
Preprint typeset in JHEP style - HYPER VERSION

Boltzmann Equations for the PQMSSM (v2.3)

Andre Lessa

Abstract:



1. General Formalism and Approximations

The general Boltzmann equation for the number distribution of a particle species can be

written as[1] (assuming isotropy):

∂Fi

∂t
−Hp

∂Fi

∂p
= Ci[Fi, Fj , p] (1.1)

where Fi(p) is the number distribution of particle i as function of momentum p, C represents

a source/sink term and H is the Hubble constant:

H =

√
8π

3

ρT
M2

P

(1.2)

with MP = 1.22 × 1019 GeV and ρT =
∑

i ρi. The number, energy and pressure densities

are given in terms of Fi as:

ni(t) =

∫
dp

2π2
p2Fi(p)

ρi(t) =

∫
dp

2π2
p2EiFi(p) (1.3)

Pi(t) =
1

3

∫
dp

2π2

p4

Ei
Fi(p)

where mi is the mass of particle i and Ei =
√
p2i +m2

i . Using Eq.(1.1), we obtain the

following equations for the number and energy densities:

dni

dt
+ 3Hni =

∫
dp

2π2
p2Ci

dρi
dt

+ 3H(ρi + Pi) =

∫
dp

2π2
p2EiCi (1.4)

The collision term, Ci, for the process i+ f + . . . ↔ a+ b+ c+ . . . is given by[2]:

Ci =
1

Ei

∫ ∏

j,a

d3pj
2Ej(2π)3

d3pa
2Ea(2π)3

(2π)4δ4 (pi + pj + . . .− pa − pb . . .) |M|2

× [(1± fa)(1± fb) . . . fifj . . .− fafb . . . (1± fi)(1± fj) . . .] (1.5)

where the plus (minus) sign is for bosons (fermions). Below we always assume fi,j,a,.. ≪ 1,

so:

Ci ≃
1

Ei

∫ ∏

j,a

d3pj
2Ej(2π)3

d3pa
2Ea(2π)3

(2π)4δ4 (pi + pj + . . .− pa − pb . . .) |M|2

× [fifj . . .− fafb . . .] (1.6)

We will assume that C is given by:

C = Cdec + Cprod + Cann (1.7)

where Cdec contains the contributions from decays and inverse decays (i ↔ a+b+. . .), Cprod

contains the contributions from decay injection and inverse decay injection (a ↔ i+b+ . . .)

and Cann from annihilations with the thermal plasma (i+ i ↔ a+ b). Below we compute

each term separately, under some assumptions.
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1.1 Annihilation Term

The annihilation term Cann for the i+ j ↔ a+ b process is given by[1]:
∫

dp

2π2
p2Cann =

∫
dΠidΠjdΠadΠb(2π)

4δ(4)(pi + pj − pa − pb)|M |2 [fafb − fifj ] (1.8)

where dΠi = d3pi/((2π)
32Ei). Since we are ultimately interested in Eqs.(1.4) for the

number and energy densities, we will consider the following integral:
∫

dp

2π2
p2CannE

α
i =

∫
dΠidΠjdΠadΠb(2π)

4δ(4)(pi+pj−pa−pb)|M |2 [fafb − fifj ]E
α
i (1.9)

where α = 0(1) for the number (energy) density. Here we assume that the distributions

can be approximated by1:

fi ≃ exp(−(Ei − µi)/T ) (1.10)

so the annihilation term can then be written as:

∫ dp

2π2
p2CannE

α
i = − (exp((µi + µj)/T )− exp((µa + µb)/T ))

×

∫
dΠidΠjdΠadΠb(2π)

4δ(4)(pi + pj − pa − pb)|M |2 exp(−(Ei + Ej)/T )× Eα
i

where above we have used conservation of energy (Ei +Ej = Ea +Eb). Since for the cases

of interest the equilibrium distributions have zero chemical potential, we have:

ni

n̄i
= exp(µi/T ) (1.11)

so:

∫ dp

2π2
p2CannE

α
i = −

(
ninj

n̄in̄j
−

nanb

n̄an̄b

)

×

∫
dΠidΠjdΠadΠb(2π)

4δ(4)(pi + pj − pa − pb)|M |2 exp(−(Ei + Ej)/T )× Eα
i

In particular, for the process i + i ↔ a + b, where a and b are in thermal equilibrium

(µa = µb = 0):

∫ dp

2π2
p2CannE

α
i = −

(
n2
i

n̄2
i

− 1

)

×

∫
dΠidΠjdΠadΠb(2π)

