
Awe Documentation
Release 2.0.0

Dave James Miller

15 June 2023

Contents

1 Introduction 1
1.1 Features . 1

2 Installation 3
2.1 Quick start . 3
2.2 System requirements . 3
2.3 Installing . 5
2.4 Upgrading . 5
2.5 Uninstalling . 6

3 Project configuration files 7
3.1 awe.yaml . 7
3.2 About the YAML format . 7
3.3 Config sections . 8

4 Asset building 11
4.1 Getting started . 11
4.2 Autoprefixer . 12
4.3 CoffeeScript . 13
4.4 Sass . 13
4.5 Ignored files (partials) . 14
4.6 Compass . 14
4.7 Sprites . 15
4.8 Combining files . 16
4.9 Import files . 17
4.10 Bower support . 18
4.11 Multiple asset groups . 20

5 Using with CMSs and frameworks 21
5.1 WordPress . 21
5.2 Laravel 5 . 22
5.3 Laravel 4 . 22

6 Cache files 25
6.1 Hiding in Sublime Text . 25

7 Upgrading a project 27

i

7.1 v0.1.0 (16 Nov 2014) . 27
7.2 v1.2.0 (5 Sep 2015) . 27
7.3 v1.3.0 (27 Aug 2016) . 27

8 Quick reference 29
8.1 Command-line interface (awe) . 29
8.2 Configuration file (awe.yaml) . 30
8.3 Assets directory structure . 30
8.4 YAML import files . 31

9 Design decisions 33
9.1 Introduction . 33
9.2 Specific- not general-purpose . 33
9.3 System-wide installation . 33
9.4 Unit tests . 34
9.5 Conservative defaults . 34
9.6 Minimal configuration . 34
9.7 YAML configuration . 34
9.8 Automatic mapping of asset files . 35
9.9 YAML import files . 35
9.10 No shorthand syntax in import files . 35
9.11 Limited file type support . 35
9.12 Open source . 35
9.13 Flag deprecated features . 36
9.14 Runs in a terminal (SSH). 36
9.15 Both asset building and deployment . 37

10 Contributing 39
10.1 Introduction . 39
10.2 System requirements . 39
10.3 Installing Awe from Git . 40
10.4 Source code . 41
10.5 Unit tests . 42
10.6 Documentation . 42
10.7 Updating dependencies . 44
10.8 Releasing a new version . 44

ii

CHAPTER 1

Introduction

Awe is a tool used at Alberon1 to handling the compilation of assets. It makes it easy to compile CoffeeScript & Sass
files, autoprefix CSS files and combine source files together, with full source map support for easier debugging.

Note: It is no longer recommended as Gulp2 is much more flexible and more widely supported.

While it is not designed to be used by third parties, it is open source and you’re welcome to use it if you want to!

1.1 Features

1.1.1 Assets

• Compile CoffeeScript3 (.coffee) files to JavaScript

• Compile Sass4/Compass5 (.scss) files to CSS

• Autoprefix6 CSS rules for easier cross-browser compatibility

• Combine multiple JavaScript/CSS source files into a single file

• Rewrite relative URLs in CSS files that are combined (e.g. packages installed with Bower7)

• Generate source maps8 to aid debugging

• Watch for changes to source files and rebuild automatically

1 http://www.alberon.co.uk
2 http://gulpjs.com/
3 http://coffeescript.org/
4 http://sass-lang.com/
5 http://compass-style.org/
6 https://github.com/ai/autoprefixer
7 http://bower.io/
8 http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/

1

http://www.alberon.co.uk
http://gulpjs.com/
http://coffeescript.org/
http://sass-lang.com/
http://compass-style.org/
https://github.com/ai/autoprefixer
http://bower.io/
http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/

Awe Documentation, Release 2.0.0

1.1.2 Deployment

Coming soon!

2 Chapter 1. Introduction

CHAPTER 2

Installation

Alberon Note

If you are using Jericho (Alberon’s shared development server), Awe is already installed and you can skip to Project
configuration files (page 7).

2.1 Quick start

If you already know what you’re doing, this is a shorthand version of the instructions below for Debian Wheezy:

$ curl -sL https://deb.nodesource.com/setup_0.12 | sudo bash -
$ sudo apt-get install -y nodejs
$ sudo gem install bundler
$ sudo npm install -g awe bower

2.2 System requirements

2.2.1 Linux

Awe is developed and tested on Linux. It should run on Mac OS X too, but it hasn’t been tested. It probably won’t
work on Windows (at least not 100%) because it uses symlinks.

Future Plans

I could add Windows support if there is demand for it, but this would add some complexity (e.g. symlinks to
bower_components/ would not be possible so the files would need to be copied instead).

3

Awe Documentation, Release 2.0.0

2.2.2 Node.js & npm

Node.js9 v0.12+ and npm10 must be installed. Awe is tested on Node.js 0.10, and may not work on older versions.

To check they’re installed, run:

$ node --version
$ npm --version

Installing Node.js on Debian

$ curl -sL https://deb.nodesource.com/setup_0.12 | sudo bash -
$ sudo apt-get install -y nodejs

See NodeSource11 for more details or other versions.

2.2.3 Ruby & Bundler

You must also have Ruby12 and Bundler13 installed - they are required to run Compass14, Sass files to CSS.

Since Awe is installed system-wide, they also need to be installed system-wide - i.e. not using RVM15 or rbenv16.

To check they’re installed, run:

$ ruby --version
$ bundle --version

(Compass itself will be installed by Awe, so it does not need to be installed manually.)

Installing Ruby on Debian

$ sudo apt-get install ruby ruby-dev
$ sudo gem install bundler

2.2.4 Bower (optional)

You may also install Bower17 for managing third-party assets:

$ sudo npm install -g bower

To check it’s installed, run:

$ bower --version

9 https://nodejs.org/
10 https://www.npmjs.org/
11 https://github.com/nodesource/distributions
12 https://www.ruby-lang.org/
13 http://bundler.io/
14 http://compass-style.org/
15 https://rvm.io/
16 https://github.com/sstephenson/rbenv
17 http://bower.io/

4 Chapter 2. Installation

https://nodejs.org/
https://www.npmjs.org/
https://github.com/nodesource/distributions
https://www.ruby-lang.org/
http://bundler.io/
http://compass-style.org/
https://rvm.io/
https://github.com/sstephenson/rbenv
http://bower.io/

Awe Documentation, Release 2.0.0

2.3 Installing

Simply install Awe using npm:

$ sudo npm install -g awe

This will install the Awe package globally, including the awe executable, and also download the Node.js and Ruby
dependencies.

