
Battlesnake Documentation
Release 0.1

Greg Taylor

Sep 27, 2017

Contents

1 Learning more 3

2 Documentation 5
2.1 How it works . 5
2.2 Installation . 6
2.3 Getting started using the Bot . 6
2.4 Battlesnake protocol . 7
2.5 Triggers . 9
2.6 Timers . 10
2.7 Settings . 11

3 Indices and tables 13

i

ii

Battlesnake Documentation, Release 0.1

Battlesnake is a Softcode supplement/replacement bot for BattletechMUX.

The typical BattletechMUX requires numerous complex systems to function. For example:

• Mech ref libararies

• Economic simulations

• Stores for purchasing/selling commodities and parts

• Player stat tracking

• Bulletin board systems

While these have all been successfully built and maintained in softcode, maintenance and future expansion can be very
slow. Softcode is a poor choice for larger systems.

There are also things that can’t be done in-game without the help of hardcode modifications or logfile workarounds:

• Sending emails

• Communication with arbitrary databases/data stores

• Web-based character creation

• Integration with messenger services

• Utilization of social media

Battlesnake aims to supplement or replace large chunks of softcode in your game, while also opening up any external
services you’d like to use.

Contents 1

http://wiki.tinymux.org/index.php/Softcode
http://battletechmux.com/
http://battletechmux.com/
http://wiki.tinymux.org/index.php/Softcode

Battlesnake Documentation, Release 0.1

2 Contents

CHAPTER 1

Learning more

Project Status: Early development

License: Battlesnake is licensed under the BSD License.

• Source repository: https://github.com/gtaylor/btmux_battlesnake

• Issue tracker: https://github.com/gtaylor/btmux_battlesnake/issues

• Live support is available on the BTMux channel on the Frontier.

3

http://opensource.org/licenses/bsd-license.php
https://github.com/gtaylor/btmux_battlesnake
https://github.com/gtaylor/btmux_battlesnake/issues
http://frontiermux.com/

Battlesnake Documentation, Release 0.1

4 Chapter 1. Learning more

CHAPTER 2

Documentation

How it works

Battlesnake is powered by Python and Twisted. The bot connects to your game over telnet, just like a user would. It
sets some semi-random tokens on its player object that allows your softcode to communicate with it via @pemit.

Your softcoded commands end up being mostly for gathering up the relevant data to @pemit to Battlesnake. If the
commands need to send a reply back out to a player, the bot does so with @pemit as well.

What is Battlesnake ideally suited for?

Battlesnake is best used for larger, more complicated systems that would be easier maintained in Python than softcode.
Battlesnake may be paired with your choice of database or data store, with softcode commands used to feed game state
data to Battlesnake. The bot can also pull things from the game on its own if you show it how to.

Example usage cases

A few ideas for neat things Battlesnake can be used for:

• Web-based character creation

• Adding an HTTP API for your website’s use

• Tweeting/SMS’ing/emailing certain events to your playerbase

• Very detailed player stat tracking (perhaps shown on your website)

• Stuffing arbitrary bits of data into a full-fledged database

• External AI

• Web-integrated bulletin board systems

• Economic simulations

• Research/industrial/assembly systems

5

http://python.org
http://twistedmatrix.com/
http://python.org

Battlesnake Documentation, Release 0.1

Installation

Warning: Battlesnake currently requires a game database with a very specific set of objects/functions/parents.
If you don’t have a DB from Kelvin, you’ll want to find him on the Frontier’s BTMux channel and ask. We’ll
eventually have one up for download once this stabilizes.

Battlesnake is developed on GitHub in a git repository. We don’t do any point releases at this time, as things are still
evolving, and the expected audience for this software is pretty niche.

The first thing to do is retrieve a clone of the repository:

git clone https://github.com/gtaylor/btmux_battlesnake.git

This will leave you with a btmux_battlensake directory. cd into it:

cd btmux_battlesnake

Now install the requirements via pip, preferrably within a virtualenv (you are using virtualenv, right?):

pip install -r requirements.txt

If you want to be able to generate documentation locally or run the test suite, install the developer dependencies:

pip install -r requirements_dev.txt

Now copy the starter config file and adjust the hostname, port, username, and password values:

cp config/battlesnake.cfg.dist battlesnake.cfg
vim battlesnake.cfg (Or whatever your preferred editor is)

You are now ready to run the bot (from within btmux_battlesnake):

twistd -n battlesnake

This defaults to using the battlesnake.cfg file in your current directory, but you can run multiple bots or use an
alternative location with the -c flag:

twistd -n battlesnake -c battlesnake.cfg

When in doubt, check out the help listing:

twistd -n battlesnake -h

Tip: You will not be able to run battlesnake unless your current directory is btmux_battlesnake (or whatever
you have renamed it to). This is a limitation of Twisted’s plugin system.

For more details on settings, check out Settings.

