

Babble Consensus

Babble is based on our own interpretation of Hashgraph, but also builds upon
other techniques that facilitate coordination within distributed systems. Here,
we give a high-level overview of the most important concepts that inspired the
development of Babble and how they all fit together. This document is also
intended for a non-technical audience.

Common Knowledge

Roughly speaking, attaining common knowledge within a group means “everyone
knows that everyone known that everyone knows…” to infinity. It is a
necessary and sometimes even sufficient condition for reaching agreement and
for coordinating actions. This connection was perhaps first drawn by David
Lewis in his work on conventions [https://www.princeton.edu/~harman/Courses/PHI534-2012-13/Nov26/lewis-convention1.pdf],
which led to the original definition. It is a fascinating topic that goes far
beyond computer systems. We highly recommend the book Reasoning About
Knowledge [https://www.cs.rice.edu/~vardi/papers/book.pdf] for a very
thorough treatment of the subject.

To get an intuition about the link between common knowledge and agreement, we
can look at the well know ‘coordinated attack’ problem. Two generals and their
respective armies are posted on opposite sides of an enemy city perched on top
of a hill. They must decide to attack together, at the same time, or not at
all. Indeed, if one general attacks alone, he will lose the battle. The only
means of communication is a messenger on horseback (always at risk of being
intercepted by the enemy). How do they coordinate their attack?

One general, having made the decision to attack, could send a messenger to the
other general. Upon receiving that message, the second general knows that the
first general wants to attack, but he doesn’t know that the first general knows
that he received the message. So he sends an acknowledgment. Upon receiving the
acknowledgment, the first general, knows that the second general knows that he
wants to attack, but he doesn’t know that the second general knows that he
received the acknowledgment… There is always this element of doubt preventing
either general from committing to a decision. It quickly becomes apparent that
what is needed is common knowledge.

The dilemma is that pure common knowledge is not attainable in practical
situations; particularly in asynchronous message passing systems with
unreliable transports (like the two generals). Hence, we have to relax our
requirements and rely on approximations of common knowledge. In Babble, we drop
the simultaneity and allow participants to decide at different times.

Gossip About Gossip

One way to approximate common knowledge in this context is to use a
communication protocol where participants regularly tell each other everything
they know about what everyone else knows. These are usually referred to as Full
Information Protocols, aka ‘gossip about gossip’.

Members locally record the history of the gossip protocol in a directed acyclic
graph, a DAG, where each vertex represents a gossip event and the edges connect
a vertex to the immediately-preceding vertices. Roughly speaking, a member, say
Alice, will repeatedly choose another member at random, say Bob, and attempt to
learn what he knows that she doesn’t know. She will send him a sync request
saying ‘Hey, here is what I know; what do you know that I don’t know?’. Bob
will compute the difference and respond with a set of events that he knows and
Alice doesn’t yet know. Alice will insert these events in her DAG, and create a
new event to record this sync. The newly created event includes the hashes of
her last event, and Bob’s last event. Hence, the DAG is connected by a
succession of recursive cryptographic hashes; like a blockchain, but
two-dimensional. Each event contains the hashes of the events below it and is
digitally signed by its creator. So the entire graph of hashes is
cryptographically secure.

[image: _images/dag.png]
The communication graph is a very rich data structure from which we can extract
all sorts of information about the history of gossip, and also derive a
consistent ordering of the events, even in the presence of faulty participants.
But let’s take it step by step.

Lamport Timestamps

Leslie Lamport introduced a seminal paper in 1978, entitled “Time, Clocks, and
the Ordering of Events in a Distributed System” [https://lamport.azurewebsites.net/pubs/time-clocks.pdf]. In this paper he
describes a distributed algorithm for extracting a consistent total ordering of
the events in an asynchronous message passing system, using a concept of
Logical Clocks.

The algorithm follows some simple rules:

	A process increments its counter before each event in that process;

	When a process sends a message, it includes its counter value with the
message;

	On receiving a message, the counter of the recipient is updated, if
necessary, to the greater of its current counter and the timestamp in the
received message. The counter is then incremented by 1 before the message is
considered received.

	Ties are broken using an arbitrary function (eg. sort by hash)

[image: _images/dag_lamport.png]
This is a distributed algorithm. Each process independently follows these
rules, and there is no central synchronizing process or central storage.
Synchronization is achieved because all processes order the commands according
to their timestamps, so each process uses the same sequence of commands. A
process can execute a command timestamped T when it has learned of all commands
issued by all other processes with timestamps less than or equal to T.

However, the resulting algorithm requires the active participation of all the
processes. A process must know all the commands issued by other processes, so
that the failure of a single process will make it impossible for any other
process to execute commands, thereby halting the system. Babble implements
Lamport Timestamps on top of the hashgraph, but with added steps for Byzantine
Fault Tolerance.

This paper triggered a wave of research on BFT consensus algorithms. Some
famous solutions are Paxos, PBFT, and Tendermint. Ultimately most of them are
variations of a very well known paradigm in computer science: two-phase commit.

Two-Phase Commit

We are not necessarily aware of it, but we all solve the consensus problem in
real life situations on a daily basis. This is illustrated in the following
quote from a blog [http://www.the-paper-trail.org/post/2008-11-27-consensus-protocols-two-phase-commit/]:

“Simple solutions to the consensus problem seem obvious. Think about how you
would solve a real world consensus problem - perhaps trying to arrange a game
of bridge for four people with three friends. You’d call all your friends in
turn and suggest a game and a time. If that time is good for everybody you have
to ring round and confirm, but if someone can’t make it you need to call
everybody again and tell them that the game is off. You might at the same time
suggest a new day to play, which then kicks off another round of consensus.”

Most distributed consensus protocols are special adaptations of this concept.
There is a theoretical result that says one can’t attain BFT, in the same
conditions, with ⅓ of malicious participants. So, with the assumption that at
least ⅔ of participants are good, the usual solution resembles something like
this:

	Someone proposes a value

	Everyone votes on the proposal and broadcasts their vote

	Every one confirms they have received ⅔ of votes for the same proposal, and
broadcasts this confirmation.

	When a participant collects ⅔ of such confirmations, it commits the value.

Usually, the solutions vary around who gets to propose the value - aka the
leader - and how this leader is elected or changed.

Virtual Voting

A similar algorithm can be run internally thanks to the communication graph by
using the concept of virtual voting. Instead of exchanging votes directly, we
compute what other participants would have voted, based on our knowledge of
what they know.

First, the Hashgraph defines a concept of Strongly Seeing:

“If there are n members, then an event w can strongly see an event x, if w can
see more than 2n/3 events by different members, each of which can see x”.

[image: _images/strongly_seeing.png]
Strongly Seeing is analogous to receiving votes from two thirds of
participants in the first phase of the two-phase commit.

Also, we do not need a leader to propose a value. Instead, participants compute
virtual cuts in the hashgraph, called rounds, which allow processing events in
batches. This is also a distributed algorithm where all members end up with the
same rounds. Roughly speaking, starting at round 0, when we reach a point when
⅔ of members can strongly see the cut from the previous rounds, we start a new
round. When there is common knowledge about a round, attested by Strongly
Seeing, we can decide on the order of event below that cut. The details of the
algorithm are best described in the original hashgraph whitepaper [https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf].

[image: _images/dag_rounds.png]
So this algorithm doesn’t need a leader. All participants run the algorithm
locally, process rounds at their own speed, and end up outputting the same
batches of ordered events. Babble takes these batches of events and projects
them onto a blockchain.

Blockchain

A blockchain is a one-dimensional data-structure made of cryptographically
chained blocks. It is convenient to map our two-dimensional hashgraph onto a
blockchain because the blockchain is much easier to work with when it comes to
consuming and verifying the output of the consensus algorithm. The
concatenation of blocks, and the transactions they contain, is recursively
secured by digital signatures. A block that obtains enough signatures (>1/3)
can immediately be considered valid, along with all the blocks that precede it,
because it contains a signed fingerprint of the list of blocks so far. The
projection method is described in From Hashgraph to Blockchain.

[image: _images/dag_bx.png]
So the output of Babble is a sequence of blocks; the interface between the app
and Babble is a blockchain interface. This makes it convenient for developers
to plug into Babble, and provides a base for building light-clients and
cross-chain communication protocols. We believe that the p2p internet is moving
towards a landscape of interconnected blockchains, the so called internet of
blockchains, an Babble is built with this in mind.

