

Avendesora Collaborative Password Manager

Version: 1.25

Released: 2023-04-22

Please report all bugs and suggestions at
Github [https://github.com/KenKundert/avendesora/issues]
(or contact me directly at avendesora@nurdletech.com).

What is Avendesora?

Avendesora holds all of your account information. In addition to the username
and password, it holds any account information you might want such as account
numbers, PINs, verbal passwords, one-time passwords, security questions, URLs,
email addresses, phone numbers, etc. Avendesora is a secure repository for
all of this information, using GPG to keep the information safe.

Account secrets, such as passwords and such can either be saved, as with
password vaults, or they can be generated by Avendesora. Generation is quite
flexible and is generally preferred as it makes the secrets extremely hard to
predict, in most cases eliminating the risk they could be cracked. Avendesora
generates secrets from a random seed. The seed can be shared with
a collaborator, and once shared, either collaborator can create new shared
passwords.

You can query Avendesora directly from the command line. When doing so you can
either display account information or copy it to the clipboard. You can also
configure a hot-key to run Avendesora, in which case it determines which
information is needed from context and then fills it into the active
application. In this way Avendesora can directly enter account information
into your browser, email client, shell, etc. The information Avendesora
provides can be used to log you in, answer security questions, enter your credit
card number, etc.

Avendesora is a program that is deeply steeped in Unix traditions. It
operates primarily from the command line and leans heavily on programs you are
likely already familiar with, such as Python, GPG, and Vim. As such, it should
be both welcoming and powerful for those that are comfortable with Unix and its
utilities. Also, it is fully open source, so you can change it if you do not
like some aspect of it. Please consider contributing your enhancements back to
the project. Here are some of the ways Avendesora differs from more
traditional password managers:

	Private

	
	Local storage and operation

	Open source (no back doors)

	Secure

	
	GPG encryption

	Flexible

	
	Free form account data

	Generates secret passcodes in a wide variety of styles

	Configurable account recognition and autotype

	Powerful

	
	Python API

	Numerous companion programs

	Collaboration support

	Time-based one-time password support (TOTP)

	Efficient

	
	Keyboard centric

	Edit accounts with your favorite text editor (Vim, etc.)

	Private

	
	Supports stealth accounts and secret
misdirection for sensitive and high value secrets;
they help you avoid giving up your secrets while under duress

	Well Documented

	
	Command line help

	Online documentation [https://avendesora.readthedocs.io]

Quick Tour

With Avendesora you create files that contain information about your accounts.
Avendesora accesses that information and shows it to you when you need it.
The files can be encrypted with GPG, and so are quite secure. The information
itself is grouped into accounts, with an account consisting of both secret and
non-secret information. The non-secret information includes such things as user
names, email addresses, phone numbers, etc. The secret information includes
passwords, pins, security questions and such. Information is free form. You
decide what information you want to associate with an account, what you call it,
and whether it is secret or not. There are two types of secrets: remembered
secrets and generated secrets.

In general, it is best to use generated secrets if you can. They are preferred
for two reasons. First, generated passwords are pretty much assured of having
high entropy, and entropy in your passwords is like fiber in your diet, the more
the better because it results in passwords that resist cracking. Second, you can
easily share generated secrets with your collaborators without risk of exposing
to secrets to others.

As a demonstration, consider adding an account for FasTrak, a payment service
for toll roads in the San Francisco bay area. First you would add the account:

> avendesora add website

This indicates that Avendesora should create a new account in the default
accounts file based on the website template.

Avendesora responds by opening your editor with a rough template containing
the fields needed for a typical website account. You should modify it to suit
your needs. For example, your entry for FasTrak might look like this:

class FasTrak(Account):
 desc = 'payment service for automated toll collection'
 aliases = 'fastrack fasttrack'
 username = 'rand36'
 email = 'rand36@dragon.com'
 passcode = PasswordRecipe('12 2u 2d 2s')
 discovery = RecognizeURL(
 'https://www.bayareafastrak.org',
 script='{username}{tab}{passcode}{return}'
)
 questions = [
 Question('City in which you were born?')
 Question('What was the name of you high school?')
]
 pin = PIN(length=4)

This is Python code. An account is created by declaring a subclass of Account.
The account information is given as class attributes. Avendesora supports
string, list, and dictionary attributes. You create secrets by instantiating
a Secrets class. This example uses three different secrets, all of which are
generated: PasswordRecipe(), Question() and PIN(). First consider PIN(). Notice
that you do not give a PIN number, you instead just specify how long it should
be. Avendesora generates a PIN for you at random. With PasswordRecipe() you do
not specify the password, you specify how long it should be and what kind of
characters it should use (in this case, 12 long including 2 uppercase, 2 digits,
and 2 symbols). Question() is used to generate random answers to security
questions. Again, you do not give the answer, you give the question and the
answer is generated at random. It is the unpredictability of these values that
make them secure.

Once the information is entered for your account, you can see the values by
running the following commands (of course if you try this example your results
will differ):

> avendesora value fastrak passcode
passcode: 0GPD;mc3XC?c

> avendesora value fastrak questions.0
questions.0 (City in which you were born?): voyager interview gaudy

> avendesora value fastrak pin
pin: 2728

You can also access the account values that are not secret in a similar manner:

> avendesora value fastrak username
username: rand36

The difference is that Avendesora erases secrets from the screen after
displaying them for a minute, which is not done with non-secrets.

There are various tricks available to reduce the amount you type. For example:

> avendesora fastrak
username: rand36
passcode: 0GPD;mc3XC?c

If you give an account name without a command, the credentials command is run, which displays the username and password for the
specified account.

> avendesora fastrak pin
pin: 2728

In this case the account and field name was given, but not a command name. When
more than one argument is given, and the first is not recognized as a command,
the value command is run.

The discovery attribute is used by Avendesora to associate an account to
a URL or URLs. You can visit the FasTrak website using:

> avendesora browse fastrak

This runs the browse command, which opens the URL for
the account in your web browser. You can shorten browse to b (the most
common Avendesora commands have one or two character aliases). Running that
command opens your browser if it is not already open, and navigates to the
FasTrak URL. Generally you would run this command directly from your window
manager, which allows you to navigate to your account without opening a shell.

The information provided to discovery also allows the desired
account to be recognized, which allows you to directly enter values into an
application, in this case the web browser, with a single keystroke. To do so,
you would associate Avendesora with a keyboard shortcut (a hot key), such as
Alt-a (‘a’ for Avendesrsora), Alt-p (‘p’ for password), or Alt-Space (for
convenience). Once the webpage is open, simply click on the Username field
and type your shortcut (Alt-p). This runs Avendesora, which then looks at the
current environment to determine which account to use. In the case of
RecognizeURL() it is looking for the URL in the browser’s window title.
Avendesora checks with all the accounts and finds that only FasTrak matches,
at which point it executes the given script, which produces the user name and
passcode.

This approach is a very secure way to access your account because:

	Using the browse command assures you are using
a known-good URL, preventing you from being phished.

	If you do fall prey to a phishing scheme, Avendesora will not recognize the
URL and so will not disclose your account credentials.

	Avendesora warns you if you are attempting to provide your account
credentials to an insecure webpage (an http page rather than an https page).

Here are some other convenient Avendesora commands.

The edit command opens an account in your editor, allowing
you to update the account values:

> avendesora edit amtrak

The find command finds accounts whose name contain
a string of characters in the name or alias. Notice that I tend to add common
misspellings as aliases.

> avendesora find track
track:
 amtrak (amtrack)
 fastrak (fastrack, fasttrack)
 python-bug-tracker

The search command finds accounts whose attributes
contain a string of characters. Only attributes whose values are not secret are
examined.

> avendesora search junior
junior:
 gmail
 fidelity

The values command prints out a summary of all the
account attributes. The secrets are not printed with this command.

> avendesora values fastrak
names: fastrak, fastrack, fasttrack
email: rand36@dragon.com
passcode: <reveal with 'avendesora value fastrak passcode'>
pin: <reveal with 'avendesora value fastrak pin'>
questions:
 0: City in which you were born? <reveal with 'avendesora value fastrak questions.0'>
 1: What was the name of you high school? <reveal with 'avendesora value fastrak questions.1'>
username: rand36

Finally, you can use the help command to get information
on the various commands and other useful topics.

Issues

Please ask questions or report problems on
Github [https://github.com/KenKundert/avendesora/issues].

Contributing

Contributions are welcome. One thing that Avendesora would really benefit from
is a browser plugin that would allow it to interact with websites.

Contents

	Conceptual Underpinnings

	Installing and First Use

	Overview

	Accounts

	Secrets

	Advanced Usage

	Command Reference

	Account Helpers

	Configuring

	Python API

	Examples

	Accessories

	Known Issues

	Upgrading

	Releases

	Index

Conceptual Underpinnings

Generated Secrets

Account secrets can be saved in encrypted form, as with password vaults, or
generated from a root secret. Generated secrets have several important
benefits. First, they are produced from a random seed, and so are quite
unpredictable. This is important, because predictability can be exploited when
cracking passwords. Second, if the root secret is shared with another trusted
party, then you both can generate new shared secrets without passing any further
secrets. Furthermore, if you keep a copy of the root secret, say in a safe
deposit box, then there is a good chance you can resurrect your secrets if you
happen to lose your accounts files. Finally, with generated secrets, it is
possible to have stealth secrets, which are secrets
for which there is absolutely no evidence.

Secrets are generated from a collection of seeds, one of which must be random
with a very high degree of entropy. The random seed is referred to as the
‘master seed’. It is extremely important that the master seed remain completely
secure. Never disclose a master seed to anyone except for a person you wish to
collaborate with, and then only use the shared master seed for shared secrets.
Each file that contains accounts will contain a master seed for the accounts it
holds. Typically, you would have one file to hold your private accounts, and
then one file for every group of people you collaborate with.

A secret is generated by combining a master seed with several other seeds, such
as the account name, the secret name, and perhaps a version name. The
combination is then hashed to form a long binary number that is unique to your
secret. From there the number is transformed into a usable form by one of the
Secrets classes. PIN() converts it to a sequence of digits, Password() converts
it to a sequence of characters, Passphrase converts it to a sequence of words,
etc.

For example, consider the following rather abbreviated accounts file:

from avendesora import Account, Passphrase

master_seed = 'c2VjcmV0IG1lc3NhZ2UsIHN1Y2Nlc3NmdWxseSBkZWNvZGVkIQ'

class Login(Account):
 username = 'rand'
 passcode = Passphrase()

This file contains one secret, the login passphrase for Rand. In this case, the
master seed is combined with the words ‘login’ (the account name, down cased)
and ‘passcode’ (the attribute name); the combination is hashed, and the hash is
used to generate the passphrase. The words in the passphrase are chosen at
random from a dictionary of roughly 10,000 words. The first word is chosen by
taking the first 14 bits from the hash and using that number to select a word.
The second word is chosen using the next 14 bits, and so on. The hash is
constructed such that even the smallest changes in any seed results in
a completely different hash. As such, the resulting passphrase is quite
unpredictable:

> avendesora login
username: rand
passcode: dither estate cockroach flavoring

The passcode itself is not stored, rather it is the seeds that are stored and
the passcode is regenerated when needed. Notice that all the seeds except the
master seed need not be kept secure. Thus, once you have shared a master seed
with a collaborator, all you need to do is share the remaining seeds and your
collaborator can generate exactly the same passcode.

Another important thing to notice is that the generated passcode is dependent on
the account and secret names. Thus if you rename your account or your secret,
the passcode will change. So you should be careful when you first create your
account to choose names appropriately so you don’t feel the need to change them
later.

Entropy

A 4 word Avendesora password provides 53 bits of entropy, which seems like
a lot, but NIST is recommending 80 bits for your most secure passwords. So, how
much is actually required? It is worth exploring this question.

Entropy is a measure of how hard the password is to guess. Specifically, it is
the base two logarithm of the likelihood of guessing the password in a single
guess. Every increase by one in the entropy represents a doubling in the
difficulty of guessing your password. The actual entropy is hard to pin down, so
generally we talk about the minimum entropy, which is the likelihood of an
adversary guessing the password if he or she knows everything about the scheme
used to generate the password but does not know the password itself. So in this
case the minimum entropy is the likelihood of guessing the password if it is
known that we are using 4 space separated words as our passphrase where the
words are selected at random with a uniform distribution from a known list.
This is very easy to compute. There are roughly 10,000 words in our dictionary,
so if there was only one word in our passphrase, the chance of guessing it would
be one in 10,000 or 13 bits of entropy. If we used a two word passphrase the
chance of guessing it in a single guess is one in 10,000*10,000 or one in
100,000,000 or 26 bits of entropy.

The probability of guessing our passphrase in one guess is not our primary
concern. Really what we need to worry about is given a determined attack, how
long would it take to guess the password. To calculate that, we need to know how
fast our adversary could try guesses. If they are trying guesses by typing them
in by hand, their rate is so low, say one every 10 seconds, that even a one word
passphrase may be enough to deter them. This is why bank PINs can be so short.
Our one word passphrase provides roughly the same security as a four digit PIN.
Alternatively, they may have a script that automatically tries passphrases
through a login interface. Again, generally the rate is relatively slow.
Perhaps at most they can get is 1000 tries per second. In this case they would
be able to guess a one word passphrase in 10 seconds and a two word passphrase
in a day, but a 4 word passphrase would require 300,000 years to guess in this
way.

The next important thing to think about is how your password is stored by the
machine or service you are logging into. The worst case situation is if they
save the passwords in plain text. In this case if someone were able to break in
to the machine or service, they could steal the passwords. Saving passwords in
plain text is an extremely poor practice that was surprisingly common, but is
becoming less common as companies start to realize their liability when their
password files get stolen. Instead, they are moving to saving passwords as
hashes. A hash is a transformation that is very difficult to reverse, meaning
that if you have the password it is easy to compute its hash, but given the hash
it is extremely difficult to compute the original password. Thus, they save the
hashes (the transformed passwords) rather than the passwords. When you log in
and provide your password, it is transformed with the hash and the result is
compared against the saved hash. If they are the same, you are allowed in. In
that way, your password is not stored and so is no longer available to thieves
that break in. However, they can still steal the file of hashed passwords,
which is not as good as getting the plain text passwords, but it is still
valuable because it allows thieves to greatly increase the rate that they can
try passwords. If a poor hash was used to hash the passwords, then passwords can
be tried at a very high rate. For example, it was recently reported that
password crackers were able to try 8 billion passwords per second when passwords
were hashed with the MD5 algorithm. This would allow a 4 word passphrase to be
broken in 14 days, whereas a 6 word password would still require 4,000,000 years
to break. The rate for the more computational intensive sha512 hash was only
2,000 passwords per second. In this case, a 4 word passphrase would require
160,000 years to break.

In most cases you have no control over how your passwords are stored on the
machines or services that you log into. Your best defense against the
notoriously poor security practices of most sites is to always use a unique
password for sites where you are not in control of the secrets. That way the
poor security practices of one site would not compromise your other accounts.
For example, you might consider using the same passphrase for your login
password and the passphrase for an ssh key on a machine that you administer, but
never use the same password for two different websites unless you do not care if
the content of those sites become public.

So, if we return to the question of how much entropy is enough, you can say that
for important passwords where you are in control of the password database and it
is extremely unlikely to get stolen, then four randomly chosen words from
a reasonably large dictionary is plenty. If what the passphrase is trying to
protect is very valuable and you do not control the password database (ex., your
brokerage account) you might want to follow the NIST recommendation and use
6 words to get 80 bits of entropy. If you are typing passwords on your work
machine, many of which employ keyloggers to record your every keystroke, then no
amount of entropy will protect you from anyone that has or gains access to the
output of the keylogger. In this case, you should consider things like one-time
passwords or two-factor authentication. Or better yet, only access sensitive
accounts from your home machine and not from any machine that you do not
control.

Installing and First Use

Install with:

pip3 install --user avendesora

This will place avendesora in ~/.local/bin, which should be added to your path.

You will also need to install some operating system commands. On Redhat systems
(Fedora, Centos, Redhat) use:

dnf install gnupg2 xdotool xsel

You should also install python-gobject. Conceivably this could be installed with
the above pip command, but gobject appears broken in pypi, so it is better use
the operating system’s package manager to install it. See the setup.py file for
more information. On Redhat systms use:

dnf install python3-gobject

Gobject is only used to provide a user-interactive selection utility. However,
if you prefer, you can use dmenu for your selection utility, in which case you
will need to install it by hand using:

dnf install dmenu

If you would like to use scrypt as a way of encrypting fields, you will need to
install scrypt by hand using:

pip3 install --user scrypt

GPG Key

To use Avendesora, you will need GPG and you will need a GPG ID that is
associated with a private key. That GPG ID could be in the form of an email
address or an ID string that can be found using ‘gpg –list-keys’.

If you do not yet have a GPG key, you can get one using:

$ gpg --gen-key

You should probably choose 4096 RSA keys. Now, edit ~/.gnupg/gpg-conf and add
the line:

use-agent

That way, you generally need to give your GPG key passphrase less often. The
agent remembers the passphrase for you for a time. Ten minutes is the default,
but you can configure gpg-agent to cache passphrases for as long as you like.

If you use the agent, be sure to also use screen locking so your passwords are
secure when you walk away from your computer.

Vim

If you use Vim, it is very helpful for you to install GPG support in Vim. To do
so first download:

http://www.vim.org/scripts/script.php?script_id=3645

Then copy the file into your Vim configuration hierarchy:

cp gnupg.vim ~/.vim/plugin

Initializing Avendesora

To operate, Avendesora needs a collection of configuration and accounts files
that are stored in ~/.config/avendesora. To create this directory and the
initial versions of these files, run:

avendesora initialize -g <gpg_id>

For example:

avendesora initialize -g rand@dragon.com

or:

avendesora initialize -g 1B2AFA1C

If you would like to have more than one person access your passwords, you should
give GPG IDs for everyone:

avendesora initialize -g rand@dragon.com,lews.therin@dragon.com

After initialization, there should be several files in ~/.config/avendesora. In
particular, you should see at least an initial accounts files and a config file.

Initial Configuration

The config file (~/.config/avendesora/config) allows you to personalize
Avendesora to your needs. The available configuration settings are documented
in ~/.config/avendesora/config.doc. After initializing your account you should
take the time to review your configuration and adjust it to fit your needs. You
should be very thoughtful in this initial configuration, because some decisions
(or non-decisions) you make can be very difficult to change later. The reason
for this is that they may affect the passwords you generate, and if you change
them you may change existing generated passwords. In particular, be careful with
dictionary_file. Changing this value when first initializing Avendesora is
fine, but should not be done or done very carefully once you start creating
accounts and secrets.

During an initial configuration is also a convenient time to determine which of
your files should be encrypted with GPG. To assure that a file is encrypted,
give it a GPG file suffix (.gpg or .asc). The appropriate settings to adjust
are: archive_file, log_file, both of which are set in the config file, and the accounts files,
which are found in ~/.config/avendesora/.accounts_files. For security reasons
it is highly recommended that the archive file be encrypted, and any accounts
file that contain sensitive accounts. If you change the suffix on an accounts
file and you have not yet placed any accounts in that file, you can simply
delete the existing file and then regenerate it using:

avendesora initialize -g <gpg_id>

Any files that already exist will not be touched, but any missing files will be
recreated, and this time they will be encrypted or not based on the extensions
you gave.

More information on the various configuration options can be found in
Configuring.

Configuring Your Window Manager

You will want to configure your window manager to run Avendesora when you type
a special hot key, such as Alt p. The idea is that when you are in
a situation where you need a secret, such as visiting your bank’s website in
your browser, you can click on the username field with your mouse and type your
hot key. This runs Avendesora without an account name. In this case,
Avendesora uses account discovery to determine which secret
to use and the script that should be used to produce the required information.
Generally the script would be to enter the username or email, then tab, then the
passcode, and finally return, but you can configure the script as you choose.
This is all done as part of configuring discovery.

The method for associating Avendesora to a particular hot key is dependent on
your window manager.

Gnome:

With Gnome, you must open your Keyboard Shortcuts preferences and create
a new shortcut. When you do this, choose ‘avendesora value’ as the command
to run.

I3:

Add the following to your I3 config file (~/.config/i3/config):

bindsym $mod+p exec --no-startup-id avendesora value

OpenBox:

Key bindings are found in the <keyboard> section of your rc.xml
configuration file. Add a key binding for Avendesora like this:

<keyboard>
...
 <keybind key="A-p">
 <action name="Execute">
 <command>avendesora value</command>
 </action>
 </keybind>
...
</keyboard>

Configuring Your Browser

Finally, to improve account discovery, it is recommended that you add a plugin
to your web browser that puts the URL into the window title. How to do so is
described in Account Discovery.

Overview

Use of Avendesora will be illustrated through a series of examples. However,
before starting it is helpful to know that Avendesora provides several
commands to help you use it. First, it provides a help command:

> avendesora help

This lists the available help topics. You can ask about a specific topic
using:

> avendesora help <topic>

Adding the –browse option allows you to access the online version of the manual
through your web browser. For example,

> avendesora help -b accounts

When things go wrong, you can use log command to quickly
view the log file:

> avendesora log

The logfile is kept in the ~/.config/avendesora directory and this command opens
it directly in your editor. It can be very helpful in debugging account
discovery issues.

At this point you should have initialized your accounts and configured your window manager and done the initial configuration of
Avendesora.

Shell Account

In this example an account is provisioned to hold your Unix login password. You
will not be able to use Avendesora to autotype your passcode when you login
into your account, but you will be able to use it to enter the passcode when
running shell commands like sudo.

To start, run the command to add an account. By default, three account templates
are available. They are, in order of complexity: shell, website, and bank.
The shell template assumes that there is only a passcode and any account
discovery would be through the window title rather than by examining a URL.

To provision the new account use:

> avendesora add shell

Your editor should open with something that looks like this:

class _NAME_(Account):
 desc = '_DESCRIPTION_'
 aliases = '_ALIAS1_ _ALIAS2_'
 passcode = Passphrase()
Avendesora: Alternatively use PasswordRecipe('12 2u 2d 2s')
Avendesora: or '12 2u 2d 2c!@#$&' to specify valid symbol characters.
 discovery = RecognizeTitle(
 '_TITLE1_', '_TITLE2_',
 script='{passcode}{return}'
)

Avendesora: Tailor the account entry to suit you needs.
Avendesora: You can add or delete class attributes as you see fit.
Avendesora: The 'n' key should take you to the next field name.
Avendesora: Use 'cw' to specify a field name, or delete it if unneeded.
Avendesora: Fields surrounded by << and >> will be hidden.
Avendesora: All lines that begin with '# Avendesora:' are deleted.

In this example it is assumed that your editor is Vim. You would jump to the
first field by typing ‘n’ (next) and then modify the field by typing ‘cw’
(change word). In this example the first ‘n’ takes you to _NAME_ and you would
use ‘cw’ to change it to LinuxLogin. You should choose your account name
carefully. Once set, you should never change an account name because it will
result in the generated secrets associated with the account changing. If there
is a chance that you might have more than one linux account, you should add more
to the account name to make it unique. You can always provide a short easy to
type alternative as an alias. For example, in this case the account username is
x57107048, so you might want to add that to the account name to make it unique.
Once you have entered the account name, hit ‘Esc’ to exit insert mode and type
‘n’ to go to the next field, _DESCRIPTION_. The account name is probably all
the description we need, so you can simply delete this whole field by typing
‘dd’ (delete line). Moving on, you can replace the aliases with ‘login’ and
‘linux’. You can add additional aliases or delete the ones you don’t need. We
will assume that you want to add your username, which was not anticipated by the
template. To do so type ‘o’ to open a new line and type:

username = 'x57107048'

In general using passphrases is preferred to using passwords, the reason being
that they are much easier to remember and type. That is important in this case
because you will need to remember and enter your passcode when you login to your
computer; Avendesora cannot help you in that case. The template was configured
to use a passphrase for the passcode, so no change is needed here.

Finally replace the titles with ‘sudo *’. Once you have something that looks
like this, you can exit the editor with ‘ZZ’:

class LinuxLogin(Account):
 aliases = 'linux login'
 username = 'x57107048'
 passcode = Passphrase()
Avendesora: Alternatively use PasswordRecipe('12 2u 2d 2s')
Avendesora: or '12 2u 2d 2c!@#$&' to specify valid symbol characters.
 discovery = RecognizeTitle(
 'sudo *',
 script='{passcode}{return}'
)

Avendesora: Tailor the account entry to suit you needs.
Avendesora: You can add or delete class attributes as you see fit.
Avendesora: The 'n' key should take you to the next field name.
Avendesora: Use 'cw' to specify a field name, or delete it if unneeded.
Avendesora: Fields surrounded by << and >> will be hidden.
Avendesora: All lines that begin with '# Avendesora:' are deleted.

There is no need to delete the embedded Avendesora instructions, they are
deleted automatically when you save the file.

If you were to immediately edit the account again with:

> avendesora edit linuxlogin

you should see something like this:

class LinuxLogin(Account):
 aliases = 'linux login'
 username = 'x57107048'
 passcode = Passphrase()
 discovery = RecognizeTitle(
 'sudo *',
 script='{passcode}{return}'
)

Notice that all the Avendesora instructions were removed.

