

bare68k

bare68k allows you to write m68k system emulators in Python 2 or 3. It
consists of a CPU emulation for 68000/68020/68EC020 provided by the
Musashi [https://github.com/kstenerud/Musashi] engine written in native C. A memory map with RAM, ROM,
special function is added and you can start the CPU emulation of your system.
You can intercept the running code with a trap mechanism and use powerful
diagnose functions,

written by Christian Vogelgsang <chris@vogelgsang.org>

under the GNU Public License V2

Contents:

	Tutorial

	Change Log
	0.1.1 (2017-07-30)

	0.1.0 (2017-07-26)

Features

	all emulation code written in C for fast speed

	runs on Python 2.7 and Python 3.5

	emulates CPU 68000, 68020, and 68EC020

	use a 24 or 32 bit memory map

	define memory regions for RAM and ROM with page granularity (64k)

	special memory regions that call your code for each read/write operation

	intercept m68k code by placing ALINE-opcode based traps to call your code

	event-based CPU emulation frontend does always return to Python first

	provide Python handlers for all CPU emulation events
	RESET opcode

	ALINE trap opcode

	invalid memory access (e.g. write in ROM region)

	out of memory bounds (e.g. read above memory map)

	control interrupt acknowledgement

	watch and break points

	custom timers based on CPU cycles

	extensive diagnose functions
	instruction trace

	memory access for both CPU and Python API

	register dump

	memory labels to mark memory regions with arbitrary Python data

	all bare68k components use Python logging

	rich API to configure memory and CPU state

	store/restore CPU context

Installation

	use pip:

$ pip install bare68k

	use github repository:

$ python setup.py install

	use dev setup:

$ python setup.py develop --user

Quick Start

Here is a small code to see bare68k in action:

from bare68k import *
from bare68k.consts import *

configure logging
runtime.log_setup()

configure CPU: emulate a classic m68k
cpu_cfg = CPUConfig(M68K_CPU_TYPE_68000)

now define the memory layout of the system
mem_cfg = MemoryConfig()
let's create a RAM page (64k) starting at address 0
mem_cfg.add_ram_range(0, 1)
let's create a ROM page (64k) starting at address 0x20000
mem_cfg.add_rom_range(2, 1)

use a default run configuration (no debugging enabled)
run_cfg = RunConfig()

combine everythin into a Runtime instance for your system
rt = Runtime(cpu_cfg, mem_cfg, run_cfg)

fill in some code
PROG_BASE=0x1000
STACK=0x800
mem = rt.get_mem()
mem.w16(PROG_BASE, 0x23c0) # move.l d0,<32b_addr>
mem.w32(PROG_BASE+2, 0)
mem.w16(PROG_BASE+6, 0x4e70) # reset

setup CPU
cpu = rt.get_cpu()
cpu.w_reg(M68K_REG_D0, 0x42)

reset your virtual CPU to start at PROG_BASE and setup initial stack
rt.reset(PROG_BASE, STACK)

now run the CPU emulation until an event occurrs
here the RESET opcode is the event we are waiting for
rt.run()

read back some memory
val = mem.r32(0)
assert val == 0x42

finally shutdown runtime if its no longer used
and free resources like the allocated RAM, ROM memory
rt.shutdown()

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

This section gives you a short tutorial on how to use the bare68k
package.

Change Log

0.1.1 [https://github.com/cnvogelg/bare68k/tree/v0.1.1] (2017-07-30)

	Added support for Windows build

0.1.0 [https://github.com/cnvogelg/bare68k/tree/v0.1.0] (2017-07-26)

	First public release

Index

 nav.xhtml

 Table of Contents

 		bare68k

 		Tutorial

 		Change Log

 		0.1.1 (2017-07-30)

 		0.1.0 (2017-07-26)

_static/minus.png

_static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

