

Welcome to the Environmental Scientist’s Introduction to Python Course

This course is is an open source training course to give environmental scientists the foundation they need to begin learning and using
the scientific tools that have been developed for python. The course focuses on simplifying python language into two
buckets: the must haves and the nice to haves. The course is far from comprehensive, but we believe that it’s
better for people to get cracking, and fill in the gaps as they develop their skills.

Expected course duration: 1-2 days

Must Have Python Basics

	What is Python
	A brief history of python

	Python versions

	Interactive python, running scripts and IDEs

	Philosophy of coding, The Zen of Python, and pep8

	Building Python on Your computer
	Installing python and packages

	Using python environments

	Our recommended python installation for this course

	Our recommended python installation for further work

	Build your own python environment file for environmental scientists

	Setting up and managing virtual environments with conda

	Basic Python Objects, Variables, and Operators
	Variables

	Numbers: Integers and Floats

	Boolean

	Strings

	The print function

	The Python None

	The List
	What’s a list

	length, indexing, and slicing

	list specific operations and functions

	The tuple

	Dictionaries
	What’s in a dictionary

	Important dictionary functions

	Strings, the good, the bad, and the ugly
	String indexing

	String operators & functions

	Formatted output

	Conditional Statements

	Loops in Python
	For loops in python

	Useful builtins for for loops

	While loops in Python

	Functions in Python
	What is a function?

	Understanding function documentation

	Creating your own function in python

	using *args and **kwargs

	Using Packages in python
	External packages

	Importing from your own python scripts

	Adding a folder to the PYTHONPATH

Practice Exercises

We have developed a set of practice exercises to give you a taste of doing your own scripting.
These exercises are facillitated through Github Classroom, so we recommend that you wait until you have finished
the lesson on version control before you begin to explore the exercises. If you want to get on to the exercises, this link [https://classroom.github.com/a/CgnR3BXt] will create a new repository with a copy of the exercises for you to begin working.

	exercise

	prerequisites / associated lessons

	exercise 1

	
	What is Python

	Building Python on Your computer

	Basic Python Objects, Variables, and Operators

	The List

	Dictionaries

	exercise 2

	
	Conditional Statements

	Loops in Python

	exercise 3

	
	Functions in Python

Handy Builtin modules

There are a number of handy builtin modules in python. Rather than trying to cover them all in detail here, below is a
a table of the most useful tools, what they do, and a link to some good learning materials:

	Module with link

	General description

	time [https://pymotw.com/3/time/index.html]

	Functions for manipulating clock time

	math [https://pymotw.com/3/math/index.html]

	Provides functions for specialized mathematical operations.

	datetime [https://pymotw.com/3/datetime/index.html]

	The datetime module includes functions and classes for doing date and time parsing, formatting, and arithmetic.

	itertools [https://pymotw.com/3/itertools/index.html]

	The itertools module includes a set of functions for working with sequence data sets.

	glob [https://pymotw.com/3/glob/index.html]

	Use Unix shell rules to find filenames matching a pattern

	os [https://pymotw.com/3/os/index.html#module-os] and os.path [https://pymotw.com/3/os.path/index.html]

	portable access to operating system specific features and work on filenames and paths.

	shutil [https://pymotw.com/3/shutil/index.html]

	High-level file operations

	pickle [https://pymotw.com/3/pickle/index.html]

	Object serialization

	timeit [https://pymotw.com/3/timeit/index.html]

	Time the execution of small bits of Python code

What is Python

The official description of python is:

Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. Its high-level
built in data structures, combined with dynamic typing and dynamic binding, make it very attractive for Rapid
Application Development, as well as for use as a scripting or glue language to connect existing components together.
Python’s simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program maintenance.
Python supports modules and packages, which encourages program modularity and code reuse. The Python interpreter and
the extensive standard library are available in source or binary form without charge for all major platforms, and can
be freely distributed.

All that to say that Python is an open-source programming language that is easy to read, easy to write and fast to develop.

Perhaps python best described in XKCD by Randell Munroe:

[image: _images/python.png]

p.s. in a console type import antigravity and see what happens.

Using python for environmental science has several advantages over traditional means:

	It’s free and doesn’t need a licence. The skills you learn in python can be used everywhere.

	Repeatability. Anyone on earth can reproduce your analysis, which is the fundamental goal of science.

	Speed and efficiency. Do the work once and reuse the code.

	Automation. Take the soul sucking tasks and give them to a non-sentient being (and no, we’re not talking about a grad)

	Big data. Only with a programming language can you manage the big data that’s rapidly becoming the norm.

	Interactive systems. Python allows interactive plotting, reporting, and systems that simply are not possible in traditional systems.

	Community. There is an enormous online community of scientific python users as demonstrated by Programming: Pick up Python [https://www.nature.com/news/programming-pick-up-python-1.16833]

A brief history of python

Guido Van Rossum published the first version of Python code (version 0.9.0) at alt.sources in February 1991. The
creation of python was heavily influenced by the development of the programming language ABC. Since then it as seen
explosive growth to become one of the most common programming languages in the world.

What about the name python? Guido van Rossum, the creator of Python wrote “Over six years ago, in December 1989, I
was looking for a ‘hobby’ programming project that would keep me occupied during the week around Christmas. My
office … would be closed, but I had a home computer, and not much else on my hands. I decided to write an
interpreter for the new scripting language I had been thinking about lately: a descendant of ABC that would appeal to
Unix/C hackers. I chose Python as a working title for the project, being in a slightly irreverent mood
(and a big fan of Monty Python’s Flying Circus).”

