

Welcome to the BatchQ documentation!

	Introduction
	Dependencies and compatibility

	Installation

	Manual installation from GitHub

	Note for Windows users

	Users Guide
	Quick start
	Command line

	Python

	Using the command line tool
	Available modules

	Submitting jobs

	A few words on job hashing

	Example: Submitting ALPS jobs using nohup

	Example: Submitting ALPS jobs using LSF

	Example: Submitting multiple jobs from one submission directory

	Using Python
	Submitting jobs

	Retrieving results

	Q descriptors, Q holders and Q functions

	Example: Submitting ALPS jobs using nohup

	Example: Submitting multiple jobs from one submission directory

	Using VisTrails
	Submitting jobs

	Retrieving results

	Example: Submitting ALPS jobs using nohup

	Example: Submitting ALPS jobs using LSF

	Remote Jobs using Django
	Dependencies and preliminary notes

	Starting a local server

	Webinterface

	Kivy Terminal

For Developers

	Developer: Getting started
	Processes and Pipes
	Pipelines

	BatchQ Basics
	Example: Hello world

	Example: Hello parameter

	Example: Hello error I

	Example: Hello error II

	Example: Function Inheritance

	Example: Function Calls

	Wildcards

	Example: CreateFile

	Built-in Do-function

	Example: CreateFileAndDirectory

	Example: Short version

	Overwriting Controllers

	Example: CreateFileSSH

	Tutorial: nohup Remote Submission
	Basic functionality

	Full functionality

	Tutorial: LSF Remote Submission

	API Reference
	Core Pipeline Classes
	Process

	BasePipe

	VT100 Terminal Interpreter

	Shell Pipelines
	Bash terminal

	SSH terminal

	SFTP terminal

	FileCommander

	Math Terminals

	Batch Model

Indices and tables

	Index

	Module Index

	Search Page

Introduction

BatchQ is a set of classes written in Python which aim toward
automating all kinds of task. BatchQ was designed for interacting with
terminal application including Bash, SSH, SFTP, Maple, Mathematica,
Octave, Python and more. If for one or another reason your favorite
application is not supported BatchQ is easily extended to support more
programs.

Dependencies and compatibility

Currently BatchQ only depends on the libraries shipped with Python. It
should therefore work out of the box.

Please note that at the present moment BatchQ has only been tested with
Python 2.7 on Mac OS X 10.6 and with Python 2.6.5 on Ubuntu 10.10.

Installation

There are currently two ways of installing BatchQ. Either you use setup
tools in which case you write

easy_install batchq

Alternatively you can download the latest version from GitHub (.zip [https://github.com/troelsfr/BatchQ/zipball/master],`.tar.gz`_) and
install using setup.py

cd [location/of/source]
python setup.py install [--user | --home=~]

The --user and --home flags are optional and are intended for
users who do not have write access to the global system. More
information can be found the Python install page [http://docs.python.org/install/index.html].

To test your installation type:

q help

If a help message is displayed you are ready to go on and submit your
first job.

Manual installation from GitHub

The manual installation is intended for development purposes and for
persons who do not want to rely on the install script:

export INSTALL_DIR=~/Documents # Change if you want another install location
cd $INSTALL_DIR
git clone https://github.com/troelsfr/BatchQ.git
echo export PYTHONPATH=\$PYTHONPATH:$INSTALL_DIR/BatchQ/ >> ~/.profile
echo export PATH=\$PATH:$INSTALL_DIR/BatchQ/batchq/bin >> ~/.profile

Note that .profile may be named differently on your system,
i.e. .bashrc or .profilerc. Start a new session of bash and
write

q list

If a list of available commands is displayed, you have successfully installed BatchQ.

Note for Windows users

This version of BatchQ is not yet supported on Windows
platforms. Developers are encouraged to extend the Process
module. Unfortunately, it seems that it is not possible to create a
pure Python solution and a terminal module should be written in C/C++.

For information on the structure of the code please consult the
developers introduction.

Users Guide

In the following we will refer to a tool called nohup. This name is
missleading as we do not use the actual nohup tool for several reasons,
the most significant being that nohup some times hangs up. Instead we
start a background job in a subshell, i.e.