You can show all the values associated with this account using the values
command:

> avendesora values LinuxLogin
names: linuxlogin, linux, login
passcode: <reveal with 'avendesora value linuxlogin passcode'>
username: x57107048

Notice that the passcode is considered secret, so Avendesora does not actually
show it when displaying all of the values. To see it, use:

> avendesora value LinuxLogin passcode
passcode: wigwam mistrust afflict refit

The value command: command will also write the secret
directly to the clipboard:

> avendesora value --clipboard LinuxLogin passcode

By default Avendesora is configured to use the primary clipboard. You use the
middle mouse button to paste from the primary clipboard. You can also modify the
xsel_executable setting to modify this behavior.

You can also write directly to the standard output (normally Avendesora writes
to the TTY so that it can erase any secrets after a minute has elapsed). In
this way you can use Avendesora within shell scripts (but you should consider
rewriting you script in Python using the Avendesora API):

> avendesora value -s login 'user="{username}:{passcode}"' | curl -K - https://mywork.com/~x57107048/latest

In this example, I needed to create a arbitrary string containing the username
and password, so I combined Avendesora’s script feature with
the –stdout (-s) option to produce and pass the needed string to curl through
a pipe.

You can also have Avendesora attempt to show you your login credentials for the account using:

> avendesora login LinuxLogin
username: x57107048
passcode: wigwam mistrust afflict refit

To show the login credentials Avendesora looks for candidate usernames
(username, email) and candidate passcodes (passcode, password, passphrase),
though you can specify exactly which fields are used by adding
a credential_ids and credential_secrets fields in the account.

Short Cuts

Avendesora offers many ways to allow you to reduce or simplify your typing. In
particular:

	The account name is case insensitive:

> avendesora login linuxlogin
username: x57107048
passcode: wigwam mistrust afflict refit

	You can give an alias rather than the account name:

> avendesora login linux
username: x57107048
passcode: wigwam mistrust afflict refit

	Many of the command names have single letter abbreviations:

> avendesora l linux
username: x57107048
passcode: wigwam mistrust afflict refit

	On the value command, if you do not specify a field,
it will offer the passcode, password, or passphrase if available:

> avendesora v linux
passcode: wigwam mistrust afflict refit

	If there is one argument and it is not recognized as a command name, it is
treated as the account name and your login credentials are displayed:

> avendesora linux
username: x57107048
passcode: wigwam mistrust afflict refit

	If there is more than one argument and the first is not recognized as
a command name, it is treated as the account name and the value command is run:

> avendesora linux username
x57107048

	Finally, people often alias ‘pw’ to ‘avendesora’ in their shell to make
running Avendesora easier:

> pw linux
username: x57107048
passcode: wigwam mistrust afflict refit

Auto Entry

Your LinuxLogin account was provisioned with account discovery by way of the
window title. This assumes that your shell adds the currently running command to
the window title. Most shells are configured to do this by default, or can be
configured to do so, though it may take some digging on the web to find the
magic incantation to do so. Notice that one window title was given: ‘sudo *’.
This matches a sudo command with arguments (‘*’ is a wildcard character that
matches any string of characters). To try out the account discovery, type:

> sudo make me a sandwich
[sudo] password for x57107048: <Alt-p>

Here <Alt-p> indicates that you should type your Avendesora hot key (hopefully
you set this up earlier). It should run
‘avendesora value’. Since no account was given with this command, Avendesora
attempts to discover which account should be used. It does so by offering the
window title to each account provisioned with account discovery to see which
account it matches. Assume it only matches LinuxLogin. Then the corresponding
discovery script is run, in which case is ‘{passcode}{return}’. This script
simulates the keyboard and types the passcode and then types the enter key,
which should authenticate you with sudo and allow the command to run. If the
window title matches several accounts, then each is offered up in a selection
box and you choose the one you want (use ‘j’ and ‘k’ to navigate to desired
section and ‘Enter’ to select or ‘Esc’ to cancel).

Website Account

In this example an account is provisioned to hold information typical to
a website:

> avendesora add website

Your editor should open with something that looks like this:

class _NAME_(Account):
 desc = '_DESCRIPTION_'
 aliases = '_ALIAS1_ _ALIAS2_'
 username = '_USERNAME_'
 email = '_EMAIL_'
 passcode = PasswordRecipe('12 2u 2d 2s')
Avendesora: length is 12, includes 2 upper, 2 digits and 2 symbols
Avendesora: Alternatively use '12 2u 2d 2c!@#$&' to specify valid symbol characters.
Avendesora: Alternatively use Passphrase()
 questions = [
 Question("_QUESTION1_?"),
 Question("_QUESTION2_?"),
 Question("_QUESTION3_?"),
]
 urls = '_URL_'
Avendesora: specify urls if there are multiple recognizers.
 discovery = RecognizeURL(
 'https://_URL_',
 script='{email}{tab}{passcode}{return}'
)
Avendesora: Specify list of urls to recognizer if multiple pages need same script.
Avendesora: Specify list of recognizers if multiple pages need different scripts.

Avendesora: Tailor the account entry to suit you needs.
Avendesora: You can add or delete class attributes as you see fit.
Avendesora: The 'n' key should take you to the next field name.
Avendesora: Use 'cw' to specify a field name, or delete it if unneeded.
Avendesora: Fields surrounded by << and >> will be hidden.
Avendesora: All lines that begin with '# Avendesora:' are deleted.

Use ‘n’ to step through the various fields and ‘cw’ to change the field. You can
delete any fields that you do not need, or add any that you do. Here is an
example of what it might look like when filled out completely after the
instructions have been removed:

class Elevate84932153377(Account):
 desc = 'Virgin America frequent flier plan'
 aliases = 'elevate virgin virginamerica'
 phone = '1.877.FLY.VIRGIN'
 account = '8493-215-3377'
 email = 'perrin.aybara@gmail.com'
 passcode = PasswordRecipe('12 2u 2d 2s')
 questions = [
 Question('mothers maiden name?')),
 Question('fathers middle name?')),
]
 urls = 'https://www.virginamerica.com/cms/elevate-frequent-flyer'
 discovery = RecognizeURL(
 'https://virginamerica.com',
 'https://www.virginamerica.com',
 script='{email}{tab}{passcode}{return}'
)

Notice that a very specific name was given to the account. This was done to
allow additional Elevate accounts to be created, which might be needed for other
family members or in case your account was ever compromised. Once you generate
secrets from an account it is important that you not change the account name as
that will change the values used for the secrets. Thus, if you choose a very
selective account name you are less likely to need to change its name in the
future. Of course, that name would be difficult to type, so you should give
simpler names in the account aliases.

You can specify any information you feel is appropriate. Generally that includes
the account number and the email you gave when creating the account.

You can make your passcode a password using PasswordRecipe. In this case you
give a string that describes the characteristics of the password you want. The
first value is the length of the password (12 characters), and then number of
required characters of each type (2 upper case, 2 digits, and 2 symbols). If you
are restricted to a specific set of symbols, such as +=_-, you can use ‘2c+=_-’
to signify that two of the specified characters should be included (ex:
PasswordRecipe(‘12 2u 2d 2c+=_-‘). Alternatively, you can specify Passphrase()
like in the shell account above. Or, you can explicitly specify the password.
In this case you should indicate that the value is a secret so it is somewhat
protected. There are two ways of doing that.

	You specify the password as an argument to avendesora.Hide().
Example: Hide('catch22'). In this case Avendesora protects the value
as a secret, but it will show up unconcealed when viewing your account file.

	You can specify the password embedded in << and >>. For example: <<catch22>>.
If you do that, the value is converted to base64 and passed as an argument to
Hidden(). Thus, when you view the account file you will see:
Hidden(“Y2F0Y2gyMg==”). This makes it harder for anybody that happens to
glance over your shoulder while you have your account file open to recognize
and remember your password. In this case the encoded password is not
encrypted, and it is easy to recover using Avendesora’s reveal
command or the linux base64 command.

Many websites ask ‘security’ questions. These questions represent a back door
into your account. If you forget your password, you can access your account by
answering these questions. However, anybody else that happens to know the
answers to these questions, such as your evil twin, can also use them to access
your account. Avendesora defeats your evil twin by generating completely
random answers to these personal questions. By default, Question() takes
a string and turns it into three random words (be careful not to change the
string after you have given the website the answers; doing so changes the
answers). You can specify as many questions needed.

If you are not free to give arbitrary answers to your questions, such as if the
website gives you a small set of acceptable answers, then you can give the
answer along with the question:

questions = [
 Question('favorite subject in school?', answer=<<recess>>),
 Question('favorite composer?' answer=<<chuck berry>>),
]

The questions command can be used to quickly display
the answer to a security question:

> avendesora questions LinuxLogin
0: favorite subject in school?
1: favorite composer?
Which question? 0
questions (favorite subject in school?): recess

The questions command, which can be abbreviated as quest or q, displays
all of the questions and you are expected to then choose one. Once you do, that
question is answered.

Lastly this account sets up the web interface by specifying urls and
discovery. The urls field is used by the browse command, which opens your browser and navigates to the login page. For
example:

> avendesora browse virgin

This can generally be done directly from your window manager, allowing your to
open your account without needing to use a shell. In Gnome you can do so with
Alt-F2 (Run Command). You can get the same functionality from other window
managers by installing and assigning dmenu to a keyboard shortcut.

If you use the browse command on an account without
a urls field, Avendesora will try to find one in the discovery field (it
looks for URLs given to an instance of RecognizeURL, however it can get
complicated if there is more than one instance of RecognizeURL. In such cases
it is generally better to explicitly specify urls.

The discovery field is used to recognize that this is the account to use when
Avendesora is asked to login into the virginamerica.com site. Notice that
several URLs are given to RecognizeURL(), this is necessary when the website
allows you to login using different domain names. RecognizeURL() is a variant of
RecognizeTitle() that is attuned to the titles generated by browsers that have
been configured to place the URL in the window title bar. This makes it more
robust in this particular case. Also notice that the expected protocol (https)
is given with the URLs. In this way, Avendesora will refuse to send your login
credentials if the connection is not encrypted using the https protocol. The
final argument to RecognizeURL() is the script that logs you in. In this case
the script specifies that the value of the email field should be entered into
the browser, followed by a tab, then the passcode, then a return.

It is possible to configure account discovery to support several secrets. To do
so, place the recognizers in a list and specify different scripts for each. For
example, many websites ask you to answer your security questions in order to
confirm you are really you. This becomes easier with:

discovery = [
 RecognizeURL(
 'https://virginamerica.com',
 'https://www.virginamerica.com',
 script='{email}{tab}{passcode}{return}',
 name='login'
),
 RecognizeURL(
 'https://virginamerica.com',
 'https://www.virginamerica.com',
 script='{questions}{return}'
 name='challenge question'
),
]

In this case if you trigger Avendesora (using Alt-p) while on the Virgin America website, it will respond by asking you if
you want to login or answer a challenge question (in this case both recognizers
trigger, forcing the choice). You can give different URLs for each case so that
the choice is made automatically for you:

discovery = [
 RecognizeURL(
 'https://www.virginamerica.com/cms/elevate-frequent-flyer',
 script='{email}{tab}{passcode}{return}',
 name='login'
),
 RecognizeURL(
 'https://www.virginamerica.com/cms/challenge',
 script='{questions}{return}'
 name='challenge question'
),
]

Bank Account

Bank accounts are similar to web accounts, but generally contain multiple
account numbers and even more secrets. Create a bank account using:

> avendesora add bank

After you edit the various fields you may end up with something like this:

class MechanicsBank(Account):
 aliases = 'mb bank'
 username = Passphrase(length=2, sep='_')
 email = 'brandelwyn.alVere@aol.com'
 checking = <<008860636145>>,
 savings = <<029370021509>>,
 creditcard = <<5251014820644156>>,
 ccv = <<588>>
 expiration = <<03/2020>>
 ccn = Script('{account.creditcard}{tab}{ccv}{tab}')
 passcode = PasswordRecipe('16 2u 2l 2d 2c#%=:_-<>')
 verbal = Passphrase(length=2)
 questions = [
 Question('mothers maiden name?')),
 Question('fathers middle name?')),
]
 routing = '013521325'
 customer_support = '''
 credit cards: 800-730-6259
 banking: 800-861-5715
 '''
 urls = 'https://secure.mechanicsbank.com/login'
 discovery = RecognizeURL(
 'https://mechanicsbank.com',
 'https://www.mechanicsbank.com',
 'https://secure.mechanicsbank.com',
 'https://online.mechanicsbank.com',
 script='{username}{tab}{passcode}{return}'
)

In this case, since this account holds real money, a bit more attention is given
to security. For example, the username was specified as a 2 word passphrase,
making very unlikely that anyone could guess your username. Furthermore, your
account numbers and your credit-cards CCV number are hidden by decorating them
with << >> (you could also just use avendesora.Hide()).

Also, a verbal password is included. Many financial institutions allow you to
set up a verbal password that you use when calling in. This is an important
protection in that it stops people that know you well, such as your evil twin,
from calling in and impersonating you. A short passphrase is perfect for this
use as it is easy to communicate to someone over the phone.

In this example separate fields are used for each account number. If you have
access to the accounts of several people, for example you and your children, you
might use a dictionary for the accounts of each person, as follows:

brandelwyn = dict(
 checking = <<008860636145>>,
 savings = <<029370021509>>,
 creditcard = <<5251-0148-2064-4156>>,
)
marin = dict(
 checking = <<275137908190>>,
 savings = <<874647693848>>,
)
egwene = dict(
 checking = <<718467200674>>,
 savings = <<623691894130>>,
)

Now to get Egwene’s checking account number you would use:

avendesora bank egwene.checking

Security questions and account discovery are handled as given above.

The ccn or credit card number field is given as a script.
With this you can navigate to any website that needs your credit card number and
CCV and enter it by typing:

<Alt-F2> avendesora bank ccn

Here <Alt-F2> is assumed to be the hot key sequence that runs a shell command
directly from the window manager (Gnome uses Alt-F2, but yours may be
different). Doing so causes your credit card number, followed by a tab,
followed by your CCV, and followed by another tab to be typed into the page. You
could conceivably start by typing your name and follow with your address, but
there is enough variability in websites that this would likely not work on all
of them, so it is generally best to limit the script to a small number of the
most helpful fields.

Finding Accounts

Avendesora provides two ways of finding account names if you do not remember
them. First is the find command, which given a bit of
text lists all of the accounts that contain that text in their names or their
aliases. For example:

> avendesora find bank
bank-america (ba, boa, bofa) -- home mortgage
citibank-mastercard (mc, mastercard, citibank) -- credit card
mechanicsbank (mb bank) -- bank

The next is the search command, which given a bit of
text lists all of the accounts that contain that text in any of the non-secret
account values. For example:

> avendesora search bank
bank-america (ba, boa, bofa) -- home mortgage
capitalone (co, ing) -- savings bank
citibank-mastercard (mc, mastercard, citibank) -- credit card
mechanicsbank (mb bank) -- bank
wellsfargo (wf) -- old bank

In both cases the name of the account is listed first followed by the account
aliases (within parentheses). The description, if available, is appended to the
end.

Modifying Accounts

Once an account exists, it can modified using the edit command:

> avendesora edit bank

This opens the MechanicsBank account in your editor (you can select your editor
by modifying the edit_account). Once you modify
your account, you should save the file and exit the editor. The change will be
checked and if there are any errors, you will be given a chance to reopen the
account file and fix the problem.

Additional Features

In addition what has already been introduced, Avendesora provides a collection
of advanced features. Those include …

	Avendesora supports a wide variety of types of secrets, including support
for one-time passwords. These secrets are described in
Account Helpers.

	The archive and changed
commands provide an ability to create a backup copy of all your passwords.
These command are described in the section on upgrading.

	Two techniques that provide an extra measure of security for accounts are
stealth accounts and misdirection.

	Avendesora provides several ways that help protect you from phishing. You should be aware of these methods and make sure you use them.

	Avendesora allows you to share master seeds with a partner, and once done
allow you to easily and securely create new shared secrets. This is described
in the section on collaboration.

	Once you share a master seed, you can use the identity command as described in confirming identity to securely verify that you are communicating with your partner.

	You can quickly print out the NATO phonetic alphabet, which
can be useful when trying to communicate complex character sequences over the
phone.

Accounts

Account information is stored in account files. The list of account files is
given in ~/.config/avendesora/accounts_files. New account files are created
using ‘avendesora new’, but to delete an accounts file, you
must manually remove it from accounts_files. Once an accounts file exists, you
may add accounts to it using ‘avendesora add’. Use the
-f option to specify which file is to contain the new account. Modifying or
deleting an account is done with ‘avendesora edit account_name’. To delete the account, simply remove all lines associated with the
account.

An account is basically a collection of attributes organized as a subclass of
the Python avendesora.Account class. For example:

class ManetherenTimes(Account):
 aliases = 'times mt'
 username = 'nynaeve'
 email = 'nynaeve@gmail.com'
 passcode = PasswordRecipe('12 2u 2d 2s')
 discovery = RecognizeURL(
 'https://myaccount.manetherentimes.com',
 script='{email}{tab}{passcode}{return}'
)

One creates an account using:

> avendesora add <type>

where <type> is either shell, website or bank. Choose the template that
seems most appropriate (see overview and add
command for more information) and edit it to your needs.

If after configuring your account you feel the need to change it, you can use
the edit command to do so:

> avendesora edit manetherentimes

The account name is case insenstive and can be replaced by one of the aliases.
Once created, most of the field values can be retrieved simply by asking for
them. For example:

> avendesora value times username
username: nynaeve

In general, values can be strings, arrays, dictionaries, and special Avendesora
classes. For example, you could have an array of security questions:

questions = [
 Question("What is your mother's maiden name?"),
 Question("What city were you born?"),
 Question("What is first pet's name?"),
]

Then you can request the answer to a particular question using its
index:

> avendesora value times questions.0
questions.0 (What is your mother's maiden name?): portrayal tentacle fanlight

questions is the default array field, so you could have shortened your request
by using ‘0’ rather than ‘questions.0’. You might be thinking, hey, that is not
my mother’s maiden name. That is because Question is a ‘generated secret’. It
produces a completely random answer that is impossible to predict. Thus, even
family members cannot know the answers to your security questions.

A dictionary is often used to hold account numbers:

class TwoRiversCU(Account):
 accounts = {
 'checking': '1234-56-7890',
 'savings': '0123-45-6789',
 }

You then access its values using:

> avendesora value tworiverscu accounts.checking
accounts.checking: 1234-56-7890

You might consider your account numbers as sensitive information. In this case
you can hide them with:

class TwoRiversCU(Account):
 accounts = {
 'checking': Hide('1234-56-7890'),
 'savings': Hide('0123-45-6789'),
 }

Doing so means that Avendesora will try to protect them from accidental
disclosure. For example, it will attempt to erase the screen after displaying
them for a minute. You may also be concerned with someone looking over your
shoulders when you are editing your accounts file and stealing your secrets. To
reduce the chance, you can encode the secrets:

class TwoRiversCU(Account):
 accounts = {
 'checking': Hidden('MTIzNC01Ni03ODkw'),
 'savings': Hidden('MDEyMy00NS02Nzg5'),
 }

The values are now hidden, but not encrypted. They are simply encoded with
base64. Any knowledgeable person with the encoded value can decode it back to
its original value. Using Hidden makes it harder to recognize and remember the
value given only a quick over-the-shoulder glance. It also marks the value as
sensitive, so it will only be displayed for a minute. You generate the encoded
value using the conceal command.

If this is not enough security, you can encrypt the values and access them using
avendesora.GPG or avendesora.Scrypt.

You can find the specifics of how to specify or generate your secrets in
Account Helpers.

Any value that is an instance of the avendesora.GeneratedSecret class
(avendesora.Password, avendesora.Passphrase, …) or the
avendesora.ObscuredSecret class (avendesora.Hide,
avendesora.Hidden, avendesora.GPG, …) is considered
sensitive. It is only given out in a controlled manner. For example, running
the values command displays all fields, but the values
that are sensitive are replaced by instructions on how to view them. They can
only be viewed individually:

> avendesora values times
names: manetherentimes, times, mt
email: nynaeve@gmail.com
passcode: <reveal with 'avendesora value manetherentimes passcode'>
username: nynaeve

Notice the passcode is not shown. You can circumvent this protection by adding
is_secret=False to the argument list of the secret.

The aliases and discovery fields are not shown because they are considered
tool fields (see Account Discovery for more information on discovery). Other
tool fields include NAME, default, browser, and default_url. default
is the name of the default field, which is the field you get if you do not
request a particular field. Its value defaults to password, pasphrase, or
passcode (as set by default_field setting), but
it can be set to any account attribute name or it can be a script. browser is the default browser to use when opening the account,
run the browse command to see a list of available
browsers.

The value of passcode is considered sensitive because it is an instance of
PasswordRecipe, which is a subclass of GeneratedSecret. If
you wish to see the passcode, use:

> avendesora value mt
passcode: TZuk8:u7qY8%

This value will be displayed for a minute and is then hidden. If you would like
to hide it early, simply type Ctrl-C.

An attribute value can incorporate other attribute values through use of the
avendesora.Script class as described in Scripts. For example,
consider an account for your wireless router that contains the following:

class EmondsFieldInnWifi(Account):
 aliases = 'wifi'
 ssid = {
 'emonds_field_inn_guests': Passphrase(),
 'emonds_field_inn_private': Passphrase(),
 }
 guest = Script('SSID: emonds_field_inn_guests{return}password: {ssid.emonds_field_inn_guests}')
 private = Script('SSID: emonds_field_inn_private{return}password: {ssid.emonds_field_inn_private}')

The ssid field is a dictionary that contains the SSID and passphrases for each
of the wireless networks provided by the router. This is a natural and compact
representation for this information, but accessing it as a user in this form
requires two steps to access the information, one to get the SSID and another to
get the passphrase. This issue is addressed by adding the guest and private
attributes. The guest and private attributes are scripts that gives the SSID and
interpolate the passphrase. Now both can easily accessed at once with:

> avendesora value wifi guest
SSID: emonds_field_inn_guests
password: delimit ballcock fibber levitate

Use of Avendesora secrets classes (avendesora.GeneratedSecret or
avendesora.ObscuredSecret) is confined to the top two levels of account
attributes, meaning that they can be the value of the top-level attributes, or
the top-level attributes may be arrays or dictionaries that contain objects of
these classes, but it can go no further.

It is important to remember that generated secrets use the account name and the
field name when generating their value, so if you change the account name or
field name you will change the value of the secret. For this reason is it
important to choose a good account and field names up front and not change them.
It should be very specific to avoid conflicts with similar accounts created
later. For example, rather than choosing Gmail as your account name, you
might want to include your username, ex. GmailThomMerrilin. This would allow
you to create additional gmail accounts later without ambiguity. Then just add
gmail as an alias to the account you use most often.

Account and field names are case insensitive. So you can use Gmail or gmail.
Also, if the account or field names contains an underscore, you can substitute
a dash. So if the account name is Gmail_Thom_Merrilin, you can use
gmail-thom-merrilin instead.

Normally the user need not specify any of the seeds used when generating
passwords. However, it is possible to override the master seed and the account
seed. To do so, specify these seeds using the master_seed and account_seed
attributes on the account. This would allow you to change the account file or
account name without disturbing the generated secrets. The values of
master_seed and account_seed are not accessible using either the command
line or the API interfaces.

Account attributes that start with an underscore (_) are hidden, meaning that
they are not shown by the values or interactive commands. However, you can access their value by
explicitly requesting them using the value command.
Account attributes should not have a trailing underscore.
Such attributes create the risk of collision with an attribute added by
Avendesora itself and are inaccessible.

Secrets

Secrets can either by obscured or generated.

Obscured Secrets

Obscured secrets are secrets that are those that are given to Avendesora
to securely hold. The may be things like account numbers or existing
passwords. There are several ways for Avendesora to hold a secret,
presented in order of increasing security.

Hide

This marks a value as being confidential, meaning that it will be
protected when shown to the user, but value is not encoded or encrypted
in any way. Rather, it accounts on the protections afforded the
accounts file to protect its secret.

Hide(plaintext, secure=True)

plaintext (str):

The secret in plain text.

secure (bool):

Indicates that this secret should only be contained in an

encrypted accounts file. Default is True.

Example:

account = Hide('9646-3440')

Hidden

This obscures but does not encrypt the text. It can protect the secret from
observers that get a quick glance of the encoded text, but if they are able to
capture it they can easily decode it.

Hidden(encoded_text, secure=True, encoding=None)

encoded_text (str):

The secret encoded in base64.

secure (bool):

Indicates that this secret should only be contained in an

encrypted accounts file. Default is True.

encoding (str):

The encoding to use for the deciphered text.

Example:

account = Hidden('NTIwNi03ODQ0')

To generate the encoded text, use:

> avendesora conceal

GPG

The secret is fully encrypted with GPG. Both symmetric encryption and
key-based encryption are supported. This can be used to protect a
secret held in an unencrypted account file, in which case encrypting
with your key is generally preferred. It can also be used to further
protect a extremely valuable secret, in which case symmetric encryption
is generally used.

GPG(ciphertext, encoding=None)

ciphertext (str):

The secret encrypted and armored by GPG.

encoding (str):

The encoding to use for the deciphered text.