Python versions

There are currently two main versions of python - Python 2 and Python 3. Python 3 is the branch that is being actively developed, while Python 2 only has legacy fixes. Python 2 only exists because Python 3 was not backwards compatible with Python 2. All new programmers should go straight to Python 3 unless there’s a really good reason (e.g. legacy packages in 2.7). The current stable version is Python 3.6, which is the version we will use in this course.

Interactive python, running scripts and IDEs

Interactive python

Python has the option to run in an interactive mode. This way every command that you enter is executed and you
immediately see the output. This is a great way to play around with commands in python and build some simple knowledge,
but it is quite limiting when it comes to doing complicated analysis.

Running scripts

You can also package up your python commands into a script (basically a text file ending with .py). To run the script
on windows you can execute it with the command prompt: path_to_pythonpython.exe path_to_script.py. This will then run
through all of the commands in the python script. The advantages to running a script rather than doing work through
interactive python is that you keep all of your work. Your project effectivly documents itself. This is really the best
practice for good repeatable science.

IDEs

People often find that writing python scripts in notepad or similar can be a bit tedious. Instead environmental scientists
often turn to integrated development editors or IDEs. An IDE normally consists of a source code editor, build automation
tools, and a debugger. Most modern IDEs also have intelligent code completion, which makes scripting much quicker.

IDEs are essentially the programmers equivilant of a Harry Potter wand. Google IDEs and there are certainly lots of
strong opinions. Regardless of which IDE you end up with (and you will certainly end up with one of them), there are
some important considerations. IDE’s make it easy to pass code from a script editor into a console, which is really
useful for debugging and testing things as you develop them. Despite this you must never:

	create a finished script that runs different things based on the lines that you comment out.

	create a finished script that relies on some other command being run in an interactive python console.

	create a finished script that relies on commands being run in some order other than the order that they are written in.

	create a finished script that relies on some lines of code not being run.

The reason for these four rules is code repeatability. One of the biggest advantages to science in any programming
language is that given the inputs anyone (including yourself) can replicate the work that you’ve completed. Break any
of the aforementioned rules and it is usually quicker to redo the work from scratch than use the code you’ve produced.

As far as specific IDEs we would recommend that people start with Spyder because it is a relatively lightweight IDE
that is open source and comes with the anaconda build that you have already installed. As time goes on, particularly once
you start developing tools then keep your eye out for other IDEs just in case they suit you better. We won’t give suggestions,
it’s better to simply ask around - someone will have an opinion.

Philosophy of coding, The Zen of Python, and pep8

Philosophy of coding

For new comers to python (or any programming language) some useful tips:

	Make lots and lots of mistakes. Red on the screen isn’t a failure, it’s a natural part of the process.

	You are probably not making more mistakes, you’re just catching more of them.

	Document everything. Comments (started with the #) are your friend.

	Accept that things will take longer in the short term, but shorter in the long term.

The Zen of Python

Long time Pythoneer Tim Peters succinctly channels the Benevolent Dictator for Life’s guiding principles for Python’s
design into 20 aphorisms, only 19 of which have been written down.

	Beautiful is better than ugly.

	Explicit is better than implicit.

	Simple is better than complex.

	Complex is better than complicated.

	Flat is better than nested.

	Sparse is better than dense.

	Readability counts.

	Special cases aren’t special enough to break the rules.

	Although practicality beats purity.

	Errors should never pass silently.

	Unless explicitly silenced.

	In the face of ambiguity, refuse the temptation to guess.

	There should be one– and preferably only one –obvious way to do it.

	Although that way may not be obvious at first unless you’re Dutch.

	Now is better than never.

	Although never is often better than right now.

	If the implementation is hard to explain, it’s a bad idea.

	If the implementation is easy to explain, it may be a good idea.

	Namespaces are one honking great idea – let’s do more of those!

Pep8

There is a documented style guide for python; it’s called PEP8 [https://www.python.org/dev/peps/pep-0008/]. While
following PEP8 isn’t necessary, it does make for much more readable (and thus less error prone) code. Through this course we
will try our best to follow pep8 and as you start to write scripts we’d encourage you to start taking it on board.

Building Python on Your computer

	Installing python and packages

	Using python environments

	Our recommended python installation for this course

	Our recommended python installation for further work

	Build your own python environment file for environmental scientists

	Advanced visualisation packages

	Data access packages

	Geo-spatial analysis

	Advanced statistical analysis

	Other

	Setting up and managing virtual environments with conda

	Creating an environment from an environment.yml file

	Activating an environment

	Deactivating an environment

	Determining your current environment

	Viewing a list of your environments

	Viewing a list of the packages in an environment

	Installing new packages in an environment

	Using pip in an environment

	Sharing an environment

	Exporting the environment file

	Creating an environment file manually

	Removing an environment

Installing python and packages

Python itself is rather lightweight. It contains some basic objects, and a few basic builtin packages. Nevertheless
it is quite a powerful language off the shelf. For this course you will not need anything beyond the basic builtin
python.

