

Beah

Beah is the default test harness used in Beaker [https://beaker-project.org]. See Alternative Harness Guide [https://beaker-project.org/docs/alternative-harnesses/index.html#alternative-harnesses] if
you are interesed in using a different harness and
Related Projects [https://beaker-project.org/dev/related-projects.html#related-projects] for an alternative test harness
implementation, restraint.

	Glossary

	Administrator Guide
	Installing and Upgrading Beah

	Using Beah for IPv6 testing

	Developer guide
	Modules

	Beah services and their interaction

	Setting up a development environment

	Development and usage in a lab

	Writing a patch for Beah

	Releases
	Beah-0.7.7

	Beah-0.7.6

	Beah-0.7.5

	Beah-0.7.4

	Beah-0.7.3

	Beah-0.7.2

	Beah-0.7.1

	Beah-0.7.0

	Beah-0.6.48-1

	Beah-0.6.47-1

Discussions

The best way to interact with Beaker and the Beah developers and users is in the #beaker IRC channel on irc.freenode.net. The Beaker
developers monitor this channel, and development discussions often happen
there. Alternatively, you can post your question to the beaker-devel [https://fedorahosted.org/mailman/listinfo/beaker-devel] mailing list.

Reporting a bug

If you’ve found a bug in Beah, please report it in Red Hat Bugzilla [https://bugzilla.redhat.com/enter_bug.cgi?product=Beaker] against the
Beaker product using the test harness component.

Glossary

	Controller

	It is a center piece of harness. It is used to process
Commands from Backends, spawn Tasks and process Events from Tasks, and
eventually forwarding these to Backends.

	Backend

	It is a client which connects to Controller and which can issue Commands
(read from console or socket) and is processing Events (writing to console or
to file, to internet socket etc.) Multiple Backends can be connected to a
single Controller.

	Task

	It is an executable, which runs a test and is generating Events as a
result, sending these to the Controller server. It can use either stdout or
socket to send events to Controller. stderr is captured as well, but is
considered a raw-data (creating lose_item events.)

	Event

	It is a piece of information generated by running Task (e.g. log-event,
result-event) or Controller (e.g. pong-event, bye-event) and sent to Backend.

	Command

	It is a piece of information instructing Controller (and eventually
Task) to perform an operation (e.g. run-command to spawn a new Task or
kill-command killing a Controller server)

	Test

	It is an executable performing testing producing output in known format.
Task adaptor has to be written to translate this output to sequence of Events.

Administrator Guide

Installing and Upgrading Beah

New Beah releases are made available as RPM packages for Red Hat
Enterprise Linux and Fedora via a yum repository here [http://beaker-project.org/yum/harness/].

If you are upgrading an existing Beah installation, you can simply run
beaker-repo-update on the Beaker server. To specify an alternative
location, use the -b switch. For example:

beaker-repo-update -b http://beaker-project.org/yum/harness-testing/

Using Beah for IPv6 testing

New in version 0.7.0.

During a test run, periodic network communication over TCP/IP takes
place from a Beah daemon on the test system to the lab controller and
between Beah services on the test system itself. The
following are necessary prerequisites for Beah to be able to function
successfully when IPv6 functionality is desired (in a dual IPv4/IPv6
environment) or IPv4 is disabled on the test system to test IPv6
specific functionality (See Limitations below).

New in version 0.7.4.

It is possible to ask Beah to use IPv4 exclusively for all it’s
network communication even when IPv6 connectivity may be possible by
specifying beah_no_ipv6 in the recipe’s ksmeta variable (see
Install options [https://beaker-project.org/docs/user-guide/customizing-installation.html#install-options]).

Test system environment

	The operating system must support IPv6.

	The network interfaces are appropriately configured (IPv6 address
assigned).

	Routing tables are correctly setup for IPv6.

	The version of the Twisted library must be greater than or equal to
12.1.

Note

In the absence of any of the above, communication within the test
system falls back to using IPv4.

Lab controller

	The IPv6 DNS records must be configured correctly.

	The firewall configuration must be correctly configured to allow
connections to the beaker-proxy service that runs on port
8000 over IPv6.

Note

In the absence of any of the above, communication with the lab controller
falls back to using IPv4.

Limitations

The following limitations exist with regards to using Beah for IPv6 testing:

	Multihost testing is currently not supported when the test systems
have IPv4 disabled.