Getting started using the Bot

At this point, we assume that your bot is connected to your game. The first thing you’ll want to do is examine your
bot’s player object. We’ll also assume that its name is Battlesnake. You should see three attributes like these:

6 Chapter 2. Documentation

https://github.com/
http://git-scm.com/
http://pypi.python.org/pypi/virtualenv

Battlesnake Documentation, Release 0.1

BATTLESNAKE_PREFIX.D: @G$>
BATTLESNAKE_KWARG_DELIMITER.D: &R^
BATTLESNAKE_LIST_DELIMITER.D: #E$

Tip: Note these values, as we’ll be using them in the examples below.

You’ll also want to note your bot’s dbref. We’ll use the dbref #123 as a placeholder.

A crude botinfo example

Now choose an object to put a command on. This could be in your master room or in your current location. Here’s the
attribute we’ll set:

BOTINFO.C: $botinfo:think [u(#47/SET_BOT_REGISTERS.F)][u(#47/SENDPACKET.F,botinfo)]

Breaking this down, SET_BOT_REGISTERS.F sets some %q registers that SENDPACKET.F uses to form a
pemit() call to a connected bot. The botinfo command is being sent to the bot.

You’ll probably want to set your bot WIZARD first, then try running your new botinfo command within your MUX.
If everything is set up correctly, you should see a response with some info about the bot.

Moving on from here

The next step is to read over the Battlesnake protocol and start thinking big!

Battlesnake protocol

Battlesnake communicates over @pemit, using strings broken up with multi-character delimiters for various purposes.
While the protocol is crude and makes some assumptions, it is reliable enough for heavy usage.

Inbound vs Outbound commands

Battlesnake has a notion of inbound and outboud commands. Outbound commands are those performed by the bot,
sending text to the game. Inbound commands are @pemit strings asking the bot to do something, typically from your
softcode.

This document will mostly focus on inbound commands, as that is where most of the challenge is.

A high level overview of inbound command syntax

An simple inbound command @pemit syntax example:

<prefix_str><command_name><kwarg_delim><invoker_dbref>

Breaking this down by component:

<prefix_str> A randomized multi-character string that is set on the bot’s player object when it connects. If the bot
sees this at the beginning of a line of input, it knows to look command_name up in its command table.

2.4. Battlesnake protocol 7

Battlesnake Documentation, Release 0.1

<command_name> This is the command name that Battlesnake will look up in its internal command table. For
example, send_email.

<kwarg_delim> This is another randomly generated multi-character string that is used to separate bits of input to
send to the bot. Almost all data (save for the invoker’s dbref) is in key=value form, separated by this delimiter.

<invoker_dbref> This is the object on the MUX that is sending the command. The most common use for this is to
give the bot a way to reply to the invoker.

Here’s an example inbound command with no additional data:

PREFIXSTRsend_emailKWDELIM#212

<prefix_str> is PREFIXSTR, <command_name> is send_email, <kwarg_delim> is KWDELIM, and
<invoker_dbref> is #212.

Sending key/value data with inbound commands

We know how to send inbound commands now, but this isn’t too useful unless we can also send in arbitrary bits of
data. Expanding on our previous example, here’s how that works:

<prefix_str><command_name><kwarg_delim><invoker_dbref><kwarg_delim>key1=value1<kwarg_
→˓delim>key2=value2

As you can see, kwarg_delim is used to split up key/value pairs. On the Battlesnake side, we convert these into Python
dicts. Here’s how the command parser would split this up:

{'key1': 'value1', 'key2': 'value2'}

But what if we omit a value for a key?

<kwarg_delim>key1=<kwarg_delim>
{'key1': ''}

Sending lists values

Sometimes we’ll need to send lists instead of individual values:

<kwarg_delim>key=item1<list_delim>item2

We’ve introduced a new delimiter, list_delim. Much like prefix_str and kwarg_delim, this is a randomly generated
multi-character delimiter. The presence of a list delimiter in a kwarg’s value causes it to be converted to a list in
Battlesnake. Let’s say we do something like this (omitted invoker/command name/prefix for brevity):

<kwarg_delim>key=item1<list_delim>item2<list_delim>item3

Within Battlesnake, this would be interpreted as:

{'key': ['item1', 'item2', 'item3']}

You can combine regular string values and list values without issue:

<kwarg_delim>key1=value1<kwarg_delim>key2=item1<list_delim>item2<list_delim>item3

In Python land, this would be interpreted as:

8 Chapter 2. Documentation

Battlesnake Documentation, Release 0.1

{
'key1': 'value1',
'key2': ['item1', 'item2', 'item3']

}

Protocol limitations

The Battlesnake protocol only knows of two different data types: strings and lists. Your logic on the Python side will
need to know how to treat the data being passed in. If you need ints, you’ll need to cast them and potentially handle
errors.

While the delimiter characters should be random enough to avoid collisions, if your softcode were to generate values
that matched one of the delimiters, kwarg pairs could be discarded. The likelihood of this happening is incredibly low,
though, unless your data is sufficiently random and large.

Triggers

Battlesnake’s triggers work much like a traditional MU* client’s in that a key phrase sets off an action. The primary
use for triggers in Battlesnake is for data collection, though it can be used for a number of other purposes.

