
bang Documentation
Release 0.18

John Calixto

September 30, 2015

Contents

1 Overview 2
1.1 User Guide . 2
1.2 Release Summary . 13
1.3 Road Map . 19
1.4 Hacking . 21

2 Indices and tables 44

Python Module Index 45

i

bang Documentation, Release 0.18

The beginning of the universe...

Contents 1

CHAPTER 1

Overview

Bang automates deployment of server-based software projects.

Projects often comprise multiple servers of varying roles and in varying locations (e.g. tradi-
tional server room, cloud provider, multi-datacenter), public cloud resources like storage buckets
and message queues and other IaaS/PaaS/Splat_aaS resources. DevOps teams already use several
configuration management tools like Ansible, Salt Stack, Puppet and Chef to automate on-server
configuration. There are also cloud resource orchestration tools like CloudFormation and Orches-
tra/Juju that can be used to automate cloud resource provisioning. Bang combines orchestration
with on-server configuration management to provide one-shot, automated deployment of entire
project stacks.

Bang instantiates cloud resources (e.g. AWS EC2/OpenStack Nova server instances), then lever-
ages Ansible for configuration of all servers whether they are in a server room in the office, across
the country in a private datacenter, or hosted by a public cloud provider.

Read the latest online documentation or browse through examples of stack configurations and
playbooks.

1.1 User Guide

1.1.1 Installing Bang

Overview

Bang is published in PyPI and can be installed via pip:

pip install bang

However, Bang depends on other libraries for such things as cloud provider integration and con-
figuration management. The OpenStack client libraries in particular have extra dependencies that
can be tricky to install (e.g. python-reddwarfclient depends on lxml).

2

http://www.ansible.com/
http://bang.readthedocs.org/
https://github.com/fr33jc/bang/tree/master/examples
https://github.com/fr33jc/bang/tree/master/examples
http://pypi.python.org/pypi
https://github.com/stackforge/python-reddwarfclient
http://lxml.de/

bang Documentation, Release 0.18

Installing Dependencies

Debian/Ubuntu

... Using System Packages Warning: This will likely upgrade some of your system Python packages. E.g. On a stock
Ubuntu 12.04 LTS installation, it upgrades boto.

The benefit of installing Bang into your system Python installation is that you don’t need to build
the native extensions in Bang’s dependencies - you can just use the prebuilt packages for your
system. The following commands will install Bang to your system Python installation:

sudo apt-get install python-pip python-lxml
sudo pip install bang

... In a Virtualenv Unfortunately, some of Bang’s dependencies have native extensions that
require extra headers and compilation tools. Install the build-time dependencies from the De-
bian/Ubuntu package repos:

sudo apt-get install build-essential python-dev libxml2-dev libxslt-dev

Then install Bang as directed above.

OSX

... Using System Packages

... In a Virtualenv

Install build-time dependencies with Homebrew, and link them: brew install libxml2 brew in-
stall libxslt brew link libxml2 –force brew link libxslt –force

Then install Bang as directed above

RightScale

Bang allows you to combine traditional cloud providers like AWS with higher-level cloud man-
agers like RightScale in the same stack. Generally, RightScale provides ample automation on top
of AWS. However, it is sometimes necessary to supplement RightScale’s features. E.g.

• Using new AWS technologies that are not yet supported by RightScale.

• Integrating inherited application stacks that do not use Chef.

1.1. User Guide 3

https://github.com/boto/boto/

bang Documentation, Release 0.18

• Working with resources in multiple public cloud providers or even traditional private data-
centers.

To enable the rightscale provider, install the following dependency:

pip install python-rightscale==0.1.3

OpenStack

As much as possible, Bang uses official OpenStack client libraries to provision resources in Open-
Stack clouds. Prior to Bang 0.10, this dependency was explicitly defined in the Bang package such
that pip install bang would install the OpenStack client libraries as well. From Bang 0.10
onwards, OpenStack users will need to install the client libraries on their own.

Note: Problems with the client libraries include:

• Not having dependencies defined correctly in their packages

• Unnecessary dependency on native libraries like lxml

Bugs have been filed with upstream, but they have not been very responsive to feedback from
outside the OpenStack organization.

The following commands should install the necessary dependencies:

sudo apt-get install build-essential python-dev libxml2-dev libxslt-dev
pip install \

python-novaclient==2.11.1
python-swiftclient==1.3.0
python-reddwarfclient==0.1.2
novaclient-auth-secretkey

HP Cloud HP Cloud uses OpenStack as a base cloud operating system. However, HP has its
own proprietary extensions and modifications which have meaningful effects on the provisioning
API. Bang subclasses the appropriate OpenStack client library classes and adjusts behaviour for HP
Cloud. In addition to the OpenStack dependency installation listed above, the following commands
will enable Bang to deploy databases to HP Cloud’s beta DBaaS:

pip install PyMySQL==0.5

1.1. User Guide 4

bang Documentation, Release 0.18

1.1.2 Running Bang

Quick Start

With all of your deployer credentials (e.g. AWS API keys) and stack configuration in the same file,
mywebapp.yml, you simply run:

bang mywebapp.yml

As a convenience for successive invocations, you can set the BANG_CONFIGS environment vari-
able:

export BANG_CONFIGS=mywebapp.yml

Deploy!
bang

... Hack on mywebapp.yml

Deploy again!
bang

... Uh-oh, connection issues on one of the hosts. Could be
transient interweb goblins - deploy again!
bang

Yay!

BANG_CONFIGS

Set this to a colon-separated list of configuration specs.

Other Options

Deploys a full server stack based on a stack configuration file.

In order to SSH into remote servers, ‘‘bang‘‘ needs the corresponding private key for the public key
specified in the ‘‘ssh_key_name‘‘ fields of the config file. This is easily managed with ssh-agent,
so ‘‘bang‘‘ does not provide any ssh key management features.

usage: bang [-h] [--ask-pass] [--user USER] [--dump-config {json,yaml,yml}]
[--list] [--no-configure] [--no-deploy] [--playbook PLAYBOOK]
[--version]
[CONFIG_SPEC [CONFIG_SPEC ...]]

Positional arguments:

1.1. User Guide 5

bang Documentation, Release 0.18

config_specs Stack config specs(s).

A *config spec* can either be a basename of a config file
(e.g. ‘‘mynewstack‘‘), or a path to a config file (e.g. ‘‘../bang-
stacks/mynewstack.yml‘‘).

A basename is resolved into a proper path this way:

- Append ‘‘.yml‘‘ to the given name. - Search the ‘‘con-
fig_dir‘‘ path for the resulting filename, where the value for
‘‘config_dir‘‘ comes from ‘‘$HOME/.bangrc‘‘.

When multiple config specs are supplied, the attributes from
all of the configs are deep-merged together into a single,
union config in the order specified in the argument list.

If there are collisions in attribute names between separate
config files, the attributes in later files override those in earlier
files.

At deploy time, this can be used to provide secrets (e.g. API
keys, SSL certs, etc...) that you don’t normally want to check
in to version control with the main stack configuration.

Options:

--ask-pass=False, -k=False ask for SSH password

--user, -u set SSH username (default=docs)

--dump-config Dump the merged config in the given format, then quit

Possible choices: json, yaml, yml

--list=False Dump stack inventory in ansible-compatible JSON.

Be sure to set the ‘‘BANG_CONFIGS‘‘ environment variable
to a colon-separated list of config specs.

E.g.

specify the configs to use export
BANG_CONFIGS=/path/to/mystack.yml:/path/to/secrets.yml

dump the inventory to stdout bang –list

run some command ansible webservers -i /path/to/bang -m
ping

--no-configure=True Do *not* configure the servers (i.e. do *not* run the
ansible playbooks).

This allows the person performing the deployment to per-
form some manual tweaking between resource deployment

1.1. User Guide 6

bang Documentation, Release 0.18

and server configuration.

--no-deploy=True Do *not* deploy infrastructure resources.

This allows the person performing the deployment to skip cre-
ating infrastructure and go straight to configuring the servers.
It should be obvious that configuration may fail if it refer-
ences infrastructure resources that have not already been cre-
ated.

--playbook, -p Specify playbook(s) to run during the Ansible phase.

WARNING This overrides any list of playbooks specified
in the bang config(s).

This argument can be passed multiple times to specify mul-
tiple playbooks to run. They will be executed in the order in
which they are passed on the command line.

E.g.

deploy and configure a stack as usual. playbooks # are de-
fined in ‘‘my_own_cloud.yml‘‘: bang own_cloud.yml

run an ad-hoc playbook on the same stack: bang
own_cloud.yml -p update_loadbalancers.yml

run multiple ad-hoc playbooks: bang own_cloud -p
start_maintenance_window.yml \ -p restart_apache.yml \ -p
stop_maintenance_window.yml

--version, -v show program’s version number and exit

1.1.3 Stack Configurations

Examples

Examples of Bang config files are available with the source code:

https://github.com/fr33jc/bang/tree/master/examples

Config File Structure

The configuration file is a YAML document. Like a play in an Ansible playbook, the outermost
data structure is a YAML mapping.