There are a number of ways to install python, but one of the best for scientists is via Anaconda.
Anaconda [https://www.anaconda.com/distribution/] is a free and open source distribution of data science packages for Python/R and can manage your packages, dependencies, and
environments.
There are two ways to install python from Anaconda either 1) simply install Anaconda, which has most of the packages
you may need and many that you will never use or 2) install miniconda (a very light weight version) and then add
the packages you need when you need them.

Both the full Anaconda and the Miniconda installations come with the core Python installation and the conda package manager. In addition to this, the full Anaconda installation comes with 1,400+ additional packages.

For this course we recommend installing miniconda as that is all you need and we discuss this later.
As you progress it is good experience to start
creating environments for your projects. In the long run it will save you time as you will not need to fight through
dependency issues (where one packaged depends on a specific version of another).

Packages are really the ace in the hole when it comes to python. There are tens of thousands of packages that have
been developed to make programming easier. Complex statistical analysis?, check; interactive data visualisation?, check.
Basically if you need to do something, there’s probably a package for that. For this course you will not be using any
packages that are not already built into python. That said as soon as you begin really doing work in python you’ll use
packages galore.

In order to use packages, you have to
install them. At the end of the day, the definitive expert on how to install a given package is that’s package website,
but most packages that you will be interested in using can be easily installed with either pip or conda which is discussed below.

Using python environments

Can you imagine working on different projects, each needing a different set of packages, and perhaps some of them
requiring conflicting versions. Sounds like a nightmare. Using conda, rather than setting up one bloated python build
to try and do everything you are better off building a number of virtual python environments.

A virtual python environment is both a python build and a number of packages. This build has a dedicated name, can
host specific versions of a package, and even specific versions of python (e.g. 2.7 or 3.6). You can import and export
virtual python environments as lightweight text files, which makes collaborating even easier. In addition to
collaboration there are a couple of advantages to working in this style:

	Reproducibility and clarity. When you finish up your project you can include an environment file and everyone will know exactly what you used to make your code.

	Dependencies. You don’t need to worry about competing dependencies ever again, you know that your code will run.

	Safeguard from depreciation. You won’t need to worry about dusting off some code only to realise that it won’t run because some key function was depreciated.

A very detailed description and tutorial about python environments can be found on FreeCodeCamp [https://medium.freecodecamp.org/why-you-need-python-environments-and-how-to-manage-them-with-conda-85f155f4353c].

Our recommended python installation for this course

This installation includes basic python and the IDE spyder

	
	Install miniconda

	
	go to https://conda.io/miniconda.html and download the appropriate python 3.6 installer and accept all of the defaults

	
	Create a virtual environment for this course (bpes) for basic python for environmental scientists

	
	open anaconda prompt and enter:

conda create -n bpes python=3.6 spyder

	When conda asks you to proceed, type y:

proceed ([y]/n)?

	That’s it python and spyder for this course should now be installed. To use python with spyder, in the start menu (under anaconda) you should see spyder (bpes). Open that up and get cracking!

Our recommended python installation for further work

	
	If you have not, install miniconda

	
	go to https://conda.io/miniconda.html and download the appropriate python 3.6 installer and accept all of the defaults

	
	Create a virtual environment for your project

	
	create a .yml files from the packages you need below.

	open an anaconda prompt

	Create the environment from the environment.yml file:

 conda env create -f [environment.yml]

The first line of the ``yml`` file sets the new environment's
name. The ``environment.yml`` can also be the explicit path to the .yml file.

	enter y and press enter when prompted with ‘are you sure’

	That’s it python and spyder for your specific project should now be installed. To use python with spyder, in the start menu (under anaconda) you should see a version of spyder followed by your virtual environment’s name. Open that and get cracking!

	Each time you start a new project go back to 2 and create a new virtual environment.

Build your own python environment file for environmental scientists

As a base for any environment file we suggest the following build:

name: [insert_your_enviroment_name_here]
channels:
 - conda-forge
 - defaults
dependencies:
 - python=3.6
 - spyder
 - numpy
 - matplotlib
 - pandas
 - scipy

This build has the core of pythons scientific data processing (python + numpy, pandas, and scipy) as well as the core data
visualisation tool (matplotlib), and somewhat optionally, the spyder IDE. We default to the conda-forge channel, as it
is often the best anaconda channel to make all of the packages play nice together.

Depending on what you need in your project you can add on any number of packages. Below, we’ve put together some tables of
packages that we’ve found to be high quality and easily usable. Rather than re-producing the installation instructions,
which could then go out of date, we’ve simply included a link to the package documentation. You can of
course :ref: add packages <course-env> after you’ve built the environment. Just be sure to export a new environment
file to hold in your git repository.

Advanced visualisation packages

	package

	utility / comments

	bokeh [https://bokeh.pydata.org/en/latest/]

	Interactive data visualisation

	seaborn [https://seaborn.pydata.org/]

	Statistical data visualisation

	holoviews [http://holoviews.org/]

	Simplified data visualisation for quick plotting

Data access packages

Geo-spatial analysis

Advanced statistical analysis

	package

	utility / comments

	scikit-learn [http://scikit-learn.org/stable/index.html]

	Machine learning in python

	statsmodels [https://www.statsmodels.org/stable/index.html]

	Generalised statistical models in python

Other

	package

	utility / comments

	scikit-image [http://scikit-image.org/]

	Scientific image processing in python

	networkx [https://networkx.github.io/]

	Complex network analysis in python

	flopy [https://modflowpy.github.io/flopydoc/]

	Python interface for Modflow Suite models

	Pyemu [https://pypi.org/project/pyemu/]

	Linear base model independent uncertainty analysis (e.g. PEST)

Setting up and managing virtual environments with conda

The instructions below on how use a conda environments are a simplified version of the instructions given here [https://conda.io/docs/user-guide/tasks/manage-environments.html].
You can read through the instructions, but they here more as a guide if/when you need them. For instructions on how to
create the recommended python environment for this course, please go back to this section.