$ (./job_name parameters &)

This essentially have the desired effect, namely that the program does
not hang up when the shell is closed. Throughout this document we will
refer to this as nohup rather than starting a background job in a
subshell. For more information on nohup alternatives see What to do when nohup hangs up anyway [http://linuxshellaccount.blogspot.com/2007/12/what-to-do-when-nohup-hangs-up-anyway.html].

Quick start

This section is intended for getting you started quickly with BatchQ and
consequently, few or no explanations of the commands/scripts will be
given. If you would like the full explanation on how BatchQ works, skip
this section. If you choose to read the quick start read all of it no
matter whether you prefer Python over bash.

Command line

First you need to create configurations for the machines you want to
access. This is not necessary, but convenient (more details are given in
the following sections). Open bash and type

$ q configuration my_server_configuration --working_directory="Submission" --command="./script" --input_directory="." --port=22 --server="server.address.com" --global
$ q configuration your_name --username="your_default_used" --global

In the above change the server.address.com to the server address you
wish to access. Also, change the username in the second line to your
default username. Next, create a new director MyFirstSubmission and
download the script sleepy

mkdir MyFirstSubmission
cd MyFirstSubmission
wget https://raw.github.com/troelsfr/BatchQ/master/scripts/sleepy
chmod +x sleepy

The job sleepy sleeps for 100 seconds every and for every second it
echos “Hello world”. Submit it using server.address.com using the
command:

$ q [batch_system] job@my_server_configuration,your_name --command="./sleepy"

Here batch_system should be either nohup, ssh-nohup or lsf.
Check the status of the job with

$ q [batch_system] job@my_server_configuration,your_name --command="./sleepy"
Job is running.

And after 100s you get

$ q [batch_system] job@my_server_configuration,your_name --command="./sleepy"
Job has finished.
Retrieving results.

At this point new files should appear in your current directory:

$ ls
sleepy sleepy.data

In order to see the logs of the submission type

$ q [batch_system] stdout@my_server_configuration,your_name --command="./sleepy"
This is the sleepy stdout.
$ q [batch_system] stderr@my_server_configuration,your_name --command="./sleepy"
This is the sleepy stderr.
$ q [batch_system] log@my_server_configuration,your_name --command="./sleepy"
(...)

The last command will differ depending on which submission system you
use. Finally, we clean up on the server:

$ q [batch_system] delete@my_server_configuration,your_name --command="./sleepy"
True

Congratulations! You have submitted your first job using the command
line tool.

Python

Next, open an editor, enter the following Python code:

from batchq.queues import LSFBSub
from batchq.core.batch import DescriptorQ

class ServerDescriptor(DescriptorQ):
 queue = LSFBSub
 username = "default_user"
 server="server.address.com"
 port=22
 prior = "module load open_mpi goto2 python hdf5 cmake mkl\nexport PATH=$PATH:$HOME/opt/alps/bin"
 working_directory = "Submission"

desc1 = ServerDescriptor(username="tronnow",command="./sleepy 1", input_directory=".", output_directory=".")
desc2 = ServerDescriptor(desc1, command="./sleepy 2", input_directory=".", output_directory=".")

print "Handling job 1"
desc1.job()
print "Handling job 2"
desc2.job()

and save it as job_submitter.py in MyFirstSubmission. Note that
in the above code we use the second descriptor to initiate the first
descriptor in order to reuse the queue defined for desc1 in
desc2. Go back to the shell and type:

$ python job_submitter.py

	Rerun the code to get the status of the job and to pull finished jobs.

	Your second submission was done with Python.

Note

If choosing same input and output directory you will run into
problems when running this script several times as hash sum of the
input changes once the results have been pulled. This means that you may
accidently resubmit a finished job.

The above can be overcome by either separating input_directory and
output_directory, or by setting the submission id manually:

from batchq.queues import LSFBSub
from batchq.core.batch import Descriptor as DescriptorQ

class ServerDescriptor(DescriptorQ):
 queue = LSFBSub
 username = "default_user"
 server="server.address.com"
 port=22
 prior = "module load open_mpi goto2 python hdf5 cmake mkl\nexport PATH=$PATH:$HOME/opt/alps/bin"
 working_directory = "Submission"

desc1 = ServerDescriptor(username="tronnow",command="./sleepy 1", input_directory=".", output_directory=".", overwrite_submission_id="simu1")
desc2 = ServerDescriptor(desc1, command="./sleepy 2", input_directory=".", output_directory=".", overwrite_submission_id="simu2")

print "Handling job 1"
desc1.job()
print "Handling job 2"
desc2.job()