From Hashgraph to Blockchain

This document describes a technique for projecting a hashgraph onto a
blockchain, which is better suited for representing an immutable ordered list
of transactions. In this system, the order is governed by the Hashgraph
consensus algorithm but the transactions are mapped onto a linear data
structure composed of blocks; each block containing an ordered list of
transactions, a hash of the resulting application state, a hash of the
corresponding section of the hashgraph (Frame), a hash of the current peer-set,
and a collection of signatures from the set of validators. This method enables
hashgraph-based systems to implement any Inter-Blockchain Communication
protocol and integrate with an Internet of Blockchains.

Motivation

The consumable output of any consensus system is an ordered list of
transactions. Developers have been using blockchains to model such lists
because they are efficient to work with. A linear data structure composed of
batches of transactions, hashed and signed together, enabling easy verification
of any transaction, is the right tool for the job. Although the word blockchain
is now used in a much broader sense, it originally designated a data structure.
Consensus algorithms, public/private networks, cryptocurrencies, etc., are
independent concepts.

Hashgraph is a beautiful consensus algorithm based on a homonymous data
structure. The hashgraph data structure, however, is not easy to work with when
it comes to representing a linear sequence of transactions. It is a Directed
Acyclic Graph (DAG) from which the order must be extracted via some complex
consensus functions. To verify the consensus index of a given transaction, one
has to re-compute the consensus methods on a subset of the hashgraph. On the
other hand, blockchains do not need any further processing to extract the
ordered list of transactions and simple cryptographic primitives are sufficient
to validate blocks.

The “hashgraph vs blockchain” debate is a red herring. Blockchain is just a
data structure; the engine is the underlying consensus algorithm. The
projection method exposes an easy-to-work-with blockchain powered by the
efficient Hashgraph consensus algorithm.

Implementation

 | | | w53
 | | | / |
 | | w52 |
 | | / | | ^
 | w51 | | |
 | / | | | |
w50 | | |----------------------- ---------------------------
 | \ | | - Block 5 | (Block 4 Hash)-
 | | \ | ---------------------------
 | | | w43 - E: [w40, w41, w42, w43] -
 | | | / | ---------------------------
 | | w42 | - S: [S50, S51, S52, S53] -
 | | / | | ---------------------------
 | w41 | | |
 | / | | | |
w40 | | |----------------------- ---------------------------
 | \ | | - Block 4 | (Block 3 Hash)-
 | | \ | ---------------------------
 | | | w33 - E: [w30, w31, w32, w33] -
 | | | / | ---------------------------
 | | w32 | - S: [S40, S41, S42, S43] -
 | | / | | ---------------------------
 | w31 | | |
 | / | | | |
w30 | | |----------------------- ---------------------------
 | \ | | - Block 3 | (Block 2 Hash)-
 | | \ | ---------------------------
 | | | w23 - E: [w20, w21, w22, w23] -
 | | | / | ---------------------------
 | | w22 | - S: [S30, S31, S32, S33] -
 | | / | | ---------------------------
 | w21 | | |
 | / | | | |
w20 | | |----------------------- ---------------------------
 | \ | | - Block 2 | (Block 1 Hash)-
 | | \ | ---------------------------
 | | | w13 - E: [w10, w11, w12, w13] -
 | | | / | ---------------------------
 | | w12 | - S: [S20, S21, S22, S23] -
 | | / | | ---------------------------
 | w11 | | |
 | / | | | |
w10 | | |----------------------- ---------------------------
 | \ | | - Block 1 -
 | | \ | ---------------------------
 | | | e32 - E: [w00, w01, w02, w03, -
 | | | / | - e10, e21, e32] -
 | | e21 | ---------------------------
 | | / | | - S: [S10, S11, S12, S13] -
 | e10 | | ---------------------------
 | / | | |
w00 w01 w02 w03
 0 1 2 3

 Caption:

 E: List of Events contained in Block. Here, we mention Events because it is
 easier to represent than transactions. Blocks would actually contain only
 the transactions of the Events, but that is complicated to represent in this
 diagram.

 Sij: Signature of Block i by validator j

The Hashgraph algorithm always commits Events in batches. Indeed, when the fame
of a super-majority of witnesses from a given round is decided, all the Events
that are seen by all these famous witnesses (but not from an earlier round) get
assigned the same Round Received and sorted according to a deterministic
function. At that point, the consensus order of these Events is decided and
will not change.

We gather the transactions of all the Events from the same Round Received
into blocks. When Events get assigned a Round Received and sorted, we package
their transactions (in canonical order) into a block and commit that block to
the application. The application returns a hash of the state obtained by
applying the block’s transactions sequentially and we append this hash to the
block’s body before signing it. Block signatures will be exchanged as part of
the regular gossip routine and appended to their corresponding blocks as they
are received from other peers if they match the local block. Once a block has
collected signatures from at least 1/3 of validators, it is deemed accepted
because, by hypothesis, at least one of those signatures originates from an
honest peer.

We extend the Event data structure to contain a set of block-signatures by the
Event’s creator. Having assigned a RoundReceived to a set of Events and
produced a corresponding block, a member will append the block’s signature in
the next Event it defines. Hence, block-signatures piggy-back on the regular
gossip messages and propagate at the same speed. Upon receiving Events from an
other peer, a member will verify their block-signatures against its own version
of the blocks; if the signatures match, they are recorded with the block. With
this extended gossip routine, nodes simultaneously build up the hashgraph and
the corresponding blockchain. It preserves the simplicity of the hashgraph
system, which is one of its most valuable features, by not adding new types of
messages; it only extends the existing Event data-structure.

By construction, the fame of a round R witness can only be decided by a witness
in round R+2 or above. Hence, when a block is created for a Round Received R
(block R), the hashgraph already contains Events at round R+2 or more; the
signatures for block R, will be gossiped at the same time as Events of round
R+2 or more. It follows that the signatures of block R will arrive with a lag
of 2 or more consensus rounds.

Block Structure

Block: {
 Body:{
 Index int // block index
 RoundReceived int // round received of corresponding hashgraph frame
 Timestamp int64 // unix timestamp (median of timestamps in round-received famous witnesses)
 StateHash []byte // root hash of the application after applying block payload; to be populated by application Commit
 FrameHash []byte // hash of corresponding hashgraph frame
 PeersHash []byte // hash of peer-set
 Transactions [][]byte // transaction payload
 InternalTransactions []InternalTransaction // internal transaction payload (add/remove peers)
 InternalTransactionReceipts []InternalTransactionReceipt // receipts for internal transactions; to be populated by application Commit
 }
 Signatures: map[string]string
}

Blocks contain a body and a set of signatures. Signatures are based on the hash
of the body; which is enough to verify the entire block because it contains a
digital fingerprint of the body.

The Body’s RoundReceived corresponds to the RoundReceived of the hashgraph
Events who’s transactions are included in the block; it serves the purpose of
tying back to the underlying hashgraph. We do not produce a block when all the
Events of a Round Received are empty. Hence, two consecutive blocks may have
non-consecutive RoundReceived values and we use an additional property to index
the blocks.

The ‘Timestamp’ is a Unix timestamp (number of seconds since January 1st, 1970)
corresponding to the median of the timestamps of the famous witnesses in the
frame’s round-received. Upon creating a hashgraph Event, a Unix timestamp is
automatically added to it using the creator’s system clock. The Block’s
timestamp is the median of the timestamps included in the famous witnesses of
the block’s round-received. Note that nodes may have non-synchronised clocks,
and may purposefuly tinker with their clocks to bias the block timestamp.

The FrameHash corresponds to the Frame in the hashgraph at RoundReceived. It is
used in the FastSync protocol to verify the relationship between the Block and
the Frame returned in a FastForwardResponse.

The body also contains a hash of the application’s state resulting from
applying the block’s transactions sequentially. Thus, with the consenus
algorithm and the necessary assumption that at least two thirds of participants
are not compromised, collecting signatures from at least one third of
validators provides sufficient evidence that all honest nodes have applied the
same transactions in the same order, and computed the same state.

With the new Dynamic Membership protocol, which enables adding and removing
peers dynamically, we added a PeersHash field to the body, to keep track of the
validator-set. We can check the Frame’s peer-set against the block’s PeersHash
to ensure that we are counting signatures from the appropriate peer-set.

InternalTransactions and InternalTransactionReceipts are used to track attempts
to update the peer-set. InternalTransactions encode requests to join or leave
the peer-set. Upon receiving a CommitBlock message, the application can accept
or refuse InternalTransactions by returning correponding
InternalTransactionReceipts.