Use the Terminal or an Anaconda Prompt for the following steps.

	To create an environment:

conda create --name myenv

NOTE: Replace myenv with the environment name.

	When conda asks you to proceed, type y:

proceed ([y]/n)?

This creates the myenv environment in /envs/. This
environment uses the same version of Python that you are
currently using, because you did not specify a version.

To create an environment with a specific version of Python:

conda create -n myenv python=3.6

Creating an environment from an environment.yml file

Use the Terminal or an Anaconda Prompt for the following steps.

	Create the environment from the environment.yml file:

conda env create -f environment.yml

The first line of the yml file sets the new environment’s
name. The environment.yml can also be the explicit path to the .yml file.

For details see :ref:`Creating an environment file manually

<create-env-file-manually>`.

Activating an environment

To activate an environment:

	On Windows, in your Anaconda Prompt, run activate myenv

	On macOS and Linux, in your Terminal Window, run source activate myenv

Conda prepends the path name myenv onto your system command.

Deactivating an environment

To deactivate an environment:

	On Windows, in your Anaconda Prompt, run deactivate

	On macOS and Linux, in your Terminal Window, run source deactivate

Conda removes the path name myenv from your system command.

TIP: In Windows, it is good practice to deactivate one
environment before activating another.

Determining your current environment

Use the Terminal or an Anaconda Prompt for the following steps.

By default, the active environment—the one you are currently
using—is shown in parentheses () or brackets [] at the
beginning of your command prompt:

(myenv) $

If you do not see this, run:

conda info --envs

In the environments list that displays, your current environment
is highlighted with an asterisk (*).

By default, the command prompt is set to show the name of the
active environment. To disable this option:

conda config --set changeps1 false

To re-enable this option:

conda config --set changeps1 true

Viewing a list of your environments

To see a list of all of your environments, in your Terminal window or an
Anaconda Prompt, run:

conda info --envs

OR

conda env list

A list similar to the following is displayed:

conda environments:
myenv /home/username/miniconda/envs/myenv
snowflakes /home/username/miniconda/envs/snowflakes
bunnies /home/username/miniconda/envs/bunnies

Viewing a list of the packages in an environment

To see a list of all packages installed in a specific environment:

	If the environment is not activated, in your Terminal window or an
Anaconda Prompt, run:

conda list -n myenv

	If the environment is activated, in your Terminal window or an
Anaconda Prompt, run:

conda list

To see if a specific package is installed in an environment, in your Terminal window or an
Anaconda Prompt, run:

conda list -n myenv scipy

Installing new packages in an environment

#. To install a new package in the environment
.. code-block:: bash

conda install -n myenv scipy # install the package

	To install a specific version of a package:

conda install -n myenv scipy=0.15.0

TIP: It’s best to Install all the programs that you want in this environment
at the same time. Installing 1 program at a time can lead to
dependency conflicts.

Using pip in an environment

To use pip in your environment, in your Terminal window or an
Anaconda Prompt, run:

conda install -n myenv pip
source activate myenv
pip <pip_subcommand>

Sharing an environment

You may want to share your environment with someone else—for
example, so they can re-create a test that you have done. To
allow them to quickly reproduce your environment, with all of its
packages and versions, give them a copy of your
environment.yml file.

Exporting the environment file

NOTE: If you already have an environment.yml file in your
current directory, it will be overwritten during this task.

	Activate the environment to export:

	On Windows, in your Anaconda Prompt, run activate myenv

	On macOS and Linux, in your Terminal window, run source activate myenv

NOTE: Replace myenv with the name of the environment.

	Export your active environment to a new file:

conda env export > environment.yml

NOTE: This file handles both the environment’s pip packages
and conda packages and you can replace the environment.yml with a path of your choosing.

	Email or copy the exported environment.yml file to the
other person.

Creating an environment file manually

You can create an environment file manually to share with others.

EXAMPLE: A simple environment file:

name: stats
dependencies:
 - numpy
 - pandas

EXAMPLE: A more complex environment file:

name: stats2
channels:
 - javascript
dependencies:
 - python=3.6 # or 2.7
 - bokeh=0.9.2
 - numpy=1.9.*
 - nodejs=0.10.*
 - flask
 - pip:
 - Flask-Testing

You can exclude the default channels by adding nodefaults
to the channels list.

channels:
 - javascript
 - nodefaults

Removing an environment

To remove an environment, in your Terminal window or an
Anaconda Prompt, run:

conda remove --name myenv --all

(You may instead use conda env remove --name myenv.)

To verify that the environment was removed, in your Terminal window or an
Anaconda Prompt, run:

conda info --envs

The environments list that displays should not show the removed
environment.

Basic Python Objects, Variables, and Operators

Variables

Everything in python can be considered to be either a variable, an object, or an operator. An object can be everything
from a number, to a function, to something more complex like a class. For the moment let’s not worry too much about
objects, in fact most of this course is about how to create and use the plethora of objects that exist in the
python language. Briefly an operator is something that does something to a variable or an object (e.g. =, +, -, *).
We’ll talk about operators in a moment. Instead for now let’s focus on the variable in python.