Like Python, blocks/sections/stanzas in a Bang config file are visually defined by indentation level.
Each top-level section name is a key in the outermost mapping structure.

1.1. User Guide 7

https://github.com/fr33jc/bang/tree/master/examples
http://www.yaml.org
http://www.yaml.org/spec/1.2/spec.html#id2798057

bang Documentation, Release 0.18

There are some reserved Top-Level Keys that have special meaning in Bang and there is an implicit,
broader grouping of these top-level keys/sections. The broader groups are:

• General Stack Properties

• Configuration Scopes

• Stack Resource Definitions

Any string that is a valid YAML identifier and is not a reserved top-level key is available for use as
a custom configuration scope. It is up to the user to avoid name collisions between keys, especially
between reserved keys and custom configuration scope keys.

Top-Level Keys

General Stack Properties

The attributes in this section apply to the entire stack.

The following top-level section names are reserved:

name This is the unique stack name. E.g. myblog-prod, myblog-staging, monitoring,
etc...

version The overall stack version. A stack may be made up of many components each with their
own release cycle and versioning scheme. This version could be used as the umbrella version
for an entire product/project release.

logging Contains configuration values for Bang’s logging.

deployer_credentials See bang.providers.hpcloud.HPCloud.authenticate()

playbooks A list of playbook filenames to execute.

Stack Resource Definitions

These configuration stanzas describe the building blocks for a project. Examples of stack resources
include:

• Cloud resources

– Virtual servers

– Load balancers

– Firewalls and/or security groups

– Object storage

– Block storage

1.1. User Guide 8

bang Documentation, Release 0.18

– Message queues

– Managed databases

• Traditional server room/data center resources

– Physical or virtual servers

– Load balancers

– Firewalls

Users can use Bang to manage stacks that span across traditional and cloud boundaries. For exam-
ple, a single stack might comprise:

• Legacy database servers in a datacenter

• Web application servers in an OpenStack public cloud

• Message queues and object storage from AWS (i.e. SQS)

Every stack resource key maps to a dictionary for that particular resource type, where the keys are
resource names. Each value of the dictionary is a key-value map of attributes. Most attributes are
specific to the type of resource being deployed.

Every cloud resource definition must contain a provider key whose value is the name of a
Bang-supported cloud provider.

Server definitions that do not contain a provider key are assumed to be already provisioned.
Instead of a set of cloud server attributes, these definitions merely contain hostname values and
the appropriate configuration scopes.

The reserved stack resource keys are described below:

queues E.g. SQS

buckets E.g. S3, OpenStack Swift

databases E.g. RDS, OpenStack RedDwarf

server_security_groups E.g. EC2 and OpenStack Nova security groups

servers E.g. EC2, OpenStack Nova, VPS virtual machines.

load_balancers: E.g. ElasticLoadBalancer, HP cloud LBaaS

Configuration Scopes

Configuration scopes typically define high-level attributes and values that you might want to alter
between instantiations of a stack. For example, a blog stack might be made up of some frontend
load balancers running haproxy 1.4 that distribute requests to an array of web app servers running
version 1.1 of your custom application called my_blog_app. The production Bang config would
have config scopes like this:

1.1. User Guide 9

bang Documentation, Release 0.18

my_blog_app:
version: '1.1'

haproxy:
version: '1.4'

You would reuse the same infrastructure configuration and set of Ansible playbooks to stand up a
QA or development stack. When you release version 1.2 of my_blog_app you just adjust the value
in the config scope like this:

my_blog_app:
version: '1.2'

haproxy:
version: '1.4'

In this example, if you then wanted to test out haproxy 1.5, the config scopes would look like this:

my_blog_app:
version: '1.2'

haproxy:
version: '1.5'

Config scopes can be used for more than just component versions. When deciding what attributes
to put in config scopes and what attributes to put into your Ansible variables, consider that Bang
config scopes are ideal for values that you might vary per environment or per iteration of an envi-
ronment.

Since the Bang config files and all of the associated playbooks are just text files, they can be
managed the same way you manage your code in a revision control system. You can branch, merge,
and tag the same way you do with your application code. With the right tags, it’s trivial to compare
the config scope values that are in production with those that are in your QA or development
environments.

Reusable Definition Any top-level section name that is not specified above as a reserved key in
General Stack Properties or in Stack Resource Definitions, is parsed and categorized as a custom
configuration scope. For example, a media transcoding web service might have the following
config scopes:

apache:
preforks: 4
modules:
- rewrite
- wsgi

my_web_frontend:

1.1. User Guide 10

bang Documentation, Release 0.18

version: '1.2.0'
log_level: WARN

my_transcoder_app:
version: '1.1.5'
log_level: INFO
src_types:
- h.264+aac
- theora+vorbis

The key names and the values are arbitrary and defined solely by the user.

When running the on-server configuration phase of a Bang run, Bang uses the config_scopes
in a server definition to determine what to pass to Ansible as inventory variables for a particular
host. To refer to a top-level, reusable config scope in a server definition, list its name like this:

Config Scopes

apache:

preforks: 4
modules:
- rewrite
- wsgi

my_web_frontend:
version: '1.2.0'
log_level: WARN

Resource Definitions

servers:

web_server:
other server attributes go here
config_scopes:
- apache
- my_web_frontend

When Ansible runs on the web_server hosts, the following references to the config scope vari-
ables will be evaluated to their associated values:

{{apache.preforks}} <-- evaluates to 4
{{my_web_frontend.version}} <-- evaluates to 1.2.0

Inline Definition In addition to the top-level definitions, config scopes for a server may be de-
fined inline. This is mainly useful for simple stacks where reusing config scopes might not be
needed. For example:

1.1. User Guide 11

bang Documentation, Release 0.18

webapp:
port: 8001
app_dir: /opt/foo/app

reverse_proxy:
server_name: newapp.company.com

servers:
blah:

config_scopes:
- webapp
- reverse_proxy
- this: is

a_config_scope: defined
inline: yo

The config scopes above would make the following inventory variables available to Ansible:

{
'webapp': {

'port': 8001,
'app_dir': '/opt/foo/app',
},

'reverse_proxy': {
'server_name': 'huismans.kief.io',
},

'this': 'is',

'a_config_scope': 'defined',

'inline': 'yo',
}

Which would let you use any of the following in playbooks and templates:

{{webapp.port}}
{{reverse_proxy.server_name}}
{{this}}
{{a_config_scope}}
{{inline}]

1.1.4 Writing Ansible Playbooks

Bang was written with the goal of being able to use Ansible playbooks either with Bang’s builtin
playbook runner or directly with ansible-playbook. As such, any working Ansible playbook

1.1. User Guide 12

bang Documentation, Release 0.18

will work when referenced in a Bang config.

Refer to Ansible’s playbook documentation for details about writing the actual playbooks.

Search Path

Bang looks for any playbooks referenced by a stack configuration file in a playbooks/ directory
that is a peer of the stack configuration file. After it has found a playbook, it defers to Ansible’s
path resolution logic for all other includes and file references.

When Ansible searches for modules referenced in a playbook, it allows for playbook-specific mod-
ules to live in a library/ directory that is a peer of the playbook YAML file. To supplement this
custom module location, Bang sets the Ansible module/library path to a common_modules/
directory that is a peer of the stack configuration file. This means that any custom modules that are
used in multiple playbooks (i.e. not just for one specific playbook) can be stored along with your
stack configurations, playbooks, templates, etc... in the same directory structure.

1.1.5 Getting Help

Bang

Search through the mailing list archives or subscribe to bangproject-general@lists.sourceforge.net
and post a question/comment.

Ansible

For questions related to ansible, ansible-playbook, playbooks, and modules, see the An-
sible project for documentation and several other support resources.

1.2 Release Summary

1.2.1 0.18 - March 26, 2015

• Add a logo for the project.

• Add -p command line argument to specify playbook(s) on command line.

• RightScale

– Update dependency to python-rightscale==0.1.3.

– Tag the rightscale server, not just the instance. This insures instances that launch from
the same server definition also get tagged.

1.2. Release Summary 13

http://ansible.cc/docs/playbooks.html
http://sourceforge.net/mailarchive/forum.php?forum_name=bangproject-general
mailto:bangproject-general@lists.sourceforge.net?subject=subscribe
mailto:bangproject-general@lists.sourceforge.net
http://ansible.cc
http://ansible.cc
http://ansible.cc/docs
http://ansible.cc/resources.html

bang Documentation, Release 0.18

– Allow instance type, AZ, secgroups to be optional for RightScale servers.

