

Welcome to AWSM’s Documentation!

Automated Water Supply Model

[image: Documentation Status] [https://awsm.readthedocs.io] [image: Docker Build Status] [https://hub.docker.com/r/usdaarsnwrc/awsm/] [image: Automated Docker Build Status] [https://hub.docker.com/r/usdaarsnwrc/awsm/]

Automated Water Supply Model (AWSM) was developed at
the USDA Agricultural Research Service (ARS) in Boise, ID. AWSM was designed to
streamline the workflow used by the ARS to forecast the water supply of multiple
water basins. AWSM standardizes the steps needed to distribute met. data with
SMRF, run an energy and mass balance with iSnobal, and process the results,
while maintaining the flexibility of each program.

[image: _images/ModelSystemOverview_new.png]

Quick Start

The fastest way to get up and running with AWSM is to use the docker images that
are prebuilt and can deployed cross platform.

To build AWSM natively from source checkout the install instructions here [https://awsm.readthedocs.io/en/latest/installation.html].

Docker

To mount a data volume, so that you can share data between the local filesystem
and the docker, the -v option must be used. For a more in depth dicussion and
tutorial, read about docker volumes [https://docs.docker.com/engine/userguide/containers/dockervolumes/]. The container has a shared data volume
at /data where the container can access
the local filesystem.

When the image is run, it will go into the Python terminal within the image.
Within this terminal, AWSM can be imported. The command /bin/bash can be
appended to the end of docker run to enter into the docker terminal for full
control. It will start in the /data location with AWSM code in /code/awsm.

For Linux:

docker run -v <path>:/data -it usdaarsnwrc/awsm [/bin/bash]

For MacOSX:

docker run -v /Users/<path>:/data -it usdaarsnwrc/awsm [/bin/bash]

For Windows:

docker run -v /c/Users/<path>:/data -it usdaarsnwrc/awsm [/bin/bash]

Running the test

docker run -it usdaarsnwrc/awsm /bin/bash
cd /code/smrf
gen_maxus --out_maxus test_data/topo/maxus.nc test_data/topo/dem.ipw
cd /code/awsm
awsm test_data/RME_run/config_pysnobal.ini

The output netCDF files will be placed in the /code/awsm/test_data/RME_run/output/rme/devel/wy1998/rme_test/runs/run1464_1670/output location.

	Automated Water Supply Model
	Quick Start

	Running the test

	Installation
	Installing Dependencies

	Installing AWSM

	Testing AWSM

	Usage

	Using Configuration Files
	Understanding Configuration Files

	Core Configuration File

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	AWSM Configuration File Reference
	awsm master

	paths

	grid

	files

	awsm system

	isnobal restart

	ipysnobal

	ipysnobal initial conditions

	ipysnobal constants

	API Documentation

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2017-08-18)

	0.2.0 (2018-01-04)

	0.3.0 (2018-01-10)

	0.4.0 (2018-05-03)

Indices and tables

	Index

	Module Index

	Search Page

Automated Water Supply Model

[image: Documentation Status] [https://awsm.readthedocs.io] [image: Docker Build Status] [https://hub.docker.com/r/usdaarsnwrc/awsm/] [image: Automated Docker Build Status] [https://hub.docker.com/r/usdaarsnwrc/awsm/]

Automated Water Supply Model (AWSM) was developed at
the USDA Agricultural Research Service (ARS) in Boise, ID. AWSM was designed to
streamline the workflow used by the ARS to forecast the water supply of multiple
water basins. AWSM standardizes the steps needed to distribute met. data with
SMRF, run an energy and mass balance with iSnobal, and process the results,
while maintaining the flexibility of each program.

[image: _images/ModelSystemOverview_new.png]

Quick Start

The fastest way to get up and running with AWSM is to use the docker images that
are prebuilt and can deployed cross platform.

To build AWSM natively from source checkout the install instructions here [https://awsm.readthedocs.io/en/latest/installation.html].

Docker

To mount a data volume, so that you can share data between the local filesystem
and the docker, the -v option must be used. For a more in depth dicussion and
tutorial, read about docker volumes [https://docs.docker.com/engine/userguide/containers/dockervolumes/]. The container has a shared data volume
at /data where the container can access
the local filesystem.

When the image is run, it will go into the Python terminal within the image.
Within this terminal, AWSM can be imported. The command /bin/bash can be
appended to the end of docker run to enter into the docker terminal for full
control. It will start in the /data location with AWSM code in /code/awsm.