Enhancements

Inter-Blockchain Communication

Inter-Blockchain Communication (IBC) is about verifying on one chain that a
transaction happened on another chain; one blockchain acts as a light-client to
another blockchain. It is much simpler to build a light-client for a blockchain
than for a hashgraph. In an effort to enable interoperability between
blockchains, several initiatives have been proposed to build protocols for IBC
like Cosmos, Polkadot and EOS. The projection method allows hashgraph-based
systems to integrate with these network architectures.

Node State-Machine

Flow

[image: _images/babble_flow.png]

FastSync

FastSync is an element of the Babble protocol which enables nodes to catch up
with other nodes without downloading and processing the entire history of
gossip (Hashgraph + Blockchain). It is important in the context of mobile ad
hoc networks where users dynamically create or join groups, and where limited
computing resources call for periodic pruning of the underlying data store. The
solution relies on linking snapshots of the application state to independent
and self-contained sections of the Hashgraph, called Frames. A node that fell
back too far may fast-forward straight to the latest snapshot, initialize a new
Hashgraph from the corresponding Frame, and get up to speed with the other
nodes without downloading and processing all the transactions it missed. Of
course, the protocol maintains the BFT properties of the base algorithm by
packaging relevant data in signed blocks; here again we see the benefits of
using a blockchain mapping on top of Hashgraph. Although implementing the
Snapshot/Restore functionality puts extra strain on the application developer,
it remains entirely optional; FastSync can be activated or deactivated via
configuration.

Overview

[image: _images/fastsync.png]
The Babble node is implemented as a state-machine where the possible states
are: Babbling, CatchingUp, Joining, Leaving, and Shutdown.
When a node is started and belongs to the current validator-set, it will either
enter the Babbling state, or the CatchingUp state, depending on whether
the fast-sync flag was passed to Babble.

In the CatchingUp state, a node determines the best node to fast-sync from
(the node which has the longest hashgraph) and attempts to fast-forward to
their last consensus snapshot, until the operation succeeds. Hence, FastSync
introduces a new type of command in the communication protocol: FastForward.

Upon receiving a FastForwardRequest, a node must respond with the last
consensus snapshot, as well as the corresponding Hashgraph section (the Frame)
and Block. With this information, and having verified the Block signatures
against the other items as well as the known validator set, the requesting node
attempts to reset its Hashgraph from the Frame, and restore the application
from the snapshot. The difficulty resides in defining what is meant by last
consensus snapshot, and how to package enough information in the Frames as to
form a base for a new/pruned Hashgraph.

Frames

Frames are self-contained sections of the Hashgraph. They are composed of
FrameEvents which wrap regular Hashgraph Events along with precomputed values
for Round, Witness, and LamportTimestamp. Usually, these values would be
calculated by every node locally but since FrameEvents belong to Blocks, which
eventually collect enough signatures (>1/3), they can be used directly.
Basically, Frames form a valid foundation for a new Hashgraph, such that
gossip-about-gossip routines are not discontinued, while earlier records of the
gossip history are ignored.

type Frame struct {
 Round int //RoundReceived
 Peers []*peers.Peer
 Roots map[string]*Root
 Events []*FrameEvent //Events with RoundReceived = Round
 PeerSets map[int][]*peers.Peer //[round] => Peers
}

A Frame corresponds to a Hashgraph consensus round. Indeed, the consensus
algorithm commits Events in batches, which we map onto Frames, and finally onto
a Blockchain. This is an evolution of the previously defined blockchain
mapping. Block headers now contain a Frame hash. As we will see
later, this is useful for security. The Events in a Frame are the Events of the
corresponding batch, in consensus order.

[image: _images/dag_frames_bx.png]

Roots

Frames also contain Roots, with a certain number of past FrameEvents for each
particpant. Intuitively, “replanting” a Hashgraph requires deep enough roots.
The Hashgraph is an interlinked chain of Events, where each Event contains two
references to anterior Events (SelfParent and OtherParent). Upon inserting an
Event in the Hashgraph, we check that its references point to existing Events
(Events that are already in the Hashgraph) and that at least the SelfParent
reference is not empty. This is partially illustrated in the following picture
where Event A2 cannot be inserted because its references are unknown.

[image: _images/roots_0.png]
If, when resetting from a Frame, we only used the Events associated with the
corresponding round-received, we would quickly run into a situation where
future Events reference unknown/older Events, and fail to be inserted. Hence,
we need to package a “history” of past Events in the Frame, as a base layer for
resetting the Hashgraph; this is contained in the Roots.

What matters is that every participant computes the same Roots, and that Roots
contain sufficient information to keep inserting Events in a Reset hashgraph
and compute a consensus order.

As of today, the number of FrameEvents in each Root (the root depth) is
hard-coded to 10, to avoid nodes from using different values, which would
result in different Blocks, and forks (partitions).

Note that there is still a possibility for an Event’s OtherParent to refer to
an Event “below” the Frame. This is possible due to the asynchronous nature of
the gossip routines, but is an unlikely scenario. The Frame design tries to
find a compromise between the size and the amount of useful information they
contain. A root depth of 10 offers a high-enough probability of success.

FastForward

Frames may be used to initialize or reset a Hashgraph to a clean state, with
indexes, rounds, blocks, etc., corresponding to a capture of a live run, such
that further Events may be inserted and processed independently of past Events.
Hashgraph Frames are loosely analogous to IFrames in video encoding, which
enable fast-forwarding to any point in the video.

To avoid being tricked into fast-forwarding to an invalid state, the protocol
ties Frames to the corresponding Blockchain by including Frame hashes in
affiliated Block headers. A FastForwardResponse includes a Block and a Frame,
such that, upon receiving these objects, the requester may check the Frame hash
against the Block header, and count the Block signatures against the known
set of validators, before resetting the Hashgraph from the Frame.

Note the importance for the requester to be aware of the validator set of the
Hashgraph it wishes to sync with; it is fundamental when it comes to verifying
a Block. With a dynamic validator set, however, an additional mechanism will be
necessary to securely track changes to the validator set.

Snapshot/Restore

It is one thing to catch-up with the Hashgraph and Blockchain, but nodes also
need to catch-up with the application state. we extended the Proxy interface
with methods to retrieve and restore snapshots.

type AppProxy interface {
 SubmitCh() chan []byte
 CommitBlock(block hashgraph.Block) (CommitResponse, error)
 GetSnapshot(blockIndex int) ([]byte, error)
 Restore(snapshot []byte) error
}

Since snapshots are raw byte arrays, it is up to the application layer to
define what the snapshots represent, how they are encoded, and how they may be
used to restore the application to a particular state. The GetSnapshot method
takes a blockIndex parameter, which implies that the application should keep
track of snapshots for every committed block. As the protocol evolves, we will
likely link this to a FrameRate parameter to reduce the overhead on the
application caused by the need to take all these snapshots.

So together with a Frame and the corresponding Block, a FastForward request
comes with a snapshot of the application for the node to restore the
application to the corresponding state. If the snapshot was incorrect, the node
will immediately diverge from the main chain because it will obtain different
state hashes upon committing new blocks.

Improvements and Further Work

The protocol is not entirely watertight yet; there are edge cases that could
quickly lead to forks and diverging nodes.

1) Although it is unlikely, Events above the Frame that reference parents from
“below” the Frame. These Events will fail to be inserted into the Hashgraph,
and the node would stop making progress.

2) The snapshot is not directly linked to the Blockchain, only indirectly
through resulting StateHashes.

Both these issues could be addressed with a general retry mechanism, whereby
the FastForward method is made atomic by working on a temporary copy of the
Hashgraph. If an error or a fork are detected, try to FastSync again from
another Frame. This requires further work and design on fork detection and
self-healing protocols.

Dynamic Membership

Dynamic Membership is an extension to the Babble protocol, which enables peers
to join or leave a live cluster via consensus. Until now, we had only
considered fixed peer-sets, where the list of participants was predetermined
and unchanged throughout the life of a Babble network. This was an important
limitation, hindering the formation of ad-hoc blockchains as we envision them.
Here we present our solution, and its implementation, which relies on previous
work regarding the Hashgraph-to-Blockchain projection, and FastSync.

Overview

[image: _images/dyn_part.png]
A Babble node is started with a genesis peer-set (genesis.peers.json) and a
current peer-set (peers.json). If its public-key does not belong to the current
peer-set, the node will enter the Joining state, where it will attempt to
join the peer-set. It does so by signing an InternalTransaction and
submitting it for consensus via a JoinRequest to one of the current nodes.