Example:

secret = GPG('''
 -----BEGIN PGP MESSAGE-----
 Version: GnuPG v2.0.22 (GNU/Linux)

 jA0ECQMCwG/vVambFjfX0kkBMfXYyKvAuCbT3IrEuEKD//yuEMCikciteWjrFlYD
 ntosdZ4WcPrFrV2VzcIIcEtU7+t1Ay+bWotPX9pgBQcdnSBQwr34PuZi
 =4on3
 -----END PGP MESSAGE-----
''')

To generate the cipher text, use:

> avendesora conceal -e gpg

The benefit of using symmetric GPG encryption on a secret that is
contained in an encrypted account file is that the passphrase will
generally not be found in the GPG agent, in which case someone could not
walk up to your computer while your screen is unlocked and successfully
request the secret. However, the GPG agent does retain the password for
a while after you decrypt the secret. If you are concerned about that,
you should follow your use of Avendesora with the following command,
which clears the GPG agent:

> killall gpg-agent

Scrypt

The secret is fully encrypted with Scrypt. You personal Avendesora
encryption key is used (contained in ~/.config/avendesora/.key.gpg). As
such, these secrets cannot be shared. This encryption method is only
available if you have installed scrypt on your system (pip3 install
–user scrypt). Since the Scrypt class only exists if you have installed
scrypt, it is not imported into your accounts file. You would need to
import it yourself before using it.

Script(ciphertext, encoding=None)

ciphertext (str):

The secret encrypted by scrypt.

encoding (str):

The encoding to use for the deciphered text.

Example:

from avendesora import Scrypt
...
secret = Scrypt(
 'c2NyeXB0ABAAAAAIAAAAASfBZvtYnHvgdts2jrz5RfbYlFYj/EQgiM1IYTnX'
 'KHhMkleZceDg0yUaOWa9PzmZueppNIzVdawAOd9eSVgGeZAIh4ulPHPBGAzX'
 'GyLKc/vo8Fe24JnLr/RQBlTjM9+r6vbhi6HFUHD11M6Ume8/0UGDkZ0='
)

To generate the cipher text, use:

> avendesora conceal -e scrypt

Generated Secrets

Generated secrets are secrets for which the actual value is arbitrary,
but it must be quite unpredictable. Generated secrets are generally used
for passwords and pass phrases, but it can also be used for things like
personal information requested by institutions that they have no need to
know. For example, a website might request your birth date to assure
that you are an adult, but then also use it as a piece of identifying
information if you ever call and request support. In this case they do
not need your actual birth date, they just need you to give the same
date every time you call in.

Password

Generates an arbitrary password by selecting symbols from the given
alphabet at random. The entropy of the generated password is
length*log2(len(alphabet)).

Password(

length=12, alphabet=DISTINGUISHABLE, master=None, version=None,

sep=’’, prefix=’’, suffix=’’

)

length (int):

The number of items to draw from the alphabet when creating the

password. When using the default alphabet, this will be the

number of characters in the password.

alphabet (str):

The reservoir of legal symbols to use when creating the

password. By default the set of easily distinguished

alphanumeric characters are used. Typically you would use the

pre-imported character sets to construct the alphabet. For

example, you might pass:

ALPHANUMERIC + ‘+=_&%#@’

master (str):

Overrides the master seed that is used when generating the

password. Generally, there is one master seed shared by all

accounts contained in an account file. This argument overrides

that behavior and instead explicitly specifies the master seed

for this secret.

version (str):

An optional seed. Changing this value will change the generated

password.

shift_sort(bool):

If true, the characters in the password will be sorted so that

the characters that require the shift key when typing are placed

last, making it easier to type. Use this option if you expect to

be typing the password by hand.

sep (str):

A string that is placed between each symbol in the generated

password.

prefix (str):

A string added to the front of the generated password.

suffix (str):

A string added to the end of the generated password.

Example:

passcode = Password(10)

Passphrase

Similar to Password in that it generates an arbitrary pass phrase by
selecting symbols from the given alphabet at random, but in this case
the default alphabet is a dictionary containing about 10,000 words.

Passphrase(

length=4, dictionary=None, master=None, version=None, sep=’ ‘,

prefix=’’, suffix=’’

)

length (int):

The number of items to draw from the alphabet when creating the

password. When using the default alphabet, this will be the

number of words in the passphrase.

dictionary (str, [str], or callable):

The reservoir of legal symbols to use when creating the

password. If not give, or if ‘default’ is given, this is a

predefined list of 10,000 words. If given as ‘bip39’ or

‘mnemonic’, this is a predefined list of the 2048 bitcoin BIP-39

seed words. Any other string is treated as a path to a file

that would contain the words. A list is taken as is. Finally, you can

pass a function that returns the list of words, in which case the

calling of the function is deferred until the words are needed, which is

helpful if creating the list is slow.

master (str):

Overrides the master seed that is used when generating the

password. Generally, there is one master seed shared by all

accounts contained in an account file. This argument overrides

that behavior and instead explicitly specifies the master seed

for this secret.

version (str):

An optional seed. Changing this value will change the generated

pass phrase.

sep (str):

A string that is placed between each symbol in the generated

password.

prefix (str):

A string added to the front of the generated password.

suffix (str):

A string added to the end of the generated password.

Example:

passcode = Passphrase()
verbal = Passphrase(2)

PIN

Similar to Password in that it generates an arbitrary PIN by selecting
symbols from the given alphabet at random, but in this case the default
alphabet is the set of digits (0-9).

PIN(length=4, alphabet=DIGITS, master=None, version=None)

length (int):

The number of items to draw from the alphabet when creating the

password. When using the default alphabet, this will be the

number of digits in the PIN.

alphabet (str):

The reservoir of legal symbols to use when creating the

password. By default the digits (0-9) are used.

master (str):

Overrides the master seed that is used when generating the

password. Generally, there is one master seed shared by all

accounts contained in an account file. This argument overrides

that behavior and instead explicitly specifies the master seed

for this secret.

version (str):

An optional seed. Changing this value will change the generated

PIN.

Example:

pin = PIN(6)

Question

Generates an arbitrary answer to a given question. Used for website
security questions. When asked one of these security questions it can be
better to use an arbitrary answer. Doing so protects you against people
who know your past well and might be able to answer the questions.

Similar to Passphrase() except a question must be specified when created
and it is taken to be the security question. The question is used rather
than the field name when generating the secret.

Question(

question, length=3, dictionary=None, master=None, version=None,

sep=’ ‘, prefix=’’, suffix=’’, answer=None

)

question (str):

The question to be answered. Be careful. Changing the question

in any way will change the resulting answer.

length (int):

The number of items to draw from the alphabet when creating the

password. When using the default alphabet, this will be the

number of words in the answer.

dictionary (str, [str], or callable):

The reservoir of legal symbols to use when creating the

password. If not give, or if ‘default’ is given, this is a

predefined list of 10,000 words. If given as ‘bip39’ or

‘mnemonic’, this is a predefined list of the 2048 bitcoin BIP-39

seed words. Any other string is treated as a path to a file

that would contain the words. A list is taken as is. Finally, you can

pass a function that returns the list of words, in which case the

calling of the function is deferred until the words are needed, which is

helpful if creating the list is slow.

master (str):

Overrides the master seed that is used when generating the

password. Generally, there is one master seed shared by all

accounts contained in an account file. This argument overrides

that behavior and instead explicitly specifies the master seed

for this secret.

version (str):

An optional seed. Changing this value will change the generated

answer.

sep (str):

A string that is placed between each symbol in the generated

password.

prefix (str):

A string added to the front of the generated password.

suffix (str):

A string added to the end of the generated password.

answer:

The answer. If provided, this would override the generated

answer. May be a string, or it may be an Obscured object.

Example:

questions = [
 Question('Favorite foreign city'),
 Question('Favorite breed of dog'),
]

PasswordRecipe

Generates passwords that can conform to the restrictive requirements
imposed by websites. Allows you to specify the length of your password,
and how many characters should be of each type of character using a
recipe. The recipe takes the form of a string that gives the total
number of characters that should be generated, and then the number of
characters that should be taken from particular character sets. The
available character sets are:

l - lower case letters (a-z)

u - upper case letters (A-Z)

d - digits (0-9)

s - punctuation symbols

c - explicitly given set of characters

For example, ‘12 2u 2d 2s’ is a recipe that would generate a
12-character password where two characters would be chosen from the
upper case letters, two would be digits, two would be punctuation
symbols, and the rest would be alphanumeric characters. It might
generate something like: @m7Aqj=XBAs7

Using ‘12 2u 2d 2c!@#$%^&*’ is similar, except the punctuation symbols
are constrained to be taken from the given set that includes !@#$%^&*.
It might generate something like: YO8K^68J9oC!

PasswordRecipe(

recipe, def_alphabet=ALPHANUMERIC, master=None, version=None,

)

recipe (str):

A string that describes how the password should be constructed.

def_alphabet (list of strs):

The alphabet to use when filling up the password after all the

constraints are satisfied.

master (str):

Overrides the master seed that is used when generating the

password. Generally, there is one master seed shared by all

accounts contained in an account file. This argument overrides

that behavior and instead explicitly specifies the master seed

for this secret.

version (str):

An optional seed. Changing this value will change the generated

answer.

shift_sort(bool):

If true, the characters in the password will be sorted so that

the characters that require the shift key when typing are placed

last, making it easier to type. Use this option if you expect to

be typing the password by hand.

Example:

passcode = PasswordRecipe(‘12 2u 2d 2c!@#$%^&*’)

BirthDate

Generates an arbitrary birth date for someone in a specified age range.

BirthDate(

year, min_age=18, max_age=65, fmt=’YYYY-MM-DD’,

master=None, version=None,

)

year (int):

The year the age range was established.

min_age (int):

The lower bound of the age range.

max_age (int):

The upper bound of the age range.

fmt (str):

Specifies the way the date is formatted. Consider an example

date of 6 July 1969. YY and YYYY are replaced by the year (69 or

1969). M, MM, MMM, and MMMM are replaced by the month (7, 07,

Jul, or July). D and DD are replaced by the day (6 or 06).

master (str):

Overrides the master seed that is used when generating the

password. Generally, there is one master seed shared by all

accounts contained in an account file. This argument overrides

that behavior and instead explicitly specifies the master seed

for this secret.

version (str):

An optional seed. Changing this value will change the generated

answer.

Example:

birthdate = BirthDate(2015, 21, 55)

OTP

Generates a secret that changes once per minute that generally is used
as a second factor when authenticating. It can act as a replacement
for, and is fully compatible with, Google Authenticator. You would
provide the text version of the shared secret (the backup code) that is
presented to you when first configuring your second factor authentication.

OTP(shared_secret, interval=30, digits=6)

shared_secret (base32 string):

The shared secret, it will be provided by the account provider.

interval (int):

Update interval in seconds.

max_age (int):

The number of digits to output.

Example:

otp = OTP('JBSWY3DPEHPK3PXP')

Changing a Generated Secret

It is sometimes necessary to change a generated secret. Perhaps because
it was inadvertently exposed, or perhaps because the account provider
requires you change your secret periodically. To do so, you would
simply add the version argument to the secret and then update its
value. version may be a number or a string. You should choose a way
of versioning that is simple, easy to guess and would not
repeat. For example, if you expect that updating the version would be
extremely rare, you can simply number them sequentially. Or, if you you
need to update them every month or every quarter, you can name them
after the month or quarter (ex: jan19 or 19q1).

Examples:

passcode = PasswordRecipe('16 1d', version=2)
passcode = PasswordRecipe('16 1d', version='19q2')

Advanced Usage

Avoiding Phishing Attacks

Phishing is a very common method used on the web to get people to unknowingly
divulge sensitive information such as account credentials. It is generally
accomplished by sending misleading URLs in email or placing them on websites.
When you visit these URLs you are taken to a site that looks identical to the
site you were expecting to go to in the hope that you are tricked into giving up
your account credentials. It used to be that if you carefully inspected the URL
you could spot deception, but even that is no longer true.

Avendesora helps you avoid phishing attacks in two ways. First, you should
never go to one of your secure sites by clicking on a link. Instead, you should
use Avendesora’s browse command:

avendesora browse chase

In this way you use the URL stored in Avendesora rather than trusting a URL
link provided by a third party. Second, you should auto-enter the account
credentials using Avendesora’s account discovery based on
avendesora.RecognizeURL (be sure to use
avendesora.RecognizeURL for websites rather than
avendesora.RecognizeTitle when configuring account discovery,
avendesora.RecognizeURL is not fooled by phishing sites).

Account Discovery

If you do not give an account to ‘avendesora value’,
Avendesora tries to determine the account by simply asking each account if it
is suitable. An account can look at the window title, the user name, the host
name, the working directory, and the environment variables to determine if it is
suitable. If so, it nominates itself. If there is only one account nominated,
that account is used. If there are multiple nominees, then a small window pops
up allowing you to choose which account you wish to use.

To configure an account to trigger when a particular window title is
seen, use:

discovery = RecognizeTitle(
 'Chase Online *',
 script='{username}{tab}{passcode}{return}'
)

The title can either be a glob string or a function. For glob strings, ‘*’
matches any combination of characters and ‘?’ matches any single character (see
fnmatch [https://docs.python.org/3.6/library/fnmatch.html] for a complete
description of the glob syntax). In this way, the entire title must be
matched. For functions, the argument is the title and the return value must be
truthy if the title matched and falsey otherwise. The script describes what
Avendesora should output when there is a match. In this case it outputs the
username field, then a tab, then the passcode field, then a return (see
Scripts).

Matching window titles can be fragile, especially for websites
because the titles can vary quite a bit across the site and over
time. To accommodate this variation, you can give multiple glob
patterns:

discovery = RecognizeTitle(
 'CHASE Bank*',
 'Chase Online*',
 script='{username}{tab}{passcode}{return}'
)

However, in general, it is better to match the URL. This can be done in Firefox
and Chrome by adding extensions that place the URL in the window title and then
using avendesora.RecognizeURL to do the recognition.

If you use Firefox, you should install the Add URL to Window Title [https://addons.mozilla.org/en-US/firefox/addon/add-url-to-window-title]
extension by Eric. It is a plugin that makes discovery easier and more robust
by adding the URL to the title. For Chrome the appropriate plugin is is URL
in Title [https://chrome.google.com/webstore/detail/url-in-title/ignpacbgnbnkaiooknalneoeladjnfgb]
by Guillaume Ryder. It is recommended that you install the appropriate one into
your browser. For Add URL To Window Title, set the following options:

show full URL = yes
separator string = '-'
show field attributes = no

For URL in Title, set:

tab title format = '{title} - {protocol}://{hostname}{port}/{path}'

If you use qutebrowser [https://qutebrowser.org] as your browser, you should
add the following to your ~/.config/qutebrowser/config.py file:

c.window.title_format = '{title} - {current_url} - qutebrowser'

avendesora.RecognizeURL is designed to recognize such titles. Once you
have
deployed the appropriate plugin, you can use:

discovery = RecognizeURL(
 'https://chaseonline.chase.com',
 'https://www.chase.com',
 script='{username}{tab}{passcode}{return}'
)

When giving the URL, anything specified must match and globbing is
not supported. If you give a partial path, by default Avendesora
matches up to what you have given, but you can require an exact
match of the entire path by specifying exact_path=True to
avendesora.RecognizeURL. If you do not give the protocol, the
default_protocol (https) is assumed.

In general you should use avendesora.RecognizeURL rather than
avendesora.RecognizeTitle for websites if you can. Doing so helps
protect you from phishing attacks by carefully examining the URL.

When account discovery fails it can be difficult to determine what is going
wrong. When this occurs, you should first examine the log file:

> avendesora log

It should show you the window title and the recognized title components. You
should first assure the title is as expected. If Add URL to Window Title or
URL in Title generated the title, then the various title components should
also be shown. Then run Avendesora as follows:

> avendesora value --verbose --title '<title>'

The title should be copied from the log file. The verbose option
causes the result of each test to be included in the log file, so
you can determine which recognizer is failing to trigger. You can
either specify the verbose option on the command line or in the
config file.

Recognizers

The following recognizers are available:

RecognizeAll(<recognizer>..., [script=<script>])
RecognizeAny(<recognizer>..., [script=<script>])
RecognizeTitle(<title>..., [script=<script>])
RecognizeURL(<title>..., [script=<script>, [name=<name>,]] [exact_path=<bool>])
RecognizeHost(<host>..., [script=<script>])
RecognizeUser(<user>..., [script=<script>])
RecognizeCWD(<cwd>..., [script=<script>])
RecognizeEnvVar(<name>, <value>, [script=<script>])
RecognizeNetwork(<mac>..., [script=<script>])
RecognizeFile(<path>, [<contents>,] [<ttl>,] [script=<script>])

avendesora.RecognizeAll and avendesora.RecognizeAny can be
used to combine several recognizers. For example:

discovery = RecognizeAll(
 RecognizeTitle('sudo *'),
 RecognizeUser('hhyde'),
 script='{passcode}{return}'
)

If the recognizers are given in an array, all are tried, and each
that match are offered. For example:

discovery = [
 RecognizeURL(
 'http://www.querty-forum.org',
 script='admin{tab}{passcode}{return}',
 name='admin',
),
 RecognizeURL(
 'http://www.querty-forum.org',
 script='thecaretaker{tab}{passcode}{return}',
 name='thecaretaker',
),
]

In this case, both recognizers recognize the same URL, thus they are both be
offered for this site. But each has a different script. The name allows the
user to distinguish the available choices.

If there is a need to distinguish URLs where is one is a substring of another,
you can use exact_path:

discovery = [
 RecognizeURL(
 'https://mybank.com/Authentication',
 script='{username}{return}',
 exact_path=True,
),
 RecognizeURL(
 'https://mybank.com/Authentication/Password',
 script='{passcode}{return}',
 exact_path=True,
),
]

The URL may contain the # character. This character separates the ‘fragment’
from the rest of the URL. You can distinguish two otherwise indistinguishable
URLs by their fragment. For example, BitWarden requests the username and
password on a page with a URL of https://vault.bitwarden.com/#/ and it request
only the password on a page with a URL of https://vault.bitwarden.com/#/lock.
Normally the fragment (the part of the URL that follows the #) is ignored when
determining whether a URL matches, however you can explicitly specify that it
should be included as follows:

discovery = [
 RecognizeURL(
 'https://vault.bitwarden.com',
 script='{email}{tab}{passcode}{return}',
 fragment='/',
),
 RecognizeURL(
 'https://vault.bitwarden.com',
 script='{passcode}{return}',
 fragment='/lock',
),
]

avendesora.RecognizeFile checks to determine whether a particular file
has been created recently. This can be use in scripts to force secret
recognition. For example, the titles used by Firefox and Thunderbird when
collecting the master password is either non-existent or undistinguished. These
programs also produce a large amount of uninteresting chatter on their output,
so it is common to write a shell script to run the program that redirects their
output to /dev/null. Such a script can be modified to essentially notify
Avendesora that a particular password is desired. For example, for
Thunderbird:

#!/bin/sh
touch /tmp/thunderbird-1024
/usr/bin/thunderbird > /dev/null

Here I have adding my user id (uid=1024) to make the filename unique
so I am less likely to clash with other users. Alternately, I could have simply
placed the file in my home directory.

Then, Avendesora will recognize Thunderbird if you add the following
discovery field to your Thunderbird account:

class Thunderbird(Account):
 desc = 'Master password for Thunderbird'
 passcode = Password()
 discovery = RecognizeFile(
 '/tmp/thunderbird-1024', wait=60, script='{passcode}{return}'
)

If the specified file exists and has been updated within the last 60 seconds,
then secret is recognized. You can specify the amount of time you can wait in
between running the script and running Avendesora with the ‘wait’ argument,
which takes a number of seconds. It defaults to 60.

Using this particular approach, every secret needs its own file. But you can
share a file by specifying the file contents. Then the script could be
rewritten as:

#!/bin/sh
echo thunderbird > ~/.avendesora-password-request
/usr/bin/thunderbird > /dev/null

Then you would add something like the following to your Thunderbird account
entry:

class Thunderbird(Account):
 desc = 'Master password for Thunderbird'
 passcode = Password()
 discovery = RecognizeFile(
 '~/.avendesora-password-request',
 contents='thunderbird',
 script='{passcode}{return}'
)

Terminal Windows

It is generally possible to configure you terminal emulator to put the currently
running command in the window title, which makes it available to Avendesora’s
account discovery.

For this to work you need a terminal emulator that supports xterm’s special
characters for setting the window title, which is quite common. In this case,
sending a string to the window that starts with esc-]0; and ends with
ctrl-g will set the window title. How you generate these codes depends on
which shell you use.

Tcsh

Tcsh runs postcmd after it has read the command but before it is run. You can
change postcmd by creating an alias of the same name. Here is a version that
sets the window title to the currently running command:

alias postcmd 'echo -n "\033]2;${USER}@${HOST:r:r}: \!#\007"'

${USER} is replaced by the username and ${HOST:r:r} is replaced with the
hostname with two extensions removed. The \!# is replaced by the currently
running command.

Running this alias command causes the window title to be set as a command
starts. Still needed is to update the window title after the command completes.
This is realized using the precmd command. Tcsh calls this command before
generating a prompt. Here is a version that sets the window title to contain
the hostname and the current working directory:

alias precmd 'echo -n "^[[]2;${USER}@${HOST:r:r}:${cwd}^G"'

Place both of these aliases in your ~/.cshrc file to configure your shell to
keep your window title up-to-date. They should be placed at the end of the file
and should only be executed for interactive shells:

if ($?prompt) then
 alias precmd 'echo -n "^[]2;${USER}@${HOST:r:r}:${cwd}^G"'
 alias postcmd 'echo -n "^[]2;${USER}@${HOST:r:r}: \!#^G"'
endif

With these aliases in place, you can add the following to the account that
contains your login password:

discovery = RecognizeTitle(
 '*@*: sudo *',
 script='{passcode}{return}'
)

With this, you can run a sudo command in your shell, and trigger Avendesora
when sudo requests your password. Avendesora will recognize the title and
enter your login password. By placing the username and the host name in the
window title along with the command you give Avendesora the ability to tailor
its response accordingly. For example, you match a specific user and host names
with the following:

discovery = RecognizeTitle(
 'elayne@andor: sudo *',
 script='{passcode}{return}'
)

Bash

The following code added to your ~/.bashrc file will accomplish pretty much the
same thing if you use Bash as your shell:

HOST=$(echo "$HOSTNAME" | cut -f 1 -d '.')
trap 'printf "\033]0;${USER}@${HOST}: %s\007" "${BASH_COMMAND//[^[:print:]]/}"' DEBUG

Security Questions

Security questions are form of security theater imposed upon you by
many websites. The claim is that these questions increase the
security of your account. In fact they often do the opposite by
creating additional avenues of access to your account. Their real
purpose is to allow you to regain access to your account in case you
lose your password. If you are careful, this is not needed (you do
back up your Avendesora accounts, right?). In this case it is better
to randomly generate your answers.

Security questions are handled by adding something like the
following to your account:

questions = [
 Question('oldest aunt?'),
 Question('title of first job?'),
 Question('oldest uncle?'),
 Question('savings goal?'),
 Question('childhood vacation spot?'),
]

The string identifying the question does not need to contain the
question verbatim, a abbreviated version is sufficient as long as it
allows you to distinguish the question. However, once set, you should not change
the question in the slightest; doing so changes the generated answer.

The questions are given as an array, and so are accessed with an index that
starts at 0. Thus, to get the answer to who is your ‘oldest aunt’, you would
use:

> avendesora value <accountname> 0
questions.0 (oldest aunt): ampere reimburse duster

You can get a list of your questions and then select which one you want answered
using the questions command. Specifically, if
Citibank asks for the name of your oldest uncle you can use the following to
find the answer:

> avendesora questions citi
0: oldest aunt?
1: title of first job?
2: oldest uncle?
3: savings goal?
4: childhood vacation spot?
Which question? 2
questions (oldest uncle?): discomfit correct contact

By default, Avendesora generates a response that consists of 3
random words. This makes it easy to read to a person over the phone
if asked to confirm your identity. Occasionally you will not be
able to enter your own answer, but must choose one that is offered
to you. In this case, you can specify the answer as part of the
question:

questions = [
 Question('favorite fruit?', answer='grapes'),
 Question('first major city visited?', answer='paris'),
 Question('favorite subject?', answer='history'),
]

When giving the answers you may want to conceal them to protect them
from casual observation.

Opening Accounts in your Browser

Avendesora provides the browse command to allow you to
easily open the website for your account in your browser. To do so, it needs two
things: a URL and a browser.

Selecting the URL

Avendesora looks for URLs in the urls and discovery account attributes,
with urls being preferred if both exist. urls may either be a string,
a list, or a dictionary. If it is a string, it is split at white spaces to make
it a list. If urls is a list, the URLs are considered unnamed and the first
one given is used. If it a dictionary, the URLs are named. When named, you may
specify the URL you wish to use by specifying the name to the browse
command. For example, consider a urls attribute that looks
like this:

class Dragon(Account):
 username = 'rand'
 passcode = Passphrase()
 urls = dict(
 email = 'https://webmail.dragon.com',
 vpn = 'https://vpn.dragon.com',
)
 default_url = 'email'

You would access vpn with:

avendesora browse dragon vpn

By specifying default_url you indicate which URL is desired when you do not
explicitly specify which you want on the browse command.
In this way, you can access your email with either of the following:

avendesora browse dragon email
avendesora browse dragon

If urls is not given, Avendesora looks for URLs in
avendesora.RecognizeURL members in the discovery attribute. If the
name argument is provided to avendesora.RecognizeURL, it is treated
as a named URL, otherwise it is treated as an unnamed URL.