For Linux:

docker run -v <path>:/data -it usdaarsnwrc/awsm [/bin/bash]

For MacOSX:

docker run -v /Users/<path>:/data -it usdaarsnwrc/awsm [/bin/bash]

For Windows:

docker run -v /c/Users/<path>:/data -it usdaarsnwrc/awsm [/bin/bash]

Running the test

docker run -it usdaarsnwrc/awsm /bin/bash
cd /code/smrf
gen_maxus --out_maxus test_data/topo/maxus.nc test_data/topo/dem.ipw
cd /code/awsm
awsm test_data/RME_run/config_pysnobal.ini

The output netCDF files will be placed in the /code/awsm/test_data/RME_run/output/rme/devel/wy1998/rme_test/runs/run1464_1670/output location.

Installation

Installing Dependencies

AWSM utilizes many of the utilities within SMRF. The first step is to read and
follow the install instructions for SMRF, found here [https://smrf.readthedocs.io/en/develop/install.html]. Make sure to follow all
instructions, including installing IPW.

The source code for SMRF is stored on on GitHub [https://github.com/USDA-ARS-NWRC/smrf].

If you would like to use the PySnobal within AWSM, you can download
and install the package following the guidelines on the PySnobal repo [https://github.com/USDA-ARS-NWRC/pysnobal] .
This is optional.

Installing AWSM

Once the dependencies have been installed for your respective system, the
following will install AWSM. It is preferable to use a Python
virtual environment [https://virtualenv.pypa.io] to reduce the possibility of a dependency issue. You should
use the same virtual environment in which you installed SMRF. You can just
source your smrfenv instead of step number 1.

	Create a virtualenv and activate it.

virtualenv awsmenv
source awsmenv/bin/activate

Tip: The developers recommend using an alias to quickly turn on
and off your virtual environment.

	Clone AWSM source code from the ARS-NWRC github.

git clone https://github.com/USDA-ARS-NWRC/AWSM.git

	Change directories into the AWSM directory. Install the python requirements.
After the requirements are done, install AWSM.

cd AWSM
pip install -r requirements_dev.txt
python setup.py install

	(Optional) Generate a local copy of the documentation.

cd docs
make html

To view the documentation use the preferred browser to open up the files.
This can be done from the browser by opening the index.rst file directly or
by the commandline like the following:

google-chrome _build/html/index.html

Testing AWSM

Once everything is installed, you can run a quick test case over a small
catchment in Idaho called Reynolds Mountain East (RME).

	Move to config file and run case. Start in your AWSM directory

cd test_data/RME_run/
awsm config.ini

	Wait for the test run to finish and then view the results.

cd output/rme/devel/wy1998/rme_test/

The iSnobal model outputs will be in the “runs” folder and the distributed
SMRF data will be in the “data” folder. Navigate around and see what the
outputs look like. You can visualize the .nc (netCDF) files with
the ncview [http://meteora.ucsd.edu/~pierce/ncview_home_page.html] utility.

Usage

To run AWSM, a configuration is require and it’s simply passed as the first
argument to the awsm command. If the configuration file was named config.ini
it could be used like the following.

awsm config.ini

For configuring AWSM simulations refer to Using Configuration Files. If you are
interested in using AWSM in a project, getting started looks like this:

import awsm

with awsm.framework.framework.AWSM(configFile) as a:
 # Specify functions to run

Review the script for running AWSM in “./scripts/awsm” to get a better sense of
the methods used to run AWSM and use the API Documentation

Using Configuration Files

AWSM simulation details are managed using configuration files. The python
package inicheck is used to manage and interpret the configuration files. Each
configuration file is broken down into sections containing items and each item
is assigned a value.

A brief description of the syntax is:

	Sections are noted by being in a line by themselves and are bracketed.

	Items are denoted by colon (:).

	Values are simply written in, and values that are lists are comma separated.

	Comments are preceeded by a #

For more information regarding inicheck syntax and utilities refer to the
inicheck documentation [http://inicheck.readthedocs.io/en/latest/].

Understanding Configuration Files

The easiest way to get started is to look at one of the config files
in the repo already. A simple case to use is our reynolds mountain east test
which can be view easily here [https://github.com/USDA-ARS-NWRC/awsm/blob/devel/tests/RME/config.ini].

Take a look at the “topo” section from the config file show below

##
Files for DEM and vegetation
##

[topo]
basin_lon: -116.7547
basin_lat: 43.067
filename: ./topo/topo.nc
type: netcdf

This section describes all the topographic information required for AWSM to run.
At the top of the section there is comment that describes the section.
The section name “topo” is bracketed to show it is a section and the items
underneath are assigned values by using the colon.