A Trigger consists of a regular expression that determines what to look for, and a function to run when a match is
made. The neat thing about Python regular expressions is that we can use regex groups to break the matches up into
useful pieces. For example, if a trigger has the following regex:

line_regex = re.compile(r'(?P<talker>.*) says "[Hh]ello"')

Our run method on the Trigger can address each group individually:

talkers_name = re_match.group("talker")
response = "Why hello there, {talkers_name}.".format(talkers_name=talkers_name)
mux_commands.say(protocol, response)

In the case of the previous example, anyone saying “Hello” to the bot would be greeted back:

You say "Hello"
Battlesnake says "Why hello there, Kelvin McCorvin."

Note how the original speaker’s name comes back.

Common usage cases

We’ll outline a few common usage cases for Triggers, for the sake of providing some ideas. These aren’t the only uses,
though.

Retrieving data

If you have a large amount of data to feed your bot on a regular basis, you can use triggers and Timers in conjunction
with one another to do so. Perhaps you write a softcode command that your bot executes with a timer, picking the
output up with a trigger. Or maybe your game has a task scheduling system interally which can be used to @pemit a
string matching one of your triggers in order to feed data in.

2.5. Triggers 9

Battlesnake Documentation, Release 0.1

Event monitoring

Triggers can be used to watch for certain events. Perhaps you join your bot to the MUXConnections channel and set
up a trigger to note when players log in. Or maybe you park your bot in an Observation Lounge and use triggers to
record shot stats or respond to base capture emits.

Timers

Battlesnake’s timers work much like a traditional MU* client’s in that they are used to perform an action every so
often. There are two kinds of timers:

• battlesnake.core.timers.IntervalTimer

• battlesnake.core.timers.CronTimer

Timers of the IntervalTimer type are executed on intervals measured in seconds. For example, “Do something
every 30 seconds”.

Timers of the CronTimer type execute tasks at pre-set times during the day. For example, “Do something on the
30th minute of every hour of the day”. Use these when you want to get very specific with execution times.

Common usage cases

We’ll outline a few common usage cases for Timers, for the sake of providing some ideas. These aren’t the only uses,
though.

Retrieving data

Battlesnake has to either retrieve or be fed data from your game in order to stay in sync with what is going on. Timers
are a great way to achieve that.

Some example ways to do this:

• Run the battlesnake.outbound_commands.mux_commands.think() command to retrieve spe-
cific values of interest.

• Run various softcode commands in your game whose output is picked up by Triggers within Battlesnake. This
is good for when you have a very large volume of data to retrieve (which may be a lot more involved to pick up
via think.

Economy/weather ticks

Economy and weather simulations are some of the more bulky, nasty bits of softcode in your typical BTMUX. These
are excellent candidates to move into Battlesnake. Timers are important pieces of both Economy and weather-related
things.

Stat collection

If you are tracking certain time-series data points (like # of users connected), timers are a great way to make sure you
are getting points the correct interval.

10 Chapter 2. Documentation

Battlesnake Documentation, Release 0.1

Settings

When Battlesnake is started, the path to your config file is passed in via the -c flag. Default values are pulled from
battlesnake/config/configspec.cfg. Any of the values detailed below may be overridden in your config
file.

The name in brackets in each section below is the section name in the config file.

[mux]

hostname The hostname or IP address of your game. Must be overridden in your config file.

port The port to connect to. Must be overridden in your config file.

[account]

username (default: Battlesnake) The player username to connect as.

password The player’s password. Must be overridden in your config file.

[bot]

response_watcher_expire_check_interval (default: 1.0) Sets the interval (seconds) for how often to
check for stale response watchers to purge.

enable_hudinfo (default: False) If True, generate and send a HUDINFO key. This will allow you to start using
HUDINFO commands.

extra_services (default: []) A list of Python paths to loader functions that return a Service. If you only have
one item to add to the list, make sure there is a trailing comma or you’ll get a validation error. A comma causes
our config system to convert the string to a list.

plugins (default: ‘battlesnake.plugins.example_plugin.plugin.ExamplePlugin’,’battlesnake.plugins.nat_idler.plugin.NatIdlerPlugin’)
A comma-separated list of BattlesnakePlugin sub-classes to register. Plugins can contain Triggers, Timers, and
commands.

Plugins

[nat_idler]

keepalive_interval (default: 30.0) Sets the interval (seconds) at which the bot sends an IDLE command to
the MUX. This is useful to prevent timeouts over NATs.

[unit_spawning]

unit_parent_dbref (default: #66) Your mech/unit parent’s dbref.

[ai]

ai_parent_dbref (default: #69) Your AI parent’s dbref.

2.7. Settings 11

Battlesnake Documentation, Release 0.1

12 Chapter 2. Documentation

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

13

	Learning more
	Documentation
	How it works
	Installation
	Getting started using the Bot
	Battlesnake protocol
	Triggers
	Timers
	Settings

	Indices and tables

