

 Navigation

 	
 index

 	
 next |

 	BookBrainz Developer Docs 0.1 documentation

Welcome to the BookBrainz Developer Docs!

This documentation is intended to act as a guide for developers working on or
with the BookBrainz project, describing the system, its modules and functions.
The BookBrainz webservice is also fully documented here.

For a description of the BookBrainz and end-user oriented documentation, please
see the BookBrainz User Guide.

Contents

	BookBrainz Schema
	Introduction

	Definition

	Entities
	Generic Entity Tables
	Entity and Entity Redirect

	Entity Tree

	Entity Data

	Additional Tables

	Specific Entities
	Publication

	Coming from MusicBrainz
	Entity Base Object

	BookBrainz Webservice

	Authentication

 Copyright 2014, Ben Ockmore.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BookBrainz Developer Docs 0.1 documentation

BookBrainz Schema

Introduction

The BookBrainz schema describes how the data used by BookBrainz is stored. It’s
quite important to have a good idea of this before you look at any of our code.
If you’re coming from a MusicBrainz background, our schema is similar, but there
are some key differences - see Coming from MusicBrainz.

Definition

The BookBrainz schema is defined in the python-bbschema package, which you can
access at https://github.com/BookBrainz/python-bbschema. When the schema is more
stable, there’ll be a nice schema diagram here to help you understand how things
fit together, but for now, you’ll have to make do with some words.

 Copyright 2014, Ben Ockmore.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BookBrainz Developer Docs 0.1 documentation

Entities

In BookBrainz, an entity is a container for some data, associated with some
globally unique identifiers (GIDs). BookBrainz represents a number of different
objects as entities, and each of these has its own particular associated data.
In the following section, we’ll go through the database structures used to
represent entities, and talk about each type of entity in more detail.

Generic Entity Tables

Entity and Entity Redirect

All entity GIDs are stored in a single table in the database, entity.

A second table, entity_redirect, allows redirection of GIDs. For example, if
one entity was merged into a second entity, then a row would be created in the
entity_redirect table to indicate a mapping to the merge target.

Entities in BookBrainz are versioned, which means that the entire entity history
is stored in the database. To make this possible, we have an additional table
in the database, called entity_tree.

[image: ../_images/entity.1degree.png]
The entity table and its relationships.

Entity Tree

The entity_tree table is the place where information is actually stored. You
can think of this table like a folder on a computer. It points to the various
bits of data related to a particular version of the entity. For example, the
most recent annotation ID, disambiguation comment ID and entity-specific data ID
will usually be stored at this level.

When a new version of an entity is created, a corresponding row in
entity_tree is created, which will indicate that data was updated by
modifying one of the stored IDs.

[image: ../_images/entity_tree.1degree.png]
The entity_tree table and its relationships.

Entity Data

Each entity tree will point to a particular row in the entity_data table. We
use joined table inheritance to represent the different entities in BookBrainz,
and this single entity_data table represent the base object in this inheritance
hierarchy. It contains an ID and a field to determine the type of entity data
stored, known as the discriminator.

[image: ../_images/entity_data.1degree.png]
The entity_data table and its relationships.

Additional Tables

There are some additional tables related to all types of entity. We’ve already
mentioned annotations and disambiguations, so let’s talk a little more about
those.

An annotation is a way of making notes about an entity, for other
editors to read. It stores some content associated with an ID. Disambiguation
comments, stored in the disambiguation table, have a similar data structure
but are intended to contain a short description to allow editors to easily
differentiate between similarly-named entities.

An alias represents a name or title. Each alias will store some text along
with a language, and a couple of flags to indicate whether the alias is
primary and whether it is native. An entity can only have one native
alias, which indicates its original name. It can have many primary aliases,
which give the most common names in particular languages. Native aliases will
usually also be primary.

Specific Entities

Publication

Publications represent the books, magazines, articles, newspapers, novels and
other published materials catalogued in BookBrainz. The table
publication_data stores the entity specific data for publications, and
represents an object derived from entity_data.

 Copyright 2014, Ben Ockmore.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BookBrainz Developer Docs 0.1 documentation

Coming from MusicBrainz

This page describes the key differences between the BookBrainz and MusicBrainz
schemas, for developers already familiar with the MusicBrainz schema.

Entity Base Object

In BookBrainz, there is an “Entity” base object. What this means is that all
entities share some common data, and store this data in a single table in the
database. This greatly simplifies the rest of the database compared to
MusicBrainz - instead of having a set of tables defined for each type of entity,
we only need a single set of tables referencing the base table for entities.