	Beah fetches every task from the Beaker server’s task library just
before it starts executing it. When IPv4 is disabled, this is not
possible, unless /etc/resolv.conf on the test system has the
IPv6 addresses of the nameservers so that it can successfully
communicate over IPv6 with the Beaker server. Of course, the
server has to be reachable over IPv6 (IPv6 enabled, DNS records
updated and firewall rules appropriately configured).

One possible workaround is to manually add entries in the
/etc/hosts file on the test system for the Beaker server (to fetch the Task
RPMs) and any other host with which communication may be
needed (for example, for downloading packages from a remote yum
repository). Here is a sample <ksappends/> snippet which can be added to
a Beaker Job XML [https://beaker-project.org/docs/user-guide/job-xml.html#job-xml] and will setup /etc/hosts
with IPv6 address and hostname mapping for the beaker server
beaker-server.host.com:

<ks_appends>
<ks_append><![CDATA[
%post
cat >>/etc/hosts <<EOF
2620:52:0:1065:5054:ff:fe22:b7d9 beaker-server.host.com
EOF
%end
]]></ks_append>
</ks_appends>

In the absence of both the above, the recipe will
finish without being able to execute the remaining tasks.

Developer guide

Beah is using TCP/IP sockets for IPC. In case of failures it is easy to
reconnect. (At least easier than simple capturing stdout.)

Events and Commands are JSON-serialized new-line separated messages sent over
TCP/IP socket. Easy to extend, easy to ignore parts of message which are not
understood. Well supported in many programming languages. Rather effective
enconding/decoding.

Single JSON object on a line, is quite robust: in case of message corruption
only that message (and eventually next one) will be affected. In case of
events, these will not be lost - the lose_item event containing raw data is
generated.

Twisted framework is used for handling non-blocking I/O operations.

Modules

The source code is available in a git repository here [http://git.beaker-project.org/cgit/beah/].

(Beware: things are not in place.)

	beah.config

	Default configuration. Update this module from outside

	beah.core

	Independent components - constants, controller, interfaces, basic backends and tasks…

	beah.backends, beah.tasks

	Additional backend and task adaptors

	beah.wires

	Wiring to glue things together

	beah.wires.twisted

	Twisted wiring (mostly metadata - use this protocol, this
implementation, JSON over TCP/IP socket, default cfg,…

	beah.wires.internals

	Internal implementation for wirings

	beah.misc

	Things which do not fit elsewhere

	beah.filters

	I/O filters. LineReceiver, ObjReceiver,…

	beah.tests

	Testing harness

	beahlib

	Library to be used from python tasks/tests.

Beah services and their interaction

During a test run, several Beah components interact over TCP/IP within
the system itself and with the Beaker lab controller.

TCP/IP Server processes

When you login to a test system (say, when the /distribution/reservesys [https://beaker-project.org/docs/user-guide/beaker-provided-tasks.html#reservesys-task] is running), you will see that
the following Beah specific servers listening:

beah-srv 9714 root 10u IPv6 26970 0t0 TCP *:12432 (LISTEN)
beah-srv 9714 root 12u IPv6 26972 0t0 TCP *:12434 (LISTEN)
beah-rhts-task 10142 root 7u IPv6 27966 0t0 TCP localhost:7089 (LISTEN)

The beah-srv process corresponds to the server started by start_server() in
beah/wires/internals/twserver.py and it basically starts the
TaskListener and BackendListener, whose presence you can usually see
in the console logs:

2014-03-31 21:58:19,384 beah start_server: INFO Controller: BackendListener listening on :: port 12432
2014-03-31 21:58:19,385 beah start_server: INFO Controller: BackendListener listening on /var/beah/backend12432.socket
2014-03-31 21:58:19,386 beah start_server: INFO Controller: TaskListener listening on :: port 12434
2014-03-31 21:58:19,387 beah start_server: INFO Controller: TaskListener listening on /var/beah/task12434.socket

These servers exist throughout a recipe run on the test system. The
corresponding “client” programs live in beah/wires/internals/twbackend.py and
beah/wires/internals/twtask.py.

The beah-rhts-task process (main() function in
beah/tasks/rhts_xmlrpc.py) corresponds to the result server
started per task by beah-srv and exits on a task completion.