To check it’s installed, run:

$ awe --version

2.3.1 Installing a specific version

To install a specific version, use the awe@<version> syntax of npm, for example:

$ sudo npm install -g awe@1.0.0

To see a list of all available versions, see the list of releases18 or the list of commits19.

2.4 Upgrading

Because Awe is installed globally, you only need to upgrade it once per machine, not separately for each project. Every
effort will be made to ensure backwards compatibility, though you should check Upgrading a project (page 27) to see
if anything important has changed.

2.4.1 Checking for updates

$ npm outdated -g awe

If Awe is up to date, only the headings will be displayed:

Package Current Wanted Latest Location

If there is a newer version, the currently installed version and latest version number will be displayed:

Package Current Wanted Latest Location
awe 1.0.0 1.1.0 1.1.0 /usr/lib > awe

2.4.2 Upgrading to the latest version

$ sudo npm update -g awe

18 https://github.com/alberon/awe/releases
19 https://github.com/alberon/awe/commits

2.3. Installing 5

https://github.com/alberon/awe/releases
https://github.com/alberon/awe/commits

Awe Documentation, Release 2.0.0

2.4.3 Upgrading to a specific version

To upgrade (or downgrade) to a specific version, use install instead:

$ sudo npm install -g awe@1.0.0

2.5 Uninstalling

To remove Awe from your machine, simply uninstall it with npm:

$ sudo npm uninstall -g awe

This will also delete the Node.js and Ruby dependencies that were downloaded automatically during installation (e.g.
CoffeeScript, Sass, Compass). It will not remove any project files (configuration, cache files or compiled assets).

6 Chapter 2. Installation

CHAPTER 3

Project configuration files

3.1 awe.yaml

Each project requires a single config file, awe.yaml, in the root directory.

A new config file can be created in the current directory by running awe init:

$ cd /path/to/repo
$ awe init

Then simply open awe.yaml in your preferred text editor to customise it as needed.

Tip: If you prefer you can create a config file by hand, or copy one from another project – but I recommend using
awe init to ensure you’re starting with the latest recommended settings.

3.2 About the YAML format

The file is in YAML20 format. This is similar in purpose to JSON, but easier to read and write. Here is an example
config file in YAML:

Awe config - see http://awe.alberon.co.uk/ for documentation

ASSETS:

This is a comment
default:

src: www/wp-content/themes/mytheme/src/
dest: www/wp-content/themes/mytheme/build/

(continues on next page)

20 http://yaml.org/

7

http://yaml.org/

Awe Documentation, Release 2.0.0

(continued from previous page)

bower: false
sourcemaps: true

Note how indentation is used to determine the structure, similar to Python and CoffeeScript, and strings do not need
to be quoted. It also supports real comments, unlike JSON.

You shouldn’t need to understand YAML in detail to configure Awe – just follow the examples – but if you would like
to learn more about it please see Wikipedia21 or the official YAML specification22.

Note: For comparison, the equivalent config file in JSON would be:

{
"_comment": "Awe config - see http://awe.alberon.co.uk/ for documentation",

"ASSETS": {

"_comment": "This is a comment (http://stackoverflow.com/a/244858/167815)",
"theme": {

"src": "www/wp-content/themes/mytheme/src/",
"dest": "www/wp-content/themes/mytheme/build/",
"bower": false,
"sourcemaps": true

}

}
}

But this is just an illustration – JSON is not supported by Awe.

3.3 Config sections

The config file is designed to be split into sections. Each top-level section is written in UPPERCASE to make it stand
out:

ASSETS:

Asset groups config

For more information about the settings available, see:

• Asset building (page 11)

• Quick reference (page 30)

Future Plans

Currently the only section supported is ASSETS, but in the future the config file may look something like this:

ASSETS:

(continues on next page)

21 http://en.wikipedia.org/wiki/YAML
22 http://www.yaml.org/spec/1.2/spec.html#Preview

8 Chapter 3. Project configuration files

http://en.wikipedia.org/wiki/YAML
http://www.yaml.org/spec/1.2/spec.html#Preview

Awe Documentation, Release 2.0.0

(continued from previous page)

Asset groups config

CONFIG:

Custom settings

CRON:

Cron jobs config

DEPLOY:

Deployment config

ENVIRONMENTS:

Configure environments (dev, staging, live)

MYSQL:

MySQL config

PERMISSIONS:

File permissions config

SETUP:

Setup command config (e.g. npm, composer, bundler)

VERSIONS:

Require specific versions of Awe, CoffeeScript, etc.

3.3. Config sections 9

Awe Documentation, Release 2.0.0

10 Chapter 3. Project configuration files

CHAPTER 4

Asset building

4.1 Getting started

4.1.1 Create your source directory

First, create a directory for your source files. Let’s say you’re making a WordPress23 theme - you would create a
subdirectory named src/ in your theme as follows:

$ mkdir www/wp-content/themes/mytheme/src/

4.1.2 Configuration

Next, add the following to the awe.yaml configuration file (page 7), replacing the paths as necessary:

ASSETS:

default:
src: www/wp-content/themes/mytheme/src/
dest: www/wp-content/themes/mytheme/build/
bower: false
autoprefixer: false

Warning: The build/ directory should not be an existing directory – anything inside it will be deleted.

Tip: The src/ directory can be outside the document root if you prefer. e.g. The recommended configuration for
Laravel24 5 is:

23 https://wordpress.org/
24 http://laravel.com/

11

https://wordpress.org/
http://laravel.com/

Awe Documentation, Release 2.0.0

ASSETS:

default:
src: resources/assets/ # app/assets/ in Laravel 4
dest: public/assets/

Be aware that the original source code will still be made public (in the source maps), so this is not a way to hide it.