Editing/Checking Configuration Files

Use any text editor to make changes to a config file. We like to use atom [https://atom.io/] with
the .ini syntax package installed.

If you are unsure of what to use various entries in your config file refer to
the config-file-reference or use the inicheck command for command line help.
Below is an example of how to use the inicheck details option to figure out what
options are available for the topo section type item.

inicheck --details topo type -m smrf awsm

The output is:

Providing details for section topo and item type...

Section Item Default Options Description
==
topo type netcdf ['netcdf', 'ipw'] Specifies the input file type

Creating Configuration Files

Not all items and options need to be assigned, if an item is left blank
it will be assigned a default. If it is a required filename or something it
will be assigned a none value and AWSM will throw an error until it is assigned.

To make an up to date config file use the following command to generate a fully
populated list of options.

inicheck -f config.ini -m smrf awsm -w

This will create a config file using the same name but call “config_full.ini”
at the end.

Core Configuration File

Each configuration file is checked against the core configuration file stored
./awsm/framework/core_config.ini and various scenarios are guided by the a recipes
file that is stored in ./awsm/framework/recipes.ini. These files work together
to guide the outcomes of the configuration file.

To learn more about syntax and how to contribute to a Core or Master configuration
file see Master Configuration Files [http://inicheck.readthedocs.io/en/latest/master_config.html] in inicheck.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/USDA-ARS-NWRC/AWSM/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

awsm could always use more documentation, whether as part of the
official awsm docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/USDA-ARS-NWRC/AWSM/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up awsm for local development.

	Fork the awsm repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/awsm.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv awsm
$ cd awsm/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 awsm tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/micahsandusky5/awsm/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest discover -v

If any code edits you add require new configuration file items, then they must
be added to the core configuration file to be registered with AWSM. Please see
Core Configuration File to learn more.

AWSM Configuration File Reference

The AWSM config file is a combination of SMRF and AWSM’s own configuration
files. Pleas refer to the Reference for SMRF Configuration Files [http://smrf.readthedocs.io/en/latest/auto_config.html] for any
questions regarding the configuration file sections from SMRF which are as
follows:

	topo

	time

	stations

	csv

	gridded

	mysql

	air_temperature

	vapor pressure

	wind

	precip

	albedo

	thermal

	soil_temp

	output

	logging

	system

All other sections and details for AWSM configuration files can be seen in the
below.

For configuration file syntax information please visit http://inicheck.readthedocs.io/en/latest/

awsm master

make_in

Convert SMRF outputs to iSnobal inputs

Default: True

Type: bool

make_nc

Convert iSnobal outputs to netCDF

Default: True

Type: bool

mask_isnobal

Mask iSnobal outputs

Default: False

Type: bool

prompt_dirs

ask yes or no when making new directories

Default: False

Type: bool

run_ipysnobal

Run iPySnobal like iSnobal

Default: False

Type: bool

run_isnobal

Run iSnobal for specified simulation

Default: True

Type: bool

run_smrf

Specifies whether or not to run SMRF

Default: True

Type: bool

run_smrf_ipysnobal

Run SMRF and iPySnobal together

Default: False

Type: bool

paths

basin

name of basin to run

Default: None

Type: string

desc

description for set of runs

Default: None

Type: string

folder_date_style

style of date that gets appended to generated folders

Default: wyhr

Type: string

Options:
wyhr day start_end

isops

if running operational or development

Default: False

Type: bool

path_dr

path to starting drive MUST exist

Default: None

Type: directory

proj

name of project if running devel

Default: None

Type: string

grid

active_layer

height of iSnobal active layer

Default: 0.25

Type: float

csys

coordinate type

Default: UTM

Type: string

Options:
UTM

nbits

number of bits for IPW images

Default: 16

Type: int

thresh_medium

medium mass threshold for timestep refinement

Default: 10

Type: int

thresh_normal

normal mass threshold for timestep refinement

Default: 60

Type: int

thresh_small

small mass threshold for timestep refinement

Default: 1

Type: int

files

prev_mod_file

last snow output file from iSnobal for restart

Default: None

Type: filename

roughness_init

standard init file used only for roughness band

Default: None

Type: filename

awsm system

daily_folders

seperate daily output folders mainly for HRRR

Default: False

Type: bool

em_name

name of energetics ouput file without extension

Default: em

Type: string

ithreads

numbers threads for running iSnobal

Default: 1

Type: int

log_level

level of information to be logged

Default: debug

Type: string

Options:
debug info error

log_to_file

log to file or print to screen

Default: True

Type: bool

output_frequency

frequency of iSnobal outputs in hours

Default: 24

Type: int

run_for_nsteps

number of timesteps to run iSnobal This is optional

Default: None

Type: int

snow_name

name of snow ouput file without extension

Default: snow

Type: string

variables

Variables for PySnobal to output after being calculated

Default: thickness snow_density specific_mass liquid_water temp_surf temp_lower temp_snowcover thickness_lower water_saturation net_rad sensible_heat latent_heat snow_soil precip_advected sum_eb evaporation snowmelt SWI cold_content