To shorten the above you may use your previously defined
configurations

from batchq.queues import LSFBSub
from batchq.core.batch import DescriptorQ, load_queue

q = load_queue(LSFBSub, "my_server_configuration,your_name")
desc1 = DescriptorQ(q, command="./sleepy 1", input_directory=".", output_directory=".", overwrite_submission_id="simu1")
desc2 = DescriptorQ(q, command="./sleepy 2", input_directory=".", output_directory=".", overwrite_submission_id="simu2")

print "Handling job 1"
desc1.job()
print "Handling job 2"
desc2.job()

We can now generalise this to arbitrarily many jobs:

from batchq.queues import LSFBSub
from batchq.core.batch import DescriptorQ, load_queue

q = load_queue(LSFBSub, "my_server_configuration,your_name")
for i in range(1,10):
 desc = DescriptorQ(q, command="./sleepy %d" %i, input_directory=".", output_directory=".", overwrite_submission_id="simu%d" %i)

 print "Handling job %d" %i
 desc.job()

If we know that the output files does not overwrite each other it is
only necessary to keep one copy of the input folder. This can be done by
specifying the subdirectory

from batchq.queues import LSFBSub
from batchq.core.batch import DescriptorQ, load_queue

q = load_queue(LSFBSub, "my_server_configuration,your_name")
for i in range(1,15):
 desc = DescriptorQ(q, command="./sleepy %d" %i, input_directory=".", output_directory=".", overwrite_submission_id="simu%d" %i, subdirectory="mysimulation")
 print "Handling job %d" %i
 desc.job()

Using the command line tool

The following section will treat usage of BatchQ from the command
line.

Available modules

The modules available to BatchQ will vary from system to system
depending on whether custom modules have been installed. Modules are
divided into four categories: functions, queues, pipelines and
templates.
The general syntax of the Q command is:

$ q [function/queue/template] [arguments]

The following functions are available through the console interface and
using Python and are standard modules included in BatchQ which provides
information about other modules

Submitting jobs

The BatchQ command line interface provides you with two predefined
submission modules: nohup and lsf. nohup is available on every

To submit a job type:

$ cd /path/to/input/directory
$ q lsf submit -i --username=user --working_directory="Submission" --command="./script" --input_directory="." --port=22 --server="server.address.com"

The above command will attempt to log on to server.address.com using
the username user through port 22. It then creates a working
directory called Submission in the entrance folder (usually your
home directory on the server) and transfer all the files from your
input_directory to this folder. The command is then submitted to
lsf and the SSH connection is terminated.

Once you have automated the submission process you want to store the
configuration parameters in a file in order to shorten the commands need
to operate on your submissions. Using the example from before, this can
be done as

$ q configuration brutus -i --username=user --working_directory="Submission" --command="./script" --input_directory="." --port=22 --server="server.address.com"

The above code creates a configuration named “brutus” which contains the instructions for submitting your job on “server.address.com”.
Having created a configuration file you can now submit jobs and check status with

$ q lsf submit@brutus
True
$ q lsf pid@brutus
12452

This keeps things short and simple. You will need to create a
configuration file for each server you want to submit your job. If for
one or another reason you temporarily want to change parameters of your
configuration, say the working_directory, this can be done by adding
a long parameter:

$ q lsf submit@brutus --working_directory="Submission2"
True

You can configure Batch Q command line tool with several input configurations

Checking the status of a job, retrieving results and deleting the
working directory of a simulation is now equally simple

$ q lsf status@brutus
DONE

$ q lsf recv@brutus
True

$ q lsf delete@brutus
True

The retrieve command will only retrieves files that does not exist, or
differs from those in the input directory.

Finally, the Q system implements a fully automated job submission
meaning that the system will try to determine the state of you job and
take action accordingly. For fast job submission and status checking
write:

$ q lsf job@brutus,config
Uploading input directory.
Submitted job on brutus.ethz.ch

$ q lsf job@brutus,config
Job pending on brutus.ethz.ch

$ q lsf job@brutus,config
Job running on brutus.ethz.ch

$ q lsf job@brutus,config
Job finished on brutus.ethz.ch
Retrieving results.