4.1.3 Create your source files

All your source files should go into the src/ directory you created above. For now, let’s imagine you have these files:

src/
+ img/

+ logo.png
+ sample1.css
+ sample2.js
+ subdirectory/

+ A.css
+ B.js

4.1.4 Run the build command

Finally, run the build command to generate the build/ directory:

$ awe build

Or run the watch command to generate it and then wait for further changes:

$ awe watch

Since there are no special files in the list above, you will get exactly the same structure:

build/
+ img/

+ logo.png
+ sample1.css
+ sample2.js
+ subdirectory/

+ A.css
+ B.js

However, read on to see what Awe can do!

4.2 Autoprefixer

Autoprefixer25 automatically adds vendor prefixes (-webkit-, -moz-, etc.) to your CSS files. Simply enable it in
the config:

25 https://github.com/postcss/autoprefixer

12 Chapter 4. Asset building

https://github.com/postcss/autoprefixer

Awe Documentation, Release 2.0.0

ASSETS:

default:
src: www/wp-content/themes/mytheme/src/
dest: www/wp-content/themes/mytheme/build/
bower: false
autoprefixer: true

For more details about how it works, and how to selectively disable it, see the Autoprefixer documentation26.

4.3 CoffeeScript

CoffeeScript27 is “a little language that compiles into JavaScript”. It has a very simple 1-to-1 mapping of input files
(.coffee) to output files (.js). For example, these source files:

src/
+ sample.coffee
+ subdirectory/

+ A.coffee

Would result in this output:

build/
+ sample.js
+ subdirectory/

+ A.js

Tip: It will also generate source maps – sample.js.map and subdirectory/A.js.map – but these are not
shown for simplicity.

For more details see the CoffeeScript documentation28.

4.4 Sass

Sass29 is an extension to CSS, and compiles .scss files to .css. For example, these source files:

src/
+ sample.scss
+ subdirectory/

+ A.scss

Would result in this output:

build/
+ sample.css
+ subdirectory/

+ A.css

26 https://github.com/postcss/autoprefixer#readme
27 http://coffeescript.org/
28 http://coffeescript.org/
29 http://sass-lang.com/

4.3. CoffeeScript 13

https://github.com/postcss/autoprefixer#readme
http://coffeescript.org/
http://coffeescript.org/
http://sass-lang.com/

Awe Documentation, Release 2.0.0

For more details see the Sass documentation30.

Note: Only the SCSS format is supported by Awe, not the original Sass indented format (i.e. .sass files), because
it’s easier for people used to regular CSS to pick up.

4.5 Ignored files (partials)

Awe ignores all files and directories that start with an underscore (_). In Sass this is used to @import partials31 – for
example, this directory structure:

src/
+ _partials/

+ reset.scss
+ _vars.scss
+ styles.scss

Will result in this output:

build/
+ styles.css

Note: Although this is mostly used for Sass partials, Awe will ignore any file or directory that starts with an under-
score.

4.6 Compass

Compass32 is a popular CSS framework built on top of Sass. To use it, simply @import the file shown in the Compass
documentation33 at the top of your .scss file. For example:

@import 'compass/typography/links/unstyled-link';

.footer a {
@include unstyled-link;

}

This is compiled to:

.footer a {
color: inherit;
text-decoration: inherit;
cursor: inherit;

}

.footer a:active, .footer a:focus {

(continues on next page)

30 http://sass-lang.com/guide
31 http://sass-lang.com/guide#topic-4
32 http://compass-style.org/
33 http://compass-style.org/reference/compass/

14 Chapter 4. Asset building

http://sass-lang.com/guide
http://sass-lang.com/guide#topic-4
http://compass-style.org/
http://compass-style.org/reference/compass/
http://compass-style.org/reference/compass/

Awe Documentation, Release 2.0.0

(continued from previous page)

outline: none;
}

Tip: While it is possible to use @import 'compass'; as a short-hand, this is noticably slower to build than
importing only the specific features required.

Tip: Many of the Compass mixins simply add vendor prefixes for CSS334. Instead of using these, I recommend
enabling autoprefixer (page 12).

Note: You may need to be aware of the following Compass configuration options35 that Awe uses:

images_path = 'src/img/' # used by image-url(), inline-
→˓image(), etc.
fonts_path = 'src/fonts/' # used by font-url(), inline-font-
→˓files(), etc.
sprite_load_path = ['src/img/', 'src/_sprites/'] # used for sprite generation (see
→˓below)

This means images should be kept in a folder called img/, font files in fonts/ and sprites in _sprites/.

4.7 Sprites

Compass has the ability to take several small icons and combine them into a single image, then use that as a sprite in
your CSS.

To do this, first create a directory inside src/_sprites/ with the name of the sprite – e.g. src/_sprites/
navbar/. Inside that directory create a PNG image for each icon. You can also have variants ending with _hover,
_active and _target which map to :hover, :active and :target in the CSS. So, for example, you may
have a directory structure like this:

src/
+ _sprites/

+ navbar/
+ edit.png
+ edit_hover.png
+ ...
+ save.png
+ save_hover.png

+ sample.scss

Then in the SCSS file enter the following:

@import 'compass/utilities/sprites';
@import 'navbar/*.png'; // This path is relative to the _sprites/
→˓directory
@include all-navbar-sprites; // Replace 'navbar' with the directory name

34 http://compass-style.org/reference/compass/css3/
35 http://compass-style.org/help/documentation/configuration-reference/

4.7. Sprites 15

http://compass-style.org/reference/compass/css3/
http://compass-style.org/help/documentation/configuration-reference/

Awe Documentation, Release 2.0.0

This will generate a directory structure similar to the following:

build/
+ _generated/

+ navbar-s71af1c7425.png
+ sample.css

And the following classes will appear in the output file, ready for you to use in your HTML:

/* Replace 'navbar' with the directory name */
.navbar-delete { ... }
.navbar-delete:hover { ... }
.navbar-edit { ... }
.navbar-edit:hover { ... }
.navbar-new { ... }
.navbar-new:hover { ... }
.navbar-save { ... }
.navbar-save:hover { ... }

4.7.1 Advanced spriting

If you require more control over the classes that are generated, there are several other ways to create them. For
example:

@import 'compass/utilities/sprites';

$navbar-map: sprite-map('navbar/*.png');

.navbar {
background: $navbar-map;

}

@each $sprite in sprite-names($navbar-map) {
.navbar-#{$sprite} {

@include sprite($navbar-map, $sprite, true);
}

}

For more details, please see the Compass spriting documentation36, options37 and mixins38.