– Expose details of RightScale API error response.

1.2.2 0.17.1 - February 6, 2015

• Ensure stats callback fires.

• RightScale: Fix bug in public_dns_names for newly created server.

1.2.3 0.17 - February 5, 2015

• Add hostvars directly to --list output.

– As an optimization to avoid exec-ing the inventory script for every host, Ansible >= 1.3
accepts the hostvars in the initial inventory dump under a _meta key.

• Fix up more python2.6 incompatibilities.

– This includes addressing the warning about BaseException.message deprecation

• Gracefully handle when $HOME is not in environment.

• RightScale

– Switch to using public_dns_names.

This means that in the inventory provided to ansible, hosts will be defined by their
public DNS name instead of their public IP address. For RightScale hosts in AWS,
this gives you names like ec2-54-123-45-67.compute-1.amazonaws.com
which gets the magic EC2 DNS resolution (i.e. translates to private address within
EC2, translates to public address from outside EC2).

1.2.4 0.15 - November 4, 2014

• Expose bang server attributes to playbooks. E.g. in an ansible template,
{{bang_server_attributes.instance_type}} might resolve to the value
t1.micro.

• AWS

– Fix security group handler. Thanks Sol Reynolds!

• RightScale

– Support all input types. E.g. key:, cred:, env:, etc...

1.2. Release Summary 14

bang Documentation, Release 0.18

1.2.5 0.14.1 - October 24, 2014

• Fix console logging level configuration.

1.2.6 0.14 - October 24, 2014

• AWS

– Add support for creating S3 buckets (Thanks to Sol Reynolds).

– Add support for IAM roles and other provider-specific server attributes.

• RightScale

– BREAKING CHANGE: Inputs are now nested one level deeper in a server config stanza.

This was done as part of adding support for provider-specific server attributes. Prior to
this change, one would specify the server template inputs in a rightscale server config
like this:

servers:
my_rs_server:

other server attributes omitted for brevity
provider: rightscale
inputs:

DOMAIN: foo.net
SOME_OTHER_INPUT: blah blah

Provider-specific attributes needed to create/launch servers will now be nested one level
deeper in an attribute named after the provider. With this new structure, the correspond-
ing configuration for the example above would look like this:

servers:
my_rs_server:

other server attributes omitted for brevity
provider: rightscale
rightscale:

inputs:
DOMAIN: foo.net
SOME_OTHER_INPUT: blah blah

– Propagate rs deployment and server name to ec2 tags.

• Issues addressed

– Fix handling of localhost in inventory

– #11: Return sorted host lists for bang --list.

1.2. Release Summary 15

bang Documentation, Release 0.18

1.2.7 0.13 - October 17, 2014

• Ansible integration

– Allow setting some ansible options via bang config or ~/.bangrc:

* Verbosity (especially for ssh debugging):

ansible:
verbosity: 4

* Vault:

ansible:
ask_vault_pass: true
vault_pass: "thisshouldfail"
vault_pass: "bangbang"

– Test against ansible 1.7.2

• Add --no-deploy arg to only use existing infrastructure.

• Switch to yaml.safe_load.

• Improve compatibility with Python 2.6, including adding 2.6 as a Travis CI target.

1.2.8 0.12 - August 19, 2014

• Update to ansible >= 1.6.3.

– Allow ansible vars plugins to work.

• Add RightScale provider.

– Add server creation and launch support.

– Expose underlying RightScale response for errors.

– Implement create_stack() to create RightScale deployments.

• Reuse existing servers if possible. Some scenarios allow a server instance to be found and
usable as a deployment target (e.g. bang run failed but server instance launched success-
fully).

• Allow configuration of logging via ~/.bangrc.

• Add backwards support for python 2.6.

• Reorganize and add new examples.

1.2. Release Summary 16

bang Documentation, Release 0.18

1.2.9 0.11 - January 8, 2014

• HP Cloud provider

– BREAKING CHANGE: Separate HP Cloud v12 and v13 providers. Users of HP Cloud
services must now distinguish between the 2 different API versions of their resources.

– Add new LB nodes before removing old; fixes error caused by HPCS’ rule that a LB
must have at least one node.

• Allow load balancers to be region-specific.

1.2.10 Older Releases

0.10.1 - July 22, 2013

• Remove install-time dependency on OpenStack client libraries. Users who need Open-
Stack/HP Cloud support must now install those libraries independently. Details...

0.9 - July 16, 2013

• Update dependencies. Now using:

– Ansible 1.2

– logutils >= 3.2

• Fix #4: Set value for “Name” tag on EC2 servers

• Fix EC2 server provisioning

0.8 - May 7, 2013

• AWS provider

– Create and manage EC2 security groups and their rules.

0.7.1 - April 16, 2013

• Fix installation breakage caused by conflicting dependency statements between python-
reddwarfclient and python-novaclient. The resolution was to remove the explicit dependency
on prettytable.

1.2. Release Summary 17

bang Documentation, Release 0.18

0.7 - April 12, 2013

• BREAKING CHANGE: In a stack config file, the top-level resource definition containers
were lists. From 0.7 onward, they must be defined as dictionaries. This allows resource
definitions to be deep-merged. The just_run_a_playbook.yml example was updated
to demonstrate the new config format.

This change extends the reuse of common config stanzas that was previously only available
for general stack properties and for configuration scopes to resource definitions. Prior to
this change, the main purpose for this deep-merge behaviour was to allow sysadmins to use
a known working dev stack config file and specify a subset config file to override secrets
(e.g. encryption keys) when deploying production stacks. With the deep-merging of re-
source definitions, deployers can override any part of the config file and break up their stack
configurations into multiple reusable subset config files as is most convenient for them. For
example, one could easily deploy stack clones in multiple public cloud regions using a single
base stack config and a subset stack config for each target region overriding region_name
in the server definitions.

0.6 - April 3, 2013

• HP Cloud provider

– Add LBaaS support.

• Add “127.0.0.1” to the inventory to enable local plays.

• Add deployer for externally-deployed servers (e.g. physical servers in a traditional server
room, unmanaged virtual servers).

• Reuse ssh connections when running playbooks.

• Allow setting ssh username+password as command-line arguments.

0.5 - March 11, 2013

• Expose server name to playbooks as server_class

0.4 - March 6, 2013

• Update OpenStack client library dependencies

• Add auto-registration of SSH keys for OpenStack

1.2. Release Summary 18

bang Documentation, Release 0.18

0.3 - February 11, 2013

• Update ansible dependency to 1.0

• Fix bug that caused a crash when running bang --list with a server definition in the
stack config for which there was no matching running instance.

0.2 - January 30, 3013

• AWS provider

– Compute (EC2)

• Inline configuration scopes for server definitions

• Separate regions from availability zones

• Fix multi-region stacks

0.1 - January 15, 2013

• Core Ansible playbook runner

• Parallel cloud resource deployment

• Generic OpenStack provider

• HP Cloud provider

– Compute (Nova)

* Including security groups

– Object Storage (Swift)

– DBaaS (RedDwarf)

1.3 Road Map

Some of the feature ideas below will be implemented in bang. Some may be better suited for a
bang-utils project. They’re listed here so they won’t be forgotten along the way.

1.3.1 General Features

• Allow overriding path to .bangrc via environment variable. This allows external utilities to
manage multiple sets of deployer_credentials (e.g. a bangrc per client).

1.3. Road Map 19

bang Documentation, Release 0.18

• Add extension/plugin mechanism. At the moment, the mercurial-style (i.e. using an rc-file
for registering extensions) is the most palatable because it does not demand using setuptools,
and because it allows the user to manage files how they please.

– The corollary is that the setuptools-style (i.e. entry points defined in setup.py) mecha-
nism is not desirable.

• In addition to the plugin mechanism, have some hookable events to make integration easier
with existing tools that can’t easily be converted to plugins. E.g.:

exec_hooks:
pre_deploy:
post_success:
- /bin/echo yay
post_failure:
- /bin/echo boo

• Implement --dry-run.

• Validate stack configuration.

– Check for any build artifacts in the deployment S3 bucket/other central storage location.

• Allow absolute paths to playbooks, or a customizable playbook search path.

• Add playbook parallelization. Allow running multiple playbooks at once. Leave it up to the
deployers to sort out inter-playbook dependencies.

• Integrate with revision control system.

– Autoincrement stack version in config file.

– Tag any config scope that defines a source_code attribute.

– Generate release notes between tags.

• Autoscale servers.

• Add --destroy to automate destruction of stacks.

• Support ansible-playbook runtime options (e.g. vault and tag values).

• Allow selecting public or private IP addresses for cloud hosts.

