “Log Files” opens a
window which shows the log files of all daemons and clients.

FS Operations

The menu item “FS Operations”->”Stripe Settings” allows you to view
and change the striping information in your file system. In BeeGFS, it
is possible to define the chunk-size of data that will be written, as
well as the number of storage targets, over which one file will
typically be distributed. The corresponding information can be
retrieved on this page. Furthermore, if you logged in with
administrative privileges, the system will allow you to change these
settings for each directory in the file system.

With the file browser you can browse through the global BeeGFS and
retrieve information on the stored files. Please note, that although
you are able to see directories and files, you will not be able to
view the content.

Installation

The management pages contain elements for automation and
simplification of the installation/uninstallation tasks. Please refer
to the BeeGFS installation guide for a detailed description. Also the
installation log file is available in this menu.

Admon Menu Bar

The menu bar contains options which are not required for the
installation and the day by day administration.

Admon

The menu item “Change Settings” contains the configuration options of
the GUI. Also the logout option and the close option for the GUI.

Administration

The options inside the menu item “User Settings” allow you to change
the login passwords and to disable the password for the Information
user. The effect of the latter is that users can view the web-frontend
without being asked for a password. (The administrative account is not
affected by this setting).

The menu item “Mail Settings” lets you define some values for e-Mail
notifications by the software. If configured accordingly, an
administrator can receive an e-Mail whenever a node in the system
appears to be down. These pages are only accessible by the user
“Administrator”.

BeeGFS APIs Overview

Besides the POSIX interface, BeeGFS provides other APIs to take more
control of data placement, query additional information or access data
through other interfaces.

	The `Striping API`_ allows the application developers to create
files with individual stripe patterns, which are adjusted for the
access pattern of a particular file. It also allows querying of
stripe pattern details of files.

	The `Cache API`_ provides functions to copy data between a fast
BeeGFS cache file system (typically a BeeOND instance) and a global
BeeGFS. Prefetching and flushing of data to and from the cache file
system can be done synchronously and asynchronously. The
asynchronous prefetch/flush offloads the copy task to a cache
daemon, which copies the data with multiple threads to speed up the
data transfer.

	With the `Hadoop BeeGFS Connector`_, BeeGFS can be used as an
alternative to the Hadoop file system (HDFS). Hadoop applications
can use the general Hadoop file system API to access BeeGFS.

Contact Information

If you want to keep up to date regarding news, events and features of
BeeGFS, you should subscribe to the monthly newsletter at
thinkparq.com/news or follow us on twitter. On the ThinkParQ news
page, you will also find the release announcement list, a special low
volume mailing list where you get a notification when a new BeeGFS
release becomes available.

If you want to become part of the BeeGFS community, you can also join
the BeeGFS user mailing list by subscribing at beegfs.io/support. On
the public mailing list, users can ask other users for help or discuss
interesting topics. Note that the development team does not regularly
check the posts on the public mailing list, as this is only part of
the professional support.

If you are interested in more information, need help building your
first BeeGFS storage system or want to become a BeeGFS partner for
turn-key solutions, you can contact us at: info@thinkparq.com

Licensing

The BeeGFS client module is licensed under the GPLv2
<http://www.gnu.org/licenses/gpl-2.0.html>.

All other BeeGFS components are licensed under the BeeGFS EULA
<https://www.beegfs.io/docs/BeeGFS_EULA.txt>.

Admon Licensing

The BeeGFS Administration and Monitoring System is licensed under the
terms of the BeeGFS End User License Agreement [https://www.beegfs.io/docs/BeeGFS_EULA.txt].

The software makes use of the following third party libraries, which
are all used unmodified:

	OpenSSL (http://www.openssl.org), which is licensed under the
OpenSSL License (http://www.openssl.org/source/license.html).

	Sqlite (http://www.sqlite.org), which was given to the public domain
by the authors.

	Mongoose (http://code.google.com/p/mongoose), which is licensed
under MIT license
(http://www.opensource.org/licenses/mit-license.php)

	TinyXML++ (http://code.google.com/p/ticpp), which is licensed under
MIT license (http://www.opensource.org/licenses/mit-license.php)

	JChart2D (http://jchart2d.sourceforge.net), which is licensed under
the GNU Lesser General Public License
(http://www.gnu.org/copyleft/lesser.txt)

Index

 _static/plus.png

_static/up-pressed.png

_static/up.png

_images/architecture.jpeg
Client

inform

S Metadata
Service

P l <

file access
a ll coardinate

Storage Flsh
Service Dilves
g HDDs

Shingled

Drives

)

_images/management-service.png

_images/admon.png
T

_images/metadata-service.png
etadata

_images/storage-service.png
Flash N

Drives

— HDDs
Shingled

N\

\

Drives

——

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 BeeGFS Unofficial Documentation

 		
 General Architecture

 		
 The Management Service

 		
 The Metadata Service

 		
 The Storage Service

 		
 The Client Service

 		
 Admon: Administration and Monitoring System

 		
 Built-in Replication: Buddy Mirroring

 		
 Storage Service Buddy Mirroring

 		
 Buddy Groups

 		
 Define Buddy Groups automatically

 		
 Define Buddy Groups manually

 		
 List defined Mirror Buddy Groups

 		
 Metadata Service Buddy Mirroring

 		
 Define Stripe Pattern

 		
 Enabling and disabling Mirroring

 		
 Activating Metadata Mirroring

 		
 Migrating Existing Metadata

 		
 Restoring Metadata and Storage Target Data after Failures

 		
 Automatic Resynchronization

 		
 Manual Resynchronization

 		
 Display Resynchronization Information

 		
 Caveats of Storage Mirroring

 		
 Setting states of active storage targets

 		
 Fsync may fail without setting targets to NEEDS_RESYNC

 		
 Storage Pools

 		
 Cloud Integration

 		
 Striping

 		
 Buddy Mirroring

 		
 Impact on network communication

 		
 Client Tuning

 		
 Parallel Network Requests

 		
 Remote fsync

 		
 Disable locate/mlocate/updatedb

 		
 Getting started and typical Configurations

 		
 Installation and Setup

 		
 General Notes

 		
 GUI-based Installation and Service Management

 		
 Download and Installation of the Admon service

 		
 BeeOND: BeeGFS On Demand

 		
 Admon

 		
 Installation and basic Setup

 		
 Admon GUI Start

 		
 Admon Login

 		
 Admon Main Menu

 		
 Metadata Nodes

 		
 Storage Nodes

 		
 Client statistics

 		
 User statistics

 		
 Management

 		
 FS Operations

 		
 Installation

 		
 Admon Menu Bar

 		
 Admon

 		
 Administration

 		
 BeeGFS APIs Overview

 		
 Contact Information

 		
 Licensing

 		
 Admon Licensing

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