Note: The Compass documentation uses images/ as the base directory, whereas Awe recommends using
_sprites/. You can also put them in the img/ directory if you prefer, but in that case the source images will
be copied to the build directory as well.

4.8 Combining files

Awe can automatically combine multiple CSS/JavaScript files into a single file, allowing you to split the source files
up neatly while reducing the number of downloads for end users.

36 http://compass-style.org/help/tutorials/spriting/
37 http://compass-style.org/help/tutorials/spriting/customization-options/
38 http://compass-style.org/reference/compass/utilities/sprites/base/

16 Chapter 4. Asset building

http://compass-style.org/help/tutorials/spriting/
http://compass-style.org/help/tutorials/spriting/customization-options/
http://compass-style.org/reference/compass/utilities/sprites/base/

Awe Documentation, Release 2.0.0

Simply create a directory with a name that ends .css or .js and all the files within that directory will be concatenated
(in alphabetical/numerical order) into a single output file. For example:

src/
+ combined.css/

+ 1.css
+ 2/

+ A.css
+ B.scss

+ 3.scss

First the .scss files will be compiled to CSS, then all 4 files will be combined (in the order 1.css, 2/A.css,
2/B.scss, 3.scss) into a single combined.css file:

build/
+ combined.css

Simple as that!

Caution: It is best to avoid mixing subdirectories and files, as some programs display all subdirectories first
which may be confusing:

• subdirectory/ (2)

• file.css (1)

• vendor.css (3)

4.9 Import files

Another way to combine multiple files is to create an import file – this is a YAML file with the extension .css.yaml
or .js.yaml containing a list of files to import. This is mostly useful for importing vendor files:

src/
+ vendor.js.yaml

vendor/
+ chosen.js
+ jquery.js

Where vendor.js.yaml contains:

- ../vendor/jquery.js
- ../vendor/chosen.js

Will compile to:

build/
+ vendor.js

To import files from Bower (see below (page ??)), simply prefix the filename with bower::

- bower: jquery/jquery.js
- bower: jquery-ui/ui/jquery-ui.js

4.9. Import files 17

Awe Documentation, Release 2.0.0

4.10 Bower support

Bower39 is a package manager for third-party assets. It makes it easier to install and upgrade frontend dependencies
such as jQuery and Bootstrap.

4.10.1 Create bower.json

Make sure you have a bower.json file – if not, run this to create one:

$ cd /path/to/repo
$ echo '{"name":"app","private":true}' > bower.json

Future Plans

I plan to add a command to generate this file, e.g. awe init bower, because bower init asks far more ques-
tions than are necessary!

4.10.2 Find packages

To find a package on Bower, run:

$ bower search <name>

Or use the online package search40.

4.10.3 Install the packages you want

To install a package, run this:

$ bower install --save <name>

Sometimes you may need to specify a version number – e.g. jQuery will default to the 2.x branch which does not
support IE8:

$ bower install --save jquery#1.x

This will create a bower_components/ directory in the project root (same directory as awe.yaml) containing
the package and any dependencies.

Tip: If the package you want is not registered with Bower, you can install it from another source:

$ bower install --save user/repo # From GitHub
$ bower install --save http://example.com/script.js # From a URL
$ bower install --save http://example.com/package.zip # From a zip

For more details, please see the Bower install documentation41.

39 http://bower.io/
40 http://bower.io/search/
41 http://bower.io/docs/api/#install

18 Chapter 4. Asset building

http://bower.io/
http://bower.io/search/
http://bower.io/docs/api/#install

Awe Documentation, Release 2.0.0

Note: The installed packages should be checked into the Git repository, not ignored, to ensure the same version
is installed on the live site. This advice may change in the future when bower.lock42 is implemented (and/or awe
deploy is ready).

4.10.4 Update the config file

Update awe.yaml with the path to the Bower components directory:

ASSETS:

default:
src: www/wp-content/themes/mytheme/src/
dest: www/wp-content/themes/mytheme/build/
bower: bower_components/
autoprefixer: false

4.10.5 Import the files you need

Create a .js.yaml or .css.yaml import file (page 17) (e.g. src/jquery.js.yaml), for example:

- bower: jquery/jquery.js

This will be compiled to build/jquery.js.

Note: An alternative is to load the file you need directly in your HTML, using the _bower/ symlink that is created:

<script src="/assets/_bower/jquery/jquery.min.js"></script>

4.10.6 Combining Bower and non-Bower files

You can easily combine Bower files with custom files, as described above. For example:

src/
+ app.css/

+ 1-import.css.yaml ==> - bower: jquery-ui/themes/smoothness/jquery-ui.css
+ 2-custom.scss

+ app.js/
+ 1-import.js.yaml ==> - bower: jquery/jquery.js

- bower: jquery-ui/ui/jquery-ui.js
+ 2-custom.coffee

Will result in:

build/
+ _bower/ ->/bower_components/
+ app.css
+ app.js

42 https://github.com/bower/bower/pull/1592

4.10. Bower support 19

https://github.com/bower/bower/pull/1592

Awe Documentation, Release 2.0.0

(-> indicates a symlink.)

The URLs from jquery-ui.css (now in app.css) will automatically be rewritten to url(_bower/
jquery-ui/themes/smoothness/<filename>).

4.10.7 Updating packages

To check for outdated dependencies:

$ bower list

To update them, first update bower.json if necessary (if you have specified a particular version to use), then run:

$ bower update

For more details, please see the Bower documentation43.