1.3.2 Providers

• AWS

– Add any deployers that don’t really apply to less featureful public cloud providers. E.g.
SQS, ELB, SNS, etc...

– Create ssh keypairs if specified by the user in their ~/.bangrc.

1.3. Road Map 20

bang Documentation, Release 0.18

– Add DNS updates via Route53 API.

• Docker/LXC

– Add Docker and LXC images as base images.

– Add Docker and LXC containers to Ansible inventories.

– Use Ansible playbooks to make changes within containers.

• Rackspace

• HP Cloud

– DB Security Groups

• RightScale

– Add support for server arrays.

1.4 Hacking

1.4.1 Project Resources

Documentation

The documentation is hosted on Read the Docs:

http://bang.readthedocs.org/

Source Code

The stable codeline lives in GitHub:

https://github.com/fr33jc/bang

Experimental or otherwise unstable development is also hosted on GitHub in a separate clone:

https://github.com/fr33jc/bang-unstable

Large patches from contributors will be integrated into the unstable repo first. When these new
features have been tested and cleaned up appropriately, they will be rebased and promoted to the
stable master for release.

Continuous Integration

Pushes to the stable master trigger automated unit testing on Travis CI:

https://travis-ci.org/fr33jc/bang

1.4. Hacking 21

http://bang.readthedocs.org/
https://github.com/fr33jc/bang
https://github.com/fr33jc/bang-unstable
https://travis-ci.org/fr33jc/bang

bang Documentation, Release 0.18

1.4.2 Design

Configuration File

YAML File Format

The Bang configuration file structure came about with the following goals in mind:

• Readability (by humans)

• Not another bespoke serialization format

• Conciseness

While JSON would allow for there to be one less package dependency, YAML was chosen as the
overall serialization format because of its focus on human readability.

In its earliest forms, Bang had its own SSH logic and used Chef for configuration management.
When Ansible was identified as being a suitable replacement for the builtin SSH logic and for
Chef, it made even more sense to continue using YAML for the file format because users could use
the same format for configuring Bang and for authoring Ansible playbooks.

Stepped Input Format

Both Bang and Ansible use YAML as their input file formats. However, the logical structure of the
input in Bang is different enough from that of Ansible to be jarring to end users.

Whereas Ansible’s input consists of a set of steps that are executed in order, Bang’s input is a
declaration of state without control of execution order.

To reconcile this difference and to allow end users finer-grained control of execution order, Bang
should accept the following, new, stepped format:

- stack:
name: my_three_tier_site
version: 0.1

- servers:
masterdb:
hostname: really.its_publicly_accessible.com

- playbooks:
- register_masterdb_dns_alias.yml
- monitor_masterdb.yml

- config_scopes:
masterdb:
username: threetier

1.4. Hacking 22

http://www.opscode.com/chef/

bang Documentation, Release 0.18

password: tierthree
webapp:

package:
name: my_biz_logic
version: 0.1.2

debug: false

- servers:
webapplb:
groups:
- common
- haproxy
provider: aws
region_name: us-west-2
availability_zone: us-west-2b
instance_type: t1.micro
disk_image_id: ami-ed2864dd # debian wheezy 64-bit (2014-10-24)
ssh_key_name: deployer
launch_timeout_s: 120
aws:

instance_profile_name: webapplb

webapp:
groups:
- common
- my_biz_logic
provider: aws
region_name: us-west-2
availability_zone: us-west-2b
instance_type: m3.large
instance_count: 10
disk_image_id: ami-ed2864dd # debian wheezy 64-bit (2014-10-24)
ssh_key_name: deployer
launch_timeout_s: 120
aws:

instance_profile_name: webapp
config_scopes:
- masterdb
- webapp

- playbooks:
- common.yml
- webapplb.yml
- webapp.yml

1.4. Hacking 23

bang Documentation, Release 0.18

Inventory Persistence

It is often useful to have access to the inventory that was used during a particular Bang run. Bang
already provides the inventory and the host variables to Ansible directly as Python objects when
executed as bang, and as a JSON object output to stdout when executed as an Ansible inventory
plugin (i.e. bang --list). It should also provide the following features:

• Store inventory and host variables in a user-specified file.

• Create latest-inventory symlink to inventory file after each Bang run.

• Allow configuration of inventory output format (i.e. YAML or JSON). Even though the
Ansible inventory plugin API uses JSON as the serialization format, Bang’s default inventory
output should be YAML for symmetry since Bang’s input format is YAML as well.

• Allow configuration of above via command-line arguments, ~/.bangrc, or even ansible.cfg.

1.4.3 API

bang

exception bang.BangError
Bases: exceptions.Exception

exception bang.TimeoutError
Bases: bang.BangError

bang.attributes

Constants for attribute names of the various resources.

This module contains the top-level config file attributes including those that are typically placed in
~/.bangrc.

bang.attributes.ANSIBLE = ‘ansible’
A dict containing ansible tuning variables.

bang.attributes.CONFIG_DIR = ‘config_dir’
The directory in which to look for bang config files using their basenames. E.g. if your
config_dir is specified as $HOME/bang-configs, the following bang runs are equivalent:

bang my_web_app deploy

And:

bang $HOME/bang-configs/my_web_app.yml $HOME/bang-configs/deploy.yml

1.4. Hacking 24

bang Documentation, Release 0.18

bang.attributes.DEPLOYER_CREDS = ‘deployer_credentials’
A dict containing credentials for various cloud providers in which the keys can be any valid
provider. E.g. aws, hpcloud.

bang.attributes.LOGGING = ‘logging’
The top-level key for logging-related configuration options.

bang.attributes.NAME = ‘name’
The stack name. Its value is used to tag servers and other cloud resources.

bang.attributes.NAME_TAG_NAME = ‘name_tag_name’
Like chicken fried chicken... this is a way to configure the name of the tag in which the
combined stack-role (a.k.a. name) will be stored. By default, unless this is specified directly
in ~/.bangrc, the name value will be assigned to a tag named “Name” (this is the default
tag displayed in the AWS management console). I.e. using Bang defaults, the server named
“bar” in the stack named “foo” will have the following tags:

stack: foo
role: bar
Name: foo-bar

In some cases, admins may have other purposes for the “Name” tag. If ~/.bangrc were to
have name_tag_name set to descriptor, then the server described above would have
the following tags:

stack: foo
role: bar
descriptor: foo-bar

To prevent Bang from assigning the name value to a tag, assign an empty string to the
name_tag_name attribute in ~/.bangrc.

bang.attributes.PLAYBOOKS = ‘playbooks’
The ordered list of playbooks to run after provisioning the cloud resources.

bang.attributes.PROVIDER = ‘provider’
The resource provider (e.g. aws, hpcloud). Values for the provider attribute will be
used to look up the appropriate Provider subclass to use when instantiating the associated
resource.

bang.attributes.SERVER_CLASS = ‘server_class’
This is a derived attribute that Bang provides for instance tagging, and for Ansible playbooks
to consume. It’s a combination of the NAME and the VERSION.

bang.attributes.STACK = ‘stack’
This is a derived attribute that Bang provides for instance tagging, and for Ansible playbooks
to consume. It’s a combination of the NAME and the VERSION.

bang.attributes.VERSION = ‘version’
The stack version. Often, you need a global version of a stack in a playbook. E.g. when a

1.4. Hacking 25

bang Documentation, Release 0.18

web client wants to query a web service for API compatibility, the playbooks could configure
the web service to report this stack version.

bang.attributes.ansible

bang.attributes.ansible.ASK_VAULT_PASS = ‘ask_vault_pass’
A boolean controlling whether or not to prompt for the vault password

bang.attributes.ansible.VAULT_PASS = ‘vault_pass’
The string used to decrypt any ansible vaults referenced in playbooks

bang.attributes.ansible.VERBOSITY = ‘verbosity’
An integer indicating verbosity.

bang.attributes.creds

bang.attributes.database

bang.attributes.loadbalancer

bang.attributes.logging

bang.attributes.secgroup

bang.attributes.server

bang.attributes.server.BANG_ATTRS = ‘bang_server_attributes’
Provides the server definition from the Bang config as a fact available to the playbooks. E.g.
in order to get access to the disk_image_id in a playbook:

{{bang_server_attributes.disk_image_id}}

bang.attributes.ssh_key

bang.attributes.tags

bang.config

class bang.config.Config(*args, **kwargs)
Bases: dict

A dict-alike that provides a convenient constructor, stashes the path to the config file as an
instance attribute, and performs some validation of the values.

1.4. Hacking 26

bang Documentation, Release 0.18

__init__(*args, **kwargs)

Parameters path_to_yaml (str) – Path to a yaml file to use as the data source
for the returned instance.

autoinc()
Conditionally updates the stack version in the file associated with this config.

