
awsm Documentation

Micah Sandusky

May 30, 2018

Contents

1 Automated Water Supply Model 1
1.1 Quick Start . 2
1.2 Running the test . 2

2 Indices and tables 17

i

ii

CHAPTER 1

Automated Water Supply Model

Automated Water Supply Model (AWSM) was developed at the USDA Agricultural Research Service (ARS) in Boise,
ID. AWSM was designed to streamline the workflow used by the ARS to forecast the water supply of multiple water
basins. AWSM standardizes the steps needed to distribute met. data with SMRF, run an energy and mass balance with
iSnobal, and process the results, while maintaining the flexibility of each program.

1

https://hub.docker.com/r/usdaarsnwrc/awsm/
https://hub.docker.com/r/usdaarsnwrc/awsm/

awsm Documentation

1.1 Quick Start

The fastest way to get up and running with AWSM is to use the docker images that are prebuilt and can deployed cross
platform.

To build AWSM natively from source checkout the install instructions here.

1.1.1 Docker

To mount a data volume, so that you can share data between the local filesystem and the docker, the -v option must be
used. For a more in depth dicussion and tutorial, read about docker volumes. The container has a shared data volume
at /data where the container can access the local filesystem.

When the image is run, it will go into the Python terminal within the image. Within this terminal, AWSM can be
imported. The command /bin/bash can be appended to the end of docker run to enter into the docker terminal for full
control. It will start in the /data location with AWSM code in /code/awsm.

For Linux:

docker run -v <path>:/data -it usdaarsnwrc/awsm [/bin/bash]

For MacOSX:

docker run -v /Users/<path>:/data -it usdaarsnwrc/awsm [/bin/bash]

For Windows:

docker run -v /c/Users/<path>:/data -it usdaarsnwrc/awsm [/bin/bash]

1.2 Running the test

docker run -it usdaarsnwrc/awsm /bin/bash
cd /code/smrf
gen_maxus --out_maxus test_data/topo/maxus.nc test_data/topo/dem.ipw
cd /code/awsm
awsm test_data/RME_run/config_pysnobal.ini

The output netCDF files will be placed in the /code/awsm/test_data/RME_run/output/rme/devel/wy1998/rme_test/runs/run1464_1670/output
location.

1.2.1 Automated Water Supply Model

Automated Water Supply Model (AWSM) was developed at the USDA Agricultural Research Service (ARS) in Boise,
ID. AWSM was designed to streamline the workflow used by the ARS to forecast the water supply of multiple water
basins. AWSM standardizes the steps needed to distribute met. data with SMRF, run an energy and mass balance with
iSnobal, and process the results, while maintaining the flexibility of each program.

2 Chapter 1. Automated Water Supply Model

https://awsm.readthedocs.io/en/latest/installation.html
https://docs.docker.com/engine/userguide/containers/dockervolumes/
https://hub.docker.com/r/usdaarsnwrc/awsm/
https://hub.docker.com/r/usdaarsnwrc/awsm/

awsm Documentation

Quick Start

The fastest way to get up and running with AWSM is to use the docker images that are prebuilt and can deployed cross
platform.

To build AWSM natively from source checkout the install instructions here.

Docker

To mount a data volume, so that you can share data between the local filesystem and the docker, the -v option must be
used. For a more in depth dicussion and tutorial, read about docker volumes. The container has a shared data volume
at /data where the container can access the local filesystem.

When the image is run, it will go into the Python terminal within the image. Within this terminal, AWSM can be
imported. The command /bin/bash can be appended to the end of docker run to enter into the docker terminal for full
control. It will start in the /data location with AWSM code in /code/awsm.

For Linux:

docker run -v <path>:/data -it usdaarsnwrc/awsm [/bin/bash]

For MacOSX:

docker run -v /Users/<path>:/data -it usdaarsnwrc/awsm [/bin/bash]

For Windows:

docker run -v /c/Users/<path>:/data -it usdaarsnwrc/awsm [/bin/bash]

1.2. Running the test 3

https://awsm.readthedocs.io/en/latest/installation.html
https://docs.docker.com/engine/userguide/containers/dockervolumes/

awsm Documentation

Running the test

docker run -it usdaarsnwrc/awsm /bin/bash
cd /code/smrf
gen_maxus --out_maxus test_data/topo/maxus.nc test_data/topo/dem.ipw
cd /code/awsm
awsm test_data/RME_run/config_pysnobal.ini

The output netCDF files will be placed in the /code/awsm/test_data/RME_run/output/rme/devel/wy1998/rme_test/runs/run1464_1670/output
location.