4.11 Multiple asset groups

To compile assets in multiple directories, simply add another group with a different name:

ASSETS:

theme:
src: www/wp-content/themes/mytheme/src/
dest: www/wp-content/themes/mytheme/build/
bower: false
autoprefixer: false

plugin:
src: www/wp-content/plugins/myplugin/src/
dest: www/wp-content/plugins/myplugin/build/
bower: false
autoprefixer: true

Reasons to do this include:

• Multiple themes/plugins in a single project

• Different config settings for different assets

• Speed up watch builds by only rebuilding one directory at a time

The group name must be alphanumeric ([a-zA-Z0-9]+).

Future Plans

The group name is not currently used anywhere, but in the future it may be possible to build individual directories (e.g.
awe build theme).

43 http://bower.io/docs/api/

20 Chapter 4. Asset building

http://bower.io/docs/api/

CHAPTER 5

Using with CMSs and frameworks

5.1 WordPress

The recommended directory structure for WordPress is:

repo/
+ bower_components/ # Bower packages
+ www/

+ wp-content/
+ themes/

+ mytheme/
+ build/ # Build files
+ src/ # Source files

+ main.css/
+ main.js/

+ style.css # Theme config (no CSS code!)
+ awe.yaml # Awe config

With the following configuration:

ASSETS:

default:
src: www/wp-content/themes/mytheme/src/
dest: www/wp-content/themes/mytheme/build/
bower: bower_components/
autoprefixer: true

style.css should only contain the file header44 that WordPress requires – for example:

/*
Theme Name: My Theme

(continues on next page)

44 http://codex.wordpress.org/File_Header

21

http://codex.wordpress.org/File_Header

Awe Documentation, Release 2.0.0

(continued from previous page)

...

*/

Then main.css should be used in the HTML code (instead of bloginfo('stylesheet_url')):

<link rel="stylesheet" href="<?= get_template_directory_uri() ?>/build/main.css">

5.2 Laravel 5

The recommended directory structure for Laravel45 5 is:

repo/
+ app/
+ bower_components/ # Bower packages
+ public/

+ assets/ # Build files
+ resources/

+ assets/ # Source files
+ main.css/
+ main.js/

+ awe.yaml # Awe config

With the following configuration:

ASSETS:

default:
src: resources/assets/
dest: public/assets/
bower: bower_components/
autoprefixer: true

5.3 Laravel 4

The recommended directory structure for Laravel46 4 is:

repo/
+ app/

+ assets/ # Source files
+ main.css/
+ main.js/

+ bower_components/ # Bower packages
+ public/

+ assets/ # Build files
+ awe.yaml # Awe config

With the following configuration:

45 http://laravel.com/
46 http://laravel.com/

22 Chapter 5. Using with CMSs and frameworks

http://laravel.com/
http://laravel.com/

Awe Documentation, Release 2.0.0

ASSETS:

default:
src: app/assets/
dest: public/assets/
bower: bower_components/
autoprefixer: true

5.3. Laravel 4 23

Awe Documentation, Release 2.0.0

24 Chapter 5. Using with CMSs and frameworks

CHAPTER 6

Cache files

Awe will create a hidden directory named .awe inside each project, which is used to hold cache files. This directory
will automatically be ignored by Git (Awe will create a .awe/.gitignore file), but you may want to configure
your editor to hide it.

6.1 Hiding in Sublime Text

In Sublime Text, go to Project > Edit Project and add a folder_exclude_patterns section:

{
"folders":
[

{
"path": ".",
"folder_exclude_patterns":
[

".awe"
]

}
]

}

25

Awe Documentation, Release 2.0.0

26 Chapter 6. Cache files

CHAPTER 7

Upgrading a project

Only breaking changes are listed here. For a full changelog please see the commits list47 on GitHub (or run git
log).

7.1 v0.1.0 (16 Nov 2014)

New config file format – see Project configuration files (page 7).

7.2 v1.2.0 (5 Sep 2015)

Now requires Node v0.12+. See Installation (page 3) for details of how to upgrade.

7.3 v1.3.0 (27 Aug 2016)

Now requires Node v4.0+. See Installation (page 3) for details of how to upgrade.

47 https://github.com/alberon/awe/commits/master

27

https://github.com/alberon/awe/commits/master

Awe Documentation, Release 2.0.0

28 Chapter 7. Upgrading a project

CHAPTER 8

Quick reference

8.1 Command-line interface (awe)

8.1.1 Global commands

These commands can be run from any directory:

Create an awe.yaml file in the current directory
$ awe init

Display help
$ awe help

Display the current version number
$ awe version

8.1.2 Project commands

These commands can only be run from a directory containing an awe.yaml config file (or any subdirectory):

Build once
$ awe build
$ awe b

Build then wait for further changes
$ awe watch
$ awe w

29

Awe Documentation, Release 2.0.0

8.2 Configuration file (awe.yaml)

Awe config - see http://awe.alberon.co.uk/ for documentation

ASSETS:

groupname: # required (a-z, 0-9 only)
src: path/to/src/ # required
dest: path/to/build/ # required
bower: bower_components/ # optional (default: false)
autoprefixer: true # optional (default: false)

anothergroup: # optional
...

8.3 Assets directory structure

SOURCE DESTINATION NOTES

→˓

src/ build/

+ _DO_NOT_EDIT.txt Warning file (automatically
→˓generated)

+ _bower/ Symlink to bower_components/
→˓directory

+ _generated/ Compass generated files (e.g.
→˓sprites)

+ nav-s71af1c74.png

+ _partials/ Ignored (starts with _)
+ reset.scss

+ _sprites/ Compass sprite source images
+ nav/

+ edit.png
+ save.png

+ _vars.scss Ignored (starts with _)

+ combined.css/ + combined.css Combined (ends with .css)
+ 1.css
+ 2.scss
+ 3-subdirectory/

+ A.css
+ B.scss

+ combined.js/ + combined.js Combined (ends with .js)
+ 1.js
+ 2.coffee
+ 3-subdirectory/

+ A.js

(continues on next page)

30 Chapter 8. Quick reference

Awe Documentation, Release 2.0.0

(continued from previous page)

+ B.coffee

+ img/ + img/ Images are copied unaltered
+ logo.png + logo.png

+ sample1.css + sample1.css CSS file is copied
+ sample2.scss + sample2.css Sass file is compiled
+ sample3.js + sample3.js JavaScript file is copied
+ sample4.coffee + sample4.js CoffeeScript file is compiled

+ subdirectory/ + subdirectory/ Directory structure is
→˓preserved

+ A.css + A.css
+ B.scss + B.css
+ C.js + C.js
+ D.coffee + D.js

+ vendor.css.yaml + vendor.css YAML import file (.css.yaml)
+ vendor.js.yaml + vendor.js YAML import file (.js.yaml)

Note: It will also generate source maps – e.g. combined.css.map – but these are not shown for simplicity.