4δ(4)(pi + pj − pa − pb)|M |2 exp(−(Ei + Ej)/T )× Eα
i

= −
(
n2
i − n̄2

i

)
〈σvEα

i 〉 (1.12)

For α = 0, the above equation is the well known contribution from thermal scatterings to

the annihilation term. To estimate its value for α = 1, we assume:

〈σvE〉 ≃ 〈σv〉〈Ei〉 = 〈σv〉
ρi
ni

(1.13)

1This approximation is only valid for particles with a thermal distribution. However, since the annihila-

tion term is responsible for keeping the particle i in thermal equilibrium with the plasma, it is reasonable

to assume a thermal distribution for i while the annihilation term is relevant.
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where 〈 〉 represents thermal average. Thus:

∫
dp

2π2
p2CannE

α
i =

(
n̄2
i − n2

i

)
{

〈σv〉 , for α = 0

〈σv〉 ρini
, for α = 1

(1.14)

1.2 Decay Term

Now we derive a simplified expression for the decay (and inverse decay) term, under ap-

proximations similar to the ones used in the last section. The decay term includes the

contributions from particle decay and inverse decay[2, 3]:

Cdec ≃
1

Ei

∫ ∏

a

d3pa
2Ea(2π)3

(2π)4δ4 (pi − pa − pb . . .) |M|2 [fi − fafb . . .] (1.15)

As in the case of the annihilation term, we assume that the distributions for a, b, . . . can

be approximated by fx ≃ exp(−(Ex − µx)/T ), so we can write:

fafb . . . ≃ exp

(
µa + µb + . . .

T

)
exp(−Ei/T ) =

nanb . . .

n̄an̄b . . .
exp(−Ei/T ) =

nanb . . .

n̄an̄b . . .
f̄i (1.16)

where we used conservation of energy (Ea + Eb + . . . = Ei) and f̄i is the equilibrium

distribution for the species i. Hence we can write Eq.(1.15) as:

Cdec ≃

[
fi −

nanb . . .

n̄an̄b . . .
f̄i

]
1

Ei

∫ ∏

a

d3pa
2Ea(2π)3

(2π)4δ4 (pi − pa − pb . . .) |M|2

= Bab...
Γimi

Ei

[
fi −

nanb . . .

n̄an̄b . . .
f̄i

]
(1.17)

where Γi is the width for i and Bab... ≡ BR(i → a+ b+ . . .)

Once again we consider the integral:
∫

dp

2π2
p2Cdec(p)E

α
i = − Γi

∫
dp

2π2
p2

mi

Ei
fiE

α
i

+
∑

i decays

Bab...Γi
nanb . . .

n̄an̄b . . .

∫
dp

2π2
p2

mi

Ei
f̄iE

α
i (1.18)

where we have included the sum over all decay channels and α = 0(1) for the contribution

to the number (energy) density equation. Note that both integrals are identical, except for

the replacement fi → f̄i. The first integral in Eq.(1.18) gives:

−Γi

∫
dp

2π2
p2

mi

Ei
fi(p)E

α
i =

{
−Γimini〈

1
Ei
〉 , for α = 0

−Γimini , for α = 1
(1.19)

where

〈
1

Ei
〉 ≡

1

ni

∫
dp

2π2
p2

1

Ei
fi(p) (1.20)

Hence we can write Eq.(1.18) as:

∫
dp

2π2
p2Cdec(p)E

α
i = −Γimi

{
ni〈

1
Ei
〉 − n̄i〈

1
Ei
〉eq
∑

Bab...
nanb...
n̄an̄b...

, for α = 0

ni − n̄i
∑

Bab...
nanb...
n̄an̄b...

, for α = 1
(1.21)
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For the non-equilibrium average we assume:

〈
1

Ei
〉 ≃

1

〈Ei〉
=

ni

ρi
(1.22)

which is exact in the non-relativistic limit, but it is only an approximation for the relativistic

case. Although we can compute the equilibrium average (〈 1
Ei
〉eq) explicitly, in order to have

an exact cancellation between the decay and inverse decay terms when i, a and b are all in

equilibrium, we take:

〈
1

Ei
〉eq ≃ 〈

1

Ei
〉 =

ni

ρi
(1.23)

With the above approximations we finally obtain:

∫
dp

2π2
p2Cdec(p)E

α
i = −Γimi

{
ni

ρi

(
ni − n̄i

∑
Bab...

nanb...
n̄an̄b...

)
, for α = 0

ni − n̄i
∑

Bab...
nanb...
n̄an̄b...

, for α = 1
(1.24)

where Bab... ≡ BR(i → a+ b+ . . .).