If named URLs are found in both urls and discovery they are all available to
browse command, with those given in urls being
preferred when the same name is found in both attributes.

Selecting the Browser

You can configure browsers for use by Avendesora using the browsers setting. By default, browsers contains the following:

browsers = dict(
 f = 'firefox -new-tab {url}',
 fp = 'firefox -private-window {url}',
 c = 'google-chrome {url}',
 ci = 'google-chrome --incognito {url}',
 q = 'qutebrowser {url}',
 t = 'torbrowser {url}',
 x = 'xdg-open {url}',
)

Each entry pairs a key with a command. The command will be run with {url}
replaced by the selected URL when the browser is selected. You can choose which
browser is used by specifying the –browser command line option on the
browse command, by adding the browser attribute to the
account, or by specifying the default_browser
setting in the config file. If more than one is
specified, the command line option dominates over the account attribute, which
dominates over the setting. By default, the default browser is x, which uses
the default browser for your account.

Interactive Queries

Occasionally you may need several account values or you may be talking to an
account services representative on the phone and may want to quickly respond to
their questions such as ‘what is your account number?’ or ‘what is your verbal
password?’. In these cases using the value command is
cumbersome. Avendesora provides two interactive commands that can help out.

The questions command allows you to quickly see the
available security questions and then answer them on demand. For example:

> avendesora questions bank
0: Mothers profession?
1: Last name of high school best friend?
2: Name of first pet?
Which question? 1
questions.1 (Last name of high school best friend?): dirge revel oboist
Which question?

You are presented the available questions and asked to choose one. In the
example, 1 is entered and that question is answered by Avendesora. You can
then request the answer to another question. This continues until you give an
empty selection.

As a short cut, you can use q as the name of the command rather than
questions.

By default the default_vector_field is
queried, which is generally questions, however you can request any composite
field:

> avendesora q bank accounts
checking:
savings:
credit:
Which question? checking
accounts.checking: 7610-40-9891
Which question?

The questions command is useful when confronting one
or more unexpected challenge questions, but it only handles one composite field
at a time. More convenient when chatting on the phone to an account
representative is the interactive or i command. This command allows you to
interactively query the value of any account field:

> avendesora interactive bank
which field? accounts.checking
accounts.checking: 7610-40-9891
which field?

An empty selection or <Ctrl-d> terminates the command. The command supports
name completion using the <Tab> key. Simply type the first few characters of
the name and type <Tab> to complete the name. Type <Tab><Tab> to get a list of
available completions:

> avendesora i bank
which field? acc<Tab>.c<Tab>
accounts.checking: 7610-40-9891
which field?

If the value is a secret, it is displayed for a minute and then erased. To
erase it early, type <Ctrl-c>.

One-Time Passwords

One-time passwords are often used as a second factor to provide an additional
level of protection. They are especially useful when you are concerned about
keyloggers.

Avendesora supports time-based one-time passwords (TOTP) that are fully
compatible with, and can act as an alternative to or a replacement for, the
Google Authenticator, Authy, or Symantec VIP apps.

Google Authenticator

When first enabling one-time passwords with Google Authenticator you are
generally presented with a QR code. Also included is a string of characters that
are often referred to as the backup code. You would provide this string of
characters to the OTP class to configure an account for a one-time password. For
example, here is an account that requests your username and password on one
page, and your one time password on another:

class AndorSavings(Account):
 email = 'lini.eltring@yahoo.com'
 passcode = PasswordRecipe('16 2u 2d 2s')
 otp = OTP('JBSWY3DPEHPK3PXP')
 credentials = 'email passcode otp'
 urls = 'https://www.andorsavings.com/login.html'
 discovery = [
 RecognizeURL(
 'https://www.andorsavings.com/login.html',
 script='{email}{tab}{passcode}{return}',
 name='email & password',
),
 RecognizeURL(
 'https://www.andorsavings.com/googleVerify.html',
 script='{otp}{return}',
 name='authentication token',
),
]

Or, if you are lucky enough that they allow you to enter the OTP on the same
page as your username and password, you might have:

class AndorSavings(Account):
 email = 'lini.eltring@yahoo.com'
 passcode = PasswordRecipe('16 2u 2d 2s')
 otp = OTP('JBSWY3DPEHPK3PXP')
 credentials = 'email passcode otp'
 discovery = RecognizeURL(
 'https://www.andorsavings.com/login.html',
 script='{email}{tab}{passcode}{tab}{otp}{return}',
 name='email, passcode and authentication token',
)

In this case, you only need one recognizer and specifying urls is no longer
necessary because you only have one URL in the account.

This account adds a one time password as otp. It adds a credentials field
that adds the one-time password to the output of the credentials command. It also adds a URL recognizer to allow semiautomatic
entry of the one-time password to the browser.

Finally, some sites want you to concatenate the OTP to the end of your password.
You can do that with:

script='{email}{tab}{passcode}{otp}{return}',

Authy

It is easy to mimic Google Authenticator. Mimicking Authy is more difficult.
To do so, follow these instructions [https://randomoracle.wordpress.com/2017/02/15/extracting-otp-seeds-from-authy].
Basically, the idea is to install the Authy Chrome app, start it, open the
desired account, then back in Chrome open chrome://extensions, select
Developer Mode, then click on ‘Inspect views: main.html’, search for totp
function, set a break point in that function and wait until it trips, then copy
the value of the e argument (a 32 digit hexadecimal number) to hex_seed in
the code below:

#!/usr/bin/env python3

from base64 import b32encode, b32decode
from pyotp import TOTP
from time import sleep

def int_to_bytes(x):
 return x.to_bytes((x.bit_length() + 7) // 8, 'big')

hex_seed = 0xNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
seed = b32encode(int_to_bytes(hex_seed))
print('SEED: %s' % seed)

otp = TOTP(seed, interval=10, digits=7)
print(otp.now())
sleep(10)
print(otp.now())
sleep(10)
print(otp.now())
sleep(10)
print(otp.now())
sleep(10)
print(otp.now())

Substitute your number for NNN…NN (hex_seed should be 0x followed by the
value of e). Then run the script to display the seed or shared secret. It
will also show five codes, one every 10 seconds. Every other code should match
the value produced by the Chrome app. Be aware that every Authy app has its
own seed, so the sequence that Chrome generates will be different from the
sequence generated by your phone app or even a different Chrome app, and that
is true even if they are generating tokens for the same account.

Once you are convinced that your seed is correct, add something like the
following to your account to generate the one-time password:

otp = OTP('UM0HJVLT4HVWJQJC47Q8YXX4TU======', interval=10, digits=7)

The string passed to OTP should be the value of SEED as output by the above
script. The interval and digits are specific to Authy.

Be aware that training Avendesora to output your Authy codes does not
eliminate your need for the Authy application. Occasionally, an authorization
request will be pushed to your Authy application to allow you to approve
a transaction. Avendesora cannot provide this particular service. In the
Authy parlance, Avendesora supports Authy Tokens, but not Authy
Requests.

Symantec VIP

You can use vipaccess [https://github.com/dlenski/python-vipaccess] to
generate OTP credentials for Avendesora that are compatible with the Symantec
VIP authenticator application. Download and install vipaccess using:

git clone https://github.com/dlenski/python-vipaccess.git
cd python-vipaccess
pip3 install --user .

Once installed, you generate the credentials using:

vipaccess provision

It produces an ID, a secret, and an expiration date and places them into
~/.vipaccess.
The ID and secret are like a public and private key pair. You keep secret
private and you give the ID to the site when registering your authenticator.
With Avendesora you give the secret as the argument to
avendesora.OTP.

As an example, consider configuring Avendesora to provide two-factor
authentication for a Schwab account. Assume that you have run vipaccess and
it generated the following ~/.vipaccess file:

version 1
secret AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
id VSST12345678
expiry 2019-01-15T12:00:00.000Z

You would configure Avendesora to generate one-time passwords by adding the
following to the desired account:

otp = OTP('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA')
otp_expires = '2019-01-15T12:00:00.000Z'

The addition of otp_expires is not necessary, it just a way of keeping
a useful piece of information in a convenient place. It is not necessary to
save the ID.

You would register your authenticator with Schwab by giving them the ID, in
this case VSST12345678, and the current one-time password, which you get with:

avendesora schwab otp

Once registered, Schwab expects you to add the one-time password to the end of
your passcode when logging in. You can implement this in account discovery
using:

discovery = RecognizeURL(
 'https://client.schwab.com',
 script='{username}{tab}{passcode}{otp}{return}',
)

You should now be able to login using a single keystroke.

Once you have registered and Avendesora is able to authenticate your access to
Schwab, you can delete the ~/.vipaccess file.

You can add the one-time password to the credentials command in two alternate ways. In the first, you simply list out the one-time
password along with the username and passcode:

credentials = 'username otp passcode'

Alternatively, you have Avendesora show the one-time password as part of the
passcode, just as Schwab wants it. To accomplish this a new field,
ephemeral_passcode, is created that combines the passcode and the one-time
password. This field is replaces passcode in the credentials field:

ephemeral_passcode = Script('{passcode}{otp}')
credentials = 'username ephemeral_passcode'

In this example, the otp, otp_expires, and ephemeral_passcode field names
are arbitrary. You are free to choose names more to your liking.

A variation on this process is used when registering Avendesora’s one-time
password feature as a second-factor with ETrade. Symantec VIP has several
types of tokens. By default, vipaccess generates VSST (desktop) tokens, but
Etrade requires a VSMT (mobile) token. To generate a mobile token, use:

vipaccess provision -t VSMT

Except for this one detail, the rest of the process is the same as described for
Schwab.

Scripts

Scripts are strings that contain embedded account attributes. For
example:

'username: {username}, password: {passcode}'

When processed by Avendesora the attributes are replaced by their
value from the chosen account. For example, this script might
be rendered as:

username: rand_alThor, password: R7ibHyPjWtG2

You can specify a script directly to the value command.
You can specify them as account attributes (in this case then need to be
embedded in avendesora.Script). Or you can specify them to
account discovery recognizers.

Besides account attributes, there are also some special codes that can be
inserted in the script surrounded by braces:

	Code

	Meaning

	tab

	insert a tab character

	return

	insert a carriage return character

	sleep N

	pause for N seconds

	rate N

	set the autotype rate to one character per N milliseconds.

	paste field

	paste the value of the field using the primary selection

	remind msg

	show the msg as a notification

tab and return are suitable for all scripts, but sleep, rate and
remind are only suitable for account discovery scripts.

Scripts are useful if you need to combine an account value with
other text, if you need to combine more than one account value, or
if you want quick access to something that would otherwise need an
additional key.

For example, consider an account for your wireless router, which
might hold several passwords, one for administrative access and one
or more for the network passwords. Such an account might look like:

class WiFi(Account):
 username = 'admin'
 passcode = Passphrase()
 networks = ["Occam's Router", "Occam's Router (guest)"]
 network_passwords = [Passphrase(), Passphrase()]
 privileged = Script('''
 SSID: {networks.0}
 password: {network_passwords.0}
 ''')
 guest = Script('''
 SSID: {networks.1}
 password: {network_passwords.1}
 ''')
 credentials = 'privileged guest username passcode'

Notice that privileged and guest were specified as scripts. Now the
credentials for the privileged network are accessed with:

> avendesora value wifi privileged
SSID: Occam's Router
password: overdraw cactus devotion saying

You can also give a script rather than a field on the command line
when running the value command:

> avendesora value scc '{username}: {passcode}'
rand_alThor: R7ibHyPjWtG2

For example, a place where this is useful is when specifying a username and
password to curl:

> curl --user `avendesora value -s apache '{username}:{passcode}'` ...

It is also possible to specify a script for the value of the default
attribute. This attribute allows you to specify the default field (which
attribute name and key to use if one is not given on the command line). It also
accepts a script rather than a field, but in this case it should be a simple
string and not an instance of the avendesora.Script class. If you
passed it as a avendesora.Script, it would be expanded before being
interpreted as a field name, and so would result in a ‘not found’ error.

class SCC(Account):
 aliases = 'scc'
 username = 'rand_alThor'
 password = PasswordRecipe('12 2u 2d 2s')
 default = 'username: {username}, password: {password}'

You can access the script by simply not providing a field:

> avendesora value scc
username: rand_alThor, password: *m7Aqj=XBAs7

Finally, you pass a script to the account discovery recognizers. They specify
the action that should be taken when a particular recognizer triggers. These
scripts would also be simple strings and not instances of the
avendesora.Script class. For example, this recognizer could be used to
recognize Gmail:

discovery = [
 RecognizeURL(
 'https://accounts.google.com/ServiceLogin',
 'https://accounts.google.com/signin/v2/identifier',
 script='{username}{return}{sleep 2}{passcode}{return}'
 name='username and passcode',
),
 RecognizeURL(
 'https://accounts.google.com/signin/v2/sl/pwd',
 script='{passcode}{return}',
 name='passcode',
),
 RecognizeURL(
 'https://accounts.google.com/signin/challenge',
 script='{questions.0}{return}'
 name='challenge',
),
]

Besides the account attributes, you can use several other special attributes
including: {tab}, {return}, {sleep <N>}, {rate <N>}, *{paste <field>},
and {remind <message>}. {tab} is replaced by a tab character, {return} is
replaced by a carriage return character, {sleep <N>} causes a pause of N
seconds, {rate <N>} sets the autotype rate to one keystroke every *N
milliseconds, {paste <field>} pastes the value of the given field using the
middle mouse button, and {remind <message>} displays message as
a notification. The sleep and rate functions are only active when
auto-typing in account discovery.

The sleep function is useful with two-page authentication sites as it gives
the website time to load the second page.

The rate function is useful with fields that have javascript helpers. The
javascript helpers often limit the rate at which you can type characters. The
rate function allows you to slow down the autotyping to the point where you
avoid the problems that stem from exceeding the limit.

The paste is useful when trying to overcome JavaScript issues. Many websites
use JavaScript to interpret the characters as you type them. This can be slow
and may not be able to keep up with Avendesora’s auto-typing. There are
various ways of overcoming this problem. You can use the rate function, or
you can follow the field with the sleep function, or you can use the paste
function to enter the value in one operation. Using paste can be more
reliable than rate and sleep, which both count on timing that can vary with
your internet connection. The paste occurs where the mouse is placed before the
script is triggered, so it only really makes sense to use paste once in
a script. If you are not pasting the first value in your script, then you
should click on the first value to select it, then move the mouse without
clicking so that hovers over the field to be pasted to, then trigger the script.
A typical example script that employs paste is:

"{paste account}{tab}{passcode}{return}"

The remind function is used to remind you of next steps. For example, the
following uses remind to instruct you to use your YubiKey to provide the
second factor that completes the login process:

RecognizeURL(
 'https://www.kraken.com/en-us/sign-in',
 'https://www.kraken.com/sign-in',
 script='{username}{tab}{passcode}{tab}{remind Use Yubikey as 2nd factor.}',
 name = 'login',
)

Files as Secrets

It is possible to place the contents of entire files in Avendesora, and then
when you request an account field that holds the file, that file is written to
the filesystem.

To see how this would work, consider your SSH private keys. You would first
encode each of the keys using the conceal command:

> avendesora conceal --file ~/ssh/id_rsa
Hidden(
 'LS0tLS1CRUdJTiBPUEVOU1NIIFBSSVZBVEUgS0VZLS0tLS0KYjNCbGJuTnph'
 ...
 'RCBPUEVOU1NIIFBSSVZBVEUgS0VZLS0tLS0K'
)
...

You would then create an Avendesora account for your SSH keys and copy the
encoded contents in to the arguments of avendesora.WriteFile along with
the path to the file and the desired file mode:

class SSH_Keys(Account):
 desc = 'ssh private keys'
 aliases = 'sshkeys'
 all = Script('\n {id_rsa}\n {github}')
 id_rsa = WriteFile(
 path = '~/.ssh/id_rsa',
 contents = Hidden(
 'LS0tLS1CRUdJTiBPUEVOU1NIIFBSSVZBVEUgS0VZLS0tLS0KYjNCbGJuTnph'
 ...
 'RCBPUEVOU1NIIFBSSVZBVEUgS0VZLS0tLS0K'
),
 mode = 0o0600
)
 github = WriteFile(
 path = '~/.ssh/github',
 contents = Hidden(
 'LS0tLS1CRUdJTiBPUEVOU1NIIFBSSVZBVEUgS0VZLS0tLS0KYjNCbGJuTnph'
 ...
 'RXdIK1BWSTFmUUFBQUtpcDZsS1VxZXBTCmxB=='
),
 mode = 0o0600
)

Then, when you run Avendesora the contents are decoded and written to the
specified file:

> avendesora sshkeys id_rsa
id-rsa: Contents written to ~/.ssh/id_rsa.

Using avendesora.Script allows you to write multiple files at once:

> avendesora sshkeys all
all:
 Contents written to ~/.ssh/id_ed25519.
 Contents written to ~/.ssh/id_rsa.

Stealth Accounts

Normally Avendesora uses information from an account that is contained in an
accounts file to generate the secrets for that account. In some cases, the
presence of the account itself, even though it is contained within an encrypted
file can be problematic. The mere presence of an encrypted file may result in
you being compelled to open it. For the most damaging secrets, it is best if
there is no evidence that the secret exists at all. This is the purpose of
stealth accounts (misdirection is an alternative to
stealth accounts).

The stealth accounts are predefined and have names that are descriptive of the
form of the secret they generate, for example word4 generates a 4-word pass
phrase (also referred as the xkcd pattern):

> avendesora value word4
account: my_secret_account
gulch sleep scone halibut

The predefined accounts are kept in ~/.config/avendesora/stealth_accounts. You
are free to add new accounts or modify the existing accounts.

Stealth accounts are subclasses of the avendesora.StealthAccount class.
These accounts differ from normal accounts in that they do not contribute the
account name to the secrets generators for use as a seed. Instead, the user is
requested to provide the account name every time the secret is generated. The
secret depends strongly on this account name, so it is essential you give
precisely the same name each time. The term ‘account name’ is being use here,
but you can enter any text you like. Best to make this text very difficult to
guess if you are concerned about being compelled to disclose your GPG keys. You
would not want your spouse simply try ‘ashleymadison’ after you walk away from
your computer to gain access to your previously secret account.

The secret generator will combine the account name with the master seed before
generating the secret. This allows you to use simple predictable account names
and still get an unpredictable secret. The master seed used is taken from
master_seed in the file that contains the stealth account if it exists, or the
user_key if it does not. By default the stealth accounts file does not contain
a master seed, which makes it difficult to share stealth accounts. You can
create additional stealth account files that do contain master seeds that you
can share with your associates.

Misdirection

One way to avoid being compelled to disclose a secret is to disavow
any knowledge of the secret. However, the presence of an account in
Avendesora that pertains to that secret undercuts this argument.
This is the purpose of stealth accounts. They allow you to generate
secrets for accounts for which Avendesora has no stored information.
In this case Avendesora asks you for the minimal amount of
information that it needs to generate the secret. However in some
cases, the amount of information that must be retained is simply too
much to keep in your head. In that case another approach, referred
to as secret misdirection, can be used.

With secret misdirection, you do not disavow any knowledge of the
secret, instead you say your knowledge is out of date. So you would
say something like “I changed the password and then forgot it”, or
“The account is closed”. To support this ruse, you must use the
–seed (or -S) option to ‘avendesora value’ when generating your
secret (secrets misdirection only works with generated passwords,
not stored passwords). This causes Avendesora to ask you for an
additional seed at the time you request the secret. If you do not
use –seed or you do and give the wrong seed, you will get a
different value for your secret. In effect, using –seed when
generating the original value of the secret causes Avendesora to
generate the wrong secret by default, allowing you to say “See, I
told you it wouldn’t work”. But when you want it to work, you just
interactively provide the correct seed.

You would typically only use misdirection for secrets you are
worried about being compelled to disclose. So it behooves you to use
an unpredictable additional seed for these secrets to reduce the
chance someone could guess it.

Be aware that when you employ misdirection on a secret, the value of
the secret stored in the archive will not be the true value, it
will instead be the misdirected value.

Secret misdirection works extremely well with the ColdCard hardware bitcoin
wallet [https://coldcardwallet.com]. This wallet expects you to provide a PIN
when accessing your wallet, but it does not print an error message if you give
the wrong pin, instead it simply gives you access to a different wallet.
Putting a small amount of bitcoin into the wallet you access with no seed makes
the ruse more convincing. In this way, the wallet you get when you run:

avendesora value coldcard pin

opens a valid and active wallet that contains very little money. At this point
you can say, “Yeah, its largely all gone. I was hacked. That is why I got this
secure hardware wallet. However, it’s a lesson I learned too late.”. Then, when
you are alone, you can run:

avendesora value --seed coldcard pin

and give the correct seed to access all your riches.

Collaborating with a Partner

If you share an accounts file with a partner, then either partner
can create new secrets and the other partner can reproduce their
values once a small amount of relatively non-confidential
information is shared. This works because the security of the
generated secrets is based on the master seed, and that seed is
contained in the accounts file that is shared in a secure manner
once at the beginning. For example, imagine one partner creates an
account at the US Postal Service website and then informs the
partner that the name of the new account is USPS and the username is
taveren. That is enough information for the second partner to
generate the password and login. And notice that the necessary
information can be shared over an insecure channel. For example, it
could be sent in a text message or from a phone where trustworthy
encryption is not available.

The first step in using Avendesora to collaborate with a partner is
for one of the partners to generate and then share an accounts file
that is dedicated to the shared accounts. This file contains the
master seed, and it is critical to keep this value secure. Thus, it
is recommended that the file be shared in person or that it be encrypted in
transit.

Consider an example where you, Siuan, are sharing accounts with your
business partner, Moiraine. You have hired a contractor to run your
email server, Elaida, who unbeknownst to you is reading your email in
order to steal valuable secrets. Together, you and Moiraine jointly run
Aes Sedai Enterprises. Since you expect more people will need access to
the accounts in the future, you choose to the name the file after
the company rather than your partner. To share accounts with Moiraine,
you start by getting Moiraine’s public GPG key. Then, create the new
accounts file with something like:

avendesora new -g siuan@aessedai.com,moiraine@aessedai.com aessedai.gpg

This generates a new accounts file, ~/.config/avendesora/aessedai.gpg,
and encrypts it so only you and Moiraine can open it. Mail this file to
Moiraine. Since it is encrypted, it is to safe to send the file through
email. Even though Elaida can read this message, the accounts file is
encrypted so she cannot access the master seed it contains. Moiraine
should put the file in ~/.config/avendesora and then add it to
accounts_files in ~/.config/avendesora/accounts_files. You are now
ready to share accounts.

Then, when one partner creates a new account they mail the new account entry
to the other partner. This entry does not contain enough
information to allow an eavesdropper such as Elaida to be able to
generate the secrets, but now both partners can. At a minimum you
would need to share only the account name and the user name if one
is needed. With that, the other partner can generate the passcode.

When creating accounts to share, the fields should either be generated secrets
or information that is not secret. Specifically, you should not use
avendesora.Hide or avendesora.Hidden. In addition, you cannot
share secrets encrypted with avendesora.Scrypt. Finally, you cannot
share stealth accounts unless the file that contains the account templates has
a master_seed specified, which they do not by default. You would need to
create a separate file for shared stealth account templates and add a master
seed to that file manually.

Once you have shared an accounts file, you can also use the identity
command to prove your identity to your partner (described
next).

Confirming the Identity of a Partner

The identity command allows you to generate a response
to any challenge. The response identifies you to a remote partner with whom you
have shared an account.

If you run the command with no arguments, it prints the list of
valid names. If you run it with no challenge, one is created for you
based on the current time and date.

If you have a remote partner to whom you wish to prove your
identity, have that partner use Avendesora to generate a challenge
and a response based on your shared secret. Then the remote partner
provides you with the challenge and you run Avendesora with that
challenge to generate the same response, which you provide to your
remote partner to prove your identity.

You are free to explicitly specify a challenge to start the process,
but it is important that it be unpredictable and that you not use
the same challenge twice. As such, it is recommended that you not
provide the challenge. In this situation, one is generated for you
based on the time and date.

Consider an example that illustrates the process. In this example,
Siuan is confirming the identity of Moiraine, where both Siuan and Moiraine
are assumed to have shared Avendesora accounts. Siuan runs
Avendesora as follows and remembers the response:

> avendesora identity moiraine
challenge: slouch emirate bedeck brooding
response: spear disable local marigold

This assumes that moiraine is the name, with any extension removed, of the file
that Siuan uses to contain their shared accounts.

Siuan communicates the challenge to Moiraine but not the response. Moiraine
then runs Avendesora with the given challenge:

> avendesora identity siuan slouch emirate bedeck brooding
challenge: slouch emirate bedeck brooding
response: spear disable local marigold

In this example, siuan is the name of the file that Moiraine uses to contain
their shared accounts.

To complete the process, Moiraine returns the response to Siuan, who compares it
to the response she received to confirm Moiraine’s identity. If Siuan has
forgotten the desired response, she can also specify the challenge to the
identity command to regenerate the expected response.

Alternately, when Siuan sends a message to Moiraine, she can proactively prove
her identity by providing both the challenge and the response. Moiraine could
then run the credentials command with the challenge
and confirm that she gets the same response. Other than herself, only Siuan
could predict the correct response to any challenge. However, this is not
recommended as it would allow someone with brief access to Suian’s Avendesora,
perhaps Leane her Keeper, to generate and store multiple challenge/response
pairs. Leane could then send messages to Moiraine while pretending to be Siuan
using the saved challenge/response pairs. The subterfuge would not work if
Moiraine generated the challenge unless Leane currently has access to Siuan’s
Avendesora.