Do you want to remove the directory 'Submission2' on brutus.ethz.ch (Y/N)? Y
Deleted Submission2 on brutus.ethz.ch

You can equally submit the job on your local machine using nohup instead
of lsf.

A few words on job hashing

When submitting a job Batch Q generates a hash for your job. The hash
includes following:

	An MD5/SHA sum of the input directory

	The name of the server to which the job is submitted

	The submitted command (including parameters)

It is not recommended, nevertheless possible, to overwrite the hash
key. This can be done by adding a
--overwrite_submission_id="your_custom_id". This can be useful in
some cases. For instance you might want to work on your source code
during development. This would consequently changed the MD5 of your
input directory and Batch Q would be incapable of recognising your job
submission. Batch Q is shipped with a configuration for debugging which
can be invoked by

$ q lsf submit@brutus,debug

The debug configuration is only suitable for debug as the submission id
is debug.

Another scenario where you may want to change the hashing routine is the
case where you store your output data in your input
directory. Submitting several jobs and pulling results will over time
change the hash of the input directory. To overcome this issue add
eio (short for equal input/output directory) to your configuration

$ q lsf submit@brutus,eio

The eio flag will overwrite your output_directory with the value
of your input_directory and change the hashing routine to only
include the command and server name.

Example: Submitting ALPS jobs using nohup

Example: Submitting ALPS jobs using LSF

Example: Submitting multiple jobs from one submission directory

In some cases one may not want to copy the same directory several times
to the server as this may take up vast amounts of space. If the
simulation output only depends the command line parameters (as is the
case for ALPS spinmc) one can use the eio configuration to
submit several commands reusing the same submission directory

$ q lsf job@brutus,eio --working_directory="Submission" --command="spinmc TODO1"
$ q lsf job@brutus,eio --working_directory="Submission" --command="spinmc TODO2"
$ q lsf job@brutus,eio --working_directory="Submission" --command="spinmc TODO3"

Using Python

Submitting jobs

Retrieving results

Q descriptors, Q holders and Q functions

Batch Q user API is based on three main classes Q descriptors, Q holders (queues)
and Q functions. Usually Q functions are members of instances of Q
holder classes while Q descriptors are reference objects used to ensure
that you do not open more SSH connections than necessary. Descriptors
link a set of input configuration parameters to a given queue. An
example could be:

class ServerDescriptor(DescriptorQ):
 queue = LSFBSub
 username = "user"
 server="server.address.com"
 port=22
 options = ""
 prior = "module load open_mpi goto2 python hdf5 cmake mkl\nexport PATH=$PATH:$HOME/opt/alps/bin"
 post = ""
 working_directory = "Submission"

The descriptor ServerDescriptor implements all Q functions and
properties defined in the class LSFBSub. However, the descriptor
ensures that the all queue parameters are set accordingly to those given
by the descriptor definition before executing a command on the
queue. Therefore, if you have two descriptor instances that shares a queue

queue = LSFBSub()
desc1 = DescriptorQ(queue)
desc1.update_configuration(working_directory = "Submission1")
desc2 = DescriptorQ(queue)
desc2.update_configuration(working_directory = "Submission2")

you are ensured that your are working in the correct directory by using
the descriptor instead of the queue directly.
Notice that in order to update the queue properties using the descriptor
one needs to use update_configuration rather than
descriptor.property (i.e. desc2.working_directory in the above
example). The reason for this is that any method or property of a
descriptor object is an “reference” to queue methods and properties. The
only methods that are not redirected are the implemented descriptor
methods:

desc1 = ServerDescriptor()
desc2 = ServerDescriptor(desc2)
desc2.update_configuration(working_directory = "Submission2")

In general, when copying descriptors, make sure to do a shallow copy as
you do not want to make a deep copy of the queue object.