This handles both official releases (i.e. QA configs), and release candidates. Assump-
tions about version:

•Official release versions are MAJOR.minor, where MAJOR and minor are both
non-negative integers. E.g.

2.9 2.10 2.11 3.0 3.1 3.2 etc...

•Release candidate versions are MAJOR.minor-rc.N, where MAJOR, minor, and N
are all non-negative integers.

3.5-rc.1 3.5-rc.2

classmethod from_config_specs(config_specs, prepare=True)
Alternate constructor that merges config attributes from $HOME/.bangrc and
config_specs into a single Config object.

The first (and potentially only spec) in config_specs should be main configuration
file for the stack to be deployed. The returned object’s filepath will be set to the
absolute path of the first config file.

If multiple config specs are supplied, their values are merged together in the order
specified in config_specs - That is, later values override earlier values.

Parameters

• config_specs (list of str) – List of config specs.

• prepare (bool) – Flag to control whether or not prepare() is called
automatically before returning the object.

Return type Config

prepare()
Reorganizes the data such that the deployment logic can find it all where it expects to
be.

The raw configuration file is intended to be as human-friendly as possible partly
through the following mechanisms:

•In order to minimize repetition, any attributes that are common to all server con-
figurations can be specified in the server_common_attributes stanza even
though the stanza itself does not map directly to a deployable resource.

•For reference locality, each security group stanza contains its list of rules even
though rules are actually created in a separate stage from the groups themselves.

1.4. Hacking 27

bang Documentation, Release 0.18

In order to make the Config object more useful to the program logic, this method
performs the following transformations:

•Distributes the server_common_attributes among all the members of the
servers stanza.

•Extracts security group rules to a top-level key, and interpolates all source and
target values.

validate()
Performs all validation checks on this config.

Raises ValueError for invalid configs.

bang.config.find_component_tarball(bucket, comp_name, comp_config)
Returns True if the component tarball is found in the bucket.

Otherwise, returns False.

bang.config.parse_bangrc()
Parses $HOME/.bangrc for global settings and deployer credentials. The .bangrc file
is expected to be a YAML file whose outermost structure is a key-value map.

Note that even though .bangrc is just a YAML file in which a user could store any top-level
keys, it is not expected to be used as a holder of default values for stack-specific configuration
attributes - if present, they will be ignored.

Returns {} if $HOME/.bangrc does not exist.

Return type dict

bang.config.read_raw_bangrc()

bang.config.resolve_config_spec(config_spec, config_dir=’‘)
Resolves config_spec to a path to a config file.

Parameters

• config_spec (str) – Valid config specs:

– The basename of a YAML config file without the .yml extension.
The full path to the config file is resolved by appending .yml to the
basename, then by searching for the result in the config_dir.

– The path to a YAML config file. The path may be absolute or may be
relative to the current working directory. If config_spec contains
a / (forward slash), or if it ends in .yml, it is treated as a path.

• config_dir (str) – The directory in which to search for stack configura-
tion files.

Return type str

1.4. Hacking 28

bang Documentation, Release 0.18

bang.deployers

Base classes and definitions for bang deployers (deployable components)

bang.deployers.get_stage_deployers(keys, stack)
Returns a list of deployer objects that create cloud resources. Each member of the list is
responsible for provisioning a single stack resource (e.g. a virtual server, a security group, a
bucket, etc...).

Parameters

• keys (Iterable) – A list of top-level configuration keys for which to
create deployers.

• config (Stack) – A stack object.

Return type list of Deployer

bang.deployers.cloud

class bang.deployers.cloud.BaseDeployer(stack, config, consul)
Bases: bang.deployers.deployer.Deployer

Base class for all cloud resource deployers

__init__(stack, config, consul)

consul

class bang.deployers.cloud.BucketDeployer(*args, **kwargs)
Bases: bang.deployers.cloud.BaseDeployer

__init__(*args, **kwargs)

create()
Creates a new bucket

class bang.deployers.cloud.CloudManagerServerDeployer(*args,
**kwargs)

Bases: bang.deployers.cloud.ServerDeployer

Server deployer for cloud management services.

Cloud management services like RightScale and Scalr provide constructs like server tem-
plates (a.k.a. roles) to bundle together disk image ids with on-server configuration automa-
tion (e.g. RightScripts, Scalr scripts). This deployer replaces the low-level provisioning
functionality in the base ServerDeployer with a create() method that is more suited
to the high-level launching mechanism provided by cloud management services.

__init__(*args, **kwargs)

create()

1.4. Hacking 29

bang Documentation, Release 0.18

create_stack()

define()
Defines a new server.

find_def()

class bang.deployers.cloud.DatabaseDeployer(*args, **kwargs)
Bases: bang.deployers.cloud.BaseDeployer

__init__(*args, **kwargs)

add_to_inventory()
Adds db host to stack inventory

create()
Creates a new database

find_existing()
Searches for existing db instance with matching name. To match, the existing instance
must also be “running”.

class bang.deployers.cloud.LoadBalancerDeployer(*args, **kwargs)
Bases: bang.deployers.cloud.RegionedDeployer

Cloud-managed load balancer deployer. Assumes a consul able to create and discover LB
instances, as well as match existing backend ‘nodes’ to a list it’s given. It is assumed only
a single ‘instance’ per distinct load balancer needs to be created (i.e. that any elasticity is
handled by the cloud service).

Example config:

load_balancers:
test_balancer:

balance_server_name: server_defined_in_servers_section
region: region-1.geo-1
provider: hpcloud
backend_port: '8080'
protocol: tcp
port: '443'

__init__(*args, **kwargs)

add_to_inventory()
Adds lb IPs to stack inventory

configure_nodes()
Ensure that the LB’s nodes matches the stack

create()
Creates a new load balancer

1.4. Hacking 30

bang Documentation, Release 0.18

find_existing()
Searches for existing load balancer instance with matching name. Doesn’t populate
‘details’ including the nodes and virtual IPs

class bang.deployers.cloud.LoadBalancerSecurityGroupsDeployer(*args,
**kwargs)

Bases: bang.deployers.cloud.SecurityGroupRulesetDeployer

__init__(*args, **kwargs)

find_existing()

class bang.deployers.cloud.RegionedDeployer(stack, config, consul)
Bases: bang.deployers.cloud.BaseDeployer

Deployer that automatically sets its region

consul

class bang.deployers.cloud.SSHKeyDeployer(*args, **kwargs)
Bases: bang.deployers.cloud.RegionedDeployer

Registers SSH keys with cloud providers so they can be used at server-launch time.

__init__(*args, **kwargs)

find_existing()
Searches for an existing SSH key matching the name.

register()
Registers SSH key with provider.

class bang.deployers.cloud.SecurityGroupDeployer(*args, **kwargs)
Bases: bang.deployers.cloud.RegionedDeployer

__init__(*args, **kwargs)

create()
Creates a new security group

find_existing()
Finds existing secgroup

class bang.deployers.cloud.SecurityGroupRulesetDeployer(*args,
**kwargs)

Bases: bang.deployers.cloud.RegionedDeployer

__init__(*args, **kwargs)

apply_rule_changes()
Makes the security group rules match what is defined in the Bang config file.

find_existing()
Finds existing rule in secgroup.

1.4. Hacking 31

bang Documentation, Release 0.18

Populates self.create_these_rules and self.delete_these_rules.

class bang.deployers.cloud.ServerDeployer(*args, **kwargs)
Bases: bang.deployers.cloud.RegionedDeployer

__init__(*args, **kwargs)

add_to_inventory()
Adds host to stack inventory

create()
Launches a new server instance.

find_existing()
Searches for existing server instances with matching tags. To match, the existing in-
stances must also be “running”.

wait_for_running()
Waits for found servers to be operational

bang.deployers.cloud.get_deployer(provider, res_type)

bang.deployers.cloud.get_deployers(res_config, res_type, stack, creds)

bang.deployers.default

class bang.deployers.default.ServerDeployer(*args, **kwargs)
Bases: bang.deployers.deployer.Deployer

Default deployer that can be used for any servers that are already deployed and do not need
special deployment logic (e.g. traditional server rooms, manually deployed cloud servers).

Example of a minimal configuration for a manually provisioned app server:

my_app_server:
hostname: my_hostname_or_ip_address
groups:
- ansible_inventory_group_1
- ansible_inventory_group_n
config_scopes:
- config_scope_1
- config_scope_n

__init__(*args, **kwargs)

add_to_inventory()
Adds this server and its hostvars to the ansible inventory.

1.4. Hacking 32

bang Documentation, Release 0.18

bang.deployers.deployer

class bang.deployers.deployer.Deployer(stack, config)
Bases: object

Base class for all deployers

__init__(stack, config)

deploy()

inventory()
Gathers ansible inventory data.