8.4 YAML import files

- _vendor/jquery.js # Relative path to partial
- ../vendor/jquery.js # Relative path to outside directory
- bower: jquery/jquery.js # File inside bower_components/

8.4. YAML import files 31

Awe Documentation, Release 2.0.0

32 Chapter 8. Quick reference

CHAPTER 9

Design decisions

9.1 Introduction

A lot of time and effort has gone into making Awe, including a lot of back-and-forth about the best way to build it.
Here I document some of the design decisions, both as a reminder for myself and to explain the thinking behind it to
others.

9.2 Specific- not general-purpose

Awe was created to make it easier for the team at Alberon48, a web/software development agency, to manage many
different websites and web apps. Unlike Grunt49, Gulp50 and others, it is not designed to be a general-purpose task
runner or build tool, but to perform specific tasks well.

9.3 System-wide installation

Before building Awe I tried using Grunt51. This required me to install Grunt and all the plugins I was using in each
project, upgrade each project separately when new versions were released, and keep the Gruntfiles in sync so every
project had the latest features & fixes as I added them. This was tedious enough with 3 projects – if it were expanded
to all 25+ ongoing projects it would be a nightmare. So Awe is designed to be installed (and upgraded) only once,
system-wide.

Future Plans

CoffeeScript, Compass, etc. are also installed system-wide, so every project must use the same version. In the future
this could be changed to allow specific versions to be required for each project, and Awe would install/upgrade them

48 http://www.alberon.co.uk
49 http://gruntjs.com/
50 http://gulpjs.com/
51 http://gruntjs.com/

33

http://www.alberon.co.uk
http://gruntjs.com/
http://gulpjs.com/
http://gruntjs.com/

Awe Documentation, Release 2.0.0

for each project automatically (in the .awe/ hidden directory). However, I would need to be convinced that this was
better than just upgrading all projects at once – e.g. a non-backwards compatible change.

9.4 Unit tests

Because Awe is installed system-wide, backwards compatibility is especially important. So we have plenty of unit
tests to ensure nothing breaks.

Note: “Backwards compatible” doesn’t mean completely identical build output – for example, adding source maps
meant adding extra comments to the build files, but they are still backwards compatible.

9.5 Conservative defaults

Future-proofing is also important for the same reason, so the default settings are quite conservative – features must be
explicitly enabled in the config file, even if they are strongly recommended (e.g. Autoprefixer). Only features that are
not expected to cause any problems (e.g. source maps) are enabled by default.

9.6 Minimal configuration

To ensure consistency between sites, only a minimum amount of configuration is allowed. It is limited to:

• Choosing the functionality to use (see above), and

• Allowing for necessary differences between projects (e.g. assets are different directories depending on the
framework/CMS used)

In particular, config options should not be added to avoid making a decision52 about the best solution.

9.7 YAML configuration

Many systems allow configuration files to be written in code (e.g. Gruntfile.js). While this allows more advanced
customisation, I wanted to ensure consistency between sites and keep the configuration simple, which means limiting
the options available.

If any extra functionality is required, it should be added to Awe itself, not added through custom project-specific code.
This ensures it can be reused in other projects.

Future Plans

I may add hooks that can be called at certain points (on build, on deploy, etc.) when custom functionality is truely
needed. These would most likely be external scripts (which can be written in any language) rather than Node.js
functions.

52 https://gettingreal.37signals.com/ch06_Avoid_Preferences.php

34 Chapter 9. Design decisions

https://gettingreal.37signals.com/ch06_Avoid_Preferences.php

Awe Documentation, Release 2.0.0

9.8 Automatic mapping of asset files

There are no configuration options for how assets are built – the idea is anyone should be able to look at the source files
and work out what the resulting build files will look like. This is especially important when working with frontend
(HTML/CSS) developers who are not programmers, work on a lot of different projects and just want it to work.

9.9 YAML import files

In an early alpha version of Awe, I used symlinks and combined directories (page 16) to merge vendor files with
custom files. However, when viewing the directory over the network using Samba it was impossible to see which files
were symlinks, therefore impossible to tell which files were custom and which were external (e.g. Bower packages).
So symlink support was removed in favour of YAML import files (page 17).

9.10 No shorthand syntax in import files

In the YAML import files (page 17) you must always use a list, even if there is only one entry:

- ../vendor/jquery.js

You cannot shorten it to:

../vendor/jquery.js

This is to avoid confusing the user when they try to add a second entry to the file.

9.11 Limited file type support

Awe doesn’t support the shorthand Sass53 syntax (.sass files), Less54 or several other languages purely because we
(Alberon) don’t currently use them. If we do decide to use them, we can add support for them in the future.

Future Plans

I would consider switching to a plugin-based architecture, more like Grunt, as long as Awe installed and upgraded
them automatically in response to config options – i.e. it would not require the user to run npm install manually
– and it didn’t require any complicated configuration (unlike Grunt & Gulp).

9.12 Open source

Although Awe has a limited target audience, it is open source to allow other people to use it – particularly if a third-
party takes over maintenance of a site/app we built. If anyone else wants to use it or improve it, that’s absolutely fine.
(Please do share your changes55!)

53 http://sass-lang.com/
54 http://lesscss.org/
55 https://github.com/alberon/awe/pulls

9.8. Automatic mapping of asset files 35

http://sass-lang.com/
http://lesscss.org/
https://github.com/alberon/awe/pulls

Awe Documentation, Release 2.0.0

It also allows us to enjoy the benefits of open source – free hosting on GitHub56, npm57 and Read the Docs58.