Example: Submitting ALPS jobs using nohup

The BatchQ package comes with a preprogrammed package for ALPS. This
enables easy and fast scripting for submitting background jobs on local
and remote machines. Our starting points is the Spin MC example from the
ALPS documentation:

import pyalps
import matplotlib.pyplot as plt
import pyalps.plot
import sys

print "Starting"

parms = []
for t in [1.5,2,2.5]:
 parms.append(
 {
 'LATTICE' : "square lattice",
 'T' : t,
 'J' : 1 ,
 'THERMALIZATION' : 1000,
 'SWEEPS' : 100000,
 'UPDATE' : "cluster",
 'MODEL' : "Ising",
 'L' : 8
 }
)

input_file = pyalps.writeInputFiles('parm1',parms)
desc = pyalps.runApplication('spinmc',input_file,Tmin=5,writexml=True)

result_files = pyalps.getResultFiles(prefix='parm1')
print result_files
print pyalps.loadObservableList(result_files)
data = pyalps.loadMeasurements(result_files,['|Magnetization|','Magnetization^2'])
print data
plotdata = pyalps.collectXY(data,'T','|Magnetization|')
plt.figure()
pyalps.plot.plot(plotdata)
plt.xlim(0,3)
plt.ylim(0,1)
plt.title('Ising model')
plt.show()
print pyalps.plot.convertToText(plotdata)
print pyalps.plot.makeGracePlot(plotdata)
print pyalps.plot.makeGnuplotPlot(plotdata)
binder = pyalps.DataSet()
binder.props = pyalps.dict_intersect([d[0].props for d in data])
binder.x = [d[0].props['T'] for d in data]
binder.y = [d[1].y[0]/(d[0].y[0]*d[0].y[0]) for d in data]
print binder
plt.figure()
pyalps.plot.plot(binder)
plt.xlabel('T')
plt.ylabel('Binder cumulant')
plt.show()

Introducing a few small changes the script now runs using BatchQ for
submission:

from batchq.contrib.alps import runApplicationBackground, LSFBSub, DescriptorQ
import pyalps
import matplotlib.pyplot as plt
import pyalps.plot
import sys

parms = []
for t in [1.5,2,2.5]:
 parms.append(
 {
 'LATTICE' : "square lattice",
 'T' : t,
 'J' : 1 ,
 'THERMALIZATION' : 1000,
 'SWEEPS' : 100000,
 'UPDATE' : "cluster",
 'MODEL' : "Ising",
 'L' : 8
 }
)

input_file = pyalps.writeInputFiles('parm1',parms)

class Brutus(DescriptorQ):
 queue = LSFBSub
 username = "tronnow"
 server="brutus.ethz.ch"
 port=22
 options = ""
 prior = "module load open_mpi goto2 python hdf5 cmake mkl\nexport PATH=$PATH:$HOME/opt/alps/bin"
 post = ""
 working_directory = "Submission"

desc = runApplicationBackground('spinmc',input_file,Tmin=5,writexml=True, descriptor = Brutus(), force_resubmit = False)

if not desc.finished():
 print "Your simulations has not yet ended, please run this command again later."
else:
 if desc.failed():
 print "Your submission has failed"
 sys.exit(-1)
 result_files = pyalps.getResultFiles(prefix='parm1')
 print result_files
 print pyalps.loadObservableList(result_files)
 data = pyalps.loadMeasurements(result_files,['|Magnetization|','Magnetization^2'])
 print data
 plotdata = pyalps.collectXY(data,'T','|Magnetization|')
 plt.figure()
 pyalps.plot.plot(plotdata)
 plt.xlim(0,3)
 plt.ylim(0,1)
 plt.title('Ising model')
 plt.show()
 print pyalps.plot.convertToText(plotdata)
 print pyalps.plot.makeGracePlot(plotdata)
 print pyalps.plot.makeGnuplotPlot(plotdata)
 binder = pyalps.DataSet()
 binder.props = pyalps.dict_intersect([d[0].props for d in data])
 binder.x = [d[0].props['T'] for d in data]
 binder.y = [d[1].y[0]/(d[0].y[0]*d[0].y[0]) for d in data]
 print binder
 plt.figure()
 pyalps.plot.plot(binder)
 plt.xlabel('T')
 plt.ylabel('Binder cumulant')
 plt.show()

Executing this code submit the program as a background process on the
local machine. It can easily be extended to supporting SSH and LFS by
changing the queue object:

TODO: Give example

Example: Submitting multiple jobs from one submission directory

Using VisTrails

Submitting jobs

Retrieving results

Example: Submitting ALPS jobs using nohup

Example: Submitting ALPS jobs using LSF

Remote Jobs using Django

The following briefly explains how to put up a local Django webinterface
and how to synchronise it with jobs submitted to a server. No particular
knowledge of Django is required, except if you wish to setup a permanent
web server for keeping track of jobs states.