Looks for existing servers that are members of the stack.

Does not attempt to create any resources.

run(action)
Runs through the phases defined by action.

Parameters action (str) – Either deploy or inventory.

bang.inventory

class bang.inventory.BangsibleInventory(groups, hostvars,
vault_password=None)

Bases: ansible.inventory.Inventory

__init__(groups, hostvars, vault_password=None)

get_variables(hostname, vault_password=None)

is_file()

bang.inventory.get_ansible_groups(group_map)
Constructs a list of ansible.inventory.group.Group objects from a map of lists
of host strings.

bang.providers

bang.providers.get_provider(name, creds)
Generates and memoizes a Provider object for the given name.

Parameters

• name (str) – The provider name, as given in the config stanza. This token
is used to find the appropriate Provider.

• creds (dict) – The credentials dictionary that is appropriate for the de-
sired provider. Typically, a sub-dict from the main stack config.

1.4. Hacking 33

bang Documentation, Release 0.18

Return type Provider

bang.providers.bases

class bang.providers.bases.Consul(provider)
Bases: object

The base class for all service consuls.

Not really the boss of anything, but conveys intent-from-above to foreign entities (e.g. Open-
Stack Nova/Swift, AWS EC2/S3/RDS, etc...). Also communicates the state of the world back
up to the boss.

__init__(provider)

class bang.providers.bases.Provider(creds)
Bases: object

The base class for all providers.

__init__(creds)

gen_component_name(basename, postfix_length=13)
Creates a resource identifier with a random postfix. This is an attempt to minimize
name collisions in provider namespaces.

Parameters

• basename (str) – The string that will be prefixed with the stack name,
and postfixed with some random string.

• postfix_length (int) – The length of the postfix to be appended.

get_consul(resource_type)
Returns an object that a Deployer uses to control resources of resource_type.

Parameters service (str) – Any of the resources defined in
bang.resources.

bang.providers.aws

class bang.providers.aws.AWS(creds)
Bases: bang.providers.bases.Provider

CONSUL_MAP = {‘databases’: <class ‘bang.providers.aws.RDS’>, ‘buckets’: <class ‘bang.providers.aws.S3’>, ‘server_security_groups’: <class ‘bang.providers.aws.EC2’>, ‘server_security_group_rules’: <class ‘bang.providers.aws.EC2’>, ‘servers’: <class ‘bang.providers.aws.EC2’>}

class bang.providers.aws.EC2(*args, **kwargs)
Bases: bang.providers.bases.Consul

The consul for the compute service in AWS (EC2).

1.4. Hacking 34

bang Documentation, Release 0.18

__init__(*args, **kwargs)

create_secgroup(name, description)
Creates a new server security group.

Parameters

• name (str) – The name of the security group to create.

• description (str) – A short description of the group.

create_secgroup_rule(protocol, from_port, to_port, source, target)
Creates a new server security group rule.

Parameters

• protocol (str) – E.g. tcp, icmp, etc...

• from_port (int) – E.g. 1

• to_port (int) – E.g. 65535

• source (str) –

• target (str) – The target security group. I.e. the group in which this
rule should be created.

create_server(basename, disk_image_id, instance_type, ssh_key_name,
tags=None, availability_zone=None, timeout_s=120,
**provider_extras)

Creates a new server instance. This call blocks until the server is created and available
for normal use, or timeout_s has elapsed.

Parameters

• basename (str) – An identifier for the server. A random postfix will
be appended to this basename to work around OpenStack Nova REST
API limitations.

• disk_image_id (str) – The identifier of the base disk image to use as
the rootfs.

• instance_type (str) – The name of an EC2 instance type.

• ssh_key_name (str) – The name of the ssh key to inject into the target
server’s authorized_keys file. The key must already have been
registered in the target EC2 region.

• tags (Mapping) – Up to 5 key-value pairs of arbitrary strings to use as
tags for the server instance.

• availability_zone (str) – The name of the availability zone in which to
place the server.

1.4. Hacking 35

bang Documentation, Release 0.18

• timeout_s (float) – The number of seconds to poll for an active server
before failing. Defaults to 0 (i.e. Expect server to be active immedi-
ately).

Return type dict

delete_secgroup_rule(rule_def)
Deletes the security group rule identified by rule_def

ec2

find_running(server_attrs, timeout_s)

find_secgroup(name)
Find a security group by name.

Returns a EC2SecGroup instance if found, otherwise returns None.

find_servers(tags, running=True)
Returns any servers in the region that have tags that match the key-value pairs in tags.

Parameters

• tags (Mapping) – A mapping object in which the keys are the tag names
and the values are the tag values.

• running (bool) – A flag to limit server list to instances that are actually
running.

Return type list of dict objects. Each dict describes a single server
instance.

set_region(region_name)

class bang.providers.aws.EC2SecGroup(ec2sg)
Bases: object

Represents an EC2 security group.

The rules attribute is a specialized dict whose keys are the normalized rule defini-
tions, and whose values are EC2 grants which can be kwargs-expanded when passing
boto.ec2.securitygroup.SecurityGroup.revoke(). E.g.:

{
('tcp', 1, 65535, 'group-foo'): {

'ip_protocol': 'tcp',
'from_port': '1',
'to_port': '65535',
'src_group': 'group-foo',
'target': SecurityGroup:group-bar,
},

('tcp', 8080, 8080, '15.183.202.114/32'): {
'ip_protocol': 'tcp',

1.4. Hacking 36

bang Documentation, Release 0.18

'from_port': '8080',
'to_port': '8080',
'cidr_ip': '15.183.202.114/32',
'target': SecurityGroup:group-bar,
},

}

This also maintains a reference to the original boto.ec2.securitygroup.SecurityGroup
instance.

Suitable for returning from EC2.find_secgroup().

__init__(ec2sg)

class bang.providers.aws.RDS(provider)
Bases: bang.providers.bases.Consul

class bang.providers.aws.S3(*args, **kwargs)
Bases: bang.providers.bases.Consul

The consul for the storage service in AWS (S3).

__init__(*args, **kwargs)

create_bucket(name)
Creates a new S3 bucket. :param str name: E.g. ‘mybucket’

s3

set_region(region_name)

bang.providers.aws.server_to_dict(server)
Returns the dict representation of a server object.

The returned dict is meant to be consumed by ServerDeployer objects.

1.4. Hacking 37

bang Documentation, Release 0.18

bang.providers.hpcloud

bang.providers.hpcloud.load_balancer

bang.providers.hpcloud.reddwarf

bang.providers.openstack

bang.providers.rs

bang.stack

class bang.stack.Stack(config)
Bases: object

Deploys infrastructure/platform resources, then configures any deployed servers using ansi-
ble playbooks.

__init__(config)

Parameters config (bang.config.Config) – A mapping object with
configuration keys and values. May be arbitrarily nested.

add_host(host, group_names=None, host_vars=None)
Used by deployers to add hosts to the inventory.

Parameters

• host (str) – The host identifier (e.g. hostname, IP address) to use in the
inventory.

• group_names (list) – A list of group names to which the host belongs.
Note: This list will be sorted in-place.

• host_vars (dict) – A mapping object of host variables. This can be a
nested structure, and is used as the source of all the variables provided
to the ansible playbooks. Note: Additional key-value pairs (e.g. dy-
namic ansible values like ‘‘inventory_hostname‘‘) will be inserted
into this mapping object.

add_lb_secgroup(lb_name, hosts, port)
Used by the load balancer deployer to register a hostname for a load balancer, in order
that security group rules can be applied later. This is multiprocess-safe, but since keys
are accessed only be a single load balancer deployer there should be no conflicts.

Parameters lb_name (str) – The load balancer name (as per the config file)

:param list hosts: The load balancer host[s], once known

Parameters port – The backend port that the LB will connect on

1.4. Hacking 38

bang Documentation, Release 0.18

configure(*args, **kwargs)
Executes the ansible playbooks that configure the servers in the stack.

Assumes that the root playbook directory is ./playbooks/ relative to the stack
configuration file. Also sets the ansible module_path to be ./common_modules/
relative to the stack configuration file.

E.g. If the stack configuration file is:

$HOME/bang-stacks/my_web_service.yml

then the root playbook directory is:

$HOME/bang-stacks/playbooks/

and the ansible module path is:

$HOME/bang-stacks/common_modules/

deploy()
Iterates through the deployers returned by self.get_deployers().

Deployers in the same stage are run concurrently. The runner only proceeds to the next
stage once all of the deployers in the same stage have completed successfully.

Any failures in a stage cause the run to terminate before proceeding to the next stage.

describe()
Iterates through the deployers but doesn’t run anything

find_first(attr_name, resources, extra_prefix=’‘)
Returns the boto object for the first resource in resources that belongs to this stack.
Uses the attribute specified by attr_name to match the stack name.