A python variable is basically the name we give to an object in a script. Assignment of a variable is simple using
the = operator:

In [1]: x = 42 # the variable in this case is x and we have assigned the value of 42 to the variable

A variable can be named anything except one of the built in keywords of python.
To get a list of these keywords you can use the help function:

In [2]: help('keywords')

Here is a list of the Python keywords. Enter any keyword to get more help.

False def if raise
None del import return
True elif in try
and else is while
as except lambda with
assert finally nonlocal yield
break for not
class from or
continue global pass

While you can name a variable anything, some options are better than others. As previously mentioned style is important.
The PEP 8 standards suggest that variables should be lowercase, with words separated by underscores as necessary to
improve readability. While PEP 8 isn’t necessary, it is a really good habit to get into. It is also very important not
to give a variable the name of any of the builtin functions and variables, otherwise you cannot use the
builtin function again in your script. That said don’t panic about knowing every builtin variable, most integrated development
editors will raise some sort of warning when you overwrite a builtin name. Also if you try to use a builtin function
again it will simply raise an exception, for example:

now we'll be naughty and overwrite the help function, really don't do this...
In [3]: help = 42

if we try to use the help function it will raise an exception
In [4]: help('keywords')

TypeError Traceback (most recent call last)
<ipython-input-4-9d2f16847670> in <module>()
----> 1 help('keywords')

TypeError: 'int' object is not callable

if you make this mistake, fix it in your script and reload you interpreter.

Why did this happen? It has to do with how python assigns variables. When we assigned the value of 42 to x above the
number 42 was created in the computer’s memory and the variable x was pointed to that memory via a unique object ID.
python has a built in function id(), which allows us to see the this ID. This is helpful as we can see how python
handles memory. Take a look at the example below:

In [5]: x = 42

In [6]: id(x)
Out[6]: 94896787701568

In [7]: y = x

In [8]: id(y)
Out[8]: 94896787701568

In [9]: x = 15

In [10]: y
Out[10]: 42

In [11]: id(x)

 The List

The List

What’s a list

One of the most fundamental objects in python is the list. A list simply holds multiple objects, these can be of any
type. A list can be generated in two ways:

1) with the []
In [1]: my_list = [1, 2, 'some value', True]

In [2]: my_list
Out[2]: [1, 2, 'some value', True]

2) by converting some other object (an iterable) to a list with the list function
In [3]: my_other_list = list((1, 2, 3, 4, 5)) # this uses a tuple, which will be discussed later

In [4]: my_other_list
Out[4]: [1, 2, 3, 4, 5]

a list can even hold other lists (nesting)
In [5]: my_nested_list = [[1, 2], [3, 4], [5, 6]]

In [6]: my_nested_list
Out[6]: [[1, 2], [3, 4], [5, 6]]

length, indexing, and slicing

You’ll notice in the example above that we mentioned an iterable. While it’s not strictly the definition you can think
of an iterable as any sort of object that is a container for multiple objects. The number of objects in an iterable
like a list is also known as the length of the list. Unsurprisingly there is a python function to get the length of an
iterable like a list called len()

In [7]: my_list
Out[7]: [1, 2, 'some value', True]

In [8]: len(my_list) # using the lists defined above

 Dictionaries

Dictionaries

What’s in a dictionary

Another key basic object in python is the dictionary. Dictionaries are iterables, but unlike lists (and tuples if you
got that far) values in a dictionary are indexed by a user specified key rather than a positional argument. the default
structure of a dictionary is {key: value}. The value can be any object in python (numbers, strings, boolean, lists,
and so on). Keys are a bit more proscriptive; the rules are a bit more complex, but for beginners it’s normally enough
to know that numbers and strings are able to be keys. For more details on exactly what python objects can be keys in a
dictionary see: Why Lists Can’t be Dictionary Keys [https://wiki.python.org/moin/DictionaryKeys].
Note as of python version 3.6 dictionaries will remember the order that the data was input, previously they were un-ordered.
Now for some examples:

In [1]: my_dict = {'key': 'value'}

In [2]: my_dict
Out[2]: {'key': 'value'}

to access data from a dictionary you use brackets and the key
In [3]: my_dict['key']

 Strings, the good, the bad, and the ugly

Strings, the good, the bad, and the ugly

String indexing

The character components of a string can be accessed the same way that a list can be. Each character as a positional
assignment, so for example:

	-11

	-10

	-9

	-8

	-7

	-6

	-5

	-4

	-3

	-2

	-1

	h

	e

	l

	l

	o

	
	w

	o

	r

	l

	d

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

You can index and slice a string just like you would a list, so for example:

In [1]: my_string = 'hello world'

In [2]: my_string[0]
Out[2]: 'h'

In [3]: my_string[-1]

 Conditional Statements

Conditional Statements

Conditional statements in python allow code to do different things in different circumstances. These statements use the
if, elif, and else keywords. The easiest way to show conditional statements in python is through a simple example:

what will i do?
In [1]: raining = True

In [2]: if raining: # start of the if statement
 ...: print('clean the garage') # what I will do if the condition is true
 ...: else: # start of the otherwise (else) clause
 ...: print('weed the garden') # what I will do if raining == False
 ...:
clean the garage

In human speak this says that if it is raining (which it is), I’ll clean the garage otherwise (else), I’ll weed the garden.
Python identifies that something is in the if clause (or the else clause) by the indentation of the code. After the if
statement the code is indented by exactly 4 spaces be for the actions (print(‘clean the garage’)). While this may seem
pedantic, at the end of the day it creates much clearer, human readable code that is less prone to typos and other errors.