9.13 Flag deprecated features

Future Plans

If any features are deprecated in the future, Awe should warn the user whenever they are used and suggest an alterna-
tive. There should be no way to disable these warnings. This will ensure that most projects are upgraded early, so they
do not break if that feature is eventually removed.

9.14 Runs in a terminal (SSH). . .

9.14.1 . . . not locally on Windows

Most of us at Alberon develop on Windows but use a Linux development server, editing files over a Samba network
drive. This means a local GUI application would not be able to watch for file changes efficiently (e.g. see Prepros59).

9.14.2 . . . not through a web server

Another option was to have it run automatically through the web server, rebuilding the files whenever they were
requested – similar to Rails’ asset pipeline60. This would have the advantage that it wouldn’t be necessary to run Awe
over SSH (which easy to forget if you’re not used to it). However:

• It’s more difficult to display errors this way (especially in CSS files)

• There’s not always a 1-to-1 mapping of source to build files, making efficient compilation difficult

• It’s slower to detect changed files, as they must be searched for each file loaded

• It would require more setup for each site

9.14.3 . . . not in a browser (web app)

Another option would be to build an application frontend that runs in the browser and communicates with a server
process using WebSockets. This would be a more friendly interface for less technical frontend developers, but require
significant extra work to implement.

None of these are three options are impossible, but the industry seems to be moving toward command-line build tools
anyway, so that seemed like the best solution for now.

56 https://github.com/alberon/awe
57 https://www.npmjs.org/package/awe
58 https://readthedocs.org/projects/awe/
59 https://github.com/subash/Prepros/issues/398#issuecomment-60480027
60 http://guides.rubyonrails.org/asset_pipeline.html

36 Chapter 9. Design decisions

https://github.com/alberon/awe
https://www.npmjs.org/package/awe
https://readthedocs.org/projects/awe/
https://github.com/subash/Prepros/issues/398#issuecomment-60480027
http://guides.rubyonrails.org/asset_pipeline.html

Awe Documentation, Release 2.0.0

9.15 Both asset building and deployment

Future Plans

Deployment is not yet available, but is planned for a future release.

I considered splitting asset building and deployment into two separate applications, so they could be installed inde-
pendently, but:

• Awe is not meant to be a general-purpose build tool that many people use, so the benefits would be limited

• It’s easier for me to maintain a single application than several smaller ones

• Combining them will make it easier to minify/compress assets as part of the deploy process

9.15. Both asset building and deployment 37

Awe Documentation, Release 2.0.0

38 Chapter 9. Design decisions

CHAPTER 10

Contributing

10.1 Introduction

To submit a simple documentation change, simply edit the appropriate file on GitHub61. (There’s even an Edit link in
the top-right corner of each page!)

Warning: Not all markup is supported by GitHub – e.g. :ref: and :doc: – so the preview may not be
exactly what appears in the online documentation. Don’t let that put you off making changes, but if you’re making
substantial changes it would be better to clone the repository and test it offline (page 42) first.

If you want to submit a bug fix, the information below should help you to get started. Push your changes to a new
branch on GitHub, then open a pull request62.

If you want to suggest a new feature, I recommend opening an issue63 to discuss the idea first, to make sure it will be
accepted. (Or you can go ahead and develop it first if you prefer!)

10.2 System requirements

First make sure your system meets the main system requirements (page 3).

In addition, you will need:

10.2.1 Grunt (CLI)

To check if it’s installed:
61 https://github.com/alberon/awe/tree/master/docs
62 https://github.com/alberon/awe/pulls
63 https://github.com/alberon/awe/issues

39

https://github.com/alberon/awe/tree/master/docs
https://github.com/alberon/awe/pulls
https://github.com/alberon/awe/issues

Awe Documentation, Release 2.0.0

$ grunt --version

To install it:

$ sudo npm install -g grunt-cli

10.2.2 Python & Sphinx

The documentation is generated by Sphinx64, which is written in Python65 and installed with pip66.

To check if they’re installed, run:

$ python --version
$ pip --version
$ sphinx-build --version

Installing Python & pip (on Debian)

$ sudo apt-get install python-pip

Installing Sphinx

$ sudo pip install sphinx sphinx-autobuild sphinx_rtd_theme

10.2.3 LaTeX (optional)

To build the PDF documentation, you will also need LaTeX installed. To check:

pdflatex --version

Installing LaTeX (on Debian)

$ sudo apt-get install texlive texlive-latex-extra

10.3 Installing Awe from Git

10.3.1 Download source code

Obtain a copy of the Awe source code, if you haven’t already. If you are planning to make changes, it is best to fork
the Awe repository on GitHub67 first – then use your own username in place of alberon below.

You can install Awe into any location, but ~/awe/ would be a logical choice and is used below.
64 http://sphinx-doc.org/
65 https://www.python.org/
66 https://pypi.python.org/pypi/pip
67 https://github.com/alberon/awe/fork

40 Chapter 10. Contributing

http://sphinx-doc.org/
https://www.python.org/
https://pypi.python.org/pypi/pip
https://github.com/alberon/awe/fork
https://github.com/alberon/awe/fork

Awe Documentation, Release 2.0.0

$ cd
$ git clone git@github.com:alberon/awe.git

10.3.2 Install dependencies

$ cd awe
$ npm install

This will:

• Install Node.js dependencies using npm

• Install Ruby dependencies using Bundler

• Compile the source files (from IcedCoffeeScript68 to JavaScript)

• Run the test suite (using Mocha69)

At this point it should be possible to run Awe by specifying the path to the executable:

$ ~/awe/bin/awe --version

10.3.3 Make it the default version (optional)

If you would like to run awe directly, instead of using the full path, run:

$ export PATH="$HOME/awe/bin:$PATH"

This will only last until you close the terminal session.

10.3.4 Upgrading Awe from Git

$ cd ~/awe
$ git pull
$ npm install

10.3.5 Uninstalling

Simply delete the source directory:

$ cd
$ rm -rf awe

10.4 Source code

The source code is in lib/. It is written in IcedCoffeeScript70 – and you will need to understand defer and await
as they are used extensively.