E.g. An RDS instance for a stack named foo might be named
foo-mydb-fis8932ifs. This call:

find_first('id', conn.get_all_dbinstances())

would return the boto.rds.dbinstance.DBInstance object whose id is
foo-mydb-fis8932ifs.

Returns None if a matching resource is not found.

If specified, extra_prefix is appended to the stack name prefix before matching.

gather_inventory()
Gathers existing inventory info.

Does not create any new infrastructure.

1.4. Hacking 39

bang Documentation, Release 0.18

get_deployers()
Returns a list of stages, where each stage is a list of Deployer objects. It
defines the execution order of the various deployers.

get_namespace(key)
Returns a SharedNamespace for the given key. These are used by Deployer
objects of the same deployer_class to coordinate control over multiple deployed
instances of like resources. E.g. With 5 clones of an application server, 5 Deployer
objects in separate, concurrent processes will use the same shared namespace to ensure
that each object/process controls a distinct server.

Parameters key (str) – Unique ID for the namespace. Deployer objects
that call get_namespace() with the same key will receive the same
SharedNamespace object.

have_inventory = None
Deployers stash inventory data for any newly-created servers in this mapping object.
Note: uses SharedMap because this must be multiprocess-safe.

show_inventory(*args, **kwargs)
Satisfies the --list portion of ansible’s external inventory API.

Allows bang to be used as an external inventory script, for example when run-
ning ad-hoc ops tasks. For more details, see: http://ansible.cc/docs/api.html#external-
inventory-scripts

bang.stack.require_inventory(f)

bang.util

class bang.util.ColoredConsoleFormatter(fmt=None, datefmt=None)
Bases: logging.Formatter

format(record)

class bang.util.JSONFormatter(config)
Bases: logging.Formatter

__init__(config)

format(record)

class bang.util.NullHandler(level=0)
Bases: logging.Handler

This handler does nothing. It’s intended to be used to avoid the “No handlers could be
found for logger XXX” one-off warning. This is important for library code, which may
contain code to log events. If a user of the library does not configure logging, the one-off
warning might be produced; to avoid this, the library developer simply needs to instantiate a
NullHandler and add it to the top-level logger of the library module or package.

1.4. Hacking 40

http://ansible.cc/docs/api.html#external-inventory-scripts
http://ansible.cc/docs/api.html#external-inventory-scripts

bang Documentation, Release 0.18

createLock()

emit(record)

handle(record)

class bang.util.S3Handler(bucket, prefix=’‘)
Bases: logging.handlers.BufferingHandler

Buffers all logging events, then uploads them all at once “atexit” to a single file in S3.

__init__(bucket, prefix=’‘)

flush()

shouldFlush(record)

class bang.util.SharedMap(manager)
Bases: object

A multiprocess-safe Mapping object that can be used to return values from child processes.

__init__(manager)

append(list_name, value)
Appends value to the list named list_name.

merge(dict_name, values)
Performs deep-merge of values onto the Mapping object named dict_name.

If dict_name does not yet exist, then a deep copy of values is assigned as the
initial mapping object for the given name.

Parameters dict_name (str) – The name of the dict onto which the values
should be merged.

class bang.util.SharedNamespace(manager)
Bases: object

A multiprocess-safe namespace that can be used to coordinate naming similar resources
uniquely. E.g. when searching for existing nodes in a cassandra cluster, you can use this
SharedNamespace to make sure other processes aren’t looking at the same node.

__init__(manager)

add_if_unique(name)
Returns True on success.

Returns False if the name already exists in the namespace.

class bang.util.StrictAttrBag(**kwargs)
Bases: object

Generic attribute container that makes constructor arguments available as object attributes.

1.4. Hacking 41

bang Documentation, Release 0.18

Checks __init__() argument names against lists of required and optional attributes.

__init__(**kwargs)

bang.util.bump_version_tail(oldver)
Takes any dot-separated version string and increments the rightmost field (which it expects
to be an integer).

bang.util.count_by_tag(stack, descriptor)
Returns the count of currently running or pending instances that match the given stack and
deployer combo

bang.util.count_to_deploy(stack, descriptor, config_count)
takes the max of config_count and number of instances running with this stack/descriptor
combo

bang.util.deep_merge_dicts(base, incoming)
Performs an in-place deep-merge of key-values from incoming into base. No attempt is
made to preserve the original state of the objects passed in as arguments.

Parameters

• base (Any dict-like object) – The target container for the merged val-
ues. This will be modified in-place.

• incoming (Any dict-like object) – The container from which incoming
values will be copied. Nested dicts in this will be modified.

Return type None

bang.util.fork_exec(cmd_list, input_data=None)
Like the subprocess.check_*() helper functions, but tailored to bang.

cmd_list is the command to run, and its arguments as a list of strings.

input_data is the optional data to pass to the command’s stdin.

On success, returns the output (i.e. stdout) of the remote command.

On failure, raises BangError with the command’s stderr.

bang.util.get_argparser(arg_config)

bang.util.initialize_logging(config)

bang.util.poll_with_timeout(timeout_s, break_func, wake_every_s=60)
Calls break_func every wake_every_s seconds for a total duration of timeout_s
seconds, or until break_func returns something other than None.

If break_func returns anything other than None, that value is returned immediately.

Otherwise, continues polling until the timeout is reached, then returns None.

1.4. Hacking 42

bang Documentation, Release 0.18

bang.util.redact_secrets(line)
Returns a sanitized string for any line that looks like it contains a secret (i.e. matches
SECRET_PATTERN).

bang.util.sanitize_config_loglevel(level)
Kinda sorta backport of loglevel sanitization for Python 2.6.

bang.util.state_filter(instance)
Helper function for count_by_tag

1.4. Hacking 43

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

44

Python Module Index

b
bang, 24
bang.attributes, 24
bang.attributes.ansible, 26
bang.attributes.creds, 26
bang.attributes.database, 26
bang.attributes.loadbalancer, 26
bang.attributes.logging, 26
bang.attributes.secgroup, 26
bang.attributes.server, 26
bang.attributes.ssh_key, 26
bang.attributes.tags, 26
bang.config, 26
bang.deployers, 29
bang.deployers.cloud, 29
bang.deployers.default, 32
bang.deployers.deployer, 33
bang.inventory, 33
bang.providers, 33
bang.providers.aws, 34
bang.providers.bases, 34
bang.stack, 38
bang.util, 40

45

Index

Symbols
__init__() (bang.config.Config method), 26
__init__() (bang.deployers.cloud.BaseDeployer

method), 29
__init__() (bang.deployers.cloud.BucketDeployer

method), 29
__init__() (bang.deployers.cloud.CloudManagerServerDeployer

method), 29
__init__() (bang.deployers.cloud.DatabaseDeployer

method), 30
__init__() (bang.deployers.cloud.LoadBalancerDeployer

method), 30
__init__() (bang.deployers.cloud.LoadBalancerSecurityGroupsDeployer

method), 31
__init__() (bang.deployers.cloud.SSHKeyDeployer

method), 31
__init__() (bang.deployers.cloud.SecurityGroupDeployer

method), 31
__init__() (bang.deployers.cloud.SecurityGroupRulesetDeployer

method), 31
__init__() (bang.deployers.cloud.ServerDeployer

method), 32
__init__() (bang.deployers.default.ServerDeployer

method), 32
__init__() (bang.deployers.deployer.Deployer

method), 33
__init__() (bang.inventory.BangsibleInventory

method), 33
__init__() (bang.providers.aws.EC2 method),

34
__init__() (bang.providers.aws.EC2SecGroup

method), 37
__init__() (bang.providers.aws.S3 method), 37

__init__() (bang.providers.bases.Consul
method), 34

__init__() (bang.providers.bases.Provider
method), 34

__init__() (bang.stack.Stack method), 38
__init__() (bang.util.JSONFormatter method),

40
__init__() (bang.util.S3Handler method), 41
__init__() (bang.util.SharedMap method), 41
__init__() (bang.util.SharedNamespace

method), 41
__init__() (bang.util.StrictAttrBag method), 42

A
add_host() (bang.stack.Stack method), 38
add_if_unique() (bang.util.SharedNamespace

method), 41
add_lb_secgroup() (bang.stack.Stack method),

38
add_to_inventory()

(bang.deployers.cloud.DatabaseDeployer
method), 30

add_to_inventory()
(bang.deployers.cloud.LoadBalancerDeployer
method), 30

add_to_inventory()
(bang.deployers.cloud.ServerDeployer
method), 32

add_to_inventory()
(bang.deployers.default.ServerDeployer
method), 32

ANSIBLE (in module bang.attributes), 24
append() (bang.util.SharedMap method), 41

