
Bast
Release 1.0

Apr 23, 2019

Contents

1 About Bast 3

2 Usage 5

3 Update 7

4 Documentation 9
4.1 Introduction . 9
4.2 Installation . 9
4.3 Controllers . 10
4.4 Routing . 11
4.5 Templating . 12
4.6 Models . 13
4.7 Migrations . 13

5 Maintainer 15

6 Contributors 17

7 License 19

8 Credits 21

i

ii

Bast, Release 1.0

Contents 1

https://coveralls.io/github/moluwole/Bast?branch=master

Bast, Release 1.0

2 Contents

CHAPTER 1

About Bast

Bast is a Simple and Elegant Framework. The main aim of Bast is to create an enjoyable and creative Experience for
Developers. Bast attempts to take the pain out of development by making common tasks used in the majority of web
projects easy. Bast is aimed to be platform Independent and it’s core Language is Python. Uses Python 3.*

3

Bast, Release 1.0

4 Chapter 1. About Bast

CHAPTER 2

Usage

To install Bast, you can download it easily from Pypi using

$ pip install Bast

Bast comes bundled with a very powerful CLI tool called panther. To show the available commands, use

$ panther --help

To create a setup a new project, use

$ panther new project_name
$ cd project
$ panther run

To visit the website and see if it’s setup successfully, visit 127.0.0.1:2000 in your browser

5

Bast, Release 1.0

6 Chapter 2. Usage

CHAPTER 3

Update

Bast Routing is now relatively simple and much more easy to use. It embodies the way and manner Laravel defines
it’s URL’s but instead of the @ symbol, Bast makes use of the . You do not need to import your controller again

from bast import Route

route = Route()
route.get(url='/', controller='ExampleController.index')

Bast Controllers are Python Classes which inherit from the Bast Controller Class. Using panther
create:controller ControllerName creates a controller file in the controller package. To render tem-
plate in controller, use self.view('template.html', args=None) where the args is a Dictionary object
and optional

from bast import Controller

class TestController(Controller):
def index(self):

self.view('index.html')

To run your app use

$ panther run

7

Bast, Release 1.0

8 Chapter 3. Update

CHAPTER 4

Documentation

4.1 Introduction

Bast is a Simple and Elegant Framework. The main aim of Bast is to create an enjoyable and creative Experience for
Developers. Bast attempts to take the pain out of development by making common tasks used in the majority of web
projects easy. Bast is aimed to be platform Independent and it’s core Language is Python. Uses Python 3.*

Bast is heavily based on the Tornado Web Framework as it makes use of the Tornado HTTP Server so most of the
methods from Tornado are overriden in Bast. They all perform the same function more or less. Taking the complete
advantage of Tornado’s asynchronous and non blocking network IO, Bast has eliminated most of the complexities
inherent in Tornado making it so much more easier and simpler to make use of

Orator ORM is used to handle the Object Relational Mapping aspect of Bast. Visit Orator ORM’s website for it’s full
documentation

Jinja Templating is used to handle the View Aspect of the Framework

4.2 Installation

To install the framework, it is highly recommended you make use of the available Python Package on Pypi

$ pip3 install bast

This installs the latest version of Bast from Pypi. If you would prefer to make use of setup tools, you can clone the
source from the Github Repository then using setuptools, you can install it

$ python setup.py build
$ python setup.py install

NOTE: It is advisable to create a virtual environment for the installation of Bast Framework in order to avoid conflict
among installed packages

Once Bast has been installed, you now have access to the panther CLI tool. To make a new project,

9

https://tornadoweb.org
https://orator-orm.com
https://orator-orm.com
https://jinja.pocoo.org/docs/2.10
https://github.com/moluwole/Bast

Bast, Release 1.0

$ panther new my_project

This scaffolds the boilerplate code from Github which has the base folders and files. To run the project