The InternalTransaction is added to an Event, and goes through Babble
consensus, until it is added to a block and committed. However, unlike regular
transactions, the InternalTransaction is actually interpreted by Babble to
modify the peer-set, if the application-layer accepts it. We shall see that,
according to Hashgraph dynamics, an accepted InternalTransaction, committed
with round-received R, only affects peer-sets for rounds R+6 and above.

If the JoinRequest was successful, and the new node makes it into the peer-set,
it will either enter the Babbling state directly, or the CatchingUp
state, depending on whether the fast-sync flag was provided. In the former
case, the node will have to retrieve the entire history of the hashgraph and
commit all the blocks it missed one-by-one. This is where it is important to
have the genesis peer-set, to allow the joining node to validate the consensus
decisions and peer-set changes from the beginning of the hashgraph.

The functionality for removing peers is almost identical, with the difference
that there will be an automatic way of deciding when nodes should be removed,
based on a minimum level of activity (ex: 10 rounds with no witnesses). As of
today, a node submits a LeaveRequest for itself upon capturing a SIGINT signal
when the Babble process is terminated cleanly.

InternalTransaction

In contrast with regular transactions, which only affect the application layer,
InternalTransactions are internal to Babble. Babble acts upon
InternalTransactions to modify part of its own state, the peer-set, rather than
modifying the application’s state. However, the application layer plays a role
in accepting or refusing peer-set changes during the block commit phase. For
example, the application could refuse all InternalTransactions (thereby
preventing the peer-set from ever changing), or accept only up to N
participants, or finally, it could base the decision on a predefined whitelist;
anything goes, as long as the rule is deterministic (all nodes make the same
decision).

type InternalTransactionBody struct {
 Type TransactionType
 Peer peers.Peer
}

type InternalTransaction struct {
 Body InternalTransactionBody
 Signature string
}

The ProxyInterface, between Babble and the application-layer, is thus slightly
extended to account for InternalTransactions. Here is a example of a
CommitHandler that systematically accepts all InternalTransactions:

func (a *State) CommitHandler(block hashgraph.Block) (proxy.CommitResponse, error) {
 a.logger.WithField("block", block).Debug("CommitBlock")

 err := a.commit(block)
 if err != nil {
 return proxy.CommitResponse{}, err
 }

 receipts := []hashgraph.InternalTransactionReceipt{}
 for _, it := range block.InternalTransactions() {
 r := it.AsAccepted()
 receipts = append(receipts, r)
 }

 response := proxy.CommitResponse{
 StateHash: a.stateHash,
 InternalTransactionReceipts: receipts,
 }

 return response, nil
}

PeerSet

Until now, the peer-set has been a static list of peers; we now associate each
Hashgraph round with a potentially different peer-set. We maintain a sorted
table of round-to-peer-set associations, such that all rounds between two
consequent entries of this table are associated with the left-most peer-set.
For example, if the table of peer-sets is [{0, PS1}, {5, PS2}, {12, PS3}], then
rounds 0 to 4 will be associated to peer-set PS1, rounds 5 to 11 will be
associated to PS2, and rounds 12 and above will be associated to PS3 (until the
peer-set changes again).

We will see in the next section how to account for different peer-sets in the
core consensus methods, but since they are allowed to change from one round to
another, peer-sets must also be accounted for in the Frame and Block
data-structures. Indeed, when verifying a Block, one must know which peer-set to
count signatures against. Therefore, we have extended the Frame and Block
objects to contain a PeerSetHash, that uniquely identifies the peer-set of the
corresponding round-received. In the future, we will need to include a proof of
peer-set change inside the Blocks, so that clients may follow and verify the
evolution of the peer-set; ie, something that captures the following
information:

PS0 + InternalTransaction0 + PS0-signatures(InternalTransaction0) => PS1
PS1 + InternalTransaction1 + PS1-signatures(InternalTransaction1) => PS2
…
PSN + InternalTransactionN + PSN-signatures(InternalTransactionN) => PSN+1

Algorithm Updates

There is no better documentation than the code itself, but here is a high level
overview of what has changed. This section assumes familiarity with Babble, and
Hashgraph.

StronglySee

Informally, StronglySee is the function that determines whether there is a path
in the Hashgraph connecting two Events such that the path includes Events from
a strong majority of participants. This obviously begs the question: “strong
majority of which set of participants?”. So we extended the StronglySee method
with a PeerSet parameter.

Round

An Event’s round is determined by taking the max of its parents rounds, and
adding 1 if, and only if, the Event can strongly-see a super-majority of
Witnesses from that round (max of the parents). So, in this call to
StronglySee, we pass the peer-set corresponding to the max parent round, and
the super-majority is counted based on the max parent round peer-set.

Witness

An Event is a witness if, and only if, it is a creator’s first Event in its
round AND its creator belongs to the round’s peer-set.

Fame

With Dynamic Membership, different peer-sets may be involved in deciding the
fame of a single witness. Although, Babble’s implementation of the Hashgraph
algorithm is slightly different, here are the changes that Dynamic Membership
introduce in the algorithm as described in the original Hashgraph whitepaper:

for each event x in order from earlier rounds to later
 x . famous ← UNDECIDED
 for each event y in order from earlier rounds to later
 if x . witness and y . witness and y . round>x . round
 d ← y . round - x . round
 s ← the set of witness events in round y . round -1 that y can strongly see
 ** [based on y.round-1 peer-set]
 v ← majority vote in s (is TRUE for a tie)
 t ← number of events in s with a vote of v

 if d = 1 // first round of the election
 y . vote ← can y see x ?
 else
 ** [n ← number of peers in y.round peer-set]
 if d mod c > 0 // this is a normal round
 if t > 2* n /3 // if supermajority, then decide
 x . famous ← v
 y . vote ← v
 break out of the y loop
 else // else, just vote
 y . vote ← v
 else // this is a coin round
 if t > 2* n /3 // if supermajority, then vote
 y . vote ← v
 else // else flip a coin
 y . vote ← middle bit of y . signature

R+6

When an InternalTransaction is committed, when should we start counting the new
peer-set in order to guarantee that all correct nodes will do the same thing?
The answer is R+6 where R is the round-received of the Event containing the
InternalTransaction.

We need only determine the lower-bound because the goal is obviously to change
the peer-set as soon as possible.

The solution is basically contained in Lemmas 5.15 and 5.17 of the original
hashgraph whitepaper [https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf]:

Lemma 5.15.
If hashgraphs A and B are consistent, and A decides a Byzantine agreement
election with result v in round r and B has not decided prior to r, then
B will decide v in round r + 2 or before.

Lemma 5.17.
For any round number r, for any hashgraph that has at least one event in
round r+3, there will be at least one witness in round r that will be
decided to be famous by the consensus algorithm, and this decision will be
made by every witness in round r + 3, or earlier.

If one hashgraph decides RoundReceived = R, then a strong majority of round R
witnesses are decided, and by Lemma 5.17 they are necessarily decided in round
R+3 or earlier. Hence, by Lemma 5.15, any other consistent hashgraph will have
decided by round R + 5 or earlier. It is then safe to set the new peer-set for
round R + 6.

Index

API

Babble communicates with the App through an AppProxy interface, which has two
implementations:

	InmemProxy: An InmemProxy uses native callback handlers to integrate
Babble as a regular Go dependency.

	SocketProxy: A SocketProxy connects to an App via TCP sockets. It enables
the application to run in a separate process or machine, and to
be written in any programming language.

The AppProxy interface exposes four methods for Babble to call the App:

	CommitBlock(block hashgraph.Block) (CommitResponse, error): Commits a
block to the application and returns the resulting state hash.

	OnStateChanged(state.State) error: Notifies the app when Babble enters a
new internal state.

	GetSnapshot(int) ([]byte, error): Gets the application snapshot
corresponding to a particular block index.

	Restore([]byte) error: Restores the App state from a snapshot.

Note: The Snapshot and Restore methods of the API are still work in
progress. They are necessary for the FastSync protocol which is not
completely ready yet. It is safe to just implement stubs for these methods.

Reciprocally, AppProxy relays transactions from the App to Babble via a
native Go channel - SubmitCh - which ties into the application differently
depending on the type of proxy (Socket or Inmem).

Babble asynchronously processes transactions and eventually feeds them back to
the App, in consensus order and bundled into blocks, with a CommitBlock
call. Transactions are just raw bytes and Babble does not need to know what
they represent. Therefore, encoding and decoding transactions is done by the
App.