68 http://maxtaco.github.io/coffee-script/
69 http://visionmedia.github.io/mocha/
70 http://maxtaco.github.io/coffee-script/

10.4. Source code 41

http://maxtaco.github.io/coffee-script/
http://visionmedia.github.io/mocha/
http://maxtaco.github.io/coffee-script/

Awe Documentation, Release 2.0.0

To compile it, run:

$ grunt build-lib

Alternatively, to compile everything at once (source code, documentation and man pages – excludes PDF docs):

$ grunt build

Or to build everything at once and then watch for further changes and rebuild automatically (the recommended
method):

$ grunt watch

In each case the compiled JavaScript code is written to lib-build/, and you can run the bin/awe executable
script to run it.

10.5 Unit tests

Please ensure that every important function and bug fix has corresponding unit tests, to ensure backwards compatibility.

The unit tests are in test/. They are written in regular CoffeeScript71.

To run them all:

$ grunt test

To run a single test suite, add the filename without the extension:

$ grunt test:AssetGroup # -> test/AssetGroup.coffee

When you run grunt watch, it will:

• Automatically run any test suite that is modified

• Run the appropriate test suite when any file in lib/ is modified (e.g. when lib/AssetGroup.iced is
modified, test/AssetGroup.coffee will be run)

You should manually run grunt test before committing your changes, to ensure that all tests are still passing.

10.6 Documentation

Documentation is in docs/. It is written in reStructuredText72 and converted to HTML and PDF formats by Sphinx73.

To build the HTML docs:

$ grunt build-docs-html

When you run grunt watch, it will automatically rebuild whenever a file in docs/ is modified.

71 http://www.coffeescript.org/
72 http://docutils.sourceforge.net/rst.html
73 http://sphinx-doc.org/

42 Chapter 10. Contributing

http://www.coffeescript.org/
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/

Awe Documentation, Release 2.0.0

Warning: When using grunt watch, Sphinx will only rebuild modified files. When one file references another
(e.g. the table of contents), some information may be out of date. To force it to rebuild all files, run grunt docs
manually.

10.6.1 PDF documentation

The PDF documentation takes several seconds to generate, so it is not built automatically. To build the PDF docs:

$ grunt build-docs-pdf

10.6.2 Sphinx markup reference

I found the following documents useful when writing the documentation:

• reStructuredText quick reference74

• Admonitions list75 (note::, warning::, etc.)

• Code examples markups76 (code-block::, highlight::)

• Other paragraph-level markup77 (versionadded::, deprecated::, etc.)

• Inline markup78 (:ref:, :doc:, etc.)

• Table of contents79 (toctree::)

10.6.3 Heading styles

The following code styles are used for headings:

##
Page title (80 hashes)

##

==
Section title (80 equals signs)

==

--
Heading 2 (40 hypens)

--

Heading 3 (full stops)
......................

74 http://docutils.sourceforge.net/docs/user/rst/quickref.html
75 http://docutils.sourceforge.net/docs/ref/rst/directives.html#admonitions
76 http://sphinx-doc.org/markup/code.html
77 http://sphinx-doc.org/markup/para.html
78 http://sphinx-doc.org/markup/inline.html
79 http://sphinx-doc.org/markup/toctree.html

10.6. Documentation 43

http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/ref/rst/directives.html#admonitions
http://sphinx-doc.org/markup/code.html
http://sphinx-doc.org/markup/para.html
http://sphinx-doc.org/markup/inline.html
http://sphinx-doc.org/markup/toctree.html

Awe Documentation, Release 2.0.0

10.6.4 Custom admonitions

I found it necessary to make some custom admonitions (alert boxes) using HTML classes that are available in the Read
the Docs theme80:

.. admonition:: Alberon Note
:class: note wy-alert-success

This is a note for staff at Alberon specifically...

.. admonition:: Future Plans
:class: note

This is something I plan to add in the future...

For other classes see the Wyrm documentation81.

10.7 Updating dependencies

Before updating any dependencies, remember to check the changelogs to ensure they are compatible.

10.7.1 Node.js

To check for updates:

$ npm outdated

To install updates:

$ npm update

(You will need to update the version number in package.json first to install some updates.)

10.7.2 Ruby

To check for updates:

$ bundle outdated

To update the Ruby gems to the latest version:

$ grunt update-gems

This will install the latest versions and update Gemfile.lock.

10.8 Releasing a new version

• Check the documentation is up-to-date

80 https://github.com/snide/sphinx_rtd_theme
81 http://wyrmsass.org/section-2.html

44 Chapter 10. Contributing

https://github.com/snide/sphinx_rtd_theme
https://github.com/snide/sphinx_rtd_theme
http://wyrmsass.org/section-2.html

Awe Documentation, Release 2.0.0

• Update Upgrading a project (page 27) (if necessary)

• Run grunt deploy

10.8. Releasing a new version 45

	Introduction
	Features

	Installation
	Quick start
	System requirements
	Installing
	Upgrading
	Uninstalling

	Project configuration files
	awe.yaml
	About the YAML format
	Config sections

	Asset building
	Getting started
	Autoprefixer
	CoffeeScript
	Sass
	Ignored files (partials)
	Compass
	Sprites
	Combining files
	Import files
	Bower support
	Multiple asset groups

	Using with CMSs and frameworks
	WordPress
	Laravel 5
	Laravel 4

	Cache files
	Hiding in Sublime Text

	Upgrading a project
	v0.1.0 (16 Nov 2014)
	v1.2.0 (5 Sep 2015)
	v1.3.0 (27 Aug 2016)

	Quick reference
	Command-line interface (awe)
	Configuration file (awe.yaml)
	Assets directory structure
	YAML import files

	Design decisions
	Introduction
	Specific- not general-purpose
	System-wide installation
	Unit tests
	Conservative defaults
	Minimal configuration
	YAML configuration
	Automatic mapping of asset files
	YAML import files
	No shorthand syntax in import files
	Limited file type support
	Open source
	Flag deprecated features
	Runs in a terminal (SSH)…
	Both asset building and deployment

	Contributing
	Introduction
	System requirements
	Installing Awe from Git
	Source code
	Unit tests
	Documentation
	Updating dependencies
	Releasing a new version