The following fields are stored in the base table:

	gid

	master_revision_id

	last_updated

 Copyright 2014, Ben Ockmore.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BookBrainz Developer Docs 0.1 documentation

BookBrainz Webservice

The BookBrainz webservice provides developers with a way to make programs which
use BookBrainz data. The BookBrainz site itself uses the web service to access
and modify data.

 Copyright 2014, Ben Ockmore.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BookBrainz Developer Docs 0.1 documentation

Authentication

To allow users to authentication with BookBrainz, the webservice implements
OAuth 2. We use the password grant type, meaning that clients must forward
user credentials (username and password) to the website over HTTPS.

When a client successfully authenticates a user, they recieve an access token,
which must be sent in the header of every subsequent POST request.

Example requests are shown below, for a username “Jim” and password “Bob123”.

Authentication Request:

{
 "client_id": "de305d54-75b4-431b-adb2-eb6b9e546013",
 "username": "Jim",
 "password": "Bob123"
}

Authentication Response:

{
 "access_token": "f47ac10b58cc4372a5670e02b2c3d479"
 "refresh_token": "16fd27068baf433b82eb8c7fada847da"
}

Subsequent POST:

HEADERS:
 Authorization: Bearer f47ac10b58cc4372a5670e02b2c3d479

{
 "post": "data",
 "goes": "here"
}

 Copyright 2014, Ben Ockmore.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	BookBrainz Developer Docs 0.1 documentation

Index

 Copyright 2014, Ben Ockmore.
 Created using Sphinx 1.2.2.

 _static/up.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/entity.1degree.png
entity_revision
id

entity_gid
entity_tree_id
<3 [3rows 1>

Generated by SchemaSpy

entity_redirect
source_gid
target_gid
<1]orows
entity
gid uuid[2147483647] el_entity
Tast_updated timestamp[29.6] relationship_tree_id
master_revision_id |int4[10] position
<1 3 rows 3> entity_gid
<2 | orows

_static/entity_tree.1degree.png
annotation entity_revision
id id
content entity_gid
created_at entity_tree_id
0rows [1> ontity_tree <3 [arows[1>
id serial[10]
disambiguation annotation d___|int4[10] entity_tree_alias
id o disambiguation_id |int4[10] entity_tree_id
comment data_id int4[10] alias_id
0rows [1> <3 3 rows 2> <2 [orows
entity_data
id
_type
3rows [3>

Generated by SchemaSpy

_static/comment.png

_static/file.png

_static/minus.png

_static/entity_data.1degree.png
creator_data

id
begin_date
begin_date_precision
end_date
end_date_precision
ended
country_id
gender_id
creator_type_id
<3 Trow
entity_tree
id
annotation_id
entity_data disambiguation_id
id serial[10] data_id
_type int4[10] <3 [3rows[2>
<0[3Tows 3>

publication_data

id

publication_type_id

<2 | 2rows

Generated by SchemaSpy

_images/entity_data.1degree.png
creator_data

id
begin_date
begin_date_precision
end_date
end_date_precision
ended
country_id
gender_id
creator_type_id
<3 Trow
entity_tree
id
annotation_id
entity_data disambiguation_id
id serial[10] data_id
_type int4[10] <3 [3rows[2>
<0[3Tows 3>

publication_data

id

publication_type_id

<2 | 2rows

Generated by SchemaSpy

_static/comment-bright.png

_images/entity_tree.1degree.png
annotation entity_revision
id id
content entity_gid
created_at entity_tree_id
0rows [1> ontity_tree <3 [arows[1>
id serial[10]
disambiguation annotation d___|int4[10] entity_tree_alias
id o disambiguation_id |int4[10] entity_tree_id
comment data_id int4[10] alias_id
0rows [1> <3 3 rows 2> <2 [orows
entity_data
id
_type
3rows [3>

Generated by SchemaSpy

search.html

 Navigation

 		
 index

 		BookBrainz Developer Docs 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Ben Ockmore.
 Created using Sphinx 1.2.2.

_images/entity.1degree.png
entity_revision
id

entity_gid
entity_tree_id
<3 [3rows 1>

Generated by SchemaSpy

entity_redirect
source_gid
target_gid
<1]orows
entity
gid uuid[2147483647] el_entity
Tast_updated timestamp[29.6] relationship_tree_id
master_revision_id |int4[10] position
<1 3 rows 3> entity_gid
<2 | orows

docs/editing.html

 Navigation

 		
 index

 		
 previous |

 		BookBrainz Developer Docs 0.1 documentation »

 © Copyright 2014, Ben Ockmore.
 Created using Sphinx 1.2.2.