1.2.2 Installation

Installing Dependencies

AWSM utilizes many of the utilities within SMRF. The first step is to read and follow the install instructions for SMRF,
found here. Make sure to follow all instructions, including installing IPW.

The source code for SMRF is stored on on GitHub.

If you would like to use the PySnobal within AWSM, you can download and install the package following the guide-
lines on the PySnobal repo . This is optional.

Installing AWSM

Once the dependencies have been installed for your respective system, the following will install AWSM. It is preferable
to use a Python virtual environment to reduce the possibility of a dependency issue. You should use the same virtual
environment in which you installed SMRF. You can just source your smrfenv instead of step number 1.

1. Create a virtualenv and activate it.

virtualenv awsmenv
source awsmenv/bin/activate

Tip: The developers recommend using an alias to quickly turn on and off your virtual environment.

2. Clone AWSM source code from the ARS-NWRC github.

git clone https://github.com/USDA-ARS-NWRC/AWSM.git

3. Change directories into the AWSM directory. Install the python requirements. After the requirements are done,
install AWSM.

cd AWSM
pip install -r requirements_dev.txt
python setup.py install

4. (Optional) Generate a local copy of the documentation.

cd docs
make html

To view the documentation use the preferred browser to open up the files. This can be done from the
browser by opening the index.rst file directly or by the commandline like the following:

4 Chapter 1. Automated Water Supply Model

https://smrf.readthedocs.io/en/develop/install.html
https://github.com/USDA-ARS-NWRC/smrf
https://github.com/USDA-ARS-NWRC/pysnobal
https://virtualenv.pypa.io

awsm Documentation

google-chrome _build/html/index.html

Testing AWSM

Once everything is installed, you can run a quick test case over a small catchment in Idaho called Reynolds Mountain
East (RME).

1. Move to config file and run case. Start in your AWSM directory

cd test_data/RME_run/
awsm config.ini

2. Wait for the test run to finish and then view the results.

cd output/rme/devel/wy1998/rme_test/

The iSnobal model outputs will be in the “runs” folder and the distributed SMRF data will be in the “data” folder.
Navigate around and see what the outputs look like. You can visualize the .nc (netCDF) files with the ncview utility.

1.2.3 Usage

To run AWSM, a configuration is require and it’s simply passed as the first argument to the awsm command. If the
configuration file was named config.ini it could be used like the following.

awsm config.ini

For configuring AWSM simulations refer to Using Configuration Files. If you are interested in using AWSM in a
project, getting started looks like this:

import awsm

with awsm.framework.framework.AWSM(configFile) as a:
Specify functions to run

Review the script for running AWSM in “./scripts/awsm” to get a better sense of the methods used to run AWSM and
use the API Documentation

1.2.4 Using Configuration Files

AWSM simulation details are managed using configuration files. The python package inicheck is used to manage and
interpret the configuration files. Each configuration file is broken down into sections containing items and each item
is assigned a value.

A brief description of the syntax is:

• Sections are noted by being in a line by themselves and are bracketed.

• Items are denoted by colon (:).

• Values are simply written in, and values that are lists are comma separated.

• Comments are preceeded by a #

For more information regarding inicheck syntax and utilities refer to the inicheck documentation.

1.2. Running the test 5

http://meteora.ucsd.edu/~pierce/ncview_home_page.html
http://inicheck.readthedocs.io/en/latest/

awsm Documentation

Understanding Configuration Files

The easiest way to get started is to look at one of the config files in the repo already. A simple case to use is our
reynolds mountain east test which can be view easily here.

Take a look at the “topo” section from the config file show below

##
Files for DEM and vegetation
##

[topo]
basin_lon: -116.7547
basin_lat: 43.067
filename: ./topo/topo.nc
type: netcdf

This section describes all the topographic information required for AWSM to run. At the top of the section there
is comment that describes the section. The section name “topo” is bracketed to show it is a section and the items
underneath are assigned values by using the colon.