1.3 Production Term

The decay and inverse decay of other particles (a → i+ b+ . . .) can also affect the species

i. The contribution from these terms we label Cprod, which is given by[2]:

Cprod ≃
1

Ei

∫
d3pa

2Ea(2π)3

∏

b

d3pb
2Eb(2π)3

(2π)4δ4 (pa − pi − pb . . .) |M|2 [fa − fifb . . .] (1.25)

Using the same approximations of the previous section, we write:

fifb . . . ≃
ninb . . .

n̄in̄b . . .
e−Ea/T =

ninb . . .

n̄in̄b . . .
f̄a (1.26)

Hence:

Cprod =
1

Ei

∫
d3pa

2Ea(2π)3

∏

b

d3pb
2Eb(2π)3

(2π)4δ4 (pa − pi − pb . . .) |M|2
(
fa − f̄a

ninb . . .

n̄in̄b . . .

)

(1.27)

and
∫

dp

2π2
p2Cprod(p)E

α
i =

∫
d3pa

Ea(2π)3

(
fa − f̄a

ninb . . .

n̄in̄b . . .

)

×
d3pEα

i

2Ei(2π)3

∏

b

d3pb
2Eb(2π)3

(2π)4δ4 (pa − pi − pb . . .) |M|2 (1.28)

with α = 0(1) for the contribution to the number (energy) density equation. For α = 0 we

obtain:
∫

dp

2π2
p2Cprod(p) = ΓaBima

∫
d3pa

Ea(2π)3

(
fa − f̄a

∑

b

Bib...

Bi

ninb . . .

n̄in̄b . . .

)

= ΓaBima
na

ρa

(
na − n̄a

∑

b

Bib...

Bi

ninb . . .

n̄in̄b . . .

)
(1.29)
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where Bib... ≡ BR(a → i + b + . . .), Bi =
∑

b Bib... and we have once again assumed

〈1/Ea〉 ≃ 〈1/Ea〉eq ≃ na/ρa.

For α = 1, the integral in Eq.(1.28) does not take a simple form. In order to compute

it, we assume:

Ei ≃
Ea

2
(1.30)

The above expression is only exact for 2-body decays and ma ≫ mi,mb. For the remaining

cases, it is only an estimate.

∫
dp

2π2
p2Cprod(p)Ei ≃ ΓaBi

ma

2

∫
d3pa
(2π)3

(
fa − f̄a

∑

b

Bib...

Bi

ninb . . .

n̄in̄b . . .

)

= ΓaBi
ma

2

(
na − n̄a

∑

b

Bib...

Bi

ninb . . .

n̄in̄b . . .

)
(1.31)

Combining the results for α = 0 and 1, we have:

∫
dp

2π2
p2Cprod(p)E

α
i = ΓaBima

(
na − n̄a

∑

b

Bib...

Bi

ninb . . .

n̄in̄b . . .

){
na

ρa
, for α = 0

1
2 , for α = 1

(1.32)

1.4 Number and Energy Density Equations

Using the results of Eqs.(1.14), (1.24) and (1.32) in the Boltzmann equations for ni and ρi
(Eq.(1.4)), we obtain:

dni

dt
+ 3Hni =

(
n̄2
i − n2

i

)
〈σv〉 − Γimi

ni

ρi

(
ni − n̄i

∑

i→...

Bab...
nanb . . .

n̄an̄b . . .

)

+
∑

a

ΓaBima
na

ρa

(
na − n̄a

∑

a→i...

Bib...

Bi

ninb . . .

n̄in̄b . . .

)
+ Ci(T ) (1.33)

dρi
dt

+ 3H(ρi + Pi) =
(
n̄2
i − n2

i

)
〈σv〉

ρi
ni

− Γimi

(
ni − n̄i

∑

i→...

Bab...
nanb . . .

n̄an̄b . . .

)

+
∑

a

ΓaBi
ma

2

(
na − n̄a

∑

a→i...

Bib...

Bi

ninb..

n̄in̄b..

)
+ C̃i(T )

ρi
ni

(1.34)

where Bab... = BR(i → a+ b+ . . .), Bib... = BR(a → i+ b+ . . .), Bi =
∑

b Bib... and we have

included an extra term (Ci and C̃i) to allow for other possible sources for the number and

energy densities. For simplicity we assume Ci = C̃i from now on.

It is also convenient to use the above results to obtain a simpler equation for ρi/ni:

dρi/ni

dt
≡

dRi

dt
= −3H

Pi

ni
+
∑

a

Bi
Γama

ni

(
1

2
−

na

ρa

ρi
ni

)(
na − n̄a

∑

a→i...