Inmem

The InmemProxy uses native callback handlers to enable Babble to call
methods on the App directly. Applications need only implement the
ProxyHandler interface and pass that to an InmemProxy.

Here is a quick example of how to use Babble as an in-memory engine (in the
same process as your handler):

package main

import (
 "os"

 "github.com/mosaicnetworks/babble/src/config"
 "github.com/mosaicnetworks/babble/src/hashgraph"
 "github.com/mosaicnetworks/babble/src/node/state"
 "github.com/mosaicnetworks/babble/src/proxy"
 "github.com/mosaicnetworks/babble/src/proxy/inmem"
)

// ExampleHandler implements the ProxyHandler interface. This is where an
// application would normally register callbacks that Babble will call through
// the InmemProxy. ExampleHandler simply maintains a list of all the committed
// transactions in the order they were received from Babble, and keeps track of
// Babble's state. Refer to the dummy package for a more meaningful example.
type ExampleHandler struct {
 transactions [][]byte
 state state.State
}

// CommitHandler is called by Babble to commit a block to the application.
// Blocks contain transactions that represent commands for the application, and
// internal transactions that are used internally by Babble to update the
// peer-set. The application can accept or refuse internal transactions based on
// custom rules. Here we accept all internal transactions. The commit response
// contains a state hash that should represent the state of the application
// after applying all the transactions sequentially.
func (p *ExampleHandler) CommitHandler(block hashgraph.Block) (proxy.CommitResponse, error) {
 // block transactions are ordered. Every Babble node will receive the same
 // transactions in the same order.
 p.transactions = append(p.transactions, block.Transactions()...)

 // internal transactions represent requests to add or remove participants
 // from the Babble peer-set. This decision can be based on the application
 // state. For example the application could maintain a whitelist such that
 // only people whose public key belongs to the whitelist will be accepted to
 // join the peer-set. The decision must be deterministic, this is not a vote
 // where every one gives their opinion. All peers must return the same
 // answer, or risk creating a fork.
 receipts := []hashgraph.InternalTransactionReceipt{}
 for _, it := range block.InternalTransactions() {
 receipts = append(receipts, it.AsAccepted())
 }

 // The commit response contains the state-hash resulting from applying all
 // the transactions, and all the transaction receipts. Here we always
 // return the same hard-coded state-hash.
 response := proxy.CommitResponse{
 StateHash: []byte("statehash"),
 InternalTransactionReceipts: receipts,
 }

 return response, nil
}

// StateChangedHandler is called by Babble to notify the application that the
// node has entered a new state (ex Babbling, Joining, Suspended, etc.).
func (p *ExampleHandler) StateChangeHandler(state state.State) error {
 p.state = state
 return nil
}

// SnapshotHandler is used by Babble to retrieve a snapshot of the application
// corresponding to a specific block index. It is left to the application to
// keep track of snapshots and to encode/decode state snapshots to and from raw
// bytes. This handler is only used when fast-sync is activated.
func (p *ExampleHandler) SnapshotHandler(blockIndex int) ([]byte, error) {
 return []byte("snapshot"), nil
}

// RestoreHandler is called by Babble to instruct the application to restore its
// state back to a given snapshot. This is only used when fast-sync is
// activated.
func (p *ExampleHandler) RestoreHandler(snapshot []byte) ([]byte, error) {
 return []byte("statehash"), nil
}

func NewExampleHandler() *ExampleHandler {
 return &ExampleHandler{
 transactions: [][]byte{},
 }
}

func main() {
 // An application needs to implement the ProxyHandler interface and define
 // the callbacks that will be automatically called by the proxy when Babble
 // has things to communicate to the application.
 handler := NewExampleHandler()

 // We create an InmemProxy based on the handler.
 proxy := inmem.NewInmemProxy(handler, nil)

 // Start from default configuration.
 babbleConfig := config.NewDefaultConfig()

 // Set the AppProxy in the Babble configuration.
 babbleConfig.Proxy = proxy

 // Instantiate Babble.
 babble := NewBabble(babbleConfig)

 // Read in the confiuration and initialise the node accordingly.
 if err := babble.Init(); err != nil {
 babbleConfig.Logger().Error("Cannot initialize babble:", err)
 os.Exit(1)
 }

 // The application can submit transactions to Babble using the proxy's
 // SubmitTx. Babble will broadcast the transactions to other nodes, run
 // them through the consensus algorithm, and eventually call the callback
 // methods implemented in the handler.
 go func() {
 proxy.SubmitTx([]byte("the test transaction"))
 }()

 // Run the node aynchronously.
 babble.Run()

 // Babble reacts to SIGINT (Ctrl + c) and SIGTERM by calling the leave
 // method to politely leave a Babble network, but it can also be called
 // manually.
 defer babble.Node.Leave()
}

Socket

The SocketProxy is simply a TCP server that accepts SubmitTx requests,
and calls remote methods on the App through a JSON-RPC interface. The App is
therefore expected to implement its own component to send out SubmitTx requests
through TCP, and receive JSON-RPC messages from the remote Babble node.

The advantage of using a TCP interface is that it provides the freedom to
implement the application in any programming language. The specification of the
JSON-RPC interface is provided below, but here is an example of how to use our
Go implementation, SocketBabbleProxy, to connect to a remote Babble node.

Please refer to the dummy package for an example implementing the socket
interface.

Configuration

Babble consumes the following configuration object:

// Config contains all the configuration properties of a Babble node.
type Config struct {
 // DataDir is the top-level directory containing Babble configuration and
 // data
 DataDir string `mapstructure:"datadir"`

 // LogLevel determines the chattiness of the log output.
 LogLevel string `mapstructure:"log"`

 // BindAddr is the local address:port where this node gossips with other
 // nodes. in some cases, there may be a routable address that cannot be
 // bound. Use AdvertiseAddr to advertise a different address to support
 // this. If this address is not routable, the node will be in a constant
 // flapping state as other nodes will treat the non-routability as a
 // failure.
 BindAddr string `mapstructure:"listen"`

 // AdvertiseAddr is used to change the address that we advertise to other
 // nodes.
 AdvertiseAddr string `mapstructure:"advertise"`

 // NoService disables the HTTP API service.
 NoService bool `mapstructure:"no-service"`

 // ServiceAddr is the address:port of the optional HTTP service. If not
 // specified, and "no-service" is not set, the API handlers are registered
 // with the DefaultServerMux of the http package. It is possible that
 // another server in the same process is simultaneously using the
 // DefaultServerMux. In which case, the handlers will be accessible from
 // both servers. This is usefull when Babble is used in-memory and expected
 // to use the same endpoint (address:port) as the application's API.
 ServiceAddr string `mapstructure:"service-listen"`

 // HeartbeatTimeout is the frequency of the gossip timer when the node has
 // something to gossip about.
 HeartbeatTimeout time.Duration `mapstructure:"heartbeat"`

 // SlowHeartbeatTimeout is the frequency of the gossip timer when the node
 // has nothing to gossip about.
 SlowHeartbeatTimeout time.Duration `mapstructure:"slow-heartbeat"`

 // MaxPool controls how many connections are pooled per target in the gossip
 // routines.
 MaxPool int `mapstructure:"max-pool"`

 // TCPTimeout is the timeout of gossip TCP connections.
 TCPTimeout time.Duration `mapstructure:"timeout"`

 // JoinTimeout is the timeout of Join Requests
 JoinTimeout time.Duration `mapstructure:"join_timeout"`

 // SyncLimit defines the max number of hashgraph events to include in a
 // SyncResponse or EagerSyncRequest
 SyncLimit int `mapstructure:"sync-limit"`

 // EnableFastSync enables the FastSync protocol.
 EnableFastSync bool `mapstructure:"fast-sync"`

 // Store activates persistant storage.
 Store bool `mapstructure:"store"`

 // DatabaseDir is the directory containing database files.
 DatabaseDir string `mapstructure:"db"`

 // CacheSize is the max number of items in in-memory caches.
 CacheSize int `mapstructure:"cache-size"`

 // Bootstrap determines whether or not to load Babble from an existing
 // database file. Forces Store, ie. bootstrap only works with a persistant
 // database store.
 Bootstrap bool `mapstructure:"bootstrap"`

 // MaintenanceMode when set to true causes Babble to initialise in a
 // suspended state. I.e. it does not start gossipping. Forces Bootstrap,
 // which itself forces Store. I.e. MaintenanceMode only works if the node is
 // bootstrapped from an existing database.
 MaintenanceMode bool `mapstructure:"maintenance-mode"`