Note that on a distro which doesn’t have the right twisted library or
the IPv6 support has been disabled otherwise, the servers will only
listen on IPv4 interfaces (see Using Beah for IPv6 testing to learn more
about the IPv6 testing support in Beah).

System services

The following beah daemons are started at system boot:

beah-fwd-backend: This handles the communication during multi host jobs.
The corresponding source file is beah/beaker/backends/forwarder.py.

beah-beaker-backend: This talks to the Beaker lab controller’s
beaker-proxy process over XML-RPC. The corresponding source file is
beah/beaker/backends/beakerlc.py.

beah-srv: This is the main daemon process we saw above. The corresponding
source file is beah/bin/srv.py.

Setting up a development environment

To set-up development environment source dev-env.sh. Type . dev-env.sh
in BASH, which will set required environment variables (PATH and PYTHONPATH).
This is not required when package is installed.

After setup, run:

launcher a

in the same shell, which will start server and backends in separate terminals.
Or launch components yourself.

Development environment provides these shell functions:

	beah-srv - controller server

	beah-cmd-backend - backend to issue commands to controller. Enter help
when “beah>” prompt is displayed.

	beah-out-backend - backend to display messages from controller

	beah - command line tool. Use beah help to display help. This uses the
same command set as beah-cmd-backend

	launcher - wrapper to start these programms in new terminal windows.

beah-out-backend, beah-cmd-backend and beah will wait for controller.

Few auxiliary binaries are provided in bin directory:

	mtail_srv - run srv and beah-out-backend in single window (using multitail
tool.)

	
	beat_tap_filter - a filter taking a Perl’s Test::Harness::TAP format on

	stdin and producing stream of Events on stdout.

There are few test tasks in examples/tasks directory:

	a_task - a very simple task in python.

	a_task.sh - the same, in bash, with some delays introduced.

	env - a binary displaying environment variables of interest.

	flood - flooding Controller with messges. This task will not finish and has
to be killed (in a pkill flood manner.)

	socket - a task using TCP/IP socket to talk to Controller.

Actually a_task and a_task.sh are a simple demonstration of how the test might
look like, though it is not definite and more comfortable API will be
provided.

In default configuration server is listenning on localhost:12432 for backends
and localhost:12434 for tasks. On POSIX compatible systems unix domain sockets
are used for local connections by default.

beah-cmd-backend does not offer history or command line editing features (it
is on TODO list) thus it is more convenient to use beah command line tool.

The commands supported are:

	ping [MESSAGE]: ping a controller, response is sent to issuer only.

	PING [MESSAGE]: ping a controller, response is broadcasted to all backends.

	run TASK (r TASK): run a task. TASK must be an executable file.

	kill: kill a controller.

	dump: instruct controller to print a diagnostics message on stdout.

	quit (q): close this backend.

	help(h): print this help message.

Controller’s log is written to [/tmp]/var/log/beah.log.

Development and usage in a lab

The lm-install.sh script can be used to install harness from
working copy on a lab machine. This requires either LABM env.variable
to be defined or passing lab machine’s FQDN as an argument

To change settings, change lm-install-env.sh file. As this file is tracked by
VCS, if lm-install-env.sh.tmp exists in current directory it is used with
higher priority.

Usage

On a lab machine:

$ mkdir -p /mnt/testarea/lm-install

This is the default. Change LM_INSTALL_ROOT in lm-install-env.sh.

On the machine where beaker/Harness tree exists:

edit lm-install-env.sh (or eventually lm-install-env.sh.tmp) file.
$ export LABM=x.ample.com
$./lm-install.sh
$ 'LABM=x.ample.com ./lm-install.sh'

Or, the following can be used instead of the last two steps:

$ './lm-install.sh x.ample.com'

On a lab machine:

$ cd /mnt/testarea/lm-install
$. lm-package-*.sh

Be careful to choose the correct one to be used.

. /mnt/testarea/lm-install/main.sh can be used anytime to read environment and load
functions. Run lm_main_help and lm_help for more help on available functions.

Writing a patch for Beah

Here is a brief overview of how you can submit a patch for Beah.

Clone Beah’s repository

Clone beah: git clone git://git.beaker-project.org/beah

Create a local working branch

Create a branch (say, myfeature): git checkout origin/develop -b
myfeature. Make your changes and once you are happy, commit the
changes. If your patch fixes a bug, please include the Red Hat
Bugzilla number as a footer line in your commit message. For example:

This commit fixes a minor glitch in how Beah handles
errors.