Bib...

Bi

ninb..

n̄in̄b..

)
(1.35)

Besides the above equations, it is useful to consider the evolution equation for entropy:

dS ≡
dQdec

T
(1.36)
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where dQdec is the net energy injected from decays. With the above definition we have:

Ṡ =
1

T

∑

i

BR(i,X)
d
(
R3ρi

)dec

dt

⇒ Ṡ =
R3

T

∑

i

BR(i,X)Γimi

(
ni − n̄i

∑

i→...

Bab...
nanb . . .

n̄an̄b . . .

)
(1.37)

where R is the scale factor and BR(i,X) is the fraction of energy injected in the thermal

bath from i decays.

The above expressions can be written in a more compact form if we define the following

”effective thermal densities” and ”effective BR”:

N th
X ≡ n̄X

∑

X→...

BR(X → 1 + 2 + . . .)
∏

k

nk

n̄k

N th
XY ≡

n̄X

Beff
XY

∑

X→Y+...

gY BR(X → gY Y + 1 + . . .)

(
nY

n̄Y

)gY ∏

k

nk

n̄k

Beff
XY ≡

∑

X→Y+...

gY BR(X → gY Y + 1 + . . .)

where gY is the Y multiplicity in the final state of X decays. In addition, defining:

x = ln(R/R0), Ni = ln(ni/s0), and NS = ln(S/S0) (1.38)

we can write Eqs.(1.37), (1.33) and (1.35) as:

N ′
S =

e(3x−NS)

HT

∑

i

BR(i,X)Γimi

(
ni −N th

i

)
(1.39)

N ′
i = −3 +

〈σv〉i
H

ni[

(
n̄i

ni

)2

− 1]−
Γi

H

mi

Ri

(
1−

N th
i

ni

)

+
∑

a

Beff
ai

Γa

H

ma

Ra

(
na

ni
−

N th
ai

ni

)
(1.40)

R′
i = −3

Pi

ni
+
∑

a

Beff
ai

Γa

H
ma

(
1

2
−

Ri

Ra

)(
na

ni
−

N th
ai

ni

)
(1.41)

where ′ = d/dx.

The above equation for Ni also applies for coherent oscillating fields, if we define:

Ni = ln(ni/s0), and ni ≡ ρi/mi (1.42)

so

N ′
i = −3−

Γi

H
R′

i = 0 (1.43)

where we assume that the coherent oscillating component does not couple to any of the

other fields.

Collecting Eqs.(1.39)-(1.41) and (1.43) we have a closed set of first order differential

equations:
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• Entropy:

N ′
S =

e(3x−NS)

HT

∑

i

BR(i,X)Γimi

(
ni −N th

i

)
(1.44)

• Thermal fields:

N ′
i = −3 +

〈σv〉i
H

ni[

(
n̄i

ni

)2

− 1]−
Γi

H

mi

Ri

(
1−

N th
i

ni

)
+
∑

a

Beff
ai

Γa

H

ma

Ra

(
na

ni
−

N th
ai

ni

)

R′
i = −3

Pi

ni
+
∑

a

Beff
ai

Γa

H
ma

(
1

2
−

Ri

Ra

)(
na

ni
−

N th
ai

ni

)
(1.45)

• Coherent Oscillating fields:

N ′
i = −3−

Γi

H
R′

i = 0 (1.46)

As seen above, the equation for Ri = ρi/ni depends on Pi/ni. A proper evaluation

of this quantity requires knowledge of the distribution Fi(p, t). However, for relativistic

(or massless) particles we have Pi = ρi/3, as seen from Eq.(1.3), while for particles at rest

we have Pi = 0. Hence Fi(p, t) is only required to evaluate the relativistic/non-relativistic

transition, which corresponds to a relatively small part of the evolution history of particle

i. Nonetheless, to model this transition we approximate Fi by a thermal distribution and

take Ti, µi ≪ mi, where Ti is the temperature of the particle (which can be different from

the thermal bath’s). Under these approximations we have:

Pi

ni
= Ti

ρi
ni

= Ti

[
K1(mi/Ti)

K2(mi/Ti)

mi

Ti
+ 3

]
(1.47)

where K1,2 are the modified Bessel functions. In particular, if mi/Ti ≫ 1:

ρi
ni

≃ Ti

[
3

2
+

mi

Ti
+ 3

]
⇒

Pi

ni
= Ti =

2mi

3

(
Ri

mi
− 1

)
(1.48)

As shown above, for a given value of Ri = ρi/ni, Eq.(1.47) can be inverted to compute Ti