Phonetic Alphabet

When on the phone it can be difficult to convey the letters in an account
identifier or other letter sequences. To help with this Avendesora can convert
the sequence to the NATO phonetic alphabet. For example, imaging conveying the
sequence ‘2WQI1T’. To do so, you can run the following:

> avendesora phonetic 2WQI1T
two whiskey quebec india one tango

Alternately, you can run the command without an argument, in which case it
simply prints out the phonetic alphabet:

> avendesora p
Phonetic alphabet:
 Alfa Echo India Mike Quebec Uniform Yankee
 Bravo Foxtrot Juliett November Romeo Victor Zulu
 Charlie Golf Kilo Oscar Sierra Whiskey
 Delta Hotel Lima Papa Tango X-ray

Now you can easily do the conversion yourself. Having Avendesora do the
conversion for you helps you distinguish similar looking characters such as
I and 1 and O and 0.

Upgrading from Abraxas

Avendesora generalizes and replaces Abraxas, its predecessor. To
transition from Abraxas to Avendesora, you will first need to
upgrade Abraxas to version 1.8 or higher (use ‘abraxas -v’ to
determine version). Then run:

abraxas --export

It will create a collection of Avendesora accounts files in
~/.config/abraxas/avendesora. You need to manually add these files
to your list of accounts files in Avendesora. Say one such file is
created: ~/.config/abraxas/avendesora/accounts.gpg. This could be
added to Avendesora as follows:

	create a symbolic link from
~/.config/avendesora/abraxas_accounts.gpg to
~/.config/abraxas/avendesora/accounts.gpg:

cd ~/.config/avendesora
ln -s ../abraxas/avendesora/accounts.gpg abraxas_accounts.gpg

	add abraxas_accounts.gpg to account_files list in accounts_files.

Now all of the Abraxas accounts contained in abraxas_accounts.gpg
should be available though Avendesora and the various features of
the account should operate as expected. However, secrets in accounts
exported by Abraxas are no longer generated secrets. Instead, the
actual secrets are placed in a hidden form in the exported accounts
files.

If you would like to enhance the imported accounts to take advantage
of the new features of Avendesora, it is recommended that you do not
manually modify the imported files. Instead, copy the account
information to one of your own account files before modifying it.
To avoid conflict, you must then delete the account from the
imported file. To do so, create ~/.config/abraxas/do-not-export if
it does not exist, then add the account name to this file, and
reexport your accounts from Abraxas.

Command Reference

add – Add a new account

Usage:

avendesora add [options] [<template>]
avendesora a [options] [<template>]

Options:

	-f <file>, –file <file>

	Add account to specified accounts file.

Creates a new account starting from a template. The template consists of
boilerplate code and fields. The fields take the from _NAME_. They
should be replaced by appropriate values or deleted if not needed. If
you are using the Vim editor, it is preconfigured to jump to the next
field when you press ‘n’. If the field is surrounded by ‘<<’ and ‘>>’,
as in ‘<<_ACCOUNT_NUMBER_>>’, the value you enter will be concealed.

You can create your own templates by adding them to
account_templates in the
~/.config/avendesora/config file.

You can change the editor used when adding account by changing the
edit_template, also found in the
~/.config/avendesora/config file.

The default template is bank. The available templates are: bank, shell,
and website.

archive – Generates archive of all account information

Usage:

avendesora archive
avendesora A

This command creates an encrypted archive that contains all the information in
your accounts files, including the fully generated secrets. You should never
need this file, but its presence protects you in case you lose access to
Avendesora. To access your secrets without Avendesora, simply decrypt the
archive file with GPG. The actual secrets will be hidden, but it easy to
retrieve them even without Avendesora. When hidden, the secrets are encoded in
base64. You can decode it by running ‘base64 -d -’ and pasting the encoded
secret into the terminal.

When you run this command it overwrites the existing archive. If you have
accidentally deleted an account or changed a secret, then replacing the archive
could cause the last copy of the original information to be lost. To prevent
this from occurring it is a good practice to run the changed command before regenerating the archive. It describes all of the
changes that have occurred since the last time the archive was generated. You
should only regenerate the archive once you have convinced yourself all of the
changes are as expected.

browse – Open account URL in web browser

Usage:

avendesora browse [options] <account> [<key>]
avendesora b [options] <account> [<key>]

Options:

	-b <browser>, –browser <browser>

	Open account in specified browser.

	-l, –list

	List available URLs rather than open
first.

The account is examined for URLs, a URL is chosen, and then that URL is opened
in the chosen browser. First URLs are gathered from the urls account
attribute, which can be a string containing one or more URLs, a list, or
a dictionary. If urls is a dictionary, the desired URL can be chosen by
entering the key as an argument to the browse command.
If a key is not given, then the default_url account attribute is used to
specify the key to use by default. If urls is not a dictionary, then the first
URL specified is used.

If the urls attribute is not available then URLs are taken from
avendesora.RecognizeURL objects in the discovery account attribute.
In this case if the name argument is specified to
avendesora.RecognizeURL, the corresponding URL can be chosen using
a key.

The default browser is x, which uses the system default browser. You can
override the default browser on a per-account basis by adding an attribute named
browser to the account. An example of when you would specify the browser in
an account would be an account associated with Tor hidden service, which
generally can only be accessed using torbrowser:

class SilkRoad(Account):
 passcode = Passphrase()
 username = Passphrase(length=2, sep='-')
 url = 'http://silkroad6ownowfk.onion'
 browser = 't'

changed – Show changes since archive was created

Usage:

avendesora changed
avendesora C

When you run the archive command it overwrites the
existing archive. If you have accidentally deleted an account or changed
a secret, then replacing the archive could cause the last copy of the original
information to be lost. To prevent this from occurring it is a good practice to
run the changed command before regenerating the
archive. It describes all of the changes that have occurred since the last time
the archive was generated. You should only regenerate the archive once you have
convinced yourself all of the changes are as expected.

conceal – Conceal text by encoding it

Usage:

avendesora conceal [options] [<text>]
avendesora c [options] [<text>]

Options:

	-e <encoding>, –encoding <encoding>

	Encoding used when concealing
information.

	-g <id>, –gpg-id <id>

	Use this ID when creating any missing
encrypted files. Use commas with no
spaces to separate multiple IDs.

	-h <path>, –gpg-home <path>

	GPG home directory (default is
~/.gnupg).

	-s, –symmetric

	Encrypt with a passphrase rather than
using your GPG key (only appropriate
for gpg encodings).

Possible encodings include (default encoding is base64):

	gpg:

	This encoding fully encrypts/decrypts the text with GPG key.
By default your GPG key is used, but you can specify symmetric
encryption, in which case a passphrase is used.

	base64:

	This encoding obscures but does not encrypt the text. It can
protect text from observers that get a quick glance of the
encoded text, but if they are able to capture it they can easily
decode it.

	scrypt:

	This encoding fully encrypts the text with your user key. Only
you can decrypt it, secrets encoded with scrypt cannot be shared.

Though available as an option for convenience, you should not pass
the text to be hidden as an argument as it is possible for others to
examine the commands you run and their argument list. For any
sensitive secret, you should simply run ‘avendesora conceal’ and
then enter the secret text when prompted.

credentials – Show login credentials

Displays the account’s login credentials, which generally consist of an
identifier and a secret.

Usage:

avendesora credentials [options] <account>
avendesora login [options] <account>
avendesora l [options] <account>

Options:

	-S, –seed

	Interactively request additional seed for
generated secrets.

The credentials can be specified explicitly using the credentials
setting in your account. For example:

credentials = 'usernames.0 usernames.1 passcode'

If credentials is not specified then the first of the following will
be used if available:

id: username or email

secret: passcode, password or passphrase

edit – Edit an account

Usage:

avendesora edit <account>
avendesora e <account>

Opens an existing account in your editor.

You can specify the editor by changing the edit_account setting in the config file (~/.config/avendesora/config).

find – Find an account

Find accounts whose name contains the search text.

Usage:

avendesora find <text>
avendesora f <text>

help – Give information about commands or other topics

Usage:

avendesora help [options] [<topic>]
avendesora h [options] [<topic>]

Options:

	-s, –search

	list topics that include <topic> as a search term.

	-b, –browse

	open the topic in your default browser.

You can also use avendesora --help or avendesora -h to see the global
options for Avendesora.

identity – Generate an identifying response to a challenge

Usage:

avendesora identity [<name> [<challenge>...]]
avendesora ident [<name> [<challenge>...]]
avendesora I [<name> [<challenge>...]]

This command allows you to generate a response to any challenge.
The response identifies you to a partner with whom you have shared
an account.

If you run the command with no arguments, it prints the list of
available accounts. If you run it with no challenge, one is created for you
based on the current time and date.

If you have a remote partner to whom you wish to prove your
identity, have that partner use avendesora to generate a challenge
and a response based on your shared secret. Then the remote partner
provides you with the challenge and you run avendesora with that
challenge to generate the same response, which you provide to your
remote partner to prove your identity.

You are free to explicitly specify a challenge to start the process,
but it is important that it be unpredictable and that you not use
the same challenge twice. As such, it is recommended that you not
provide the challenge. In this situation, one is generated for you
based on the time and date.

See Confirming the Identity of a Partner for an example that illustrates the process.

initialize – Create initial set of Avendesora files

Usage:

avendesora initialize [options]
avendesora init [options]

	Options:

	

	-g <id>, –gpg-id <id>

	Use this ID when creating any missing encrypted
files. Use commas with no spaces to separate
multiple IDs.

	-h <path>, –gpg-home <path>

	GPG home directory (default is ~/.gnupg).

Create Avendesora data directory (~/.config/avendesora) and populate
it with initial versions of all essential files.

It is safe to run this command even after the data directory and
files have been created. Doing so will simply recreate any missing
files. Existing files are not modified.

interactive – Interactively query account values

Usage:

avendesora interactive <account>
avendesora i <account>

Interactively display values of account fields. Type the first few characters
of the field name, then <Tab> to expand the name. <Tab><Tab> shows all
remaining choices. <Enter> selects and shows the value. Type <Ctrl-c> to cancel
the display of a secret. Type <Ctrl-d> or enter empty field name to terminate
command.

log – Open the logfile

Usage:

avendesora log

Opens the logfile in your editor.

You can specify the editor by changing the edit_account setting in the config file (~/.config/avendesora/config).

new – Create new accounts file

Usage:

avendesora new [options] <name>
avendesora N [options] <name>

Options:

	-g <id>, –gpg-id <id>

	Use this ID when creating any missing encrypted files.
Use commas with no spaces to separate multiple IDs.

Creates a new accounts file. Accounts that share the same file share
the same master seed by default and, if the file is encrypted,
can be decrypted by the same recipients.

Generally you create new accounts files for each person or group
with which you wish to share accounts. You also use separate files
for passwords with different security domains. For example, a
high-value passwords might be placed in an encrypted file that would
only be placed highly on protected computers. Conversely, low-value
passwords might be contained in perhaps an unencrypted file that is
found on many computers.

Add a ‘.gpg’ extension to <name> to encrypt the file.

phonetic – Display NATO phonetic alphabet

Usage:

avendesora alphabet [<text>]
avendesora phonetic [<text>]
avendesora p [<text>]

If <text> is given, any letters are converted to the phonetic alphabet. If not
given the entire phonetic is displayed.

Example:

> avendesora phonetic 2WQI1T
two whiskey quebec india one tango

> avendesora phonetic
Phonetic alphabet:
 Alfa Echo India Mike Quebec Uniform Yankee
 Bravo Foxtrot Juliett November Romeo Victor Zulu
 Charlie Golf Kilo Oscar Sierra Whiskey
 Delta Hotel Lima Papa Tango X-ray

questions – Answer a Security Question

Displays the security questions and then allows you to select one to be
answered.

Usage:

avendesora questions [options] <account> [<field>]
avendesora quest [options] <account> [<field>]
avendesora q [options] <account> [<field>]
avendesora qc [options] <account> [<field>]

	Options:

	

	-c, –clipboard

	Write output to clipboard rather than stdout.

	-S, –seed

	Interactively request additional seed for generated secrets.

The ‘qc’ command is a shortcut for ‘questions –clipboard’.

Request the answer to a security question by giving the account name to this
command. For example:

avendesora questions bank

It will print out the security questions for bank account along with an index.
Specify the index of the question you want answered. You can answer any number
of questions. Type <Ctrl-d> or give an empty selection to terminate.

By default Avendesora looks for the security questions in the questions
field. If your questions are in a different field, just specify the name of the
field on the command line:

avendesora questions bank verbal

reveal – Reveal concealed text

Transform concealed text to reveal its original form.

Usage:

avendesora reveal [<text>]
avendesora r [<text>]

	Options:

	

	-e <encoding>, –encoding <encoding>

	Encoding used when revealing information.

Though available as an option for convenience, you should not pass
the text to be revealed as an argument as it is possible for others
to examine the commands you run and their argument list. For any
sensitive secret, you should simply run ‘avendesora reveal’ and then
enter the encoded text when prompted.

search – Search accounts

Search for accounts whose values contain the search text.

Usage:

avendesora search <text>
avendesora s <text>

value – Show an account value

Produce an account value. If the value is secret, it is produced only
temporarily unless –stdout is specified.

Usage:

avendesora value [options] [<account> [<field>]]
avendesora val [options] [<account> [<field>]]
avendesora v [options] [<account> [<field>]]

	Options:

	

	-c, –clipboard

	Write output to clipboard rather than stdout.

	-s, –stdout

	Write output to the standard output without
any annotation or protections.

	-S, –seed

	Interactively request additional seed for
generated secrets.

	-v, –verbose

	Add additional information to log file to
help identify issues in account discovery.

	-T <title>, –title <title>

	Use account discovery on this title.

The ‘vc’ command is a shortcut for ‘value –clipboard’.

You request a scalar value by specifying its name after the account.
For example:

avendesora value bank pin

If the requested value is composite (an array or dictionary), you should
also specify a key that indicates which of the composite values you
want. For example, if the accounts field is a dictionary, you specify
accounts.checking or accounts[checking] to get information on your
checking account. If the value is an array, you give the index of the
desired value. For example, questions.0 or questions[0]. If you only
specify a number, then the name is assumed to be questions, as in the
list of security questions (this can be changed by specifying the
desired name as the default_vector_field).

The field may be also be a script, with is nothing but a string that it
output as given except that embedded attributes are replaced by account
field values. For example:

avendesora value bank '{accounts.checking}: {passcode}'

If no value is requested the result produced is determined by the value
of the default attribute. If no value is given for default, then the
passcode, password, or passphrase attribute is produced (this can
be changed by specifying the default_field setting). If default is a script then the script
is executed. A typical script might be ‘username: {username}, password:
{passcode}’. It is best if the script produces a one line output if it
contains secrets. If not a script, the value of default should be the
name of another attribute, and the value of that attribute is shown.

If no account is requested, then Avendesora attempts to determine the
appropriate account through discovery. Normally
Avendesora is called in this manner from your window manager. You
would arrange for it to be run when you type a hot key. In this case
Avendesora determines which account to use from information available
from the environment, information like the title on active window. In
this mode, Avendesora mimics the keyboard when producing its output.

The verbose and title options are used when debugging account
discovery. The verbose option adds more information about the
discovery process to the logfile (~/.config/avendesora/log.gpg). The
title option allows you to override the active window title so you can
debug title-based discovery. Specifying the title option also scrubs
the output and outputs directly to the standard output rather than
mimicking the keyboard so as to avoid exposing your secret.

If the stdout option is not specified, the value command still writes
to the standard output if it is associated with a TTY (if Avendesora is
outputting directly to a terminal). If the standard output is not a TTY,
Avendesora mimics the keyboard and types the desired value directly into
the active window. There are two common situations where standard
output is not a TTY: when Avendesora is being run by your window manager
in response to you pressing a hot key or when the output of Avendesora
is fed into a pipeline. In the second case, mimicking the keyboard is
not what you want; you should use --stdout to assure the chosen value is
sent to the pipeline as desired. This also has the added benefit of stripping
off all decorations from the value.

values – Display all account values

Show all account values.

Usage:

avendesora values <account>
avendesora vals <account>
avendesora V <account>

The values of secrets are not actually shown. Rather instructions for viewing
the secret value is given. Also, account attributes that are intended only to
control Avendesora, such as discovery, are not shown at
all.

version – Display Avendesora version

Usage:

avendesora version

Account Helpers

Account helpers are are classes and character sets that are used in your account
attributes. They provide advanced capabilities such as holding secrets,
generating secrets, and recognizing accounts.

Generated Secret Classes

Sublasses of avendesora.GeneratedSecret.

These classes are used when creating account secrets (see Accounts).

Every class starts with a pool of 512 bits of entropy. Each symbol generated
consumes some of that entropy, the amount of which is determine by the number of
symbols that are available in the alphabet. For example, passphrases pull words
from a dictionary containing 10,000 words. As such, each word in the passphrase
consumes 14 bits of entropy (ceil(log2(10000))). If too many words are
requested, avendesora.SecretExhausted is raised.

	
class avendesora.Password(length=12, *, alphabet='abcdefghijkmnopqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ23456789', master=None, version=None, shift_sort=False, sep='', prefix='', suffix='', is_secret=True)

	Generate password.

Generates an arbitrary password by selecting symbols from the given
alphabet at random. The entropy of the generated password is
length*log2(len(alphabet)).

	Parameters

	
	length (int) – The number of items to draw from the alphabet when creating the
password.

	alphabet (collection of symbols) – The reservoir of legal symbols to use when creating the password. By
default the set of easily distinguished alphanumeric characters are
used (avendesora.DISTINGUISHABLE). Typically you would use
the pre-imported character sets to construct the alphabet. For
example, you might pass: avendesora.ALPHANUMERIC + ‘+=_&%#@’

	master (str) – Overrides the master seed that is used when generating the password.
Generally, there is one master seed shared by all accounts contained
in an account file. This argument overrides that behavior and
instead explicitly specifies the master seed for this secret.

	version (str) – An optional seed. Changing this value will change the generated
password.

	shift_sort (bool) – If true, the characters in the password will be sorted so that the
characters that require the shift key when typing are placed last.
This make the password easier to type.

	sep (str) – A string that is placed between each symbol in the generated
password.

	prefix (str) – A string added to the front of the generated password.

	suffix (str) – A string added to the end of the generated password.

	is_secret (bool) – Should value be hidden from user unless explicitly requested.

	Raises

	avendesora.SecretExhausted – The available entropy has been exhausted.
This occurs when the requested length is too long.

Examples:

>>> secret = Password()
>>> secret.initialize(account, 'dux')
>>> str(secret)
'tvA8mewbbig3'

>>> secret = Password(shift_sort=True)
>>> secret.initialize(account, 'flux')
>>> str(secret)
'wrncpipvtNPF'

	
class avendesora.Passphrase(length=4, *, dictionary=None, master=None, version=None, sep=' ', prefix='', suffix='', is_secret=True)

	Generate passphrase.

Similar to Password in that it generates an arbitrary passphrase by
selecting symbols from the given alphabet at random, but in this case
the default alphabet is a dictionary containing about 10,000 words.

	Parameters

	
	length (int) – The number of items to draw from the alphabet when creating the
password.

	dictionary (str, [str], or callable) – The reservoir of legal symbols to use when creating the
password. If not given, or if ‘default’ is given, this is a
predefined list of 10,000 words. If given as ‘bip39’ or
‘mnemonic’, this is a predefined list of the 2048 bitcoin BIP-39
seed words. Any other string is treated as a path to a file
that would contain the words. A list is taken as is. Finally,
you can pass a function that returns the list of words, in which
case the calling of the function is deferred until the words are
needed, which is helpful if creating the list is slow.

	master (str) – Overrides the master seed that is used when generating the password.
Generally, there is one master seed shared by all accounts contained
in an account file. This argument overrides that behavior and
instead explicitly specifies the master seed for this secret.

	version (str) – An optional seed. Changing this value will change the generated
password.

	sep (str) – A string that is placed between each symbol in the generated
password.

	prefix (str) – A string added to the front of the generated password.

	suffix (str) – A string added to the end of the generated password.

	is_secret (bool) – Should value be hidden from user unless explicitly requested.

	Raises

	avendesora.SecretExhausted – The available entropy has been exhausted.
This occurs when the requested length is too long.

Example:

>>> secret = Passphrase()
>>> secret.initialize(account, 'dux')
>>> str(secret)
'graveyard cockle intone provider'

	
class avendesora.PIN(length=4, *, alphabet='0123456789', master=None, version=None, is_secret=True)

	Generate PIN.

Similar to Password in that it generates an arbitrary PIN by
selecting symbols from the given alphabet at random, but in this case
the default alphabet is the set of digits (0-9).

	Parameters

	
	length (int) – The number of items to draw from the alphabet when creating the
password.

	alphabet (collection of symbols) – The reservoir of legal symbols to use when creating the password.
By default the alphabet is avendesora.DIGITS.

	master (str) – Overrides the master seed that is used when generating the password.
Generally, there is one master seed shared by all accounts contained
in an account file. This argument overrides that behavior and
instead explicitly specifies the master seed for this secret.

	version (str) – An optional seed. Changing this value will change the generated
password.

	sep (str) – A string that is placed between each symbol in the generated
password.

	prefix (str) – A string added to the front of the generated password.

	suffix (str) – A string added to the end of the generated password.

	is_secret (bool) – Should value be hidden from user unless explicitly requested.

	Raises

	avendesora.SecretExhausted – The available entropy has been exhausted.
This occurs when the requested length is too long.

Example:

>>> secret = PIN()
>>> secret.initialize(account, 'dux')
>>> str(secret)
'9301'

	
class avendesora.Question(question, length=3, *, answer=None, dictionary=None, master=None, version=None, sep=' ', prefix='', suffix='', is_secret=True)

	Generate arbitrary answer to a given question.

Similar to Passphrase() except a question must be specified when created
and it is taken to be the security question. The question is used as a seed
rather than the field name when generating the secret.

	Parameters

	
	question (str) – The question to be answered. Be careful. Changing the question in
any way will change the resulting answer.

	length (int) – The number of items to draw from the alphabet when creating the
answer.

	dictionary (str, [str], or callable) – The reservoir of legal symbols to use when creating the
password. If not given, or if ‘default’ is given, this is a
predefined list of 10,000 words. If given as ‘bip39’ or
‘mnemonic’, this is a predefined list of the 2048 bitcoin BIP-39
seed words. Any other string is treated as a path to a file
that would contain the words. A list is taken as is. Finally,
you can pass a function that returns the list of words, in which
case the calling of the function is deferred until the words are
needed, which is helpful if creating the list is slow.

	master (str) – Overrides the master seed that is used when generating the password.
Generally, there is one master seed shared by all accounts contained
in an account file. This argument overrides that behavior and
instead explicitly specifies the master seed for this secret.

	version (str) – An optional seed. Changing this value will change the generated
password.

	sep (str) – A string that is placed between each symbol in the generated
password.

	prefix (str) – A string added to the front of the generated password.

	suffix (str) – A string added to the end of the generated password.

	answer (str) – The answer. If provided, this would override the generated answer.
May be a string, or it may be an Obscured object.

	is_secret (bool) – Should value be hidden from user unless explicitly requested.

	Raises

	avendesora.SecretExhausted – The available entropy has been exhausted.
This occurs when the requested length is too long.

Example

>>> secret = Question('What city were you born in?')
>>> secret.initialize(account, 'dux')
>>> str(secret)
'dustcart olive label'

	
class avendesora.MixedPassword(length, def_alphabet, requirements, *, master=None, version=None, shift_sort=False, is_secret=True)

	Generate mixed password.

A relatively low level method that is used to generate passwords from
a heterogeneous collection of alphabets. This is used to satisfy the
character type count requirements of many websites. It is recommended that
user use avendesora.PasswordRecipe rather than directly use this class.

	Parameters

	
	length (int) – The number of items to draw from the various alphabets when creating
the password.

	def_alphabet (collection of symbols) – The alphabet to use when filling up the password after all the
constraints are satisfied.

	requirements (list of tuples) – Each tuple has two members, the first is a string or list that is
used as an alphabet, and the second is a number that indicates how
many symbols should be drawn from that alphabet.

	master (str) – Overrides the master seed that is used when generating the password.
Generally, there is one master seed shared by all accounts contained
in an account file. This argument overrides that behavior and
instead explicitly specifies the master seed for this secret.

	version (str) – An optional seed. Changing this value will change the generated
answer.

	shift_sort (bool) – If true, the characters in the password will be sorted so that the
characters that require the shift key when typing are placed last.
This make the password easier to type.

	is_secret (bool) – Should value be hidden from user unless explicitly requested.

	Raises

	avendesora.SecretExhausted – The available entropy has been exhausted.
This occurs when the requested length is too long.

Example:

>>> secret = MixedPassword(
... 12, ALPHANUMERIC, [(LOWERCASE, 2), (UPPERCASE, 2), (DIGITS, 2)]
...)
>>> secret.initialize(account, 'dux')
>>> str(secret)
'ZyW62fvxX0Fg'

	
class avendesora.PasswordRecipe(recipe, *, def_alphabet='abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789', master=None, version=None, shift_sort=False, is_secret=True)

	Generate password from recipe.