Visit localhost:2000 to view whether it has been installed successfully

4.3 Controllers

Controllers in Bast handle the logic of our app as stated in the MVC paradigm M - Model | V - View | C -
Controller. To create controllers in Bast

$ panther create:controller MyController

This creates a MyController.py file in the controller directory. The skeleton for the MyController file is

from bast import Controller

class MyController(Controller):
pass

You can then create any method and use the methods inherent in the controller class

4.3.1 Controller Methods and Functions

class bast.controller.Controller(application, request, **kwargs)

Controller.write_error(status_code, **kwargs)
Handle Exceptions from the server. Formats the HTML into readable form

Controller.view(template_name, kwargs=None)
Used to render template to view

from bast import Controller

class MyController(Controller):
def index(self):

self.view('index.html')

Controller.only(arguments)
returns the key, value pair of the arguments passed as a dict object

from bast import Controller

class MyController(Controller):
def index(self):

data = self.only(['username'])

Returns only the argument username and assigns it to the data variable.

Controller.except_(arguments)
returns the arguments passed to the route except that set by user

10 Chapter 4. Documentation

Bast, Release 1.0

from bast import Controller

class MyController(Controller):
def index(self):

data = self.except_(['arg_name'])

Returns a dictionary of all arguments except for that provided by as arg_name

Controller.json(data)
Encodes the dictionary being passed to JSON and sets the Header to application/json

Controller.get(**kwargs)

Controller.post(**kwargs)

Controller.put(**kwargs)

Controller.delete(**kwargs)

Controller.get_argument(name, default=None, strip=True)
Returns the value of the argument with the given name.

If default is not provided, returns None

If the argument appears in the url more than once, we return the last value.

The returned value is always unicode

Controller.get_arguments(name, strip=True)
Returns a list of the arguments with the given name.

If the argument is not present, returns an empty list.

The returned values are always unicode.

Controller.headers()
Returns all headers associated with the request

Controller.header(param)
Returns the header specified by the key provided

4.4 Routing

Routing in Bast is very simple and efficient. It follows the routing convention of Laravel and Adonis. A simple
example is shown below

from bast import Route

route = Route()
route.get('/', 'ExampleController.index')

Bast Routes support GET, POST, PUT and DELETE requests.

4.4.1 Routing Methods

class bast.route.Route
Route Class. Appends the URL, Controller Instance and Method to a list instance to be passed on to the server
instance

4.4. Routing 11

Bast, Release 1.0

Route.get(url, controller)
Gets the Controller and adds the route, controller and method to the url list for GET request

Route.post(url, controller)
Gets the Controller and adds the route, controller and method to the url list for the POST request

Route.put(url, controller)
Gets the Controller and adds the route, controller and method to the url list for PUT request

Route.delete(url, controller)
Gets the Controller and adds the route, controller and method to the url list for the DELETE request

Route.middleware(args)
Appends a Middleware to the route which is to be executed before the route runs

Route.__return_controller__(controller)

Route.all()
Returns the list of URL. Used by Server to get the list of URLS. This is passed to the Bast HTTP Server

4.5 Templating

Bast makes use of Jinja as it’s template engine. To render view from Controller use self.view('template.
html') to render the view.

The view function takes in the template name as an argument and an optional parameter args which is of type
dict. This is used to pass data from the controller to the view

To access the data passed as args, use the key in the template to reference it. In controller, we pass { 'foo':
'bar'} to the view together with the template. To access it in the template, we use the key to access it {{ foo }}

All HTML files goes in public/templates directory as the server loads the templates directly from there.

To create view, you can use the panther CLI tool to create the view

$ panther create:view mytemplate

This creates a mytemplate.html in the public/templates folder.

Another option is to directly create the mytemplate.html in the public/templates folder

4.5.1 Static Files

Static Files are to be stored in the public/static folders. Cascading Style Sheet (CSS) files are to be stored in
public/static/css folder, Javascript/JS files are to be in the public/static/js folder and Images are to
be in the public/static/images folder.