 // SuspendLimit is the multiplyer that is dynamically applied to the number
 // of validators to determine the limit of undetermined events (events which
 // haven't reached consensus) that will cause the node to become suspended.
 // For example, if there are 4 validators and SuspendLimit=100, then the
 // node will suspend itself after registering 400 undetermined events.
 SuspendLimit int `mapstructure:"suspend-limit"`

 // Moniker defines the friendly name of this node
 Moniker string `mapstructure:"moniker"`

 // WebRTC determines whether to use a WebRTC transport. WebRTC uses a very
 // different protocol stack than TCP/IP and enables peers to connect
 // directly even with multiple layers of NAT between them, such as in
 // cellular networks. WebRTC relies on a signalling server who's address is
 // specified by SignalAddr. When WebRTC is enabled, BindAddr and
 // AdvertiseAddr are ignored.
 WebRTC bool `mapstructure:"webrtc"`

 // SignalAddr is the IP:PORT of the WebRTC signaling server. It is ignored
 // when WebRTC is not enabled. The connection is over secured web-sockets,
 // wss, and it possible to include a self-signed certificated in a file
 // called cert.pem in the datadir. If no self-signed certificate is found,
 // the server's certifacate signing authority better be trusted.
 SignalAddr string `mapstructure:"signal-addr"`

 // SignalRealm is an administrative domain within the WebRTC signaling
 // server. WebRTC signaling messages are only routed within a Realm.
 SignalRealm string `mapstructure:"signal-realm"`

 // SignalSkipVerify controls whether the signal client verifies the server's
 // certificate chain and host name. If SignalSkipVerify is true, TLS accepts
 // any certificate presented by the server and any host name in that
 // certificate. In this mode, TLS is susceptible to man-in-the-middle
 // attacks. This should be used only for testing.
 SignalSkipVerify bool `mapstructure:"signal-skip-verify"`

 // Proxy is the application proxy that enables Babble to communicate with
 // the application.
 Proxy proxy.AppProxy

 // Key is the private key of the validator.
 Key *ecdsa.PrivateKey

 logger *logrus.Logger
}

Data Directory

Babble reads additional configuration from the directory specified by the
DataDir option which defaults to ~/.babble on Linux. This directory
should contain the following files:

	priv_key : The private key of the validator runnning the node. This is
optional if the Key field of the config object is already set.

	peers.json : The current validator-set.

	genesis.peers.json : (optional, default peers.json) The initial
validator-set of the network.

	cert.pem : (optional) The x509 certificate of the signaling server.

Please refer to the Usage section for an explanation of the peers files.

When run as a standalone executable or from the mobile bindings, Babble will
also look for a babble.toml file which is used to populate the Config
object.

Design

Overview

[image: _images/babble_design_2.png]
Almost any software application can be modeled in terms of a service and a
state. The service is responsible for processing commands (ex. user input),
while the state is responsible for manipulating and storing the data (eg.
database). Usually, when commands require updating the data, the service will
invoke the state directly. In a distributed application, however, commands
(referred to as transactions in this context), must be broadcast to all
replicas and put in a common order before being applied to the state. This
ensures that all replicas process the same commands in the same order. Hence,
the service no longer communicates directly with the state (except for
read-only requests), but forwards commands to a transaction ordering system
which takes care of broadcasting and ordering the transactions across all
replicas before feeding them back to the application’s state.

Babble is an ordering system that plugs into any application thanks to a very
simple interface. It uses a consensus algorithm to replicate and order the
transactions, and a blockchain to represent the resulting list. A blockchain is
a linear data structure composed of batches of transactions, hashed and signed
together, allowing to easily verify any transaction. So, instead of applying
commands directly to the state, Babble applications must forward the commands
to Babble and let them be processed asynchronously by the consensus system
before receiving them back, in blocks, ready to be applied to the state.

Note that it is left to the application layer to filter out bad transactions
before relaying them from clients to the consensus engine. Unlike other
middleware designed to sit in front of the application (like Apache or
Tendermint), the user-facing API is app-specific, and Babble just takes care or
managing the consensus “under the hood”. This filtering partially addresses spam
from anonymous clients, but doesn’t protect against malicious nodes spamming the
network; that is a potential enhancement on the roadmap.

Consensus and Blockchain

At the core of Babble is an algorithm ensuring that all participants process
the same transactions in the same order. We have chosen to implement a system
suitable for the most adversarial conditions - with powerful attackers. This is
known as Byzantine Fault Tolerance (BFT) and has been a field of research for
over 30 years. Our system is based on our interpretation of a paper published
by Leemon Baird in 2016
http://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf which describes a
method for extracting a consensus order of events from a data structure
representing the history of gossip between a set of participants. Instead of
only gossiping transactions and exchanging votes directly, members gossip about
gossip itself; something that can be represented in a Directed Acyclic Graph
(DAG) - the hashgraph. The algorithm for extracting a consensus order from the
hashgraph is proven to work and attains the theoretical limits of Byzantine
fault-tolerance in terms of the number and power of the malicious members it
can cope with. The messaging routines required to gossip and create the
hashgraph are very simple compared to other BFT algorithms. The hashgraph
itself, however, is not ideal for representing the ordered list of transactions
because it is a two-dimensional object which doesn’t explicitly express a
linear order of the items it contains. Hence, we developed a method to map the
hashgraph onto a blockchain.

A blockchain is a data structure where transactions are packaged in hash-linked
blocks. Each block is identified by a cryptographic hash and contains a hash of
the previous block, so that blocks can form a chain from the first block ever
to the last formed block. In this way, all the block - and transactions - are
connected via a linear linked list structure. In our system, blocks contain a
collection of signatures of their own hash from the participants. A block with
valid signatures from at least one third of validators can be considered valid
because - by hypothesis - at least one of those signatures is from an honest
member.

Projecting the hashgraph onto a blockchain makes it much easier for third
parties to verify the consensus order. It makes it possible to build
light-clients and to integrate Hashgraph based systems with other blockchains.
For more detail about the projection method, please refer to From Hashgraph to Blockchain

Install

From Source

Clone the repository [https://github.com/mosaicnetworks/babble] in the appropriate GOPATH subdirectory:

$ mkdir -p $GOPATH/src/github.com/mosaicnetworks/
$ cd $GOPATH/src/github.com/mosaicnetworks
[...]/mosaicnetworks$ git clone https://github.com/mosaicnetworks/babble.git

The easiest way to build binaries is to do so in a hermetic Docker container.
Use this simple command:

[...]/babble$ make dist

This will launch the build in a Docker container and write all the artifacts in
the build/ folder.

[...]/babble$ tree build
build/
├── dist
│ ├── babble_0.1.0_darwin_386.zip
│ ├── babble_0.1.0_darwin_amd64.zip
│ ├── babble_0.1.0_freebsd_386.zip
│ ├── babble_0.1.0_freebsd_arm.zip
│ ├── babble_0.1.0_linux_386.zip
│ ├── babble_0.1.0_linux_amd64.zip
│ ├── babble_0.1.0_linux_arm.zip
│ ├── babble_0.1.0_SHA256SUMS
│ ├── babble_0.1.0_windows_386.zip
│ └── babble_0.1.0_windows_amd64.zip
└── pkg
 ├── darwin_386
 │ └── babble
 ├── darwin_amd64
 │ └── babble
 ├── freebsd_386
 │ └── babble
 ├── freebsd_arm
 │ └── babble
 ├── linux_386
 │ └── babble
 ├── linux_amd64
 │ └── babble
 ├── linux_arm
 │ └── babble
 ├── windows_386
 │ └── babble.exe
 └── windows_amd64
 └── babble.exe

Go Devs

Babble is written in Golang [https://golang.org/]. Hence, the first step is
to install Go version 1.9 or above which is both the programming language
and a CLI tool for managing Go code. Go is very opinionated and will require
you to define a workspace [https://golang.org/doc/code.html#Workspaces]
where all your go code will reside.

Dependencies

Babble uses `go mod` to manage dependencies.

[...]/babble$ make vendor

This will download all dependencies and put them in the vendor folder.