A version of MixedPassword where the requirements are specified with a short
string rather than using the more flexible but more cumbersome method of
MixedPassword. The string consists of a series of terms separated by white
space. The first term is a number that specifies the total number of
characters in the password. The remaining terms specify the number of
characters that should be pulled from a particular class of characters. The
classes are u (upper case letters), l (lower case letters), d (digits), s
(punctuation), and c (an explicitly specified set of characters). For
example, ‘12 2u 2d 2s’ indicates that a 12 character password should be
generated that includes 2 upper case letters, 2 digits, and 2 symbols. The
remaining characters will be chosen from the base character set, which by
default is the set of alphanumeric characters.

	Parameters

	
	recipe (str) – A string that describes how the password should be constructed.

	def_alphabet (collection of symbols) – The alphabet to use when filling up the password after all the
constraints are satisfied.

	master (str) – Overrides the master seed that is used when generating the password.
Generally, there is one master seed shared by all accounts contained
in an account file. This argument overrides that behavior and
instead explicitly specifies the master seed for this secret.

	version (str) – An optional seed. Changing this value will change the generated
answer.

	shift_sort (bool) – If true, the characters in the password will be sorted so that the
characters that require the shift key when typing are placed last.
This make the password easier to type.

	is_secret (bool) – Should value be hidden from user unless explicitly requested.

	Raises

	avendesora.SecretExhausted – The available entropy has been exhausted.
This occurs when the requested length is too long.

Example:

>>> secret = PasswordRecipe('12 2u 2d 2s')
>>> secret.initialize(account, 'pux')
>>> str(secret)
'*m7Aqj=XBAs7'

The c class is special in that it allow you to explicitly specify the
characters to use. For example, ‘12 2c!@#$%^&=’ directs that a 12 character
password be generated, 2 of which are taken from the set !@#$%^&=:

>>> secret = PasswordRecipe('12 2u 2d 2c!@#$%^&*')
>>> secret.initialize(account, 'bux')
>>> str(secret)
'YO8K^68J9oC!'

	
class avendesora.BirthDate(year, min_age=18, max_age=65, fmt='YYYY-MM-DD', *, master=None, version=None, is_secret=True)

	Generates an arbitrary birthdate for someone in a specified age range.

This function can be used to generate an arbitrary date using:

>>> secret = BirthDate(2015, 18, 65)
>>> secret.initialize(account, 'dux')
>>> str(secret)
'1970-03-22'

For year, enter the year the account that contains BirthDate was created.
Doing so anchors the age range. In this example, the creation date is 2015,
the minimum age is 18 and the maximum age is 65, meaning that a birthdate
will be chosen such that in 2015 the birth date could correspond to someone
that is between 18 and 65 years old.

You can use the fmt argument to change the way in which the date is
formatted:

>>> secret = BirthDate(2015, 18, 65, fmt="M/D/YY")
>>> secret.initialize(account, 'dux')
>>> str(secret)
'3/22/70'

	Parameters

	
	year (int) – The year the age range was established.

	min_age (int) – The lower bound of the age range.

	max_age (int) – The upper bound of the age range.

	fmt (str) – Specifies the way the date is formatted. Consider an example date of
6 July 1969. YY and YYYY are replaced by the year (69 or 1969). M,
MM, MMM, and MMMM are replaced by the month (7, 07, Jul, or July). D
and DD are replaced by the day (6 or 06).

	master (str) – Overrides the master seed that is used when generating the password.
Generally, there is one master seed shared by all accounts contained
in an account file. This argument overrides that behavior and
instead explicitly specifies the master seed for this secret.

	version (str) – An optional seed. Changing this value will change the generated
answer.

	is_secret (bool) – Should value be hidden from user unless explicitly requested.

	Raises

	avendesora.SecretExhausted – The available entropy has been exhausted.
This occurs when the requested length is too long.

	
class avendesora.OTP(shared_secret, *, interval=30, digits=6)

	One Time Password

Generates a secret that changes over time that generally is used
as a second factor when authenticating. It can act as a replacement
for, and is fully compatible with, Google Authenticator or Authy. You
would provide the text version of the shared secret that is presented to
you when first configuring your second factor authentication. See
One-Time Passwords for more information.

Only available if pyotp is installed (pip install pyotp).

	Parameters

	
	shared_secret (str) – The shared secret in base32.

	interval (int) – Update interval in seconds.
Use 30 to mimic Google Authenticator, 10 to mimic Authy.

	digits (int) – Number of digits to output, choose between 6, 7, or 8.
Use 6 to mimic Google Authenticator, 7 to mimic Authy.

	
exception avendesora.SecretExhausted(**kwargs)

	Secret exhausted.

This generally results if the length of the requested secret is too long.

This exception subclasses avendesora.PasswordError.

	
report(**new_kwargs)

	Report exception to the user.

Prints the error message on the standard output.

The inform.error() function is called with the exception arguments.

	Parameters

	**kwargs – report() takes any of the normal keyword arguments normally
allowed on an informant (culprit, template, etc.). Any keyword
argument specified here overrides those that were specified when
the exception was first raised.

	
terminate(**new_kwargs)

	Report exception and terminate.

Prints the error message on the standard output and exits the program.

The inform.fatal() function is called with the exception arguments.

	Parameters

	**kwargs – report() takes any of the normal keyword arguments normally
allowed on an informant (culprit, template, etc.). Any keyword
argument specified here overrides those that were specified when
the exception was first raised.

Character Sets

These are useful when constructing generated secrets. They are used to build the
alphabet used by the generator. For example, you can specify that passwords
should be constructed from 12 lower case letters and digits with:

Password(length=12, alphabet=LOWERCASE+DIGITS)

Or here is an example that starts with the alphanumeric and punctuation
characters, and removes those that require the shift key to type:

Password(length=12, alphabet=exclude(ALPHANUMERIC+PUNCTUATION, SHIFTED))

	
avendesora.exclude(chars, exclusions)

	Exclude Characters

Use this to remove characters from a character set.

	Parameters

	
	chars (str) – Character set to strip.

	exclusions (str) – Characters to remove from character set.

Example:

>>> exclude('ABCDEF', 'AEF')
'BCD'

	
avendesora.LOWERCASE

	Lower case ASCII letters:
avendesora.LOWERCASE = “abcdefghijklmnopqrstuvwxyz”

	
avendesora.UPPERCASE

	Upper case ASCII letters:
avendesora.UPPERCASE = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”

	
avendesora.LETTERS

	Upper and lower case ASCII letters:
avendesora.LETTERS = avendesora.LOWERCASE + avendesora.UPPERCASE

	
avendesora.DIGITS

	ASCII digits:
avendesora.DIGITS = “0123456789”

	
avendesora.ALPHANUMERIC

	ASCII letters and digits:
avendesora.ALPHANUMERIC = avendesora.LETTERS + avendesora.DIGITS

	
avendesora.HEXDIGITS

	Hexidecimal digits:
avendesora.HEXDIGITS = “0123456789abcdef”

	
avendesora.PUNCTUATION

	ASCII punctuation characters:
avendesora.PUNCTUATION = “!”#$%&’()*+,-./:;<=>?@[\]^_`{|}~”

	
avendesora.SYMBOLS

	ASCII punctuation characters excluding ‘, “, `, and \:
avendesora.SYMBOLS = exclude(avendesora.PUNCTUATION, “’”`")

	
avendesora.WHITESPACE

	ASCII white space characters (excluding newlines):
avendesora.WHITESPACE = ” \t”

	
avendesora.PRINTABLE

	All ASCII printable characters (letters, digits, punctuation, whitespace):
avendesora.PRINTABLE = avendesora.ALPHANUMERIC + avendesora.PUNCTUATION + avendesora.WHITESPACE

	
avendesora.DISTINGUISHABLE

	ASCII letters and digits with easily confused characters removed:
avendesora.DISTINGUISHABLE = exclude(avendesora.ALPHANUMERIC, ‘Il1O0’)

	
avendesora.SHIFTED

	ASCII characters that are typed using the shift key:
avendesora.SHIFTED = avendesora.UPPERCASE + ‘~!@#$%^&*()_+{}|:”<>?’

Obscured Secret Classes

Sublasses of avendesora.ObscuredSecret.

These classes are used when creating account secrets (see Accounts).

	
class avendesora.Hide(plaintext, *, secure=True, is_secret=True)

	Hide text

Marks a value as being secret.

	Parameters

	
	plaintext (str) – The value of interest.

	secure (bool) – Indicates that this secret is of high value and so should not be
found in an unencrypted accounts file.

	is_secret (bool) – Should value be hidden from user unless explicitly requested.

	
class avendesora.Hidden(encoded_text, *, secure=True, encoding=None, is_secret=True)

	Hidden text

This encoding obscures but does not encrypt the text.

	Parameters

	
	encoded_text (str) – The value of interest encoded in base64.

	secure (bool) – Indicates that this secret is of high value and so should not be
found in an unencrypted accounts file.

	encoding (str) – The encoding to use for the decoded text.

	is_secret (bool) – Should value be hidden from user unless explicitly requested.

	Raises

	avendesora.PasswordError – invalid value.

	
class avendesora.GPG(ciphertext, *, secure=True, encoding=None)

	GPG encrypted text

The secret is fully encrypted with GPG. Both symmetric encryption and
key-based encryption are supported.

	Parameters

	
	ciphertext (str) – The secret encrypted and armored by GPG.

	encoding (str) – The encoding to use for the deciphered text.

	Raises

	avendesora.PasswordError – invalid value.

	
class avendesora.Scrypt(ciphertext, *, secure=True, encoding='utf8')

	Scrypt encrypted text

The secret is fully encrypted with scrypt.

Only available if scrypt is installed (pip install scrypt).

	Parameters

	
	ciphertext (str) – The secret encrypted and armored by GPG.

	encoding (str) – The encoding to use for the deciphered text.

	Raises

	avendesora.PasswordError – invalid value.

	
class avendesora.WriteFile(path, contents, mode=384)

	Write a text file containing a secret.

	Parameters

	
	path (str) – A path to the file that is to be written.

	contents (str or secret) – The desired contents of the file.

Recognizer Classes

These classes are used in account discovery.

	
class avendesora.RecognizeAll(*recognizers, **kwargs)

	Run script if all recognizers match.

Takes one or more recognizers. Script is run if all recognizers match.

	Parameters

	
	recognizer (Recognizer) – One or more instances of Recognizer.

	script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script
surrounded by braces, in which case the value of the field replaces the
field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the
value of the corresponding account attribute. In addition to the
fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N
seconds.

If True is give, the default field is produced followed by a return.

	Raises

	avendesora.PasswordError

	
class avendesora.RecognizeAny(*recognizers, **kwargs)

	Run script if any recognizers match.

Takes one or more recognizers. Script is run if any recognizers match.

	Parameters

	
	recognizer (Recognizer) – One or more instances of Recognizer.

	script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script
surrounded by braces, in which case the value of the field replaces the
field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the
value of the corresponding account attribute. In addition to the
fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N
seconds.

If True is give, the default field is produced followed by a return.

	Raises

	avendesora.PasswordError

	
class avendesora.RecognizeTitle(*titles, **kwargs)

	Run script if window title matches.

Takes one or more glob strings.
Script is run if window title matches any of the glob strings.

	Parameters

	
	titles (str) – One or more glob strings.

	script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script
surrounded by braces, in which case the value of the field replaces the
field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the
value of the corresponding account attribute. In addition to the
fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N
seconds.

If True is give, the default field is produced followed by a return.

	Raises

	avendesora.PasswordError

	
class avendesora.RecognizeURL(*urls, **kwargs)

	Run script if URL matches.

Takes one or more URLs.
Script is run if URL embedded in window title matches any of the given URLs.
Assumes that a browser plugin has embedded the URL in the browser’s window
title. This is generally safer and more robust that RecognizeTitle when
trying to match web pages.

When giving the URL, anything specified must match and globbing is
not supported. If you give a partial path, by default Avendesora
will match up to what you have given, but you can require an exact
match of the entire path by specifying exact_path=True to
RecognizeURL. If you do not give the protocol, the default_protocol
(https) is assumed.

	Parameters

	
	urls (list) – At least one url.

	exact_path (bool) – If True, path given in the URL must be matched completely, partial
matches are ignored.

	fragment (str) – If given, it must match the URL fragment exactly. The URL fragment
is the part of the url after #.

	script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script
surrounded by braces, in which case the value of the field replaces the
field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the
value of the corresponding account attribute. In addition to the
fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N
seconds.

If True is give, the default field is produced followed by a return.

	Raises

	avendesora.PasswordError

	
class avendesora.RecognizeCWD(*dirs, **kwargs)

	Run script if current working directory matches.

Takes one or more paths. Script is run if any path refers to the current
working directory.

	Parameters

	
	path (str) – One or more directory paths.

	script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script
surrounded by braces, in which case the value of the field replaces the
field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the
value of the corresponding account attribute. In addition to the
fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N
seconds.

If True is give, the default field is produced followed by a return.

	Raises

	avendesora.PasswordError

	
class avendesora.RecognizeHost(*hosts, **kwargs)

	Run script if host name matches.

Takes one or more host names.
Script is run if the current host name matches one of the given host names.

	Parameters

	
	host (str) – One or more host names.

	script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script
surrounded by braces, in which case the value of the field replaces the
field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the
value of the corresponding account attribute. In addition to the
fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N
seconds.

If True is give, the default field is produced followed by a return.

	Raises

	avendesora.PasswordError

	
class avendesora.RecognizeUser(*users, **kwargs)

	Run script if user name matches.

Takes one or more user names.
Script is run if the current user name matches one of the given user names.

	Parameters

	
	user (str) – One or more user names.

	script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script
surrounded by braces, in which case the value of the field replaces the
field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the
value of the corresponding account attribute. In addition to the
fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N
seconds.

If True is give, the default field is produced followed by a return.

	Raises

	avendesora.PasswordError

	
class avendesora.RecognizeEnvVar(name, value, script=True)

	Run script if environment variable matches.

Script is run if the environment variable exists and its value matches the value given.

	Parameters

	
	name (str) – Name of environment variable.

	value (str) – Value of environment variable.

	script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script
surrounded by braces, in which case the value of the field replaces the
field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the
value of the corresponding account attribute. In addition to the
fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N
seconds.

If True is give, the default field is produced followed by a return.

	Raises

	avendesora.PasswordError

	
class avendesora.RecognizeNetwork(*macs, **kwargs)

	Recognize network from MAC address.

Matches if any of the MAC addresses reported by /sbin/arp match any of those
given as an argument.

	Parameters

	
	mac (str) – MAC address given in the form: ‘00:c9:a9:f7:30:00’.

	script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script
surrounded by braces, in which case the value of the field replaces the
field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the
value of the corresponding account attribute. In addition to the
fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N
seconds.

If True is give, the default field is produced followed by a return.

	Raises

	avendesora.PasswordError

	
class avendesora.RecognizeFile(filepath, contents=None, wait=60, **kwargs)

	Recognize file.

Matches if file exists and was created within the last few seconds.

	Parameters

	
	filepath (str) – Path to file.

	contents (str) – Expected file contents. If given, should match contents of file.

	wait (float) – Do not match if file is older than this value (seconds).

	script (str or True) – A script that indicates the text that should be typed to active
application. The names of fields can be included in the script
surrounded by braces, in which case the value of the field replaces the
field reference. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the
value of the corresponding account attribute. In addition to the
fields, {tab} and {return} are replaced by a tab or carriage
return character, and {sleep N} causes the typing to pause for N
seconds.

If True is give, the default field is produced followed by a return.

	Raises

	avendesora.PasswordError

Utility Classes

These classes are used as account values, (see Scripts).

	
class avendesora.Script(script='username: {username}, password: {passcode}')

	Takes a string that contains attributes. Those attributes are expanded
before being output. For example:

Script('username: {username}, password: {passcode}')

In this case, {username} and {passcode} are replaced by with the value
of the corresponding account attribute. In addition to the account
attributes, {tab} and {return} are replaced by a tab or carriage return
character.

	Parameters

	script (str) – The script.

Configuring

Avendesora is configured by way of a collection of files contained in the config
directory (~/.config/avendesora). This directory may contain the following
files:

Configuration Files

accounts_files

This file contains the list of known account files. The first file in the
list is the default account file (this is where new accounts go by default).
You can use the new command to add additional files to
this list, but to delete account file you must manually edit this file and
remove them from the list.

config, config.doc

You control the behavior of Avendesora through a collection of settings that
are specified in config. The available settings and their default values
are documented in config.doc. Generally you only place values in config
if you would like to change them from their default value. In that way, you
will get the latest values for all other settings when you update
Avendesora.

hashes

One of the risks in using a password generator is that changed in the code
can result in the passwords changing. Thus there is a risk that when you
upgrade Avendesora that your passwords will change. Avendesora provides the
archive and changed
commands to help detect these situations. It also keeps hashes of several
key parts of the code that if changed could result in the passwords
changing. When Avendesora runs, it recomputes these hashes on itself and
compares them to the hashes saved in this file. If any of the hashes have
changed a warning message is produced, which can alert you to changes that
you might have otherwise missed.

It is normal that these hashes change when the program is updated. When you
see the message that the hashes have changed you should run the
changed command to assure that none of your
generated secrets have changed. This assumes that you have created an
archive file and kept it up to date.

stealth_accounts

This file contains the definitions of the available stealth accounts.
Stealth accounts allow you to create passwords for accounts that are not
kept in an account file.

<accounts file>

A file containing a collection of related accounts. All accounts in a file
share a common master seed.

<archive file>

This file contains all known accounts with any generated secrets expanded.
It is used to identify account values that may have inadvertently changed.

<log file>

The log file is created after each invocation of Avendesora. It provides
details about the run that can help understand what happened during the run,
which can help you resolve issues when things go wrong. This file can leak
account information, and so it is best if it is encrypted.

Settings

The settings are documented in config.doc, and can be overwritten by
specifying the desired values in the config file (found in
~/.config/avendesora). The available settings are:

log_file

The desired name of the log file (relative to config directory).
Adding a suffix of .gpg or .asc causes the file to be encrypted
(otherwise it can leak account names). Use None to disable logging.

The default is ‘log.gpg’.

archive_file

The desired name of the archive file (relative to config director).
End the path in .gpg or .asc. Use None to disable archiving.

The default is ‘archive.gpg’.

previous_archive_file

The existing archive file is renamed to this name when updating the archive
file. This could be helpful if the archive file is somehow corrupted.

The default is ‘previous_archive_file’.

archive_stale

The archive file is consider stale if it is this many days older than
the most recently updated account file.

The default is = 1.

default_field

The name of the field to use for the value command
when one is not given. May be a space separated list of names, in which case
the first that is found is used.

The default is ‘passcode password passphrase’.

default_vector_field

The name of the field to use when an integer is given as the argument to the
value command. In this case the field is expected to
be a list and the argument is taken to be the index of the desired value.
For example, if default_vector_field is ‘question’ and the argument given
with the value command is 1, then question[1] is
produced.

The default is ‘questions’.

dynamic_fields

Fields whose values can change in real time. These fields will not be
mentioned by the changed command, even if their
value differs from when the most recent archive was created.

The default is ‘’.

hidden_fields

Names of fields that should not appear in the summary produced by the
values command unless the --all option is
specified. A typical value includes estimated_value,
postmortem_recipients, and bitwarden.

The default is ‘’.

credential_ids

A string that contains the field names (space separated) that should be
considered by the credentials command for the
account identity.

The default is ‘username email’.

credential_secrets

A string that contains the field names (space separated) that should be
considered by the credentials command for the
primary account secret.

The default is ‘passcode password passphrase email’.

display_time

The number of seconds that the secret will be displayed before it is
erased when writing to the TTY or the clipboard.

The default is 60.

ms_per_char

The time between keystrokes when autotyping. The default is 12ms.
This is the global setting. Generally it is not necessary to change this.
Leaving at its default value works in most cases and result in a pleasingly
fast response times. However, some websites, particularly those that are
infested with javascript helpers, cannot tolerate extremely fast typing
rates. In these cases it is better to use the rate attribute to the
discovery script to limit the typing rate. Doing so only
slows the entry of your credentials on those websites.

The default is 12.

encoding

The unicode encoding to use when reading or writing files.

The default is ‘utf-8’.

edit_account

The command used when editing an account. The command is given as
list of strings. The strings may contain {filepath} and {account},
which are replaced by the path to the file and the name of the
account.

The default is suitable if you use Vim:

edit_account = (
 'gvim', # use gvim -v so that user can access
 '-v', # the X clipboard buffers
 '+silent! /^class {account}(Account):/',
 '+silent! normal zozt', # open the fold, position near top of screen
 '{filepath}'
)

edit_template

The command used when creating a new account that has been initialized
with a template. The command is given as list of strings. The strings
may contain {filepath}, which is replaced by the path to the file.

The default is suitable if you use Vim:

edit_template = (
 'gvim', # use gvim -v so that user can access
 '-v', # the X clipboard buffers
 r'+silent! /_[A-Z0-9_]\+_/', # matches user modifiable template fields
 # fields take the form '_AAA_'
 '+silent! normal zozt', # open the fold, position near top of screen
 '{filepath}'
)

browsers

A dictionary containing the supported browsers. For each entry the key
is the name to be used for the browser, and the value is string that
contains the command that invokes the browser. The value may contain
{url}, which is replaced by the URL to open.

The default is:

browsers = {
 'c': 'google-chrome {{url}}',
 'ci': 'google-chrome --incognito {{url}}',
 'f': 'firefox -new-tab {{url}}',
 'fp': 'firefox -private-window {{url}}',
 'q': 'qutebrowser {{url}}',
 't': 'torbrowser {{url}}',
 'x': 'xdg-open {{url}}',
}

default_browser

The name of the default browser. This name should be one of the keys
in the browsers dictionary.

The default value is ‘f’.

command_aliases

You can create custom short cuts for Avendesora commands using the this
setting. By default, Avendesora comes with a collection of aliases, but
you can change them, delete them, or add others. Aliases are specified with
a dictionary, where the key is the alias, and the value is a list that
consists of full command name and an optional set of command line arguments.
For example:

command_aliases = dict(
 b = ['browse'],
 bc = ['browse', '--browser', 'c'],
)

Alternately, you can specify the value of each alias as a string, in which
case it is split at white space to provide the command name and options:

command_aliases = dict(
 b = 'browse',
 bc = 'browse --browser c',
)

In either case, the first item must be the name of a built-in command.

With this set of aliases, ‘b’ becomes a short cut for ‘browse’ and ‘bc’
becomes a short cut for ‘browse –browser c’.

With the introduction of this setting, the hard-coded command short cuts
were removed from Avendesora and replaced by the default value of this
setting:

command_aliases = dict(
 a = 'add',
 A = 'archive',
 b = 'browse',
 bc = 'browse --browser c',
 c = 'conceal',
 C = 'changed',
 e = 'edit',
 f = 'find',
 h = 'help',
 ident = 'identity',
 I = 'identity',
 init = 'initialize',
 i = 'interactive',
 login = 'credentials',
 l = 'credentials',
 N = 'new',
 alphabet = 'phonetic',
 p = 'phonetic',
 quest = 'questions',
 q = 'questions',
 qc = 'questions --clipboard',
 r = 'reveal',
 s = 'search',
 val = 'value',
 v = 'value',
 vc = 'value --clipboard',
 vals = 'values',
 vs = 'values',
 V = 'values',
)

Specifying your own value for command_aliases overrides the built-in
default. If you would like to add your own aliases, you should consider
specifying the above and then add in your new aliases.

default_protocol

The default protocol to use for a URL if the protocol is not specified
in the requested URL. Generally this should be ‘https’ or ‘http’,
though ‘https’ is recommended.

The default is ‘https’.

config_dir_mask

An integer that determines if the permissions of Avendesora configuration
directory (~/.config/avendesora) are too loose. If they are, a warning is
printed. A bitwise and operation is performed between this value and the
actual file permissions, and if the result is nonzero, a warning is printed.
Set to 0o000 to disable the warning. Set to 0o077 to generate a warning if
the configuration directory is readable or writable by the group or others.
Set to 0o007 to generated a warning if the directory is readable or writable
by others.

The default is 0o077.

account_file_mask

An integer that determines if the permissions of Avendesora account files
are too loose. If they are, a warning is printed and the permissions are
changed. A bitwise and operation is performed between this value and the
actual file permissions, and if the result is nonzero, a warning is printed.
Set to 0o000 to disable the warning. Set to 0o077 to generate a warning if
the configuration directory is readable or writable by the group or others.
Set to 0o007 to generated a warning if the directory is readable or writable
by others.

The default is 0o077.

label_color

The color of the label used by the value and
values commands.
Choose from ‘black’, ‘red’, ‘green’, ‘yellow’, ‘blue’, ‘magenta’, ‘cyan’,
‘white’.

The default is ‘blue’.

highlight_color

The color of the highlight used by the value and
values commands.
Choose from ‘black’, ‘red’, ‘green’, ‘yellow’, ‘blue’, ‘magenta’, ‘cyan’,
‘white’.

The default is ‘magenta’.

color_scheme

The color scheme used for the label color. Choose from ‘dark’, ‘light’ or
None. If the shell background color is light, use ‘dark’.

The default is ‘dark’.

use_pager

Use a external program to break long output into pages.
May be either a boolean or a string. If a string the string is taken
to be a command line use to invoke a paging program (like ‘more’). If
True, the program name is taken from the PAGER environment variable if
set, or less is used if not set. If False, a paging program is not
used.

