
Axelrod-dojo Documentation

The Axelrod project developers

Sep 01, 2018

Contents

1 Table of Contents 3
1.1 Tutorial . 3
1.2 How to . 4

1.2.1 Use different objective functions . 4
1.2.2 Train using the genetic algorithm . 4
1.2.3 Train using the particle swarm algorithm . 4

1.3 Background . 5
1.3.1 Genetic Algorithm . 5

1.4 Reference . 6
1.4.1 Bibliography . 7

2 Indices and tables 9

Bibliography 11

i

ii

Axelrod-dojo Documentation

This library is a companion library to the Axelrod library: a research tool for the study of the iterated prisoners
dilemma. The Axelrod-dojo is used to train strategies.

This is done using implementations of:

• Strategy archetypes Parameters

• Algorithms

Contents 1

http://axelrod.readthedocs.io/en/stable/

Axelrod-dojo Documentation

2 Contents

CHAPTER 1

Table of Contents

1.1 Tutorial

In this tutorial we will aim to find the best Finite State Machine against a collection of other strategies from the Axelrod
library [Harper2017].

First let us get the collection of opponents against which we aim to train:

>>> import axelrod as axl
>>> opponents = [axl.TitForTat(), axl.Alternator(), axl.Defector()]
>>> opponents
[Tit For Tat, Alternator, Defector]

We are now going to prepare the training algorithm. First of all, we need to prepare the objective of our strategy. In
this case we will aim to maximise score in a match with 10 turns over 1 repetition:

>>> import axelrod_dojo as dojo
>>> objective = dojo.prepare_objective(name="score", turns=10, repetitions=1)

The algorithm we are going to use is a genetic algorithm which requires a population of individuals. Let us set up the
inputs:

>>> params_class = dojo.FSMParams
>>> params_kwargs = {"num_states": 2}

Using this we can now create our Population (with 20 individuals) for a genetic algorithm:

>>> axl.seed(1)
>>> population = dojo.Population(params_class=params_class,
... params_kwargs=params_kwargs,
... size=20,
... objective=objective,
... output_filename="training_output.csv",
... opponents=opponents,

(continues on next page)

3

Axelrod-dojo Documentation

(continued from previous page)

... bottleneck=2,

... mutation_probability=.1)

We can now evolve our population:

>>> generations = 4
>>> population.run(generations)
Scoring Generation 1
Generation 1 | Best Score: 2.1 0:C:0_C_0_C:0_D_1_C:1_C_1_D:1_D_1_D
Scoring Generation 2
Generation 2 | Best Score: 2.1 0:C:0_C_0_C:0_D_1_C:1_C_1_D:1_D_1_D
Scoring Generation 3
Generation 3 | Best Score: 2.1 0:C:0_C_0_C:0_D_1_C:1_C_1_D:1_D_1_D
Scoring Generation 4
Generation 4 | Best Score: 2.1 0:C:0_C_0_C:0_D_1_C:1_C_1_D:1_D_1_D

The run command prints out the progress of the algorithm and this is also written to the output file (we passed
output_filename as an argument earlier). The printing can be turned off to keep logging to a minimum by
passing print_output=False to the run.

The last best score is a finite state machine with representation 0:C:0_C_0_C:0_D_1_D:1_C_1_D:1_D_1_D
which corresponds to a strategy that stays in state 0 as long as the opponent cooperates but otherwise goes to state
1 and defects forever. Indeed, if the strategy is playing Defector or Alternator then it should just defect,
otherwise it should cooperate.

1.2 How to

1.2.1 Use different objective functions

It is currently possible to optimise players for 3 different objectives:

• Score;

• Score difference;

• Probability of fixation in a Moran process.

This is done by passing a different objective name to the prepare_objective function:

>>> import axelrod_dojo as dojo
>>> score_objective = dojo.prepare_objective(name="score", turns=10, repetitions=1)
>>> diff_objective = dojo.prepare_objective(name="score_diff", turns=10,
→˓repetitions=1)
>>> moran_objective = dojo.prepare_objective(name="moran", turns=10, repetitions=1)

1.2.2 Train using the genetic algorithm

WIP: include all details for training with genetic algorithm.

1.2.3 Train using the particle swarm algorithm

WIP: include all details for training with PSO

4 Chapter 1. Table of Contents

Axelrod-dojo Documentation

1.3 Background

Note that there are currently two algorithms implemented:

• Genetic algorithm

• Particle swam optimisation

Note that these two algorithms are not equally suited to each archetype. For example the Genetic algorithm is believed
to be better suited to discrete space strategies such as the finite state machines whilst the Particle swarm algorithm
would be better suited to a continuous space strategy such as the Gambler.

For more information on these algorithms and their implementations see:

1.3.1 Genetic Algorithm

A genetic algorithm aims to mimic evolutionary processes so as to optimise a particular function on some space of
candidate solutions.

The process can be described by assuming that there is a function 𝑓 : 𝑉 → R, where 𝑉 is some vector space. In the
case of the Prisoner’s dilemma, the vector space 𝑉 corresponds to some representation of a particular archetype (which
might not actually be a numeric vector space) and the function 𝑓 corresponds to some measure of performance/fitness
of the strategy in question.