Editing/Checking Configuration Files

Use any text editor to make changes to a config file. We like to use atom with the .ini syntax package installed.

If you are unsure of what to use various entries in your config file refer to the config-file-reference or use the inicheck
command for command line help. Below is an example of how to use the inicheck details option to figure out what
options are available for the topo section type item.

inicheck --details topo type -m smrf awsm

The output is:

Providing details for section topo and item type...

Section Item Default Options Description
==
topo type netcdf ['netcdf', 'ipw'] Specifies the input file
→˓type

Creating Configuration Files

Not all items and options need to be assigned, if an item is left blank it will be assigned a default. If it is a required
filename or something it will be assigned a none value and AWSM will throw an error until it is assigned.

To make an up to date config file use the following command to generate a fully populated list of options.

inicheck -f config.ini -m smrf awsm -w

This will create a config file using the same name but call “config_full.ini” at the end.

6 Chapter 1. Automated Water Supply Model

https://github.com/USDA-ARS-NWRC/awsm/blob/devel/tests/RME/config.ini
https://atom.io/

awsm Documentation

Core Configuration File

Each configuration file is checked against the core configuration file stored ./awsm/framework/core_config.ini and
various scenarios are guided by the a recipes file that is stored in ./awsm/framework/recipes.ini. These files work
together to guide the outcomes of the configuration file.

To learn more about syntax and how to contribute to a Core or Master configuration file see Master Configuration Files
in inicheck.

1.2.5 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/USDA-ARS-NWRC/AWSM/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

Write Documentation

awsm could always use more documentation, whether as part of the official awsm docs, in docstrings, or even on the
web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/USDA-ARS-NWRC/AWSM/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

1.2. Running the test 7

http://inicheck.readthedocs.io/en/latest/master_config.html
https://github.com/USDA-ARS-NWRC/AWSM/issues
https://github.com/USDA-ARS-NWRC/AWSM/issues

awsm Documentation

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up awsm for local development.

1. Fork the awsm repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/awsm.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv awsm
$ cd awsm/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 awsm tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check https://travis-ci.org/
micahsandusky5/awsm/pull_requests and make sure that the tests pass for all supported Python versions.

8 Chapter 1. Automated Water Supply Model

https://travis-ci.org/micahsandusky5/awsm/pull_requests
https://travis-ci.org/micahsandusky5/awsm/pull_requests

awsm Documentation

Tips

To run a subset of tests:

$ python -m unittest discover -v

If any code edits you add require new configuration file items, then they must be added to the core configuration file
to be registered with AWSM. Please see Core Configuration File to learn more.

1.2.6 AWSM Configuration File Reference

The AWSM config file is a combination of SMRF and AWSM’s own configuration files. Pleas refer to the Reference
for SMRF Configuration Files for any questions regarding the configuration file sections from SMRF which are as
follows:

• topo

• time

• stations

• csv

• gridded

• mysql

• air_temperature

• vapor pressure

• wind

• precip

• albedo

• thermal

• soil_temp

• output

• logging

• system

All other sections and details for AWSM configuration files can be seen in the below.

For configuration file syntax information please visit http://inicheck.readthedocs.io/en/latest/

awsm master

make_in
Convert SMRF outputs to iSnobal inputs

Default: True
Type: bool

make_nc

1.2. Running the test 9

http://smrf.readthedocs.io/en/latest/auto_config.html
http://smrf.readthedocs.io/en/latest/auto_config.html
http://inicheck.readthedocs.io/en/latest/