(= Pi/ni):
Pi

ni
= Ti(Ri) (1.49)

Since we are interested in the non-relativistic/relativistic transition, we can expand the

above expression around Ri/mi = 1, so Pi/ni can be written as:

Pi

ni
=

2mi

3

(
Ri

mi
− 1

)
+mi

∑

n>1

an

(
Ri

mi
− 1

)n

(1.50)

where the coefficients an can be numerically computed from Eq.(1.47). The above approx-

imation should be valid for mi/Ti & 1 (or Ri & mi). On the other hand, for mi/Ti ≪ 1
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(or Ri ≫ mi), we have the relativistic regime, with Pi/ni = Ri/3. Therefore we can

approximate the Pi/ni function for all values of Ri by:

Pi

ni
=

{
2mi

3

(
Ri

mi
− 1
)
+mi

∑
n>1 an

(
Ri

mi
− 1
)n

, for Ri < R̃
Ri

3 , for Ri > R̃
(1.51)

where the coefficients an are given by the numerical fit of Eq.(1.47) and R̃ is given by the

matching of the two solutions.

Finally, to solve Eqs.(1.44)-(1.46) we need to compute H according to Eq.(1.2), which

requires knowledge of the energy densities for all particles (ρi) and for the thermal bath

(ρR). The former are directly obtained from Ni and Ri, while the latter can be computed

from NS :

T =

(
g∗S(TR)

g∗S(T )

)1/3

TR exp[NS/3− x] ⇒ ρR =
π2

30
g∗(T )T

4 (1.52)

Eqs.(1.44)-(1.46), with the auxiliary equations for H (Eq.(1.2)) and Pi/ni (Eq.(1.51))

form a set of closed equations, which can be solved once the initial conditions for the

number density (ni), energy density (ρi) and entropy (S) are given. For thermal fluids we

assume:

ni(TR) =

{
0 , if 〈σv〉in̄i/H|T=TR

< 10

n̄i(TR) , if 〈σv〉in̄i/H|T=TR
> 10

(1.53)

ρi
ni

(TR) =
ρ̄i
n̄i

(TR) (1.54)

where ρ̄i is the equilibrium energy density (with zero chemical potential) for the particle

i. While for coherent oscillating fluids the initial condition is set at the beginning of

oscillations:

ni(T
osc
i ) =

ρ0i
mi(T osc

i )
(1.55)

ρi
ni

(T osc
i ) = mi (1.56)

where T osc
i is the oscillation temperature, given by 3H(T osc

i ) = mi(T
osc
i ) and ρ0i the initial

energy density for oscillations.

Finally, the initial condition for the entropy S is trivially obtained, once we assume a

radiation dominated universe at T = TR:

S(TR) =
2π2

45
g∗(TR)T

3
RR

3
0 (1.57)

2. Code

Here we describe how the above formalism is implemented in a numerical code for solving

the coupled Boltzmann equations. In Sec.2.1 we describe how the input for specific models

should be defined. Then, in Sec.2.2 we outline the procedure used to solve the Boltzmann

equations and to treat some of the discrete transitions required by the formalism described

above. Finally, in Sec.2.3 we describe what is the output of the code and how it can be

controlled by the user.
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2.1 Input

In order to solve the Boltzmann equations for a particular model, the user has to provide

the SUBROUTINE INPUTBOLTZ(T), which, for a given (thermal bath) temperature T ,

fills the COMMON BLOCK:

COMMON/INBOLTZ/BR(NP,NP),DEGF(NP),MASS(NP),GAM(NP),

SIGV(NP),C(NP),COHOSC(NP),TRH,NCOMPS,LABEL(NP)

where NP = 20 and

• NCOMPS (≤ 10) = the number of particles (the first component must be radiation)

• MASS(i) = mass for particle i (can be temperature dependent, as in the axion case)

• DEGF(i) = +-number of degrees of freedom for particle i. A plus sign should be used

for bosons, while a minus should be used for fermions, i.e. DEGF=-2 for neutralinos

and DEGF=1 for axions. The value for the i=1 component (radiation) is never

used, since the number of degrees of freedom in this case in given by the function

GSTAR(T).

• GAM(i) = decay width for particle i, in its rest frame.

• BR(i,j) = branching ratio for the decay i → j +X, including the multiplicity factor,

if the i particle decays into multiple j’s.

• BR(i,1) = fraction of energy per i particle injected in the radiation fluid.

• SIGV(i) = thermal averaged cross-section for the annihilation of i particles, as defined

in the previous section.

