
Banana Documentation
Release 2.0

Gijs Molenaar, John Swinbank, Tim Staley

January 15, 2016

Contents

1 Introduction 3

2 Installation 5
2.1 Requirements . 5
2.2 Quick configuration . 5
2.3 Runnig the server . 5
2.4 Deployment . 5

3 Configuration 7

4 Project Layout 9
4.1 Banana Project . 9
4.2 Banana . 9
4.3 Artwork . 9
4.4 Documentation . 9

5 Models 11
5.1 Updating the model . 11

6 Testing 13
6.1 Running the test suite . 13
6.2 Updating the fixtures . 13
6.3 Travis . 13

7 Banana specific Django View Mixins 15
7.1 The mixins . 15

8 Banana and multiple databases 17
8.1 Module documentation . 17

9 Indices and tables 19

Python Module Index 21

i

ii

Banana Documentation, Release 2.0

Contents:

Contents 1

Banana Documentation, Release 2.0

2 Contents

CHAPTER 1

Introduction

This is Banana - the web frontend for a database populated by the TRAnsients Pipeline (TRAP).

Technically it is a Django project.

3

http://docs.transientskp.org/
https://www.djangoproject.com/

Banana Documentation, Release 2.0

4 Chapter 1. Introduction

CHAPTER 2

Installation

2.1 Requirements

Banana depends on various 3rd party Python libraries which are defined in the requirements.txt file. You can install
the dependencies using pip:

$ pip install astropy
$ pip install -r requirements.txt

Pip cant figure out dependencies correctly in some cases, so you need to manually install astropy first.

2.2 Quick configuration

copy the example config file:

$ cp project/settings/local_example.py project/settings/local.py

Now open project.settings.local in your favorite editor and configure your database settings.

2.3 Runnig the server

You can run a Django testing webserver serving the banana project using:

$./manage.py runserver

2.4 Deployment

If you want a more permanent implementation and serve Banana so several users it is adviced to deploy your setup
with a dedicated webserver. The Django project itself has extended documentation on how to do this.

5

http://pip.readthedocs.org/
https://docs.djangoproject.com/en/1.6/howto/deployment/

Banana Documentation, Release 2.0

6 Chapter 2. Installation

CHAPTER 3

Configuration

All settings are defined in the python module project.settings. banana first loads
project.settings.base followed by project.settings.local. When you start using banana
for the firs time, there will be no local file. You should copy project.settings.local_example to
project.settings.local and adjust it to your environment. The base should contains all settings which are
required by Banana and you should not modify this file. You should override, append or define new settings variables
in local.

7

Banana Documentation, Release 2.0

8 Chapter 3. Configuration

CHAPTER 4

Project Layout

Contents:

4.1 Banana Project

This is the Banana Django Project. At the moment the split between the Banana app and the banana project is quite
ambiguous since for now they are never used separately. The Django Project is a placeholder for site specific logic or
media types, like custom settings, templates and logo’s. The app should contain all code that can be reused in an other
Django project, together with other apps with a specific independent purpose.

You can read more about this distinction in the Django documentation resusable apps section.

4.2 Banana

This is the Django Banana app. To learn more about what an app is please read the Banana Project section.

4.3 Artwork

This folder contains banana artwork.

4.4 Documentation

the doc folder inside the banana project contains a Sphinx documentation project which is used to generate the docu-
mentation your are now reading.

9

https://docs.djangoproject.com/en/1.6/intro/reusable-apps/
http://sphinx-doc.org/

Banana Documentation, Release 2.0

10 Chapter 4. Project Layout

CHAPTER 5

Models

banana.models contains the Django ORM models. These Object Oriented representation of a TRAP database. Since
you don’t initialise the TRAP database using Django, we need to manually keep the Django models in sync with the
TRAP schema. Below we describe a procedure on how to do this.

5.1 Updating the model

You need to update the banana/models.py file to reflect the new database structure. The easy way to do this is as
follows:

• Generate a new database with the schema version you want to upgrade to (using, eg, tkp-manage.py initdb).
Either MonetDB or Postgres is fine.

• Get a Banana installation which is able to connect to your database. You’ll need to edit project/settings/local.py
to set the appropriate hostname, port and password for MonetDB and/or for Postgres. Banana will build a list
of all the databases on the host you specify, based on the assumption that the database name, username and
password are all the same.

• Within your banana directory, dump a set of models representing your new database by running:

$./manage.py inspectdb --database=<dbname> > banana/models_new.py

• Using your favourite tool, update banana/models.py to reflect the additions in banana/models_new.py. Note
that banana/models.py has a bunch of useful customization which we don’t want to lose. don’t replace it with
the new version, but rather carefully compare it with the new models and merge only the relevant changes.

• Update the schema_version variable defined in banana/models.py to reflect the new schema.

• Check for any templates (stored in banana/templates) which are using model fields which you’ve just removed
or renamed, and modify them to use the new models.

• Commit your changes, submit a pull request, and have a cup of tea.

11

Banana Documentation, Release 2.0

12 Chapter 5. Models

CHAPTER 6

Testing

You should be careful when running the test suite. Default behavior for Django is to take your database configuration
(which you defined in project.settings.local, append _test to the database name and attempt to create and
destroy this database configuration. You probably don’t want to do this in production. We created a seperate testing
subproject that takes the banana configuration but overrides the database settings to use a safe sqlite based database
configuration.