Dependencies and preliminary notes

The web interface depends on Django 1.3 (or newer) which can be
obtained using easy_install as follows

easy_install django

The web interface can be located in any directory. We will in the following
assume that it is located in ~/remoteweb/.

Starting a local server

Open bash and execute following commands:

cd ~/remoteweb/
python manage.py syncdb
python manage.py runserver

This will start the local web server which can be accessed
on the address http://localhost:8000/. In order to synchronise the jobs
from a given server simply type

python mange.py update_database [appName [server[:port]]]

where [appName] is ‘remoteJobs-vistrails’ if you are using VisTrails with
the standard settings and [server] is the name of the server. If no
server is supplied the script will assume that you wish to work on the
local machine. If a server name is supplied the script will prompt for
username and password. After entering these the database is updated with
the jobs which has previously been submitted to the server.

Webinterface

In order to access the web interface go to http://localhost:8000/ in
your favorite browser. A list of should now appear

which has been optimised for running on mobile units. From the
webinterface you can see the status of your jobs, cancel or
resubmit them. The changes take effect whenever

python mange.py update_database [appName [server[:port]]]

has been executed.

Kivy Terminal

Developer: Getting started

The following section is meant as an instructive example of how BatchQ
can be used to automate simple tasks such as logging on to a server and
creating a configuration file. This first section is somewhat basic
stuff, but important, nevertheless, since BatchQ is designed to be
different from your normal Python programs in its structure. All the key
classes are shortly described here.

Imagine that you want to open Bash, go to Documents in your home folder
and create a text file. With Bash commands for this would be

cd ~/Documents
echo Hello world > hello.txt

In this tutorial we will automate this task. If you are eager to use
BatchQ and do not really care about the
underlying functionality you probably should skip right away to one of
the examples of job automation:

	Example: CreateFile

	Example: CreateFileAndDirectory

	Example: CreateFileSSH

However, it is strongly recommended that you go through all the examples
to get a basic understanding of the structure of BacthQ, how it works
and what you can do with it.

Processes and Pipes

While it is not necessary to understand the concepts of Processes and
Pipes in order to use BatchQ, it surely is useful in order to get a
picture of the whole structure of this package.
If you are familiar with Pexpect <http://www.noah.org/wiki/pexpect>
you are already familiar with some of the key concepts of BatchQ. BatchQ
provides a classes which have some similarities with Pexpect, yet
differs in a number of ways, the most significant being that BatchQ
communication with the terminal and expect functionality has been
seperated into two classes: Process and BasePipe. The Process class
provides methods for communicating directly with a process with no
intepretation of the output, whereas BasePipe implements output
interpretation and expect functionality.

Unlike Pexpect, Process does not apply which on the command passed as
the constructor argument and this command must be applied manually. In
the following example we open a instance of Bash writes “echo Hello
world” and read the output:

from batchq.core.process import Process
from batchq.core.utils import which

print "Starting bash found at", which("bash")
x = Process(which("bash"))

Waits until we have the prompt
while x.getchar() != "$": pass

Sends a command to the terminal
x.write("echo Hello world\n")

And read the response
print ""
print "The response is:"
print x.read()
print ""
print "The full buffer is:"
print x.buffer
x.kill()

This code produces following output

Starting bash found at /bin/bash

The response is:
 echo Hello world
Hello world
bash-3.2$

The full buffer is:

 Tutorial: nohup Remote Submission

Tutorial: nohup Remote Submission

In this tutorial we are going to write a submission module using
nohup. Actually, we will not use nohup itself as this is a rather
unstable application, but instead we will use the bash equivalent
([command]) as this is a much more stable method.

Basic functionality

By now we have already written the first many small classes using
BatchQ and therefore, the only thing we really need to know is which
parameters the class should depend on and which methods we should
implement.