awsm Documentation

Convert iSnobal outputs to netCDF
Default: True
Type: bool

mask_isnobal
Mask iSnobal outputs

Default: False
Type: bool

prompt_dirs
ask yes or no when making new directories

Default: False
Type: bool

run_ipysnobal
Run iPySnobal like iSnobal

Default: False
Type: bool

run_isnobal
Run iSnobal for specified simulation

Default: True
Type: bool

run_smrf
Specifies whether or not to run SMRF

Default: True
Type: bool

run_smrf_ipysnobal
Run SMRF and iPySnobal together

Default: False
Type: bool

10 Chapter 1. Automated Water Supply Model

awsm Documentation

paths

basin
name of basin to run

Default: None
Type: string

desc
description for set of runs

Default: None
Type: string

folder_date_style
style of date that gets appended to generated folders

Default: wyhr
Type: string
Options: wyhr day start_end

isops
if running operational or development

Default: False
Type: bool

path_dr
path to starting drive MUST exist

Default: None
Type: directory

proj
name of project if running devel

Default: None
Type: string

grid

active_layer
height of iSnobal active layer

Default: 0.25

1.2. Running the test 11

awsm Documentation

Type: float

csys
coordinate type

Default: UTM
Type: string
Options: UTM

nbits
number of bits for IPW images

Default: 16
Type: int

thresh_medium
medium mass threshold for timestep refinement

Default: 10
Type: int

thresh_normal
normal mass threshold for timestep refinement

Default: 60
Type: int

thresh_small
small mass threshold for timestep refinement

Default: 1
Type: int

files

prev_mod_file
last snow output file from iSnobal for restart

Default: None
Type: filename

roughness_init

12 Chapter 1. Automated Water Supply Model

awsm Documentation

standard init file used only for roughness band
Default: None
Type: filename

awsm system

daily_folders
seperate daily output folders mainly for HRRR

Default: False
Type: bool

em_name
name of energetics ouput file without extension

Default: em
Type: string

ithreads
numbers threads for running iSnobal

Default: 1
Type: int

log_level
level of information to be logged

Default: debug
Type: string
Options: debug info error

log_to_file
log to file or print to screen

Default: True
Type: bool

output_frequency
frequency of iSnobal outputs in hours

Default: 24
Type: int

1.2. Running the test 13

awsm Documentation

run_for_nsteps
number of timesteps to run iSnobal This is optional

Default: None
Type: int

snow_name
name of snow ouput file without extension

Default: snow
Type: string

variables
Variables for PySnobal to output after being calculated

Default: thickness snow_density specific_mass liquid_water temp_surf temp_lower temp_snowcover
thickness_lower water_saturation net_rad sensible_heat latent_heat snow_soil precip_advected sum_eb
evaporation snowmelt SWI cold_content
Type: string
Options: thickness snow_density specific_mass liquid_water temp_surf temp_lower temp_snowcover
thickness_lower water_saturation net_rad sensible_heat latent_heat snow_soil precip_advected sum_eb
evaporation snowmelt SWI cold_content

isnobal restart

depth_thresh
threshold in meters for low snow depths for restart

Default: 0.05
Type: float

restart_crash
whether or not to restart from crashed run

Default: False
Type: bool

wyh_restart_output
last iSnobal output hour to restart from

Default: None
Type: int

14 Chapter 1. Automated Water Supply Model

awsm Documentation

ipysnobal

forcing_data_type
file type from which to get input data

Default: ipw
Type: string
Options: ipw netcdf

ipysnobal initial conditions

init_file
full path to init file or last output file

Default: None
Type: filename

input_type
type of file for initializing ipysnobal run

Default: ipw
Type: string
Options: netcdf ipw ipw_out netcdf_out

ipysnobal constants

z_g
depth of soil temperature in meters

Default: 0.5
Type: float

z_t
height of temperature in meters

Default: 5.0
Type: float

z_u
height of wind speed in meters

Default: 5.0
Type: float

1.2. Running the test 15

awsm Documentation

1.2.7 API Documentation

The API here describes all the classes and functions used in AWSM.

1.2.8 Credits

Development Lead

• Micah Sandusky <micah.sandusky@ars.usda.gov>

Contributors

• Micah Johnson <micah.johnson150@gmail.com>

1.2.9 History

0.1.0 (2017-08-18)

• Create package

0.2.0 (2018-01-04)

• Incorporation scripts used to run SMRF and iSnobal

• Creation of rigid directory structure

• Creation of entire framework

• Incorporation of PySnobal package

• Automated run procedure

0.3.0 (2018-01-10)

• General cleanup

• Documentation

0.4.0 (2018-05-03)

• Put into docker package, continuous integration

• Conforming to Pep8 standards

• Improved restart procedure for iSnobal

• Improved gridded forecast ability

• Improved user configuration

• Fast user test cases and unit test capability

• Repeatable runs from station data with git version tracking

16 Chapter 1. Automated Water Supply Model

mailto:micah.sandusky@ars.usda.gov
mailto:micah.johnson150@gmail.com

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

17

	Automated Water Supply Model
	Quick Start
	Running the test

	Indices and tables