The default is True.

selection_utility

Which utility should be used when it becomes necessary for you to
interactively make a choice. Two utilities are available: gtk, the
default, and dmenu.

gtk is the built-in selection. When needed it pops a small dialog box in
the middle of the screen. You can use the j and k to navigate to your
selection and l to make the selection or h to cancel. Alternately you
can use the arrow keys and Enter and Esc to navigate, select, and
cancel.

dmenu is an external utility, and must be installed. With dmenu you type
the first few letters of your selection to highlight it, then type Enter
to select or Esc to cancel.

The default is ‘gtk’.

verbose

Set this to True to generate additional information in the log file
that can help debug account discovery issues. Normally it should be
False to avoid leaking account information into log file.
This is most useful when debugging account discovery, and in that case
this setting has largely been superseded by the use of the --title and
--verbose command line options.

The default is False.

account_templates

The available account templates. These are used when creating new accounts.
The templates are given as a dictionary where the key is the name of the
template and the value is the template itself. The template is passed
through textwrap.dedent() to remove any leading white space. Any lines
that begin with ‘# Avendesora: ‘ represent comments that can contain
instructions to the user. They will are removed when the account is created.

additional_account_templates

Similar to account_templates, this settings allows you to add to any
built-in templates whereas you would override the built-in templates if you
used account_templates directly.

default_account_template

The default account template that is used when creating a new account and
the user does not specify a template name.

gpg_ids

The GPG ID or IDs to use by default when creating encrypted files (the
archive and account files).

gpg_armor

In the GPG world, armoring a file means converting it to simple ASCII.
Choose between ‘always’, ‘never’ and ‘extension’ (.asc: armor, .gpg:
no).

The default is ‘extension’.

gpg_home

This is your GPG home directory. By default it will be ~/.gnupg.

gpg_executable

Path to the gpg2 executable.

The default is /usr/bin/gpg2.

xdotool_executable

Path to the xdotool executable.

The default is /usr/bin/xdotool.

xsel_executable

External command that is used to place a value in the X selection buffer.
Use ‘/usr/bin/xsel -p’ if you wish to use the primary buffer (mouse middle
click).
Use ‘/usr/bin/xsel -b’ if you wish to use the clipboard buffer (Ctrl-V or
mouse right click then paste).

The default is /usr/bin/xsel (uses xsel default, which is the primary
buffer).

dmenu_executable

Path to the dmenu executable. Avendesora can be configured to use
dmenu as selection utility rather than built-in gtk version.

The default is /usr/bin/dmenu.

Python API

Introductory Examples

Access an Account Value

There are times where you might want to access an account value using a single
string that contains both the account and the field name, as shown in this
example:

from avendesora import PasswordGenerator, PasswordError

access_key_in_avendesora = 'iexcloud:api_key'
try:
 pw = PasswordGenerator()
 api_key = str(pw.get_value(access_key_in_avendesora))
except PasswordError as e:
 e.terminate()

Access Several Values for a Particular Account

You can access account information from Avendesora using Python using a simple
relatively high-level interface as shown in this example:

from avendesora import PasswordGenerator, PasswordError
from inform import display, fatal, os_error
from shlib import Run
from pathlib import Path

try:
 pw = PasswordGenerator()
 account = pw.get_account('mybank')
 name = account.get_value('name')
 username = account.get_username()
 passcode = account.get_passcode()
 url = account.get_value('ofxurl')
except PasswordError as e:
 e.terminate()

try:
 curl = Run(
 f'curl -K - {url!s}',
 stdin = f'user="{username!s}:{passcode!s}"',
 modes='sOEW0'
)
 Path(f'{name!s}.ofx').write_text(curl.stdout)
except OSError as e:
 fatal(os_error(e))

Basically, the approach is to open the password generator, open an account, and
then access values of that account. The various components of the Avendesora
programming interface are described next.

Using an Account Value

Both of the two examples given above us an get_value method, but they are
methods to two different classes. In the first example, get_value is a method
of the avendesora.PasswordGenerator class; it requires you to specify
both the account and field names in a single string passed as the primary
argument. In the second example, get_value is a method of the
avendesora.Account class. In this case you have already specified the
account, so you only need to specify the desired field name as an argument. In
both cases the methods return an avendesora.AccountValue object. This
is also true for avendesora.Account.get_username() and
avendesora.Account.get_password().

The various aspects of the value are available as attributes.

value – the value itself

is_secret – indicates whether the value is a secret

name – identifier for the first level of a field

key – identifier for the second level of a field

field – name.key

desc – description

If you cast the object to a string, you get the value in the form of a string.

In addition, the object provides the avendesora.AccountValue.render()
method for flexibly converting the account value to a string. You use it by
providing one or more template strings where the attributes are accessed using
a single letter contained with braces. So for example:

print(passcode.render('{n} = {v}')
print(passcode.render(('{f} ({d}): {v}', '{f}: {v}'))

You can include normal Python string formatting codes as well.

print(passcode.render('{n:>10} = {v}')

Components

This section documents the programming interface for Avendesora. You can view
the Avendesora source code, particularly avendesora.command, for
further examples on how to use this interface.

PasswordGenerator Class

This is the entry class to Avendesora. It is the only class you need
instantiate directly. By instantiating it you cause Avendesora to read the
user’s account files.

	
class avendesora.PasswordGenerator(init=False, gpg_ids=None, check_integrity=False, warnings=True)

	Initializes the password generator.
You should pass no arguments unless you are creating the user’s Avendesora
data directory.

Once instantiated, you can use get_account() to load a specific account, or
all_accounts() to load all accounts.

	Parameters

	
	init (bool) – Create user’s directory.

	gpg_ids (list of strings) – List of GPG identities to use when creating user’s directory.

	check_integrity (bool) – If true will validate that certain critical components in Avendesora
have not be tampered with. Checking the integrity can take up to a
second, so recommend you pass False on interactive commands that
benefit from low startup overhead and True on the more expensive
commands to assure integrity is occasionally checked.

	warnings (bool) – Suppress warnings from accounts. Useful when processing many
accounts. Does not affect warnings from the integrity check.

	Raises

	avendesora.PasswordError – Indicates an issue opening the user’s accounts.

	
all_accounts()

	Iterate through all accounts.

	
challenge_response(name, challenge)

	Generate a response to a challenge.

Given the name of a master seed (actually the basename of the file that
contains the master seed), returns an identifying response to a
challenge. If no challenge is provided, one is generated based on the
time and date. Returns both the challenge and the expected response as a
tuple.

	Parameters

	
	name (str) – The name of the master seed.

	challenge (str) – The challenge (may be empty).

	
discover_account(url=None, title=None, verbose=False)

	Discover the account from the environment.

Examine the environment and return the script that matches (the script
is initialized, and so contains a pointer to the right account). If more
than one account/secret matches, user is queried to resolve the
ambiguity.

	Parameters

	
	url (str) – Specifying the URL short-circuits the processing of the
title that is used to find the URL.

	title (str) – Override the window title. This is used for debugging.

	verbose (bool) – Run the discovery process in verbose mode (adds more information
to log file that can help debug account discovery.

	Raises

	avendesora.PasswordError – There is no account that matches the given environment.

	
find_accounts(target)

	Find accounts with names or aliases that contain a substring.

	Parameters

	target (str) – The desired substring.

	Returns

	Iterates through matching accounts.

	Return type

	avendesora.Account

	
get_account(name, request_seed=False, stealth_name=None)

	Return a specific account.

	Parameters

	
	name (str) – Looks up an account by name and returns it. This name must match
an account name or an account alias. The matching algorithm
ignores case and treats dash and underscore as equivalent.

	request_seed (str or bool) – If specified an additional seed is provided to the account (see:
misdirection). It may be specified as a
string, in which case it is used as the seed. Otherwise if
true, the seed it requested directly from the user.

	stealth_name (str) – The name used as the account name if the account is a stealth
account.

	Returns

	An account. The class itself is
returned, and not an instance of the class.

	Return type

	avendesora.Account

	Raises

	avendesora.PasswordError – There is no account that matches the given name.

	
get_value(path, request_seed=False, stealth_name=None)

	Get account value given path that includes account and field names.

	Parameters

	
	path (str) – Path includes account name and field name separated by a colon.
Paths of the following forms are accepted:

account: account’s default field

account:name: account and field name of a scalar value

account:name.key or account:name[key]:

member of a dictionary or array

key is string for dictionary, integer for array

	request_seed (str or bool) – If specified an additional seed is provided to the account (see:
misdirection). It may be specified as a
string, in which case it is used as the seed. Otherwise if
true, the seed it requested directly from the user.

	stealth_name (str) – The name used as the account name if the account is a stealth
account.

	Returns

	An account. The class itself is
returned, and not an instance of the class.

	Return type

	avendesora.Account

	Raises

	avendesora.PasswordError – There is no account of field that matches the given path.

	
search_accounts(target)

	Find accounts with values that contain a substring.

	Parameters

	target (str) – The desired substring.

	Returns

	Iterates through matching accounts.

	Return type

	avendesora.Account

Account Class

	
class avendesora.Account

	Class that holds all the information specific to an account.

Add desired account information as attributes of the class.

	
classmethod export(fold_level=1)

	Return all account fields along with their values as a dictionary

Used when exporting accounts. If fold_level is truthy, it should be a
positive integer that indicates the fold level for each account.

	Returns

	A string that contains all account fields with all secrets included
formatted as an Account class.

	
classmethod get_composite(name, default=None)

	Get field value given a field name.

A lower level interface than get_value() that given a name returns the
value of the associated field, which may be a scalar (string or integer)
or a composite (array of dictionary). Unlike get_value(), the actual
value is returned, not a object that contains multiple facets of the
value.

	Parameters

	name (str) – The name of the field.

	Returns

	The requested value.

	
classmethod get_fields(all=False, sort=False)

	Iterate through fields.

Iterates through the field names.

Example:

for name, keys in account.get_fields():
 for key, value in account.get_values(name):
 display(indent(
 value.render(('{f} ({d}): {v}', '{f}: {v}'))
))

Example:

fields = [
 account.combine_field(name, key)
 for name, keys in account.get_fields()
 for key in keys
]
for field in fields:
 value = account.get_value(field)
 display(f'{field}: {value!s}')

	Parameters

	
	all (bool) – If False, ignore the tool fields.

	sort (bool) – If False, use natural sort order.

	Returns

	A pair (2-tuple) that contains both field name and the key names.
None is returned for the key names if the field holds a scalar value.

	
classmethod get_name()

	Get account name.

	Returns

	Returns the primary account name. This is generally the class name
converted to lower case unless it was overridden with the NAME
attribute.

	
classmethod get_passcode()

	Get the passcode.

Like get_value(), but tries the credential_secrets in order and returns
the first found. credential_secrets is an Avendesora configuration setting
that by default is password, passphrase, and passcode.

	Returns

	The passcode.

	
classmethod get_scalar(name, key=None, default=False)

	Get field value given a field name and key.

A lower level interface than get_value() that given a name and perhaps
a key returns a scalar value. Also takes an optional default value that is
returned if the value is not found. Unlike get_value(), the actual value
is returned, not a object that contains multiple facets of the value.

The name is the field name, and the key would identity which value is
desired if the field is a composite. If default is False, an error is raised
if the value is not present, otherwise the default value itself is returned.

	Parameters

	
	name (str) – The name of the field.

	key (str or int) – The key for the desired value (should be None for scalar values).

	default – The value to return if the requested value is not available.

	Returns

	The requested value.

	
classmethod get_username()

	Get the username.

Like get_value(), but tries the credential_ids in order and returns
the first found. credential_ids is an Avendesora configuration setting
that by default is username and email.

	Returns

	The username or email address.

	
classmethod get_value(field=None)

	Get account value.

Return value from the account given a user friendly identifier or
script. User friendly identifiers include:

None: value of default field

name: scalar value

name.key or name[key]:

member of a dictionary or array

key is string for dictionary, integer for array

Scripts are simply strings with embedded attributes.
Ex: ‘username: {username}, password: {passcode}’

	Parameters

	field (str) – Field identifier or script.

	Returns

	the desired value.

	Return type

	avendesora.AccountValue

	
classmethod get_values(name)

	Iterate through the values for a field.

	Parameters

	name (str) – The name of the field.

	Returns

	Returns a pair (2-tuple) that contains the key and the value given
as an avendesora.AccountValue for each of the values. If
the value is a scalar, the key is None.

AccountValue Class

	
class avendesora.AccountValue(value, is_secret, name=None, key=None, desc=None)

	An account value.

This is the object returned by avendesora.Account.get_value() and
avendesora.Account.get_values().
It contains information about a single account value. Specifically, it
provides the following attributes: value, is_secret, name, key,
field, and desc.

	
render(fmts=('{f} ({d}): {v}', '{f}: {v}'))

	Return value formatted as a string.

	Parameters

	fmts (collection of strings) – fmts contains a sequence of format strings that are tried in
sequence. The first one for which all keys are known is used.
The possible keys are:

n — name (identifier for the first level of a field)

k — key (identifier for the second level of a field)

f — field (name.key)

d — description

v — value

If none work, the value alone is returned.

	Returns

	The value rendered as a string.

PasswordError Exception

	
exception avendesora.PasswordError(*args, **kwargs)

	Password error.

This exception subclasses
Inform.Error [https://github.com/KenKundert/inform#exception].

This exception subclasses inform.Error [https://github.com/KenKundert/inform#exception].

	
get_codicil(codicil=None)

	Get the codicils.

A codicil is extra text attached to an error that can clarify the error
message or to give extra context.

Return the codicil as a tuple. If a codicil is specified as an
argument, it is appended to the exception’s codicil without modifying it.

	Parameters

	codicil (string or tuple of strings) – A codicil or collection of codicils that is appended to the
return value without modifying the cached codicil.

	Returns

	The codicil argument is appended to the exception’s codicil and the
combination is returned. The return value is always in the form of a
tuple even if there is only one component.

	
get_culprit(culprit=None)

	Get the culprits.

Culprits are extra pieces of information attached
to an error that help to identify the source of the error. For example,
file name and line number where the error was found are often attached
as culprits.

Return the culprit as a tuple. If a culprit is specified as an
argument, it is appended to the exception’s culprit without modifying it.

	Parameters

	culprit (string, number or tuple of strings and numbers) – A culprit or collection of culprits that is appended to the
return value without modifying the cached culprit.

	Returns

	The culprit argument is prepended to the exception’s culprit and the
combination is returned. The return value is always in the form of a
tuple even if there is only one component.

	
get_message(template=None)

	Get exception message.

	Parameters

	template (str) – This argument is treated as a format string and is passed both
the unnamed and named arguments. The resulting string is treated
as the message and returned.

If not specified, the template keyword argument passed to the
exception is used. If there was no template argument, then the
positional arguments of the exception are joined using sep and
that is returned.

	Returns

	The formatted message without the culprits.

	
render(template=None)

	Convert exception to a string for use in an error message.

	Parameters

	template (str) – This argument is treated as a format string and is passed both
the unnamed and named arguments. The resulting string is treated
as the message and returned.

If not specified, the template keyword argument passed to the
exception is used. If there was no template argument, then the
positional arguments of the exception are joined using sep and
that is returned.

	Returns

	The formatted message with any culprits.

	
report(**new_kwargs)

	Report exception to the user.

Prints the error message on the standard output.

The inform.error() function is called with the exception arguments.

	Parameters

	**kwargs – report() takes any of the normal keyword arguments normally
allowed on an informant (culprit, template, etc.). Any keyword
argument specified here overrides those that were specified when
the exception was first raised.

	
reraise(**new_kwargs)

	Re-raise the exception.

	
terminate(**new_kwargs)

	Report exception and terminate.

Prints the error message on the standard output and exits the program.

The inform.fatal() function is called with the exception arguments.

	Parameters

	**kwargs – report() takes any of the normal keyword arguments normally
allowed on an informant (culprit, template, etc.). Any keyword
argument specified here overrides those that were specified when
the exception was first raised.

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

Example: Displaying Account Values

The following example prints out all account values for account whose name are
found in a list.

from avendesora import PasswordGenerator, PasswordError
from inform import display, indent

accounts = ['bank', 'credit-union', 'brokerage']

try:
 pw = PasswordGenerator()

 for account_name in accounts:
 account = pw.get_account(account_name)
 description = account.get_scalar('desc', None, account_name)
 display(description, len(description)*'=', sep='\n')

 for name, keys in account.get_fields():
 if keys == [None]:
 value = account.get_value(name)
 display(value.render('{n}: {v}'))
 else:
 display(name + ':')
 for key, value in account.get_values(name):
 display(indent(
 value.render(('{k}) {d}: {v}', '{k}: {v}'))
))
 display()
except PasswordError as e:
 e.terminate()

Example: Add SSH Keys

This example adds SSH keys to your SSH agent. It uses pexpect to manage the
interaction between this script and ssh-add.

A more advanced version of
addsshkeys [https://github.com/KenKundert/addsshkeys]
can be found on GitHub.

#!/usr/bin/env python3
"""
Add SSH keys

Add SSH keys to SSH agent.
The following keys are added: {keys}.

Usage:
 addsshkeys [options]

Options:
 -v, --verbose list the keys as they are being added

A description of how to configure and use this program can be found at
`<https://avendesora.readthedocs.io/en/latest/api.html#example-add-ssh-keys>_.
"""
Assumes that the Avendesora account that contains the ssh key's passphrase
has a name or alias of the form <name>-ssh-key. It also assumes that the
account contains a field named 'keyfile' or 'keyfiles' that contains an
absolute path or paths to the ssh key files in a string.

from avendesora import PasswordGenerator, PasswordError
from inform import Inform, codicil, error, narrate
from docopt import docopt
from pathlib import Path
import pexpect

SSHkeys = 'primary github backups'.split()
SSHadd = 'ssh-add'

cmdline = docopt(__doc__.format(keys = ', '.join(SSHkeys)))
Inform(narrate=cmdline['--verbose'])

try:
 pw = PasswordGenerator()
except PasswordError as e:
 e.terminate()

for key in SSHkeys:
 name = key + '-ssh-key'
 try:
 account = pw.get_account(name)
 passphrase = str(account.get_passcode().value)
 if account.has_field('keyfiles'):
 keyfiles = account.get_value('keyfiles').value
 else:
 keyfiles = account.get_value('keyfile').value
 for keyfile in keyfiles.split():
 path = Path(keyfile).expanduser()
 narrate('adding.', culprit=keyfile)
 try:
 sshadd = pexpect.spawn(SSHadd, [str(path)])
 sshadd.expect('Enter passphrase for %s: ' % (path), timeout=4)
 sshadd.sendline(passphrase)
 sshadd.expect(pexpect.EOF)
 sshadd.close()
 response = sshadd.before.decode('utf-8')
 if 'identity added' in response.lower():
 continue
 except (pexpect.EOF, pexpect.TIMEOUT):
 pass
 error('failed.', culprit=key)
 codicil('response:', sshadd.before.decode('utf8'), culprit=SSHadd)
 codicil('exit status:', sshadd.exitstatus , culprit=SSHadd)
 except PasswordError as e:
 e.report(culprit=key)

Example: Export to BitWarden

This program exports selected accounts from Avendesora to BitWarden.
BitWarden is a multi-platform open-source password manager. Using BitWarden
you can extend the reach of Avendesora to your phone or other non-Unix
platform.

To use bw-export you would add a special field named bitwarden to those
accounts that you wish to export. It must contain a dictionary that gives the
values of each of the fields exported for each account. For example:

bitwarden = dict(
 type='login',
 name='Andor Airlines',
 login_uri='{urls}',
 login_username='{email}',
 login_password='{passcode}',
 fields='account: {account}\ncustomer service: {customer_service}',
)

The exported fields are described on the BitWarden website [https://help.bitwarden.com/article/import-data]. The values for the fields
are either simple strings, as in type and name, or Avendesora scripts, as
in login_username and fields. Scripts allow you to interpolate
Advendesora account field value into BitWarden fields. Any field that is
supported but not given will be blank.

This script produces a file named bw.csv that contains the exported accounts,
It can be imported into BitWarden from their website. You should delete any
previously imported accounts before importing this file to avoid duplicates.
You should all take care to delete this file after you have completed the import
as it contains the passcodes in plain text.

More advanced versions of this example script are available as bw-export [https://github.com/KenKundert/bw-export] from both GitHub and PyPI.

#!/usr/bin/env python3
Description
"""Export Accounts to BitWarden

Generates a CSV file (bw.csv) suitable for uploading to BitWarden.

Usage:
 bw-export

Only those accounts with 'bitwarden' field are exported. The "bitwarden' field
is expected to be a dictionary that may contain the following fields: folder,
favorite, type, name, notes, fields, login_uri, login_username, login_password,
login_totp. If not given, they are left blank. Each value may be a simple string
or it may be a script.

Once created, it can be imported from the BitWarden website
(vault.bitwarden.com). You should delete existing accounts before re-importing
to avoid duplicate accounts. When importing, use 'Bitwarden (csv)' as the file
format.
"""

Imports
from avendesora import PasswordGenerator, PasswordError, Script
from inform import conjoin, os_error, terminate
from docopt import docopt
import csv

Globals
fieldnames='''
 folder
 favorite
 type
 name
 notes
 fields
 login_uri
 login_username
 login_password
 login_totp
'''.split()
output_filename = 'bw.csv'

Program
try:
 # Read command line and process options
 cmdline = docopt(__doc__)

 # Scan accounts and gather accounts to export
 pw = PasswordGenerator()
 accounts = {}
 with open(output_filename, 'w', newline='') as csvfile:
 writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
 writer.writeheader()

 # visit each account
 for account in pw.all_accounts():
 account_name = account.get_name()
 class_name = account.__name__
 description = account.get_scalar('desc', None, None)

 # process bitwarden field if it exists
 fields = account.get_composite('bitwarden')
 if fields:
 # expand fields
 for k, v in fields.items():
 value = Script(v)
 value.initialize(account)
 fields[k] = str(value)
 writer.writerow(fields)
 os.chmod(output_filename, 0o600)

Process exceptions
except KeyboardInterrupt:
 terminate('Killed by user.')
except PasswordError as e:
 e.terminate()
except OSError as e:
 terminate(os_error(e))

Example: Postmortem Summaries

This is a program that generates a summary of selected accounts for a person’s
children and partners. It is assumed that these messages would be placed into
a safe place to be found and read upon the person’s death.

It examines all accounts looking for a special field, postmortem_recipients.
If the field exists, then that account is included in the file of accounts sent
to that recipient. The script also looks for another special field,
estimated_value. It includes this value in the message and prints the values
to the standard output when generating the messages. This gives you a chance to
review the values and update them if they are stale. The generated files are
encrypted so that only the intended recipients can read them.

Here is an example of the fields you would add to an account to support
postmortem:

postmortem_recipients = 'kids'
estimated_value = dict(
 updated = 'January 2019',
 equities = '$23k',
 cash = '$1.7k',
 retirement = '$41,326'
)

The estimated_value field should be a dictionary where one item is ‘updated’,
which contains the date of when the values were last updated, and the remaining
items should give an investment class and value. The values may be specified as
strings (commas, units and SI scale factors allowed) or as a real number or
expression.

You configure postmortem by creating ~/.config/postmortem/config. This file
contains Python code that specifies the various settings. At a minimum it should
include the GPG IDs for yourself and your recipients. For example:

my_gpg_ids = 'morgase@andor.gov'
recipients = dict(
 kids='galad@trakand.name gawyn@trakand.name elayne@trakand.name',
 partners='taringail.damodred@andor.gov',
)

A more advanced version of
postmortem [https://github.com/KenKundert/postmortem].
can be found on GitHub.

#!/usr/bin/env python3

Description
"""Postmortem

Generate an account summary that includes complete account information,
including secrets, for selected accounts. This summary should allow the
recipients to access your accounts. The summaries are intended to be given to
the recipients after you die.

Usage:
 postmortem [options] [<recipients>...]

Choose from: {available}. If no recipients are specified, then summaries will
be generated for all recipients.

A description of how to configure and use this program can be found at
`<https://avendesora.readthedocs.io/en/latest/api.html#example-postmortem-summaries>_.
"""

Imports
from avendesora import PasswordGenerator, PasswordError
from avendesora.gpg import PythonFile
from inform import (
 Error, conjoin, cull, display, indent, os_error, terminate, warn
)
from docopt import docopt
from appdirs import user_config_dir
from pathlib import Path
import gnupg

Settings
prog_name = 'postmortem'
config_filename = 'config'

these can be overridden in the settings file: ~/.config/postmortem
my_gpg_ids = ''
recipients = dict()
avendesora_value_fieldname = 'estimated_value'
avendesora_recipients_fieldname = 'postmortem_recipients'

try:
 # Read settings
 config_filepath = Path(user_config_dir(prog_name), config_filename)
 if config_filepath.exists():
 settings = PythonFile(config_filepath)
 settings.initialize()
 locals().update(settings.run())
 else:
 warn('no configuration file found.')