Type: string

Options:
thickness snow_density specific_mass liquid_water temp_surf temp_lower temp_snowcover thickness_lower water_saturation net_rad sensible_heat latent_heat snow_soil precip_advected sum_eb evaporation snowmelt SWI cold_content

isnobal restart

depth_thresh

threshold in meters for low snow depths for restart

Default: 0.05

Type: float

restart_crash

whether or not to restart from crashed run

Default: False

Type: bool

wyh_restart_output

last iSnobal output hour to restart from

Default: None

Type: int

ipysnobal

forcing_data_type

file type from which to get input data

Default: ipw

Type: string

Options:
ipw netcdf

ipysnobal initial conditions

init_file

full path to init file or last output file

Default: None

Type: filename

input_type

type of file for initializing ipysnobal run

Default: ipw

Type: string

Options:
netcdf ipw ipw_out netcdf_out

ipysnobal constants

z_g

depth of soil temperature in meters

Default: 0.5

Type: float

z_t

height of temperature in meters

Default: 5.0

Type: float

z_u

height of wind speed in meters

Default: 5.0

Type: float

API Documentation

The API here describes all the classes and functions
used in AWSM.

Credits

Development Lead

	Micah Sandusky <micah.sandusky@ars.usda.gov>

Contributors

	Micah Johnson <micah.johnson150@gmail.com>

History

0.1.0 (2017-08-18)

	Create package

0.2.0 (2018-01-04)

	Incorporation scripts used to run SMRF and iSnobal

	Creation of rigid directory structure

	Creation of entire framework

	Incorporation of PySnobal package

	Automated run procedure

0.3.0 (2018-01-10)

	General cleanup

	Documentation

0.4.0 (2018-05-03)

	Put into docker package, continuous integration

	Conforming to Pep8 standards

	Improved restart procedure for iSnobal

	Improved gridded forecast ability

	Improved user configuration

	Fast user test cases and unit test capability

	Repeatable runs from station data with git version tracking

Index

 For configuration file syntax information please visit http://inicheck.readthedocs.io/en/latest/

awsm master

make_in

Convert SMRF outputs to iSnobal inputs

Default: True

Type: bool

make_nc

Convert iSnobal outputs to netCDF

Default: True

Type: bool

mask_isnobal

Mask iSnobal outputs

Default: False

Type: bool

prompt_dirs

ask yes or no when making new directories

Default: False

Type: bool

run_ipysnobal

Run iPySnobal like iSnobal

Default: False

Type: bool

run_isnobal

Run iSnobal for specified simulation

Default: True

Type: bool

run_smrf

Specifies whether or not to run SMRF

Default: True

Type: bool

run_smrf_ipysnobal

Run SMRF and iPySnobal together

Default: False

Type: bool

paths

basin

name of basin to run

Default: None

Type: string

desc

description for set of runs

Default: None

Type: string

folder_date_style

style of date that gets appended to generated folders

Default: wyhr

Type: string

Options:
wyhr day start_end

isops

if running operational or development

Default: False

Type: bool

path_dr

path to starting drive MUST exist

Default: None

Type: directory

proj

name of project if running devel

Default: None

Type: string

grid

active_layer

height of iSnobal active layer

Default: 0.25

Type: float

csys

coordinate type

Default: UTM

Type: string

Options:
UTM

nbits

number of bits for IPW images

Default: 16

Type: int

thresh_medium

medium mass threshold for timestep refinement

Default: 10

Type: int

thresh_normal

normal mass threshold for timestep refinement

Default: 60

Type: int

thresh_small

small mass threshold for timestep refinement

Default: 1

Type: int

files

prev_mod_file

last snow output file from iSnobal for restart

Default: None

Type: filename

roughness_init

standard init file used only for roughness band

Default: None

Type: filename

awsm system

daily_folders

seperate daily output folders mainly for HRRR

Default: False

Type: bool

em_name

name of energetics ouput file without extension

Default: em

Type: string

ithreads

numbers threads for running iSnobal

Default: 1

Type: int

log_level

level of information to be logged

Default: debug

Type: string

Options:
debug info error

log_to_file

log to file or print to screen

Default: True

Type: bool

output_frequency

frequency of iSnobal outputs in hours

Default: 24

Type: int

run_for_nsteps

number of timesteps to run iSnobal This is optional

Default: None

Type: int

snow_name

name of snow ouput file without extension

Default: snow

Type: string

variables

Variables for PySnobal to output after being calculated

Default: thickness snow_density specific_mass liquid_water temp_surf temp_lower temp_snowcover thickness_lower water_saturation net_rad sensible_heat latent_heat snow_soil precip_advected sum_eb evaporation snowmelt SWI cold_content