Testing

Babble has extensive unit-testing. Use the Go tool to run tests:

[...]/babble$ make test

If everything goes well, it should output something along these lines:

? github.com/mosaicnetworks/babble/src/babble [no test files]
ok github.com/mosaicnetworks/babble/src/common 0.015s
ok github.com/mosaicnetworks/babble/src/crypto 0.122s
ok github.com/mosaicnetworks/babble/src/hashgraph 10.270s
? github.com/mosaicnetworks/babble/src/mobile [no test files]
ok github.com/mosaicnetworks/babble/src/net 0.012s
ok github.com/mosaicnetworks/babble/src/node 19.171s
ok github.com/mosaicnetworks/babble/src/peers 0.038s
? github.com/mosaicnetworks/babble/src/proxy [no test files]
ok github.com/mosaicnetworks/babble/src/dummy 0.013s
ok github.com/mosaicnetworks/babble/src/proxy/inmem 0.037s
ok github.com/mosaicnetworks/babble/src/proxy/socket 0.009s
? github.com/mosaicnetworks/babble/src/proxy/socket/app [no test files]
? github.com/mosaicnetworks/babble/src/proxy/socket/babble [no test files]
? github.com/mosaicnetworks/babble/src/service [no test files]
? github.com/mosaicnetworks/babble/src/version [no test files]
? github.com/mosaicnetworks/babble/cmd/babble [no test files]
? github.com/mosaicnetworks/babble/cmd/babble/commands [no test files]
? github.com/mosaicnetworks/babble/cmd/dummy [no test files]
? github.com/mosaicnetworks/babble/cmd/dummy/commands [no test files]

Usage

In this section we will guide you through deploying an application on top of
Babble using the socket interface. Babble comes with the Dummy application which
is used in this demonstration. It is a simple chat application where users
write messages on a channel and Babble guarantees that everyone sees the same
messages in the same order.

Docker

We have provided a series of scripts to bootstrap a demo. Let us first use the
easy method to view the demo and then we will take a closer look at what is
happening behind the scenes.

Make sure you have Docker [https://docker.com] installed.

The demo will pull Docker images from our official public Docker registry [https://hub.docker.com/u/mosaicnetworks/]

[...]/babble$ cd demo
[...]/babble/demo$ make

Once the testnet is started, a script is automatically launched to monitor
consensus figures:

consensus_events:180 consensus_transactions:40 events_per_second:0.00 id:1 last_block_index:3 last_consensus_round:17 num_peers:3 round_events:7 rounds_per_second:0.00 state:Babbling sync_rate:1.00 transaction_pool:0 undetermined_events:18
consensus_events:180 consensus_transactions:40 events_per_second:0.00 id:3 last_block_index:3 last_consensus_round:17 num_peers:3 round_events:7 rounds_per_second:0.00 state:Babbling sync_rate:1.00 transaction_pool:0 undetermined_events:20
consensus_events:180 consensus_transactions:40 events_per_second:0.00 id:2 last_block_index:3 last_consensus_round:17 num_peers:3 round_events:7 rounds_per_second:0.00 state:Babbling sync_rate:1.00 transaction_pool:0 undetermined_events:21
consensus_events:180 consensus_transactions:40 events_per_second:0.00 id:0 last_block_index:3 last_consensus_round:17 num_peers:3 round_events:7 rounds_per_second:0.00 state:Babbling sync_rate:1.00 transaction_pool:0 undetermined_events:20

Running docker ps -a will show you that 9 docker containers have
been launched:

[...]/babble/demo$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
ba80ef275f22 mosaicnetworks/watcher "/watch.sh" 48 seconds ago Up 7 seconds watcher
4620ed62a67d mosaicnetworks/dummy "dummy '--name=client" 49 seconds ago Up 48 seconds 1339/tcp client4
847ea77bd7fc mosaicnetworks/babble "babble run --cache_s" 50 seconds ago Up 49 seconds 80/tcp, 1337-1338/tcp node4
11df03bf9690 mosaicnetworks/dummy "dummy '--name=client" 51 seconds ago Up 50 seconds 1339/tcp client3
00af002747ca mosaicnetworks/babble "babble run --cache_s" 52 seconds ago Up 50 seconds 80/tcp, 1337-1338/tcp node3
b2011d3d65bb mosaicnetworks/dummy "dummy '--name=client" 53 seconds ago Up 51 seconds 1339/tcp client2
e953b50bc1db mosaicnetworks/babble "babble run --cache_s" 53 seconds ago Up 52 seconds 80/tcp, 1337-1338/tcp node2
0c9dd65de193 mosaicnetworks/dummy "dummy '--name=client" 54 seconds ago Up 53 seconds 1339/tcp client1
d1f4e5008d4d mosaicnetworks/babble "babble run --cache_s" 55 seconds ago Up 54 seconds 80/tcp, 1337-1338/tcp node1

Indeed, each node is comprised of an App and a Babble node (cf Design section).
The watcher container monitors consensus figures.

Run the demo script to play with the Dummy App which is a simple chat
application powered by the Babble consensus platform:

[...]/babble/demo$ make demo

[image: _images/demo.png]
Finally, stop the testnet:

[...]/babble/demo$ make stop

Manual Setup

The above scripts hide a lot of the work required for setting up a Babble
network. They generate the configuration files automatically, copy them to the
right places and launch the nodes in Docker containers. We recommend looking at
these scripts closely to understand how the demo works. Here, we will attempt
to explain the individual steps that take place behind the scenes.

Configuration

Babble reads configuration from the directory specified by the datadir flag
which defaults to ~/.babble on UNIX systems. This directory should contain
the following files:

	priv_key : The private key of the validator runnning the node.

	peers.json : The current validator-set.

	genesis.peers.json : (optional, default peers.json) The initial
validator-set of the network.

Keys

Every participant has a cryptographic key-pair that it uses to encrypt, sign
and verify messages. The private key is secret but the public key is used by
other nodes to verify messages signed with the private key.

The encryption scheme used by Babble is ECDSA with the secp256k1 curve (like
Bitcoin and Ethereum).

Babble’s keygen command can be used to generate key-pairs in the
appropriate format.

Peers

peers.json and genesis.peers.json are used to determine the current and
initial validator-sets of a network.

genesis.peers.json corresponds to the initial validator-set; the one that
the hashgraph was started with. If genesis.peers.json is not provided,
Babble will use peers.json as the genesis validator-set.

peers.json corresponds to the current validator-set. These are the nodes
that are allowed to record new Events in the hashgraph, and who will gossip
among each other.

peers.json and gensesis.peers.json are not necessarily equal because
the dynamic membership protocol enables new nodes to
join or leave a live Babble network dynamically. It is important for a joining
node to know the initial validator-set in order to replay and verify the
hashgraph up to the point where it joins.

It is possible to start a Babble network with just a single node, or with a
predefined validator-set composed of multiple nodes.

In the latter case, someone, or some process, needs to aggregate the public
keys and network addresses of all participants into a single file
(peers.genesisjson), and ensure that everyone has a copy of this file. It is
left to the user to derive a scheme to produce the configuration files but the
docker demo scripts are a good place to start.

Example

Let us say I want to participate in a Babble network. I am going to start by
running babble keygen to create a key-pair:

babble keygen
Your private key has been saved to: /home/[user]/.babble/priv_key
Your public key has been saved to: /home/[user]/.babble/key.pub

Next, I am going to copy the public key (key.pub) and communicate it to whoever
is responsible for producing the peers.json file. At the same time, I will tell
them that I am going to be listening on 172.77.5.2:1337. You may also optionally
supply a moniker for each node, which is far more readable than a
public key address.

Suppose three other people do the same thing. The resulting peers.json file
could look something like this:

[
 {
 "NetAddr":"172.77.5.1:1337",
 "PubKeyHex":"0x0471AEE3CAE4E8442D37C9F5481FB32C4531511988652DF923B79ED4ED992021183D31E0F6FBFE96D89B6D03D7250292DFECD4FC414D83A5C38FA3FAD0D8572864",
 "Moniker":"node1"
 },
 {
 "NetAddr":"172.77.5.2:1337",
 "PubKeyHex":"0x045E034D73C849756AE7B6515CA60D96A5A911B13A4D8B45BC0E0B02EDB45009DF6CCC074EEB6F7C6795740F993664EDEE970F8A717C89344F8437F412BDF0D17C",
 "Moniker":"node2"
 },
 {
 "NetAddr":"172.77.5.3:1337",
 "PubKeyHex":"0x047CCCD40D90B331C64CE27911D3A31AF7DC16C1EA6D570FDC2120920663E0A678D7B5D0C19B6A77FEA829F8198F4F487B68206B93B7AD17D7C49CA7E0164D0033",
 "Moniker":"node3"
 },
 {
 "NetAddr":"172.77.5.4:1337",
 "PubKeyHex":"0x0406CB5043E7337700E3B154993C872B1C61A84B1A739528C4A10135A3D64939C094B4A999BD21C3D5E9E9ECF15B202414F073795C9483B2F51ADA7EE59EB5EAC4",
 "Moniker":"node4"
 }
]

Now everyone is going to take a copy of this peers.json file and put it in a
folder together with the priv_key file they generated in the previous step.
That is the folder that they need to specify as the datadir when they run
Babble.