Bast has built in functions to access files in each of the folders and renders it to the view with it’s appropriate HTML
code.

To render scripts , {{ script('myscript.js') }} which in view would translate to <script
type="text/javascript" src="/script/myscript.js"></script>

To render CSS {{ css('mystyle.css') }} which in view would translate to <link rel="stylesheet"
href="/css/mystyle.css">

To render images {{ image('myimage.png', 'alt_name') }} which in view would translate to . P.S.: The ‘‘alt_name‘‘ is optional

For further options on how to use Jinja Templates, visit the Jinja Documentation

12 Chapter 4. Documentation

https://jinja.pocoo.org/docs/2.10
https://jinja.pocoo.org/docs/2.10

Bast, Release 1.0

4.6 Models

The power of Models are harnessed by Bast using Orator. To create Models, the panther CLI tool is used

$ panther create:model User

The above code creates a model and migration file for the model.

Model File
from bast import Models

class User(Models):
__table__ = 'user'

You can change the table the Model maps to by changing the __table__ variable to the table name

To create only a model file without a migration file, use

$ panther create:model User --migration=False

The above command creates a model file without a migration file

Bast makes use of Orator. Check out the docs at Orator ORM for more ways on how to use the Orator ORM

4.7 Migrations

Bast Migrations are relatively easy to create and run. To use the migration command, the panther commandline
tool is used to run the migrations. When you create models, migration files are generated automatically with it unless
you don’t want it.

To create Migration file, use

$ panther create:migration Test

This creates a 2018_08_01_154353_test.py inside database/migrations folder.

To run migrations,

$ panther migration:run

This runs every migration file present in the database/migrations folder

To rollback the last migration

$ panther migration:rollback

To rollback/reset all migration

$ panther migration:reset

4.6. Models 13

https://orator-orm.com/docs/0.9/orm.html

Bast, Release 1.0

14 Chapter 4. Documentation

CHAPTER 5

Maintainer

$ Majiyagbe Oluwole

15

Bast, Release 1.0

16 Chapter 5. Maintainer

CHAPTER 6

Contributors

$ Majiyagbe Oluwole
$ Azeez Abiodun Solomon

17

Bast, Release 1.0

18 Chapter 6. Contributors

CHAPTER 7

License

This Framework is Licensed under MIT License

19

Bast, Release 1.0

20 Chapter 7. License

CHAPTER 8

Credits

Bast runs on the Tornado HTTP Server.

For templating, Bast makes use of the Jinja Templating Engine.

Eloquent Object Relation Mapping is achieved using Orator ORM

21

https://tornadoweb.org
https://jinja.pocoo.org/docs/2.10
https://orator-orm.com

Bast, Release 1.0

22 Chapter 8. Credits

Index

Symbols
__return_controller__() (bast.route.Route

method), 12

A
all() (bast.route.Route method), 12

C
Controller (class in bast.controller), 10

D
delete() (bast.controller.Controller method), 11
delete() (bast.route.Route method), 12

E
except_() (bast.controller.Controller method), 10

G
get() (bast.controller.Controller method), 11
get() (bast.route.Route method), 11
get_argument() (bast.controller.Controller method),

11
get_arguments() (bast.controller.Controller

method), 11

H
header() (bast.controller.Controller method), 11
headers() (bast.controller.Controller method), 11

J
json() (bast.controller.Controller method), 11

M
middleware() (bast.route.Route method), 12

O
only() (bast.controller.Controller method), 10

P
post() (bast.controller.Controller method), 11
post() (bast.route.Route method), 12
put() (bast.controller.Controller method), 11
put() (bast.route.Route method), 12

R
Route (class in bast.route), 11

V
view() (bast.controller.Controller method), 10

W
write_error() (bast.controller.Controller method),

10

23

	About Bast
	Usage
	Update
	Documentation
	Introduction
	Installation
	Controllers
	Routing
	Templating
	Models
	Migrations

	Maintainer
	Contributors
	License
	Credits