• C(i) = additional source term for particle i, as defined in the previous section.

• COHOSC(i) = initial energy density for coherent oscillating particles. Must be zero

for thermal (non-oscillating) components.

• TRH = re-heat temperature.

• LABEL(i) = label for particle i (optional)

2.2 Main Code

Once the INPUTBOLTZ subroutine is provided, the user can compute the solution for the

Boltzmann equations from T=TRH to T=TF, calling:

CALL INPUTBOLTZ(TRH) ! (iniatilization)

CALL EQSBOLTZ(TF,IOUT) ! (compute solution)
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where, if IOUT> 0, the scale factor (R) and energy densities as a function of T are

written to UNIT=IOUT. If TF = 0, the evolution proceeds until all unstable particles

have decayed and/or all coherent oscillating components have started to oscillate. Before

calling EQSBOLTZ, the user must define the parameters which regulate the precision of

the procedure, given by the BLOCK DEPARS:

COMMON/DEPARS/EPS,DX0,STEP,IERROR

where EPS is the relative precision for the solution Ni(TF ), DX0 is the x interval for

printing the solutions in IOUT and the maximum ∆x step and STEP is the initial ∆x step

for the evolution. Failure to solve the equations (most likely due to numerical instabilities)

is indicated by IERROR< 0.

Specific components can be turned off using the COMMON BLOCK:

COMMON/SWITCHES/TURNOFF(NP)

If TURNOFF(I)=.TRUE., the i−component will not be included in the evolution of the

Boltzmann equations.

The EQSBOLTZ is the main subroutine used to solve the equations, once the appro-

priate input has been defined. Its main steps are:

1. Set initial conditions at T = TRH: check which thermal particles are coupled/decoupled

to the thermal bath and if coherent oscillating fluids are already oscillating at T=TRH.

Then it sets the initial number densities and temperatures for each component, as

defined in the previous section. Set X1=1 and X2=X1+DX0.

2. Solve the equations between X1 and X2.

3. Check if a particle has decayed. If the particle i satisfies

Γi/H > 100 and min
j 6=i

(ρi/ρj) < 10−3 (2.1)

the particle is neglected from here on. The decay temperature (TD) is defined by

the sudden decay approximation: Γi/γi = H(TD), where γi is the boost factor (γi ≡

〈Ei〉/mi). Although this temperature is printed out in the output, it is never used in

the code.

4. Check if a particle has decoupled from the thermal bath or started to oscillate in the

interval (X1,X2). Decoupling is assumed if 〈σv〉in̄i < H/10, which also defines the

freeze-out temperature. The oscillation temperature is given by 3H(Tosc) = mi(Tosc)

and defines the beginning of evolution for the oscillating components.

5. If a component has started to oscillate or if it has decoupled, loop over this in-

terval with smaller steps until the decoupling or oscillation temperature converges

(∆Ti/Ti < 0.1).

6. Write temperature, scale factor and energy densities to IOUT, if IOUT> 0.

7. Set X1=X2 and X2=X1+DX0 and return to point 2. until T < TF (or all unstable

particles have decayed and all oscillating fluids have oscillated, if TF≤ 0).
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2.3 Output

The standard information printed after solving the Boltzmann equations gives:

• Freeze-out temperatures (Tfr) for each thermal component. As mentioned in the last

section, Tfr is given by the decoupling condition: 〈σv〉in̄i = H/10. Since the decou-

pling is a continuous process, Tfr is just an estimate for the decoupling temperature.

• Decay temperatures (TD) for each thermal component. Once again the decay pro-

cess is continuous and TD given in the print out is estimated by the sudden decay

approximation (Γi/γi = H(TD)).

• Oscillation temperature (Tosc).

• Entropy ratio (S/S0). In case of entropy injection from decays of unstable particles,

S/S0 > 1.

• Relic densities (Ωih
2) at T0 = 2.725 K. In order to consistently compute the relic

densities today, we evolve Ri = ρi/ni from TF to T0 assuming a trivial universe

expansion:

R′
i = −3

Pi

ni
(2.2)

Note that the result obtained above is insensitive to H, so it does not matter if there

is a transition from a radiation dominated to a matter dominated (or dark energy

dominated) universe between TF and T0. Once Ri(T0) is obtained, the relic density

is given by:

Ωih
2 = ni(TF )×

g∗S(T0)T
3
0

g∗S(TF )TF 3
×

Ri(T0)

ρc/h2
(2.3)

• Relic densities before decay. It may be relevant to compute the relic densities of an

unstable particle as it would be given if it had not decayed. In particular, this value

can be used to impose BBN bounds on the decays. This quantity is computed after the

particle becomes non-relativistic and well before the decay starts (Γi/H(T ) = 1/10)

and is given by:

Ω̃ih
2 =

ρi(T )

s(T )
×

s(T0)

ρc/h2
(2.4)

Note that the above expression assumes a radiation dominated universe from T to

T0 and should be used with caution.