46

bang Documentation, Release 0.18

apply_rule_changes()
(bang.deployers.cloud.SecurityGroupRulesetDeployer
method), 31

ASK_VAULT_PASS (in module
bang.attributes.ansible), 26

autoinc() (bang.config.Config method), 27
AWS (class in bang.providers.aws), 34

B
bang (module), 24
bang.attributes (module), 24
bang.attributes.ansible (module), 26
bang.attributes.creds (module), 26
bang.attributes.database (module), 26
bang.attributes.loadbalancer (module), 26
bang.attributes.logging (module), 26
bang.attributes.secgroup (module), 26
bang.attributes.server (module), 26
bang.attributes.ssh_key (module), 26
bang.attributes.tags (module), 26
bang.config (module), 26
bang.deployers (module), 29
bang.deployers.cloud (module), 29
bang.deployers.default (module), 32
bang.deployers.deployer (module), 33
bang.inventory (module), 33
bang.providers (module), 33
bang.providers.aws (module), 34
bang.providers.bases (module), 34
bang.stack (module), 38
bang.util (module), 40
BANG_ATTRS (in module

bang.attributes.server), 26
BangError, 24
BangsibleInventory (class in bang.inventory),

33
BaseDeployer (class in bang.deployers.cloud),

29
BucketDeployer (class in

bang.deployers.cloud), 29
bump_version_tail() (in module bang.util), 42

C
CloudManagerServerDeployer (class in

bang.deployers.cloud), 29

ColoredConsoleFormatter (class in bang.util),
40

Config (class in bang.config), 26
CONFIG_DIR (in module bang.attributes), 24
configure() (bang.stack.Stack method), 38
configure_nodes()

(bang.deployers.cloud.LoadBalancerDeployer
method), 30

consul (bang.deployers.cloud.BaseDeployer at-
tribute), 29

consul (bang.deployers.cloud.RegionedDeployer
attribute), 31

Consul (class in bang.providers.bases), 34
CONSUL_MAP (bang.providers.aws.AWS at-

tribute), 34
count_by_tag() (in module bang.util), 42
count_to_deploy() (in module bang.util), 42
create() (bang.deployers.cloud.BucketDeployer

method), 29
create() (bang.deployers.cloud.CloudManagerServerDeployer

method), 29
create() (bang.deployers.cloud.DatabaseDeployer

method), 30
create() (bang.deployers.cloud.LoadBalancerDeployer

method), 30
create() (bang.deployers.cloud.SecurityGroupDeployer

method), 31
create() (bang.deployers.cloud.ServerDeployer

method), 32
create_bucket() (bang.providers.aws.S3

method), 37
create_secgroup() (bang.providers.aws.EC2

method), 35
create_secgroup_rule()

(bang.providers.aws.EC2 method),
35

create_server() (bang.providers.aws.EC2
method), 35

create_stack() (bang.deployers.cloud.CloudManagerServerDeployer
method), 29

createLock() (bang.util.NullHandler method),
40

Index 47

bang Documentation, Release 0.18

D
DatabaseDeployer (class in

bang.deployers.cloud), 30
deep_merge_dicts() (in module bang.util), 42
define() (bang.deployers.cloud.CloudManagerServerDeployer

method), 30
delete_secgroup_rule()

(bang.providers.aws.EC2 method),
36

deploy() (bang.deployers.deployer.Deployer
method), 33

deploy() (bang.stack.Stack method), 39
Deployer (class in bang.deployers.deployer), 33
DEPLOYER_CREDS (in module

bang.attributes), 24
describe() (bang.stack.Stack method), 39

E
ec2 (bang.providers.aws.EC2 attribute), 36
EC2 (class in bang.providers.aws), 34
EC2SecGroup (class in bang.providers.aws), 36
emit() (bang.util.NullHandler method), 41

F
find_component_tarball() (in module

bang.config), 28
find_def() (bang.deployers.cloud.CloudManagerServerDeployer

method), 30
find_existing() (bang.deployers.cloud.DatabaseDeployer

method), 30
find_existing() (bang.deployers.cloud.LoadBalancerDeployer

method), 30
find_existing() (bang.deployers.cloud.LoadBalancerSecurityGroupsDeployer

method), 31
find_existing() (bang.deployers.cloud.SecurityGroupDeployer

method), 31
find_existing() (bang.deployers.cloud.SecurityGroupRulesetDeployer

method), 31
find_existing() (bang.deployers.cloud.ServerDeployer

method), 32
find_existing() (bang.deployers.cloud.SSHKeyDeployer

method), 31
find_first() (bang.stack.Stack method), 39
find_running() (bang.providers.aws.EC2

method), 36

find_secgroup() (bang.providers.aws.EC2
method), 36

find_servers() (bang.providers.aws.EC2
method), 36

flush() (bang.util.S3Handler method), 41
fork_exec() (in module bang.util), 42
format() (bang.util.ColoredConsoleFormatter

method), 40
format() (bang.util.JSONFormatter method), 40
from_config_specs() (bang.config.Config class

method), 27

G
gather_inventory() (bang.stack.Stack method),

39
gen_component_name()

(bang.providers.bases.Provider
method), 34

get_ansible_groups() (in module
bang.inventory), 33

get_argparser() (in module bang.util), 42
get_consul() (bang.providers.bases.Provider

method), 34
get_deployer() (in module

bang.deployers.cloud), 32
get_deployers() (bang.stack.Stack method), 39
get_deployers() (in module

bang.deployers.cloud), 32
get_namespace() (bang.stack.Stack method), 40
get_provider() (in module bang.providers), 33
get_stage_deployers() (in module

bang.deployers), 29
get_variables() (bang.inventory.BangsibleInventory

method), 33

H
handle() (bang.util.NullHandler method), 41
have_inventory (bang.stack.Stack attribute), 40

I
initialize_logging() (in module bang.util), 42
inventory() (bang.deployers.deployer.Deployer

method), 33
is_file() (bang.inventory.BangsibleInventory

method), 33

Index 48

bang Documentation, Release 0.18

J
JSONFormatter (class in bang.util), 40

L
LoadBalancerDeployer (class in

bang.deployers.cloud), 30
LoadBalancerSecurityGroupsDeployer (class in

bang.deployers.cloud), 31
LOGGING (in module bang.attributes), 25

M
merge() (bang.util.SharedMap method), 41

N
NAME (in module bang.attributes), 25
NAME_TAG_NAME (in module

bang.attributes), 25
NullHandler (class in bang.util), 40

P
parse_bangrc() (in module bang.config), 28
PLAYBOOKS (in module bang.attributes), 25
poll_with_timeout() (in module bang.util), 42
prepare() (bang.config.Config method), 27
Provider (class in bang.providers.bases), 34
PROVIDER (in module bang.attributes), 25

R
RDS (class in bang.providers.aws), 37
read_raw_bangrc() (in module bang.config), 28
redact_secrets() (in module bang.util), 42
RegionedDeployer (class in

bang.deployers.cloud), 31
register() (bang.deployers.cloud.SSHKeyDeployer

method), 31
require_inventory() (in module bang.stack), 40
resolve_config_spec() (in module bang.config),

28
run() (bang.deployers.deployer.Deployer

method), 33

S
s3 (bang.providers.aws.S3 attribute), 37
S3 (class in bang.providers.aws), 37
S3Handler (class in bang.util), 41

sanitize_config_loglevel() (in module
bang.util), 43

SecurityGroupDeployer (class in
bang.deployers.cloud), 31

SecurityGroupRulesetDeployer (class in
bang.deployers.cloud), 31

SERVER_CLASS (in module bang.attributes),
25

server_to_dict() (in module
bang.providers.aws), 37

ServerDeployer (class in bang.deployers.cloud),
32

ServerDeployer (class in
bang.deployers.default), 32

set_region() (bang.providers.aws.EC2 method),
36

set_region() (bang.providers.aws.S3 method),
37

SharedMap (class in bang.util), 41
SharedNamespace (class in bang.util), 41
shouldFlush() (bang.util.S3Handler method), 41
show_inventory() (bang.stack.Stack method),

40
SSHKeyDeployer (class in

bang.deployers.cloud), 31
Stack (class in bang.stack), 38
STACK (in module bang.attributes), 25
state_filter() (in module bang.util), 43
StrictAttrBag (class in bang.util), 41

T
TimeoutError, 24

V
validate() (bang.config.Config method), 28
VAULT_PASS (in module

bang.attributes.ansible), 26
VERBOSITY (in module

bang.attributes.ansible), 26
VERSION (in module bang.attributes), 25

W
wait_for_running()

(bang.deployers.cloud.ServerDeployer
method), 32

Index 49

	Overview
	User Guide
	Release Summary
	Road Map
	Hacking

	Indices and tables
	Python Module Index