6.1 Running the test suite

To run the banana test suite run:

$./manage.py test --settings=testing.settings

6.2 Updating the fixtures

Always regenerate the fixtures when you altered the model. You should do this by populating a TKP database with
Mock data.

• (re)create a database

• initialise schema with tkp-manage.py initdb

• run banana/util/create_content.py to create mock data. Configure the connection using the TKP_DB* envi-
ronment variables

• configure the Banana project to use this database

• dump the db content:

$./manage.py dumpdata --database=%{TK_DBNAME} --indent=1 banana > testing/fixtures/initial_data.json

6.3 Travis

For every commit to every branch or every issued pull request the travis build system is triggered and will try to run
the test suite for that branch. It will update the github status page of the branch or pull request according to the test
run output (failed or not).

13

https://travis-ci.org/transientskp/banana

Banana Documentation, Release 2.0

14 Chapter 6. Testing

CHAPTER 7

Banana specific Django View Mixins

To fit our specific requirements we created Django View Mixins that extend the default behavior. They are used in
various views in the banana app.

7.1 The mixins

class banana.views.mixins.DatasetMixin
Mixin view that adds the ‘dataset’ request variable to the context.

class banana.views.mixins.FluxViewMixin
Mixin view that adds the ‘flux_prefix’ request variable to the context.

class banana.views.mixins.HybridTemplateMixin
Assigns a default template_name, and checks the request for a format.

If the format specified in the querystring is json or csv, this will change the content_type and
template_name accordingly.

If template name is not explicitly set, we assign one based on the object or model in the view. We derive the
template path as:

<app_label>/<object_name.lower()><template_name_suffix><extension>

where template_name_suffix is something like ‘_list’ or ‘_detail’ (inherited from the Django standard
class views) e.g.:

banana/extractedsource_list.html

banana/extractedsource_detail.html

class banana.views.mixins.SortListMixin
View mixin which provides sorting for ListView.

15

Banana Documentation, Release 2.0

16 Chapter 7. Banana specific Django View Mixins

CHAPTER 8

Banana and multiple databases

The way we deploy TRAP and Banana at the University of Amsterdam is that various scientists create multiple
PostgreSQL and MonetDB databases and populate these with data. We want to be able to visualise the content of all
these databases.

We’ve created various helper functions (project.settings.database) that assist in automatically populating
the Django configuration with our site specific configuration. It is adviced not to use these in production, but rather
build a manual configuration.

The database which is used is based on the URL, specifically the URL variable. We’ve crafted a combination of
Django middleware and Django database routing that makes Django use the desired database. Below is the module
documentation for that logic.

8.1 Module documentation

Select database based on URL variable

Inspired by this Django snipped.

It’s assumed that any view in the system with a cfg keyword argument passed to it from the urlconf may be routed to
a separate database. for example:

url(r'^(?P<db>\w+)/account/$', 'views.account')

The middleware and router will select a database whose alias is <db>, default if no db argument is given and raise a
404 exception if not listed in settings.DATABASES, all completely transparent to the view itself.

class project.multidb.MultiDbRouter
The multiple database router.

Add this to your Django database router configuration, for example:

DATABASE_ROUTERS += ['project.multidb.MultiDbRouter']

class project.multidb.MultiDbRouterMiddleware
The Multidb router middelware.

he middleware process_view (or process_request) function sets some context from the URL into thread local
storage, and process_response deletes it. In between, any database operation will call the router, which checks
for this context and returns an appropriate database alias.

Add this to your middleware, for example:

17

https://djangosnippets.org/snippets/2037/

Banana Documentation, Release 2.0

MIDDLEWARE_CLASSES += ['project.multidb.MultiDbRouterMiddleware']

project.multidb.multidb_context_processor(request)
This context processor will add a db_name to the request.

Add this to your Django context processors, for example:

TEMPLATE_CONTEXT_PROCESSORS +=[
'project.multidb.multidb_context_processor']

18 Chapter 8. Banana and multiple databases

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

19

Banana Documentation, Release 2.0

20 Chapter 9. Indices and tables

Python Module Index

b
banana, 9
banana.views.mixins, 15

p
project, 9
project.multidb, 17

21

Banana Documentation, Release 2.0

22 Python Module Index

Index

B
banana (module), 9
banana.views.mixins (module), 15

D
DatasetMixin (class in banana.views.mixins), 15

F
FluxViewMixin (class in banana.views.mixins), 15

H
HybridTemplateMixin (class in banana.views.mixins), 15

M
multidb_context_processor() (in module project.multidb),

18
MultiDbRouter (class in project.multidb), 17
MultiDbRouterMiddleware (class in project.multidb), 17

P
project (module), 9
project.multidb (module), 17

S
SortListMixin (class in banana.views.mixins), 15

23

	Introduction
	Installation
	Requirements
	Quick configuration
	Runnig the server
	Deployment

	Configuration
	Project Layout
	Banana Project
	Banana
	Artwork
	Documentation

	Models
	Updating the model

	Testing
	Running the test suite
	Updating the fixtures
	Travis

	Banana specific Django View Mixins
	The mixins

	Banana and multiple databases
	Module documentation

	Indices and tables
	Python Module Index