• Effective number of (new) neutrinos (∆Neff ). Since neutrinos are still coupled for

T > 1 MeV, this quantity is only compute below this temperature. ∆Neff is given

by:

∆Neff (T ) =
ρDR(T )

ρν
(2.5)

where ρDR is the total energy density of relativistic particles (excluding radiation

and neutrinos) and ρν is the energy density of neutrinos after they freeze-out:

ρDR =
∑

Ri/mi>2

ρi and ρν =
π2

15

7

8

(
4

11

)4/3

T 4 (2.6)
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Note that ∆Neff is in general a function of temperature, since ρDR will decrease if

massive particles become non-relativistic below 1 MeV.

Furthermore, if IOUT > 0, the scale factor (R), the energy densities and ∆Neff are

printed as a function of T in UNIT=IOUT. Also, the following quantities are stored in

COMMON BLOCKs:

• Final relic densities and entropy ratio:

COMMON/OUTPUT/OMEGA(NP),RS

• Decoupling, oscillation and decay temperatures:

COMMON/TEMPS/TDEC(NP),TOSC(NP),TDCAY(NP)

• Relic density of unstable particles before decay (Ω̃h2), temperature at the end of

entropy injection (if any) and effective number of new neutrinos (∆Neff ) at the final

temperature TF :

COMMON/BBNINFO/UMEGA(NP),TSTAB,DNeff

3. PQMSSM

In order to apply the above formalism to the PQMSSM we need to define:

• Masses: m
Z̃1
, mã, ms, ma(T ), mG̃

• Decay Width: Γi, with i = Z̃1, ã, s, G̃,

• Branching Ratios: BR(i, j) and BR(i, 1), with i, j = Z̃1, ã, s, G̃,

• Annihilation cross-sections: 〈σv〉i, with i = a, Z̃1, ã, s, G̃,

• Additional Source terms: Ci, with i = a, Z̃1, ã, s, G̃,

• Initial energy density for coherent oscillating fields: ρ0i , with i = a, s

• and remaining SUSY spectrum (for computation of g∗ and gravitino/axino decays)

Below we describe how the quantities 〈σv〉i, Γi, BR(i, j), Ci and ρ0i are computed.

3.1 〈σv〉

The annihilation cross-section for the neutralino component is computed in the SUBROU-

TINE ZSIG(T,MZ), where T is the temperature and MZ is the neutralino mass. For

efficiency purposes the calculation of 〈σv〉
Z̃1

can be controlled through the COMMON

BLOCK:

COMMON/INSIGMA/INOMGZ,INMZ,INFLAG,INDATA
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The main options are set by INFLAG:

• If INFLAG=166, the subroutine returns a constant value for 〈σv〉
Z̃1
, given by:

〈σv〉
Z̃1

= 1.7× 10−10/Ω
Z̃1
h2 (3.1)

where the value for Ω
Z̃1
h2 should be set in INOMGZ.

• If INFLAG=266, then

– If INDATA < 0: generate file with 〈σv〉
Z̃1

values for 3 × 10−5 < T/m
Z̃1

< 2 in

UNIT=ABS(INDATA) for future extrapolation and set INDATA=ABS(INDATA).

The number of points and specific values of T are chosen as to properly describe

the shape of 〈σv〉
Z̃1
. The file must be open by the main program.

– If INDATA > 0: use values in UNIT=INDATA for a linear extrapolation in

log(T/m
Z̃1
)

• If INFLAG 6= 166 and 266: compute 〈σv〉
Z̃1
(T ) (full integration). Due to convergence

issues, 〈σv〉
Z̃1
(T > m

Z̃1
/2) ≡ 〈σv〉

Z̃1
(T = m

Z̃1
/2) and 〈σv〉

Z̃1
(T < m

Z̃1
/5× 10−5) ≡

〈σv〉
Z̃1
(T = m

Z̃1
/5× 10−5).