A nohup module should take a command as input
parameter as well as a working directory. It should implement the
methods startjob, isrunning and clean. Subsequently, these function
would need a function that enters the working directory and a function
that checks whether a process is running. The implementation is straight
forward:

from batchq.core.library import Library
from batchq.core import batch
from batchq.pipelines.shell.bash import BashTerminal
from batchq.shortcuts.shell import home_create_dir, send_command

class NoHUPStart(batch.BatchQ):
 _r = batch.WildCard(reverse = True)
 _ = batch.WildCard()

 input_directory = batch.Property()
 working_directory = batch.Property()
 command = batch.Property()

 terminal = batch.Controller(BashTerminal)

 workdir = batch.Function() \
 .home().chdir(_).exists(working_directory) \
 .don(1).mkdir(working_directory).chdir(working_directory)

 _set_copy_dirs = batch.Function(workdir, verbose=False) \
 .pjoin(input_directory, "/*").pjoin(working_directory, "/").cp(_r, _r) \

 transfer_infiles = batch.Function(_set_copy_dirs , verbose=False)
 .cp(_r, _r).don(1).throw("Failed to transfer files.")

 transfer_outfiles = batch.Function(_set_copy_dirs, verbose=False) \
 .cp(_, _).don(1).throw("Failed to transfer files.")

 startjob = batch.Function(workdir) \
 .join("(", command, " > .bacthq.output & echo $! > .batchq.pid)").send_command(_)

 transfer_startjob = batch.Function(transfer_infiles) \
 .call(startjob)

 getpid = batch.Function(workdir) \
 .cat(".batchq.pid")

 isrunning = batch.Function(get_pid) \
 .isrunning(_)

 wasstarted = batch.Function(workdir) \
 .exists(".batchq.output")

 log = batch.Function(wasstarted) \
 .do(1).cat(".batchq.output")

 clean = batch.Function(wasstarted) \
 .do(1).rm(".batchq.*", force = True)

Library.queues.register("nohup",NoHUPStart)
if __name__=="__main__":
 dir1 = raw_input("Enter a input directory: ")
 dir2 = raw_input("Enter a output directory: ")
 cmd = raw_input("Enter a command: ")
 x = NoHUPStart(dir1, dir2, cmd)

 while True:
 x.interact()
print "1) Transfer input files"
print "2) Submit job"
print "3) Transfer input and submit job"

print "4) Check if it was started"
print "5) Check if it is running"
print "6) Transfer output files"
print "7) Show log"
print "8) Clean up"

print "Q) Quit"
print ""
choice = raw_input("# :")

Full functionality

 Tutorial: LSF Remote Submission

Tutorial: LSF Remote Submission

 API Reference

API Reference

	Core Pipeline Classes
	Process

	BasePipe

	VT100 Terminal Interpreter

	Shell Pipelines
	Bash terminal

	SSH terminal

	SFTP terminal

	FileCommander

	Math Terminals

	Batch Model

 Core Pipeline Classes

Core Pipeline Classes

Process

BasePipe

VT100 Terminal Interpreter

 Shell Pipelines

Shell Pipelines

BatchQ comes with a number of predefined pipelines. Included in these
are three shells, BashTerminal, SSHTerminal and
SFTPTerminal, and one shell based class FileCommander.

Bash terminal

SSH terminal

SFTP terminal

FileCommander

 Math Terminals

Math Terminals

 Batch Model

Batch Model

 Index

Index

 Remote Jobs using VisTrails

Remote Jobs using VisTrails

 Remote Jobs using Django

Remote Jobs using Django

The following briefly explains how to put up a local Django webinterface
and how to synchronise it with jobs submitted to a server. No particular
knowledge of Django is required, except if you wish to setup a permanent
web server for keeping track of jobs states.

Dependencies and preliminary notes

The web interface depends on Django 1.3 (or newer) which can be
obtained using easy_install as follows

easy_install django

The web interface can be located in any directory. We will in the following
assume that it is located in ~/remoteweb/.

Starting a local server

Open bash and execute following commands:

cd ~/remoteweb/
python manage.py syncdb
python manage.py runserver

This will start the local web server which can be accessed
on the address http://localhost:8000/. In order to synchronise the jobs
from a given server simply type

python mange.py update_database [appName [server[:port]]]

where [appName] is ‘remoteJobs-vistrails’ if you are using VisTrails with
the standard settings and [server] is the name of the server. If no
server is supplied the script will assume that you wish to work on the
local machine. If a server name is supplied the script will prompt for
username and password. After entering these the database is updated with
the jobs which has previously been submitted to the server.

Webinterface

In order to access the web interface go to http://localhost:8000/ in
your favorite browser. A list of should now appear

which has been optimised for running on mobile units. From the
webinterface you can see the status of your jobs, cancel or
resubmit them. The changes take effect whenever

python mange.py update_database [appName [server[:port]]]

has been executed.