Before we can get onto more complex conditional statements we need to talk about the conditional operators:

	Operator

	meaning

	applies to

	==

	equals

	most objects

	!=

	does not equal

	most objects

	<

	less than

	numbers

	>

	greater than

	numbers

	<=

	less than or equal

	numbers

	>=

	greater than or equal

	numbers

	all()

	all elements True

	iterable of boolean

	any()

	any element True

	iterable of boolean

Armed with these comparisons and the elif keyword we can create much more complicated conditional statements.
elif is an abbreviation for else if and allows the user to specify more conditions, For example:

In [3]: weather = 'sunny'

 # what will I do?
In [4]: if weather == 'raining':
 ...: print('clean the garage')
 ...: elif weather == 'sunny':
 ...: print('go to the beach')
 ...: elif weather == 'raining hellfire':
 ...: pass # the python keyword pass will move past the conditional statement without doing anything
 ...: else:
 ...: print('weed the garden')
 ...: print('ok then')
 ...:
go to the beach
ok then

 Loops in Python

Loops in Python

Ever been in the position where you have to do the same thing again, and again, and again. It’s painful and it feels
like there must be a better way. There is, it’s called a loop.

For loops in python

The main loop that environmental scientists will use is a for loop. The standard format for a for loop is:

for i in iterable:
 action

let’s break that down. The iterable could be any python iterable or iterator (for now don’t worry about the difference),
for instance a list. Python will then create a variable (i) pointing to the first object in the list. Next python will then take some
action that is in the indented (4 spaces again) line of code. After all the action code if completed python will then
set i to the second item in the list and repeat. A simple working example is:

In [1]: menu = ['Egg and Spam', # the iterable
 ...: 'Egg, bacon and Spam',
 ...: 'Egg, bacon, sausage and Spam',
 ...: 'Spam, bacon, sausage and Spam',
 ...: 'Spam, egg, Spam, Spam, bacon and Spam',
 ...: 'Spam, Spam, Spam, egg and Spam',
 ...: 'Spam, Sausage, Spam, Spam, Spam, Bacon, Spam, Tomato and Spam',
 ...: 'Spam, Spam, Spam, Spam, Spam, Spam, baked beans, Spam, Spam, Spam and Spam']
 ...:

In [2]: for dish in menu: # dish is the new variable
 ...: print(dish) # print is the action
 ...:
Egg and Spam
Egg, bacon and Spam
Egg, bacon, sausage and Spam
Spam, bacon, sausage and Spam
Spam, egg, Spam, Spam, bacon and Spam
Spam, Spam, Spam, egg and Spam
Spam, Sausage, Spam, Spam, Spam, Bacon, Spam, Tomato and Spam
Spam, Spam, Spam, Spam, Spam, Spam, baked beans, Spam, Spam, Spam and Spam

In [3]: print("I don't like spam!")

 Functions in Python

Functions in Python

What is a function?

A function is a block of organised, contained, reusable code. You can imagine using the same block of code, copying and
pasting is again and again in your script. What are the chances that in one of those copy and pastes you’ll make a
mistake - almost 100%! One of the
basic principles in good programming is “do not to repeat yourself” both to avoid mistakes, but also to make code more
human readable. Functions allow you to wrap up code into a package that you can use again and again or allow you to use
other people’s work to make the job quicker. During the course so far, we’ve already showcased a number of functions,
like the print() function. We have also used methods which are functions that are tied to a specific object instance,
like [].append().

Before we get into creating your own functions, let’s get a better handle on the structure of functions in python.
The general framework of a function is:

def function_name(*args, **kwargs):
 outdata = some actions
 return outdata

In human speak. The def keyword lets python know you’re creating a function named function_name, which takes as inputs
some args and kwargs. An arg is a positional argument, who’s value is defined by the position in the function call, so
in this fictional function call:

new_val = function_name(1, 2, trend_type=3)

1 is the first arg, 2 is the second arg. 3 on the other hand is a kwarg or keyword argument; the value of this
argument is defined by the keyword trend_type.
Following the : in the function definition, there is some indented code that typically does some action and creates a
new variable. The end of the function is typically marked by the return keyword. This tells python to create a
variable (new_val) and point it to the object
that was defined as outdata inside the function. We need to return the object of outdata because as a general rule variables
created outside a function are not accessible inside a function unless they are passed in as arguments,
and those created inside a function are only accessible outside the function if they are explicitly passed out of the function by the keyword return.

Understanding function documentation

There are heaps of already developed functions that probably do almost exactly what you need to do, but in order to
use them you need to understand what an existing function does and it’s quirks. The best source of knowledge for this
is the function documentation. It can take a bit
of time to get good at interpreting documentation, so let’s make a start of it. To start we’ll look at the
the built in function to enumerate iterables enumerate().
Original documentation is here [https://docs.python.org/3/library/functions.html#enumerate], but it is included here as well:

enumerate(iterable, start=0)

Return an enumerate object. iterable must be a sequence, an iterator, or some other object which supports iteration.
The __next__() method of the iterator returned by enumerate() returns a tuple containing a count
(from start which defaults to 0) and the values obtained from iterating over iterable.