In this setting a candidate solution 𝑥 ∈ R𝑚 corresponds to a chromosome with each 𝑥𝑖 corresponding to a gene.

The genetic algorithm has three essential parameters:

• The population size: the algorithm makes use of a number of candidate solutions at each stage.

• The bottle neck parameter: at every stage the candidates in the population are ranked according to their fitness,
only a certain number are kept (the best performing ones) from one generation to the next. This number is
referred to as the bottle neck.

• The mutation probability: from one stage to the next when new individuals are added to the population (more
about this process shortly) there is a probability with which each gene randomly mutates.

New individuals are added to the population (so as to ensure that the population size stays constant from one stage to
the next) using a process of “crossover”. Two high performing individuals are paired and according to some predefined
procedure, genes from both these individuals are combined to create a new individual.

For each strategy archetype, this library thus defines a process for mutation as well as for crossover.

Finite state machines

A finite state machine is made up of the following:

• a mapping from a state/action pair to another target state/action pair

• an initial state/action pair.

(See [Harper2017] for more details.)

The crossover and mutation are implemented in the following way:

• Crossover: this is done by taking a randomly selected number of target state/actions pairs from one individual
and the rest from the other.

1.3. Background 5

Axelrod-dojo Documentation

• Mutation: given a mutation probability 𝛿 each target state/action has a probability 𝛿 of being randomly changed
to one of the other states or actions. Furthermore the initial action has a probability of being swapped of 𝛿×10−1

and the initial state has a probability of being changed to another random state of 𝛿 × 10−1 × 𝑁 (where 𝑁 is
the number of states).

Hidden Markov models

A hidden Markov model is made up of the following:

• a mapping from a state/action pair to a probability of defect or cooperation.

• a cooperation transition matrix, the probability of transitioning to each state, given current state and an opponent
cooperation.

• a defection transition matrix, the probability of transitioning to each state, given current state and an opponent
defection.

• an initial state/action pair.

(See [Harper2017] for more details.)

The crossover and mutation are implemented in the following way:

• Crossover: this is done by taking a randomly selected number of rows from one cooperation transition matrix
and the rest from the other to form a target cooperation transition matrix; then a different number of randomly
selected rows from one defection transition matrix and the rest from the other; and then a randomly select
number of entries from one state/part -> probability mapping and the rest from the other.

• Mutation: given a mutation probability 𝑑𝑒𝑙𝑡𝑎 each cell of both transition matrices and the state/part -> proba-
bility mapping have probability 𝑑𝑒𝑙𝑡𝑎 of being increased by 𝑣𝑎𝑟𝑒𝑝𝑠𝑖𝑙𝑜𝑛, where 𝑣𝑎𝑟𝑒𝑝𝑠𝑖𝑙𝑜𝑛 is randomly drawn
uniformly from [−0.25, 0.25] (A negative number would decrease.) Then the transition matrices and mapping
are adjusted so that no cell is outside [0, 1] and the transition matrices are normalized so that each row adds
to 1. Furthermore the initial action has a probability of being swapped of 𝛿 × 10−1 and the initial state has a
probability of being changed to another random state of 𝛿 × 10−1 ×𝑁 (where 𝑁 is the number of states).

Cycler Sequence Calculator

A Cycler Sequence is the sequence of C & D actions that are passed to the cycler player to follow when playing their
tournament games.

the sequence is found using genetic feature selection:

• Crossover: By working with another cycler player, we take sections of each player and create a new cycler
sequence

from the following formula:

let our two player being crossed be called p1 and p2 respectively. we then find the midpoint of both the sequences
and take the first half from p1 and the second half from p2 to combine into the new cycler sequence.

• Mutation: we use a predictor :math:‘delta‘to determine if we are going to mutate a

single element in the current sequence. The element, or gene, we change in the sequence is uniformly selected using
the random package.

1.4 Reference

This section is the reference guide for the various components of the library.

6 Chapter 1. Table of Contents

Axelrod-dojo Documentation

1.4.1 Bibliography

This is a collection of various bibliographic items referenced in the documentation.

1.4. Reference 7

Axelrod-dojo Documentation

8 Chapter 1. Table of Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

9

Axelrod-dojo Documentation

10 Chapter 2. Indices and tables

Bibliography

[Harper2017] Marc Harper, Vincent Knight, Martin Jones, Georgios Koutsovoulo, Nikoleta E. Glynatsi and Owen
Campbell (2017) Reinforcement Learning Produces Dominant Strategies for the Iterated Prisoner’s Dilemma.
Arxiv. http://arxiv.org/abs/1707.06307

11

http://arxiv.org/abs/1707.06307

	Table of Contents
	Tutorial
	How to
	Use different objective functions
	Train using the genetic algorithm
	Train using the particle swarm algorithm

	Background
	Genetic Algorithm

	Reference
	Bibliography

	Indices and tables
	Bibliography