Type: string

Options:
thickness snow_density specific_mass liquid_water temp_surf temp_lower temp_snowcover thickness_lower water_saturation net_rad sensible_heat latent_heat snow_soil precip_advected sum_eb evaporation snowmelt SWI cold_content

isnobal restart

depth_thresh

threshold in meters for low snow depths for restart

Default: 0.05

Type: float

restart_crash

whether or not to restart from crashed run

Default: False

Type: bool

wyh_restart_output

last iSnobal output hour to restart from

Default: None

Type: int

ipysnobal

forcing_data_type

file type from which to get input data

Default: ipw

Type: string

Options:
ipw netcdf

ipysnobal initial conditions

init_file

full path to init file or last output file

Default: None

Type: filename

input_type

type of file for initializing ipysnobal run

Default: ipw

Type: string

Options:
netcdf ipw ipw_out netcdf_out

ipysnobal constants

z_g

depth of soil temperature in meters

Default: 0.5

Type: float

z_t

height of temperature in meters

Default: 5.0

Type: float

z_u

height of wind speed in meters

Default: 5.0

Type: float

 _static/up-pressed.png

_static/up.png

_images/ModelSystemOverview_new.png
[0 Web Interface

Automated Water Supply Model (AWSM)

- Streamline water supply forecasts
- ASO integration

- Core Components

Data

Models Data Analysis

Weather DB
* Station data
* Auto cleaning

SMRF

IPW
* Image processing
* iSnobal

SNOWAV
* Process outputs
* Analyticsand
insights
* Summary reports

* Domain
interpolation

* Point/gridded data
to domain

* Flexible frarmework

Weather FX

* WRF 10 day fx
* Atmospheric
models

PySnobal

* Snow and/or
hydrologic model

— e e e e e e — ==y

_static/ModelSystemOverview_new.png
[0 Web Interface

Automated Water Supply Model (AWSM)

- Streamline water supply forecasts
- ASO integration

- Core Components

Data

Models Data Analysis

Weather DB
* Station data
* Auto cleaning

SMRF

IPW
* Image processing
* iSnobal

SNOWAV
* Process outputs
* Analyticsand
insights
* Summary reports

* Domain
interpolation

* Point/gridded data
to domain

* Flexible frarmework

Weather FX

* WRF 10 day fx
* Atmospheric
models

PySnobal

* Snow and/or
hydrologic model

— e e e e e e — ==y

_static/ajax-loader.gif

_static/ModelSystemOverview_AWSM.png
‘ Web Interface

Automated Water Supply Model (AWSM)

- Streamline water supply forecasts

— CoreComponents — — = = = = = m — _ e — e —— -

e &

Weather Inputs SMRF iSnobal Data Analysis

« Station data « Domain

* WRF 10 day fx interpolation

= Atmospheric « Point/gridded
models data to domain

* Snow and/or = Process outputs
hydrologic + Analytics and
model insights

* ASO integration

e —

_static/ars_logo.png
WATERSHED RESEARCH CENTER

800 Park Blvd., Suite 105
Boise, Idaho 83712
(208) 422-0700

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Welcome to AWSM’s Documentation!

 		
 Automated Water Supply Model

 		
 Quick Start

 		
 Docker

 		
 Running the test

 		
 Installation

 		
 Installing Dependencies

 		
 Installing AWSM

 		
 Testing AWSM

 		
 Usage

 		
 Using Configuration Files

 		
 Understanding Configuration Files

 		
 Editing/Checking Configuration Files

 		
 Creating Configuration Files

 		
 Core Configuration File

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 AWSM Configuration File Reference

 		
 awsm master

 		
 paths

 		
 grid

 		
 files

 		
 awsm system

 		
 isnobal restart

 		
 ipysnobal

 		
 ipysnobal initial conditions

 		
 ipysnobal constants

 		
 API Documentation

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2017-08-18)

 		
 0.2.0 (2018-01-04)

 		
 0.3.0 (2018-01-10)

 		
 0.4.0 (2018-05-03)

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