Babble Executable

Let us take a look at the help provided by the Babble CLI:

Run node

Usage:
 babble run [flags]

Flags:
 -a, --advertise string Advertise IP:Port for babble node
 --bootstrap Load from database
 --cache-size int Number of items in LRU caches (default 10000)
 -c, --client-connect string IP:Port to connect to client (default "127.0.0.1:1339")
 --datadir string Top-level directory for configuration and data (default "/home/martin/.babble")
 --db string Dabatabase directory (default "/home/martin/.babble/badger_db")
 --fast-sync Enable FastSync
 --heartbeat duration Timer frequency when there is something to gossip about (default 10ms)
 -h, --help help for run
 -j, --join-timeout duration Join Timeout (default 10s)
 -l, --listen string Listen IP:Port for babble node (default "127.0.0.1:1337")
 --log string debug, info, warn, error, fatal, panic (default "debug")
 -R, --maintenance-mode Start Babble in a suspended (non-gossipping) state
 --max-pool int Connection pool size max (default 2)
 --moniker string Optional name
 --no-service Disable HTTP service
 -p, --proxy-listen string Listen IP:Port for babble proxy (default "127.0.0.1:1338")
 -s, --service-listen string Listen IP:Port for HTTP service (default "127.0.0.1:8000")
 --signal-addr string IP:Port of WebRTC signaling server (default "127.0.0.1:2443")
 --signal-skip-verify (Insecure) Accept any certificate presented by the signal server
 --slow-heartbeat duration Timer frequency when there is nothing to gossip about (default 1s)
 --store Use badgerDB instead of in-mem DB
 --suspend-limit int Limit of undetermined events (per node) before entering suspended state (default 100)
 --sync-limit int Max number of events for sync (default 1000)
 -t, --timeout duration TCP Timeout (default 1s)
 --webrtc Use WebRTC transport

The listen flag controls the local address:port where this node gossips with
other nodes. If the node is running behind some kind of NAT, it is possilbe to
advertise a different address with the advertise flag. If advertise is
not specified, the node defaults to using the listen address. By default
listen is 127.0.0.1:1337, meaning that Babble will bind to the loopback
addresse on the local machine.

As we explained in the architecture section, each Babble node works in
conjunction with an application for which it orders transactions. When Babble
and the application are connected by a TCP interface, we specify two other
endpoints:

	proxy-listen : where Babble listens for transactions from the App

	client-connect : where the App listens for transactions from Babble

We can also specify where Babble exposes its HTTP API providing information on
the Hashgraph and Blockchain data store. This is controlled by the optional
service-listen flag.

The fast-sync parameter determines whether or not the node will attempt to
fast-forward to the tip of the hashgraph, or download and replay the entire
hashgraph from start. More on this in fast-sync

We can choose to run Babble with a database backend or only with an in-memory
cache. With the store flag set, Babble will look for a database file in
datadir/babdger_db or in the path specified by db. If the database
already exists, and the --boostrap flag is set, the node will load the
database and bootstrap itself to a state consistent with the database and it
will be able to proceed with the consensus algorithm from there. If the database
does not exist yet, or the --bootstrap flag is not set, a new one will be
created and the node will start from a clean state.

The node can also be started in maintenance-mode with the homonymous flag.
The node is started normally but goes straight into the Suspended state,
where it still responds to sync-requests, and service API requests, but does
not produce or insert new Events in the underlying hashgraph. The Suspended
state is also triggered automatically when more than suspend-limit
undetermined-events were created since last starting the node. This is a
safeguard against runaway conditions when a network does not have a strong
majority and produces undetermined-events ad infinitum.

Here is how the Docker demo starts Babble nodes together wth the Dummy
application:

for i in $(seq 1 $N)
do
 docker run -d --name=client$i --net=babblenet --ip=172.77.10.$i -it mosaicnetworks/dummy:latest \
 --name="client $i" \
 --client-listen="172.77.10.$i:1339" \
 --proxy-connect="172.77.5.$i:1338" \
 --discard \
 --log="debug"
done

for i in $(seq 1 $N)
do
 docker create --name=node$i --net=babblenet --ip=172.77.5.$i mosaicnetworks/babble:latest run \
 --heartbeat=100ms \
 --moniker="node$i" \
 --cache-size=50000 \
 --listen="172.77.5.$i:1337" \
 --proxy-listen="172.77.5.$i:1338" \
 --client-connect="172.77.10.$i:1339" \
 --service-listen="172.77.5.$i:80" \
 --sync-limit=500 \
 --fast-sync=$FASTSYNC \
 --store \
 --log="debug"

 docker cp $MPWD/conf/node$i node$i:/.babble
 docker start node$i
done

Stats, blocks and Logs

Once a node is up and running, we can call the stats endpoint exposed
by the HTTP service:

curl -s http://172.77.5.1:80/stats

Or request to see a specific block:

curl -s http://172.77.5.1:80/block/1

Or we can look at the logs produced by Babble:

docker logs node1

We can look at the current state of docker containers:

docker ps --all

 _static/comment.png

_images/babble_design_2.png
App

Service ‘ “« ‘ State

SubmftTx(tx) —— CompmitBlock(Block) ——— JSON RPC/TCP or in memory

BABBLE

App Proxy

Core
Hashgraph
— Store & 4+—> HrIP
Blockchain
Transport

P2P Network

_images/babble_flow.png
nit

undetermined-events > suspend-fimit

no

Suspend

Belong to peer_yes

Shutdown

set?

no

yes

fastsync?

Sucess?

no

FastForward

Babble

Shutdown

_static/file.png

_static/down-pressed.png

_static/down.png

_images/dag_frames_bx.png
e @OO®
©00®
®®

Reas: 0D

fen ©OO©
Lee®
@®

s (00

Blockchain

_images/dag_lamport.png

_static/up-pressed.png

_images/dag.png

_static/minus.png

_images/dag_bx.png
Block2
Block 1 Hash

Transactons

Sigatures.

Block
Block 0 Hash

Transactons

Sigatures.

Blocko

Transactons

Sigatures.

_static/plus.png

_images/dag_rounds.png
e m ORC em OaC
e e

_images/demo.png
1SiEuary 15t ot nessages it
] " SR thibszr

-t

t ‘meclient 13 hello
client 2: vhats up

"Ma72,77,5,11:1339

whats up Every s cat nessages, txt
Enter your text: [2017-04-17 08:54:27
172.77.5,12:1339

client 1 hello
client 2: vhats up

_images/dyn_part.png
Peerset2

PeerSetl

Note
X

Node C

Node B

Reach consensus on

IntemalTransaction and update
peer-set accordingly.
PeerSetl -> PeerSet2

IntemalTransaction{Join, NodeA}

Node A

° Run(PeerSett)

[Sate: Jaining

[NodeA does not belong o PeerSet1]

JoinRequest(inermalTransacton)

FastForward

State: Babiing

nav.xhtml

 Table of Contents

 		
 <no title>

_static/up.png

_images/strongly_seeing.png

_static/ajax-loader.gif

_images/fastsync.png
Node A Node B

[Sate: CatchingUp.

FastForvardRequest)

GetAnchorBlockWiFrame()
Getsnapshat()

fastFonvardResponse(@lock.Frame, Snapsho)

FastForuard(Block, Frame)

Restore(Snapshol)

State: Babiing

_images/roots_0.png
[Even Event 1
IsetParent (SefParent
lomesparent, ¥ Otherparent.
[Event AL EventB1
|setarent Isefarent
|otherparent. (Otherparent ™

|
Event A0 [Eventc
SeffParent : ™ = (Sefarent : ™
Otverparen: ™ - Oterparent ™

_static/comment-bright.png

_static/babble_design_2.png
App

Service ‘ “« ‘ State

SubmftTx(tx) —— CompmitBlock(Block) ——— JSON RPC/TCP or in memory

BABBLE

App Proxy

Core
Hashgraph
— Store & 4+—> HrIP
Blockchain
Transport

P2P Network

_static/babblelogo.png

_static/comment-close.png