The thermal production rate for axions, saxions, axinos and gravitinos was computed

in Refs.[5, 6, 7]. However, the expressions derived in Refs.[5, 6, 7] are only valid for out

of equilibrium production, where the (out of equilibrium) thermal production rate (Wi) is

defined by:
dni

dt
+ 3H = Wi (3.2)

In the out of equilibrium regime we have n̄i ≫ ni, so Eq.(1.33) becomes:

dni

dt
+ 3H = n̄2

i 〈σv〉i (3.3)

Comparing the above equation to Eq.(3.2), we identify:

〈σv〉i =
Wi

n̄2
i

(3.4)

Although the above relation is only exact for the out of equilibrium regime, we use it for all

values of temperature. This is only a poor approximation if the reheat temperature (TR)

is very close to the decoupling temperature (Tdec). Since for TR & Tdec, Eq.(1.33) gives

ni = n̄i (independent of 〈σv〉i), while for TR . Tdec Eq.(3.4) is exact.

Using the expressions [5, 6, 7] and Eq.(3.4), we obtain2:

〈σv〉a =
9

128π3ξ(3)

g6s
f2
a

ln(
1.0126

gs
)

〈σv〉s = 〈σv〉a

2According to Ref.[5], the axion and saxion thermal rates are identical in supersymmetric models.
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〈σv〉ã =
1

576π3ξ(3)2
g4s
f2
a

F (gs)

〈σv〉
G̃

=
1.37

M2
P

×

[
72g2s ln(1.271/gs)(1 +

M2
3

3m2
G̃

)

+ 27g2 ln(1.312/g)(1 +
M2

2

3m2
G̃

) + 11g′2 ln(1.266/g′)(1 +
M2

1

3m2
G̃

)

]

where F (gs) is numerically obatined from Ref.[6]:

F (x) = −0.365771 + 9.38897x+ 27.7315x2 − 20.1012x3 + 5.153x4 (3.5)

We note that while the expression for 〈σv〉ã includes thermal decays such as g → g̃+ ã

and is valid for all values of gs, the expressions for 〈σv〉a,s correspond only to the hard

themal loop calculation and assume gs ≪ 1 (or TR ≫ 106 GeV). Nonetheless we use these

expressions for all values of gs (TR).

3.2 Γ,BR

The decay rates are computed through the SUBROUTINES:

AXINOBR(MAXINO,FA,AXLT,AXWD,AXVIS)

GRAVITINOBR(MGT,GLT,GWD)

Z1BRS(MZ1,FA,Z1B,Z1WD,Z1LT)

SAXIONBR(MSAXION,FA,XI,SAXWD,SAXLT)

where the axino, gravitino, neutralino and saxion decay rates are given by AXWD, GWD,

Z1WD and SAXWD, respectively. Neutralinos and axinos decays into gravitinos (if kine-

matically allowed) are NOT included. So the gravitino LSP case is NOT presently included.

For the case of an axino LSP, Z1BRS assumes MAXINO=0. Therefore, if m
Z̃1

< mã, the

user should set Z1WD=0.

The branching ratios are given by:

BR(s → X) = 1−BR(s → aa)−BR(s → ãã)

BR(s → Z̃1) = 2×BR(s → g̃g̃)

BR(s → a) = 2×BR(s → aa)

• If m
Z̃1

> mã:

BR(Z̃1 → ã) = 1

BR(Z̃1 → X) = 1

• If mã > m
Z̃1
:

BR(ã → Z̃1) = 1

BR(ã → X) = 1
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• If m
G̃
> m

Z̃1
:

BR(G̃ → Z̃1) = 1

BR(G̃ → X) = 1

• If m
G̃
< m

Z̃1
(but m

G̃
> mã, since G̃ LSP is not allowed!):

BR(G̃ → ã) = 1

BR(G̃ → a) = 1

and all other BRs are zero.

As discussed above, the branching ratio BR(i → X) is defined as the fracion of energy

injected in the thermal bath. For simplicity we assume that most of the energy from decays

goes into radiation, so BR(i → X) ∼ 1, except for saxion decays to axions and axinos and

gravitino decays to axion + axino.

3.3 C

The source term Ci can be used to include other processes that can not be described as

decays or annihilations. However these are not relevant for the PQMSSM. Therefore we

set all these to zero.

3.4 ρ0

Finally, the initial energy densities for the oscillating saxion and axion fields are given by:

ρ0a = 1.44
ma(T )

2f2
aθ

2
i

2
f(θi)

7/6

ρ0s = min

[
1.9× 10−8

(
2π2g∗(TR)T

3
R

45

)(
TR

105

)( si
1012

)2
,
m2

ss
2
i

2

]

where f(θi) = ln[e/(1−θ2i /π
2)] and faθi and si are the initial axion and saxion amplitudes.

The definition of ρ0s accounts for the possibility of beginning of saxion oscillations during

inflation (TR < Tosc).
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