Let’s look at what the first line of the documentation enumerate(iterable, start=0) is telling us. First enumerate
can take up to two arguments (iterable and start), second we need to pass at least one argument (iterable) as it
has no default value (it isn’t equal to anything), and third that if we do not pass a value for start it will be
set equal to 0.

The body of the text explains what the function does (creates an object, which for our purposes can be converted to a
list of tuples that contain a number, starting from start) It also gives more details on the arguments (in this case that
iterable, must be some object that supports iteration). So armed with this knowledge are you surprised by the result of:

In [1]: my_list = ['a','b','c']

remember the list() here is just being used to get away from the unnecessary
complexity of the enumerate object
In [2]: list(enumerate(my_list, start=10)) # FYI the space after the comma and no spaces between the '=' is pep8 standard
Out[2]: [(10, 'a'), (11, 'b'), (12, 'c')]

above we passed the arguments as show in the documentation
we can also pass everything as kwargs in any order we choose
In [3]: list(enumerate(iterable=my_list, start=10))

 Using Packages in python

Using Packages in python

External packages

We’ve already talked about installing specific packages, but simply installing a package on your computer does not allow
you to use the package in a script - you also need to import the package. This is very much in line with every other
scripting language and it provides two main functions: 1) it is explicit what packages are used for a given script and
2) it lowers the overhead of any script (you don’t need to load in everything you’ve installed). Before we explain how
to import things, we need to have a quick discussion around namespaces.

A namespace is a naming convention that python uses to avoid ambiguity. Simply put, a namespace is a name given
to a collection of functions and variables. You can imagine it, abstractly, as family names. Consider the Howard’s and
the Smiths

	Howard

	Smith

	Larry

	Bill

	Moe

	Larry

	Curly

	Carl

Both families ahve a member called Larry, if I just tell you I’m going to see Larry, you don’t know who I mean. Instead
if I say I’m going over to the Howard’s then it’s clear which Larry I mean. For a python example, both builtin
python and the package Numpy have functions called min, max, and abs. Without a namespace there would be no way
to distinguish between them, but if I say min vs numpy.min it’s clear as day.

Let’s look at some examples of how to import packages using the package math, which unsurprisingly has a whole host of
mathematical functions and objects. There are three ways to import specific packages:

	Importing selected items from a package to the current namespace

In [1]: from math import pi # just import pi

In [2]: print(pi)
3.141592653589793

This is useful if you know you only need a few select functions from a package, but does run the risk of overwriting a
function that is already present, for example from numpy import min would overwrite the builtin min function.

	Importing everything from a package to the current namespace

In [3]: from math import * # import everything

In [4]: print(pi)
3.141592653589793

This is really bad form in most scripts as you run a serious risk that you’ll overwrite something you don’t want to.
Also if you import everything from multiple packages it is less clear where a given function or variable came from.

	Importing a namespace (with or without a name change)

import math

In [5]: print(math.pi)
3.141592653589793

In [6]: import math as m # import the namespace math and change the name to m

In [7]: print(m.pi)
3.141592653589793

This is probably the most common and is more efficient (for the coder) if many functions are going to be used, it
also eliminates the overwrite concern.

Importing from your own python scripts

You can also import functions and variables from scripts that you have already developed. Consider the following file
tree:

project
├── functions
│ ├── __init__.py
│ ├── interpolation_techs
│ ├── __init__.py
│ └── geostatistical.py
│ └── lsr_calc.py
├── examples
│ ├── rainfall_interpolation.py
│ └── lsr.py

As long as the project folder is in your PYTHONPATH (more on this in a second) you can import objects from any script (.py)
that is in any python module. A python module simply a folder that contains an __init__.py file. The file may be
completely blank, or it can hold a set of imports for initialising the module. For our purposes we’ll assume that the
__init__.py file is blank, but you can find more information about what can be contained in inits here [http://mikegrouchy.com/blog/2012/05/be-pythonic-__init__py.html]

Looking at the project tree above (remember the project folder is in your PYTHONPATH), you can import objects as follows:

import a mythical function that converts potential evapotranspiration (et) to actual et from lsr_calc.py
from functions.lsr_calc import pet_to_aet

import a mythical function that does kriging interpolation from geostatistical.py
from functions.interpolation_techs.geostatistical import krig

Note that you cannot import anything from the examples folder as it does not have an __init__.py file.

Adding a folder to the PYTHONPATH

On Windows

	Open Explorer.

	Right-click ‘Computer’ in the Navigation Tree Panel on the left.

	Select ‘Properties’ at the bottom of the Context Menu.

	Select ‘Advanced system settings’

	Click ‘Environment Variables…’ in the Advanced Tab

	
	Under ‘System Variables’:

	
	If it does not exist add: PYTHONPATH

	Append the path to your project separating paths with ; as follows

C:\Users\Documents\project;C:\another-library

You will now be able to import objects from projects in every python script that you write on your computer.

Within python

You can also add a folder to your python path in a script before you import from that folder as follows:

folder_path = "C:/Users/Documents/project" # path to the project folder
import sys # a built in package which helps you access the pythonpath
sys.path.append(folder_path) # adds the folder to the pythonpath
from functions.lsr_calc import pet_to_aet # now you can import as usual

 Index

Index

 <no title>

 #this is coming

 <no title>

 #this is coming

 <no title>

 #this is coming

list comprehension
also dictionary comprehension

 <no title>

 #this is coming
basically a discussion about mutability
introduce copy and deepcopy?