Remote Jobs with custom database

We will in the following assume that you have a access to a database
with predefined tables and columns. In this part of the document we will
describe how to poll the information from the server and add it to a
database.

Pulling settings entries

Pulling the submitted jobs from a server is done using the
RemoteJobSubmitter module.

from remotejobs import RemoteJobSubmitter
import getpass

class Database:
 """
 This object will represent our database.
 """
 def get_record(primary_key):
 """
 This methods returns a record as a dictionary
 if it is found in the database and None else.
 """
 pass

 def update(primary_key, record_dict):
 """
 This method updates the record with the primary key as
 primary_key by setting key = 'val' for key, val in record_dict.
 """
 pass

 def insert(primary_key, record_dict):
 """
 This method inserts a record with the primary key as
 primary_key by setting key = 'val' for key, val in record_dict.
 """
 pass

server = None
port = 22
username = getpass.getuser()
password = getpass.getpass()

We will update to columns in the database: "last_updated" and "id".
The following dictionary will be used to map the settings entries
into the database column names.
mapping = {'updated': 'last_updated', 'jobid': 'id'}

job_submitter = RemoteJobSubmitter(appName, server, username, password)
jobs = job_submitter.settings.list_keys()
db = Database()

for jobid in jobs:
 hash, n = jobid.rsplit("_",1)
 try:
 n = int(n)
 except: # In case the directory contains non-valid settings files
 continue

 # Remark it is important to put clean (third argument) to False here
 # If this is not set to False any finished job will be deleted.
 record = job_submitter.check_state(hash, n, False)

 setting_entries = filter(lambda x: x in mapping, [key for key in records])
 cols = [mapping[key] for key in setting_entries]
 vals = [record[key] for key in setting_entries]
 record_dict = zip(cols, vals)

 if db.get_record(jobid) is None:
 db.insert(jobid, record_dict)
 else:
 db.update(jobid, record_dict)

This code serves as an example and is not recommended to deploy for
pulling the jobs without further optimisations.
The above example will run slowly due to two
reasons:

1. There is made no check whether the database record is up-to-date
meaning that we update records that are all up-to-date every time we
check the status of the jobs.

2. As more an more jobs gets submitted to the server the list of key
entries becomes very large. It can therefore be beneficial to clean the
settings module for any keys that has been marked as cleaned. In order
to so add the following to your

TODO

cron script.

Be aware that the last optimisation will cause problems if several
databases are updated as a finished job may be deleted before it is pull
into all databases.

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Welcome to the BatchQ documentation!

 		Introduction

 		Dependencies and compatibility

 		Installation

 		Manual installation from GitHub

 		Note for Windows users

 		Users Guide

 		Quick start

 		Command line

 		Python

 		Using the command line tool

 		Available modules

 		Submitting jobs

 		A few words on job hashing

 		Example: Submitting ALPS jobs using nohup

 		Example: Submitting ALPS jobs using LSF

 		Example: Submitting multiple jobs from one submission directory

 		Using Python

 		Submitting jobs

 		Retrieving results

 		Q descriptors, Q holders and Q functions

 		Example: Submitting ALPS jobs using nohup

 		Example: Submitting multiple jobs from one submission directory

 		Using VisTrails

 		Submitting jobs

 		Retrieving results

 		Example: Submitting ALPS jobs using nohup

 		Example: Submitting ALPS jobs using LSF

 		Remote Jobs using Django

 		Dependencies and preliminary notes

 		Starting a local server

 		Webinterface

 		Kivy Terminal

 		Developer: Getting started

 		Processes and Pipes

 		Pipelines

 		BatchQ Basics

 		Example: Hello world

 		Example: Hello parameter

 		Example: Hello error I

 		Example: Hello error II

 		Example: Function Inheritance

 		Example: Function Calls

 		Wildcards

 		Example: CreateFile

 		Built-in Do-function

 		Example: CreateFileAndDirectory

 		Example: Short version

 		Overwriting Controllers

 		Example: CreateFileSSH

 		Tutorial: nohup Remote Submission

 		Basic functionality

 		Full functionality

 		Tutorial: LSF Remote Submission

 		API Reference

 		Core Pipeline Classes

 		Process

 		BasePipe

 		VT100 Terminal Interpreter

 		Shell Pipelines

 		Bash terminal

 		SSH terminal

 		SFTP terminal

 		FileCommander