Bug: 134511

Submitting your patch

Beah and all other projects maintained as part of Beaker uses the
Gerrit code review tool to manage patches. Push your local branch to
the Beaker project’s Gerrit instance [http://gerrit.beaker-project.org/] for review:

git push git+ssh://gerrit.beaker-project.org:29418/beah myfeature:refs/for/develop

Releases

Beah-0.7.7

Changelog

	Beah systems units now use Wants= instead of Requires= for dependencies, so
that they can be restarted independently of each other.

	The beah SELinux policy module is now built and installed on RHEL7.

Beah-0.7.6

Changelog

	Add before and conflicts on shutdown.target for beah systemd services. This
will allow the Beah services to be shutdown cleanly.

	Currently Beah considers a Task runner exit as task completion. Starting
this release, Beah will ignore a task exit when a system reboots via
rhts-reboot and hence not mark it as “done”. This fixes #908354 [https://bugzilla.redhat.com/show_bug.cgi?id=908354].

Beah-0.7.5

Changelog

	Pass a valid Exception to errback()

	fix systemd dependencies for beah-srv.service

	don’t rely on HOSTNAME env var

	SELinux policy module to allow beah to transition to unconfined

	Discard python-hashlib to enable FIPS mode on RHEL5

Beah-0.7.4

Changelog

	A new config option IPV6_DISABLED will cause Beah to avoid using IPv6
even when it is available.

	Beah now starts after systemd readahead collection is finished.

Beah-0.7.3

Changelog

	Backend needs to listen on all interfaces, not just loopback. This fixes
a regression in Beah 0.7.2 where multi-host testing did not work because the
other Beah processes in the recipe set were not reachable over the network.
(Contributed by Dan Callaghan in #1067745 [https://bugzilla.redhat.com/show_bug.cgi?id=1067745].)

Beah-0.7.2

Changelog

	Brown paper bag release: fixed a typo in start_task, found by pylint.

Beah-0.7.1

Changelog

	Fixed missing conversion for RHTS_PORT, which was causing TypeError when the
RHTS_PORT task parameter was set. (Contributed by Marian Csontos in
#1063815 [https://bugzilla.redhat.com/show_bug.cgi?id=1063815].)

	Handles any combination of IPv6 and IPv4 being enabled, including absent IPv4
loopback address. (Contributed by Dan Callaghan in #1059479 [https://bugzilla.redhat.com/show_bug.cgi?id=1059479] and Amit
Saha in #1062896 [https://bugzilla.redhat.com/show_bug.cgi?id=1062896].)

Beah-0.7.0

Changelog

	IPv6 support

	Remove dependency on ‘python-simplejson’ on RHEL 6+,
Fedora

Beah-0.6.48-1

Changelog

	Add a release note generator

	ControlGroup configuration option no longer valid.

	pass exception instance instead of string to Failure

Beah-0.6.47-1

Changelog

	Changes to Documentation

	Add a version string.

	Add a new README and remove build.sh

	Documentation reorganization

	Add an error handler to simple_recipe

	fix RPM conditional on RHEL3 and RHEL4

Index

 B
 | C
 | E
 | T

B

 	
 	Backend

C

 	
 	Command

 	
 	Controller

E

 	
 	Event

T

 	
 	Task

 	
 	Test

 nav.xhtml

 Table of Contents

 		
 Beah

 		
 Glossary

 		
 Administrator Guide

 		
 Installing and Upgrading Beah

 		
 Using Beah for IPv6 testing

 		
 Test system environment

 		
 Lab controller

 		
 Limitations

 		
 Developer guide

 		
 Modules

 		
 Beah services and their interaction

 		
 TCP/IP Server processes

 		
 System services

 		
 Setting up a development environment

 		
 Development and usage in a lab

 		
 Usage

 		
 Writing a patch for Beah

 		
 Clone Beah’s repository

 		
 Create a local working branch

 		
 Submitting your patch

 		
 Releases

 		
 Beah-0.7.7

 		
 Beah-0.7.6

 		
 Beah-0.7.5

 		
 Beah-0.7.4

 		
 Beah-0.7.3

 		
 Beah-0.7.2

 		
 Beah-0.7.1

 		
 Beah-0.7.0

 		
 Beah-0.6.48-1

 		
 Beah-0.6.47-1

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