 <no title>

 #this is coming

 Version Control

Version Control

Working in python means that you work flow is all held in a bunch of text files (scripts). These files are very small
on the drive, but they are worth a huge amount (the sum total of all of your time working on them). In order to protect
these files, most programmers will have some sort of version control. Version control usually consists of an external
backup of the changes to a script through time. This means that if you’re computer burns up, you’re good you have a copy
of your script. It also means that if you do something terribly stupid you can go back to the previous version of the
script and start again. As an added benefit most modern version control systems allow you to inspect the difference
between versions, helping you keep track of what exactly you have changed.

There are a number of version control systems, but by far the most popular system is git, which is the only system we
will discuss here.

Introduction to GIT

Git is a free and open source distributed version control system. Git thinks of its data like a series of snapshots of
a miniature filesystem. With Git, every time you commit, or save the state of your project, Git basically takes a
picture of what all your files look like at that moment and stores a reference to that snapshot. To be efficient,
if files have not changed, Git doesn’t store the file again, just a link to the previous identical file it has already
stored.

Git works locally; a clone (copy) of your project repository is hosted on your computer. You can commit changes to
these files, which will modify your local project repository. It is then possible to push this repository to a network,
essentially creating a backup of your project repository. In this way you can work offline and simply update your network
hosted repository when you get back to a connection.

Git also has a number of features for collaborating and developing, which basically allow you to develop on a copy of
your repository while leaving the original intact. after you are satisfied with your changes you can merge the two copies.
This uses a feature called branches, which is out of scope for this lesson, but you’ll probably come across it while googleing.

Introduction to Github

Github is a cloud hosted
what is github #todo mike will handle this

todo how to use github (how to use with spyder???)
https://product.hubspot.com/blog/git-and-github-tutorial-for-beginners
https://guides.github.com/activities/hello-world/
how much detail do we need to go into for git at the moment? pull requests?? or just simple commit and push?
should we outsource this rather than re-creating?… probably not…

Github Classroom

In this course we use Github Classroom to host the exercises. Github Classroom allows students to copy repositories to
their own Github account. The new copy is separate from the original repository which allows the student to make changes
without affecting the original. The author of the repository (the teacher) is also made a collaborater on the project so
they can check in on the student’s work and provide feedback. Our use of Github classroom is fairly simple, we just use
it’s copying functionality and will not monitor or provide feedback.

_static/up-pressed.png

_static/up.png

_images/python.png
T DUNNO.-- 7
gy\‘ DYNAMIC TYPING? I JUST TYPED
MHITERCE? import ontigruty
/ coreTom st | | THATS T2 [
T LEARNED ITLAST PROGRAMIING ... T ALSO SAMPLED
NIGHT! EVERYTHING 15 FUN AGAN! EVERYHING IN THE
15 S0 SIMPLE!, ITS A WHOLE VEDICINE (PBINET
! NEW WORLD FOR COMPARISON.
HELLO WORLD 15 JusT N UP HERE! i
print "Hello, world! T How ARE BUT T THINK THIS
You FLYING? 15 THE PYTHON.

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to the Environmental Scientist’s Introduction to Python Course

 		
 What is Python

 		
 A brief history of python

 		
 Python versions

 		
 Interactive python, running scripts and IDEs

 		
 Interactive python

 		
 Running scripts

 		
 IDEs

 		
 Philosophy of coding, The Zen of Python, and pep8

 		
 Philosophy of coding

 		
 The Zen of Python

 		
 Pep8

 		
 Building Python on Your computer

 		
 Installing python and packages

 		
 Using python environments

 		
 Our recommended python installation for this course

 		
 Our recommended python installation for further work

 		
 Build your own python environment file for environmental scientists

 		
 Advanced visualisation packages

 		
 Data access packages

 		
 Geo-spatial analysis

 		
 Advanced statistical analysis

 		
 Other

 		
 Setting up and managing virtual environments with conda

 		
 Creating an environment from an environment.yml file

 		
 Activating an environment

 		
 Deactivating an environment

 		
 Determining your current environment

 		
 Viewing a list of your environments

 		
 Viewing a list of the packages in an environment

 		
 Installing new packages in an environment

 		
 Using pip in an environment

 		
 Sharing an environment

 		
 Exporting the environment file

 		
 Creating an environment file manually

 		
 Removing an environment

 		
 Basic Python Objects, Variables, and Operators

 		
 Variables

 		
 Numbers: Integers and Floats

 		
 Boolean

 		
 Strings

 		
 The print function

 		
 The Python None

 		
 The List

 		
 What’s a list

 		
 length, indexing, and slicing

 		
 list specific operations and functions

 		
 The tuple

 		
 Dictionaries

 		
 What’s in a dictionary

 		
 Important dictionary functions

 		
 Strings, the good, the bad, and the ugly

 		
 String indexing

 		
 String operators & functions

 		
 Formatted output

 		
 Conditional Statements

 		
 Loops in Python

 		
 For loops in python

 		
 Useful builtins for for loops

 		
 While loops in Python

 		
 Functions in Python

 		
 What is a function?

 		
 Understanding function documentation