 # Read command line and process options
 cmdline = docopt(__doc__.format(available=conjoin(recipients)))
 who = cmdline['<recipients>']
 if not who:
 who = recipients

 # Scan accounts and gather information for recipients
 pw = PasswordGenerator()
 accounts = {}
 for account in pw.all_accounts():
 account_name = account.get_name()
 class_name = account.__name__
 description = account.get_scalar('desc', None, None)

 # summarize account values
 data = account.get_composite(avendesora_value_fieldname)
 postmortem_recipients = account.get_scalar(avendesora_recipients_fieldname, default=None)
 if data and not postmortem_recipients:
 warn('no recipients.', culprit= account.get_name())
 continue
 if not postmortem_recipients:
 continue
 postmortem_recipients = postmortem_recipients.split()

 # gather information for recipients
 for recipient in recipients:
 if recipient in postmortem_recipients:
 # output title
 title = ' - '.join(cull([class_name, description]))
 lines = [title, len(title)*'=']

 # output avendesora names
 aliases = account.get_composite('aliases')
 names = [account_name] + (aliases if aliases else [])
 lines.append('avendesora names: ' + ', '.join(names))

 # output user fields
 for name, keys in account.get_fields():
 if name in [avendesora_recipients_fieldname, 'desc', 'NAME']:
 continue
 if keys == [None]:
 value = account.get_value(name)
 lines += value.render('{n}: {v}').split('\n')
 else:
 lines.append(name + ':')
 for key, value in account.get_values(name):
 lines += indent(
 value.render(('{k}) {d}: {v}', '{k}: {v}'))
).split('\n')
 if recipient not in accounts:
 accounts[recipient] = []
 accounts[recipient].append('\n'.join(lines))

 # generate encrypted files than contain about accounts for each recipient
 gpg = gnupg.GPG(gpgbinary='gpg2')
 for recipient, idents in recipients.items():
 if recipient in accounts:
 content = accounts[recipient]
 num_accounts = len(content)
 encrypted = gpg.encrypt(
 '\n\n\n'.join(content),
 idents.split() + my_gpg_ids.split()
)
 if not encrypted.ok:
 raise Error(
 'unable to encrypt:', encrypted.stderr, culprit=recipient
)
 try:
 filename = recipient + '.gpg'
 with open(filename, 'w') as file:
 file.write(str(encrypted))
 display(f'contains {num_accounts} accounts.', culprit=filename)
 except OSError as e:
 raise Error(os_error(e))
 else:
 warn('no accounts found.', culprit=recipient)

process exceptions
except KeyboardInterrupt:
 terminate('Killed by user.')
except (PasswordError, Error) as e:
 e.terminate()

Example: Net Worth

If you have added estimated_value to all of your accounts that hold
significant value as proposed in the previous example, then networth
summarizes the values and estimates your net worth.

You configure networth by creating ~/.config/networth/config. This file
contains Python code that specifies the various settings. You do not need this
file, but there is a few things you might wish to configure with this file.
First, you can arrange to report the networth of multiple people. Generally you
would be interested in your own networth, but you might also be interested in
the networth of someone such as a child or a parent if you are their financial
custodian. Second, you can rename accounts if you have obscure or excessively
long account names. Finally, you can add a list of cryptocurrencies, in which
case networth will download the latest prices to give you an up-to-date view
of your networth.

Here is an example of what your configuration file might look like.

default_who='me'

avendesora_fieldnames = dict(
 me='estimated_value',
 parents='parents_estimated_value',
)

aliases = dict(
 me = {
 'princeton-capital': 'home mortgage',
 },
 parents = {
 'parents-bankamerica': 'bank america',
 'parents-schwab': 'schwab',
 'premierlending': 'home mortgage',
 }
)

coins = 'BTC ETH'.split()

bar settings
screen_width = 110

A more advanced version of networth [https://github.com/KenKundert/networth]
can be found on GitHub.

#!/usr/bin/env python3
Description
"""Networth

Show a summary of the networth of the specified person.

Usage:
 networth [options] [<profile>]

Options:
 -u, --updated show the account update date rather than breakdown

{available_profiles}
Settings can be found in: {settings_dir}.
Typically there is one file for generic settings named 'config' and then one
file for each profile whose name is the same as the profile name with a '.prof'
suffix. Each of the files may contain any setting, but those values in 'config'
override those built in to the program, and those in the individual profiles
override those in 'config'. The following settings are understood. The values
are those before an individual profile is applied.

Profile values:
 default_profile = {default_profile}

Account values:
 avendesora_fieldname = {avendesora_fieldname}
 value_updated_subfieldname = {value_updated_subfieldname}
 date_formats = {date_formats}
 max_account_value_age = {max_account_value_age} (in days)
 aliases = {aliases}
 (aliases is used to fix account names to make them more readable)

Cryptocurrency values:
 coins = {coins}
 prices_filename = {prices_filename}
 max_coin_price_age = {max_coin_price_age} (in seconds)

Bar graph values:
 screen_width = {screen_width}
 asset_color = {asset_color}
 debt_color = {debt_color}

The prices and log files can be found in {cache_dir}.

A description of how to configure and use this program can be found at
`<https://avendesora.readthedocs.io/en/latest/api.html#example-net-worth>`_.
"""

Imports
from avendesora import PasswordGenerator, PasswordError
from avendesora.gpg import PythonFile
from inform import (
 conjoin, display, done, error, fatal, is_str, join, narrate, os_error,
 render_bar, terminate, warn, Color, Error, Inform,
)
from quantiphy import Quantity
from docopt import docopt
from appdirs import user_config_dir, user_cache_dir
from pathlib import Path
import arrow

Settings
These can be overridden in ~/.config/networth/config
prog_name = 'networth'
config_filename = 'config'

Avendesora settings
default_profile = 'me'
avendesora_fieldname = 'estimated_value'
value_updated_subfieldname = 'updated'
aliases = {}

cryptocurrency settings (empty coins to disable cryptocurrency support)
proxy = None
prices_filename = 'prices'
coins = None
max_coin_price_age = 86400 # refresh cache if older than this (seconds)

bar settings
screen_width = 79
asset_color = 'green'
debt_color = 'red'
 # currently we only colorize the bar because ...
 # - it is the only way of telling whether value is positive or negative
 # - trying to colorize the value really messes with the column widths and is
 # not attractive

date settings
date_formats = [
 'MMMM YYYY',
 'YYMMDD',
]
max_account_value_age = 120 # days

Utility functions
get the age of an account value
def get_age(date, profile):
 if date:
 for fmt in date_formats:
 try:
 then = arrow.get(date, fmt)
 age = arrow.now() - then
 return age.days
 except:
 pass
 warn(
 'could not compute age of account value',
 '(updated missing or misformatted).',
 culprit=profile
)

colorize text
def colorize(value, text = None):
 if text is None:
 text = str(value)
 return debt_color(text) if value < 0 else asset_color(text)

try:
 # Initialization
 settings_dir = Path(user_config_dir(prog_name))
 cache_dir = user_cache_dir(prog_name)
 Quantity.set_prefs(prec=2)
 Inform(logfile=Path(cache_dir, 'log'))
 display.log = False # do not log normal output

 # Read generic settings
 config_filepath = Path(settings_dir, config_filename)
 if config_filepath.exists():
 narrate('reading:', config_filepath)
 settings = PythonFile(config_filepath)
 settings.initialize()
 locals().update(settings.run())
 else:
 narrate('not found:', config_filepath)

 # Read command line and process options
 available=set(p.stem for p in settings_dir.glob('*.prof'))
 available.add(default_profile)
 if len(available) > 1:
 choose_from = f'Choose <profile> from {conjoin(sorted(available))}.'
 default = f'The default is {default_profile}.'
 available_profiles = f'{choose_from} {default}\n'
 else:
 available_profiles = ''

 cmdline = docopt(__doc__.format(
 **locals()
))
 show_updated = cmdline['--updated']
 profile = cmdline['<profile>'] if cmdline['<profile>'] else default_profile
 if profile not in available:
 fatal(
 'unknown profile.', choose_from, template=('{} {}', '{}'),
 culprit=profile
)

 # Read profile settings
 config_filepath = Path(user_config_dir(prog_name), profile + '.prof')
 if config_filepath.exists():
 narrate('reading:', config_filepath)
 settings = PythonFile(config_filepath)
 settings.initialize()
 locals().update(settings.run())
 else:
 narrate('not found:', config_filepath)

 # Process the settings
 if is_str(date_formats):
 date_formats = [date_formats]
 asset_color = Color(asset_color)
 debt_color = Color(debt_color)

 # Get cryptocurrency prices
 if coins:
 import requests

 cache_valid = False
 cache_dir = Path(cache_dir)
 cache_dir.mkdir(parents=True, exist_ok=True)
 prices_cache = Path(cache_dir, prices_filename)
 if prices_cache and prices_cache.exists():
 now = arrow.now()
 age = now.timestamp - prices_cache.stat().st_mtime
 cache_valid = age < max_coin_price_age
 if cache_valid:
 contents = prices_cache.read_text()
 prices = Quantity.extract(contents)
 narrate('coin prices are current:', prices_cache)
 else:
 narrate('updating coin prices')
 # download latest asset prices from cryptocompare.com
 currencies = dict(
 fsyms=','.join(coins), # from symbols
 tsyms='USD', # to symbols
)
 url_args = '&'.join(f'{k}={v}' for k, v in currencies.items())
 base_url = f'https://min-api.cryptocompare.com/data/pricemulti'
 url = '?'.join([base_url, url_args])
 try:
 r = requests.get(url, proxies=proxy)
 except KeyboardInterrupt:
 done()
 except Exception as e:
 # must catch all exceptions as requests.get() can generate
 # a variety based on how it fails, and if the exception is not
 # caught the thread dies.
 raise Error('cannot access cryptocurrency prices:', codicil=str(e))

 try:
 data = r.json()
 except:
 raise Error('cryptocurrency price download was garbled.')
 prices = {k: Quantity(v['USD'], '$') for k, v in data.items()}

 if prices_cache:
 contents = '\n'.join('{} = {}'.format(k,v) for k,v in
 prices.items())
 prices_cache.write_text(contents)
 narrate('updating coin prices:', prices_cache)
 prices['USD'] = Quantity(1, '$')
 else:
 prices = {}

 # Build account summaries
 narrate('running avendesora')
 pw = PasswordGenerator()
 totals = {}
 accounts = {}
 total_assets = Quantity(0, '$')
 total_debt = Quantity(0, '$')
 grand_total = Quantity(0, '$')
 width = 0
 for account in pw.all_accounts():

 # get data
 data = account.get_composite(avendesora_fieldname)
 if not data:
 continue
 if type(data) != dict:
 error(
 'expected a dictionary.',
 culprit=(account_name, avendesora_fieldname)
)
 continue

 # get account name
 account_name = account.get_name()
 account_name = aliases.get(account_name, account_name)
 account_name = account_name.replace('_', ' ')
 width = max(width, len(account_name))

 # sum the data
 updated = None
 contents = {}
 total = Quantity(0, '$')
 odd_units = False
 for k, v in data.items():
 if k == value_updated_subfieldname:
 updated = v
 continue
 if k in prices:
 value = Quantity(v*prices[k], prices[k])
 k = 'cryptocurrency'
 else:
 value = Quantity(v, '$')
 if value.units == '$':
 total = total.add(value)
 else:
 odd_units = True
 contents[k] = value.add(contents.get(k, 0))
 width = max(width, len(k))
 for k, v in contents.items():
 totals[k] = v.add(totals.get(k, 0))

 # generate the account summary
 age = get_age(data.get(value_updated_subfieldname), account_name)
 if show_updated:
 desc = updated
 else:
 desc = ', '.join('{}={}'.format(k, v) for k, v in contents.items() if v)
 if len(contents) == 1 and not odd_units:
 desc = k
 if age and age > max_account_value_age:
 desc += f' ({age//30} months old)'
 accounts[account_name] = join(
 total, desc.replace('_', ' '),
 template=('{:7q} {}', '{:7q}'), remove=(None,'')
)

 # sum assets and debts
 if total > 0:
 total_assets = total_assets.add(total)
 else:
 total_debt = total_debt.add(-total)
 grand_total = grand_total.add(total)

 # Summarize by account
 display('By Account:')
 for name in sorted(accounts):
 summary = accounts[name]
 display(f'{name:>{width+2}s}: {summary}')

 # Summarize by investment type
 display('\nBy Type:')
 largest_share = max(v for v in totals.values() if v.units == '$')
 barwidth = screen_width - width - 18
 for asset_type in sorted(totals, key=lambda k: totals[k], reverse=True):
 value = totals[asset_type]
 if value.units != '$':
 continue
 share = value/grand_total
 bar = colorize(value, render_bar(value/largest_share, barwidth))
 asset_type = asset_type.replace('_', ' ')
 display(f'{asset_type:>{width+2}s}: {value:>7s} ({share:>5.1%}) {bar}')
 display(
 f'\n{"TOTAL":>{width+2}s}:',
 f'{grand_total:>7s} (assets = {total_assets}, debt = {total_debt})'
)

Handle exceptions
except OSError as e:
 error(os_error(e))
except KeyboardInterrupt:
 terminate('Killed by user.')
except (PasswordError, Error) as e:
 e.terminate()
done()

Here is a typical output of this script:

By Account:
 betterment: $22k equities=$9k, cash=$3k, retirement=$9k
 chase: $7k cash
 southwest: $0 miles=78kmiles
 coindesk: $15.3k cryptocurrency

By Type:
 cryptocurrency: $15.3k (35.3%) ██
 cash: $10k (23.1%) ███████████████████████████████
 equities: $9k (20.8%) ███████████████████████████
 retirement: $9k (20.8%) ███████████████████████████

 TOTAL: $43.3k (assets = $43.3k, debt = $0)

Examples

Challenge Questions

Websites originally used challenge questions to allow you to re-establish your
identity if you lose your user name or password, so it was enough to simply save
the answers so that they were available if needed. But now many websites require
you to answer the challenge questions if the site does not recognize your
browser because your cookie expired or was deleted. As such, people need to
answer their challenge questions with much more frequency. Generally the site
will save your answers to 4 or 5 challenge questions, and will present you with
1 or 2 at random. You must answer them correctly before you are allowed to
login. To accommodate these needs, Avendesora saves the challenge questions
and either stores or generates the answers. It is also makes it easy for you to
autotype the answer to any of your questions.

The following shows how to configure an account to support challenge questions.

class BankOfAmerica(Account):
 aliases = 'boa bankamerica'
 username = 'matrim'
 passcode = PasswordRecipe('12 2l 2u 2d 2s')
 questions = [
 Question('elementary school?'),
 Question('favorite foreign city?'),
 Question('first pet?'),
 Question('what year was your father born?'),
 Question('favorite movie?'),
]
 discovery = [
 RecognizeURL(
 'https://www.bankofamerica.com/',
 script='{username}{tab}{passcode}{return}'
),
 RecognizeURL(
 'https://secure.bankofamerica.com',
 script='{questions}{tab}',
),
]

In this case 5 questions are supported. When you are first required to set up
your challenge questions the website generally presents you with 20 or 30 to
choose form. Simply choose the first few and add them to your account.

Then use the value command to generate the answers and
copy them into the website. You need not enter the questions into Avendesora
exactly, but once you provide your website with the generated answers you must
not change the questions in any way because doing so would change the answers.
Finally, the first time you are required to enter answers to the challenge
questions, take note of the URL and add a discovery entry that matches the url
and generates the questions. In most cases you will not be able to specify
a single question, so simply specify the array and Avendesora will allow you
to choose a particular question when you request an answer. Specifically, when
the website takes you to the challenge question page, click in the field for the
first answer and type the hotkey that runs Avendesora in autotype mode.
Avendesora should recognize the page and allow you to identify the question.
It will then autotype the answer into the field and then move to the next field.
Alternately, if you terminate the script with ‘{return}’ rather than ‘{tab}’, it
will take you to the next page.

In some cases the website makes you choose from a fixed set of answers. In this
case you would save the answer with the question as follows:

class BankOfAmerica(Account):
 ...
 questions = [
 Question('elementary school?', answer='MLK Elementary'),
 Question('favorite foreign city?', answer='Kashmir'),
 Question('first pet?', answer='Spot'),
 Question('what year was your father born?', answer='1950'),
 Question('favorite movie?', answer='A boy and his dog'),
]
 ...

Two Page Authentication

A new trend in recent years is websites that use two-page authentication. This
is where you enter your user name or email on one page, you then submit it and
get another page that you use to enter your password, which requires a second
submission. Google moved to two-page authentication some time ago, and now
Amazon seems to be switching as well. Originally this was intended as an
anti-phishing strategy. After entering your user name you are shown a site
image and phrase that you can use to confirm that you are logging in to the
correct site. This is unnecessary when using RecognizeURL because it will
only enter your user name and password if the URL is correct. Recently however,
sites have dispensed with the site image and phrase, but still spread the login
in process over two pages. It is not clear why they do this. There does not seem
to be any security benefit. In fact it acts to reduce security by making it more
difficult to use a password manager. Unfortunately this is all too common.
Companies talk a good game when it comes to security, but all to often employ
practices that are antithetical to good security.

There are two approaches to handling two-page authentication in Avendesora.
The first would be to split the account discovery into two steps. For example:

class Gmail(Account):
 aliases = 'email'
 username = 'matrim.cauthon'
 passcode = Passphrase()
 urls = 'https://accounts.google.com/signin/v2/identifier'
 discovery = [
 RecognizeURL(
 'https://accounts.google.com/ServiceLogin/identifier',
 'https://accounts.google.com/signin/v2/identifier',
 script='{username}{return}',
 name='username',
),
 RecognizeURL(
 'https://accounts.google.com/signin/v2/sl/pwd',
 script='{passphrase}{return}',
 name='passcode',
),
]

Notice that there are two instances of RecognizeURL, both looking for
different URLs. You would trigger Avendesora to enter the user name, then
trigger it again to enter the passcode. This is the best case situation in that
the URLs for each page are distinct. However, some sites make it difficult to
distinguish what is being asked for just by looking at the URL. Amazon is one
of those:

class Amazon(Account):
 email = 'matrim@tworivers.com'
 passcode = Passphrase()
 discovery = [
 RecognizeURL(
 'https://www.amazon.com/ap/signin',
 script = '{email}{return}',
 name = 'email',
),
 RecognizeURL(
 'https://www.amazon.com/ap/signin',
 script = '{passcode}{return}',
 name = 'passcode',
),
]

Notice that the URL is the same for both recognizers, which causes Avendesora
to ask you which you want each time you request either. A variation on this is
to have different URLs for each page, but one URL is a subset of the other. For
example, ‘andorsavings.com/signin’ and ‘andorsavings.com/signin/pwd’. By
default Avendesora will offer both when it comes time to enter the password,
but adding ‘exact_path=True’ to the username recognizer causes Avendesora to
be more selective.

The second approach is use just one recognizer that outputs both the user name
and password, but to add a delay between them. For example:

class Amazon(Account):
 email = 'amazon@shalmirane.com'
 passcode = Passphrase()
 discovery = [
 RecognizeURL(
 'https://www.amazon.com/ap/signin',
 script = '{email}{return}{sleep 2}{passcode}{return}',
 name = 'both',
),
]

In this way you would only need to trigger Avendesora once.
You might have to adjust the sleep time to be able to log in reliably.

Chrome

The Chrome browser seems to have a bug that can interfere with its use with
account discovery. In the two step process used when logging in, the site might
pre-fill-in your user name so you do not have to enter it explicitly, you just
have to click next. Chrome then takes you to the page where you are expected
to enter your password, however when it does so it does not update the window
title to match the new page. Then Avendesora sees the wrong URL and either
enters the wrong thing or does not recognize the page. To work around this bug,
you must refresh the page when you land on the password page before activating
Avendesora.

Wireless Router

Wireless routers typically have two or more secrets consisting of the admin
password and the passwords for one or more wireless networks. For example, the
router in this example supports two networks, a privileged network that allows
connections to the various devices on the local network and the guest network
that that only access to the internet. In this case all three employ pass
phrases. The admin password is held in passcode and the network names and
passwords are held in the network_passwords array. To make the information
about each network easy to access from the command line, two scripts are
defined, guest and privileged, and each produces both the network name and
the network password for the corresponding networks.

Secret discovery handles two distinct cases. The first case is when from within
your browser you navigate to your router (ip=192.168.1.1). In this situation,
the URL is matched and the script is run that produces the administrative
username and password. The second case is when you attempt to connect to
a wireless network and a dialog box pops up requesting the SSID and password of
the network you wish to connect to. Running xwininfo shows that the title of
the dialog box is ‘Wi-Fi Network Authentication Required’. When this title is
seen, both the title recognizers match, meaning that both the privileged and the
guest credentials are offered as choices.

class NetgearAC1200_WirelessRouter(Account):
 NAME = 'home-router'
 aliases = 'wifi'
 admin_username = 'admin'
 admin_password = Passphrase()
 default = 'admin_password'
 networks = ["Occam's Router", "Occam's Router (guest)"]
 network_passwords = [Passphrase(), Passphrase()]
 privileged = Script('SSID: {networks.0}{return}password: {network_passwords.0}')
 guest = Script('SSID: {networks.1}{return}password: {network_passwords.1}')
 discovery = [
 RecognizeURL(
 'http://192.168.1.1',
 script='{admin_username}{tab}{admin_password}{return}'
),
 RecognizeTitle(
 'Wi-Fi Network Authentication Required',
 script='{networks.0}{tab}{network_passwords.0}{return}',
 name='privileged network'
),
 RecognizeTitle(
 'Wi-Fi Network Authentication Required',
 script='{networks.1}{tab}{network_passwords.1}{return}',
 name='guest network'
),
]
 model_name = "Netgear AC1200 wireless router"

Credit Card Information

Many websites offer to store your credit card information. Of course, we have
all heard of the massive breeches that have occurred on such websites, often
resulting in the release of credit card information. So all careful denizens of
the web are reluctant to let the websites keep their information. This results
in you being forced into the tedious task of re-entering this information.

Avendesora can help with this. If you have a website that you find yourself
entering credit card information into routinely, then you can use the account
discovery and autotype features of Avendesora to enter the information for
you.

For example, imagine that you have a Citibank credit card that you use routinely
on the Costco website. You can configure Avendesora to automatically enter
your credit card information into the Costco site with by adding an account
discovery entry to your Citibank account as follows:

class CostcoCitiVisa(Account):
 aliases = 'citi costcovisa'
 username = 'mcauthon'
 email = 'matrim@gmail.com'
 account = '1234567889012345'
 expiration = '03/2019'
 cvv = '233'
 passcode = PasswordRecipe('12 2u 2d 2s')
 verbal = Question('Favorite pet?', length=1)
 questions = [
 Question("Fathers profession?"),
 Question("Last name of high school best friend?"),
 Question("Name of first pet?"),
]
 urls = 'https://online.citi.com'
 discovery = [
 RecognizeURL(
 'https://online.citi.com',
 script='{username}{tab}{passcode}{return}',
 name='login'
),
 RecognizeURL(
 'https://www.costco.com/CheckoutPaymentView',
 script='{account}{tab}{expiration}{tab}{cvv}{tab}Matrim Cauthon{return}',
 name='card holder information'
),
]

This represents a relatively standard Avendesora description of an account.
Notice that it contains the credit card number (account), the expiration date
(expiration) and the CVV number (cvv). This is raw information the autotype
script will pull from. The credit card and the CVV values are sensitive
information and should probably be concealed.

Also notice the two avendesora.RecognizeURL entries in discovery.
The first recognizes the CitiBank website. The second recognizes the Costco
check-out page. When it does, it runs the following script:

{account}{tab}{expiration}{tab}{cvv}{tab}Matrim Cauthon{return}

That script enters the account number, tabs to the next field, enters the
expiration date, tabs to the next field, enters the CVV, tabs to the next field,
enters the account holders name, and finally types return to submit the
information (you might want to delete the {return} so that you have a chance to
review all the information before you submit manually. Or you could continue the
script and give more information, such as billing address.

Conceptually this script should work, but Costco, like many websites, uses
Javascript helpers to interpret the fields. These helpers are intended to give
you immediate feedback if you typed something incorrectly, but they are slow and
can get confused if you type too fast. As is, the first one or two fields would
be entered properly, but the rest would be empty because they were entered by
Avendesora before the page was ready for them. To address this issue, you can
put delays in the script:

{account}{tab}{sleep 0.5}{expiration}{tab}{sleep 0.5}{cvv}{tab}{sleep 0.5}Matrim Cauthon{return},

Now the account can be given in its final form. This differs from the one above
in that the account and cvv values are concealed and the delays were added
to the Costco script.

class CostcoCitiVisa(Account):
 aliases = 'citi costcovisa'
 username = 'mcauthon'
 email = 'matrim@gmail.com'
 account = Hidden('MTIzNCA1Njc4IDg5MDEgMjM0NQ==')
 expiration = '03/2019'
 cvv = Hidden('MjMz')
 passcode = PasswordRecipe('12 2u 2d 2s')
 verbal = Question('Favorite pet?', length=1)
 questions = [
 Question("Fathers profession?"),
 Question("Last name of high school best friend?"),
 Question("Name of first pet?"),
]
 discovery = [
 RecognizeURL(
 'https://online.citi.com',
 script='{username}{tab}{passcode}{return}',
 name='login'
),
 RecognizeURL(
 'https://www.costco.com/CheckoutPaymentView',
 script='{account}{tab}{sleep 0.5}{expiration}{tab}{sleep 0.5}{cvv}{tab}{sleep 0.5}Matrim Cauthon{return}',
 name='card holder information'
),
]

This approach requires that you anticipate those sites into which you well enter
the credit card information. Alternatively, you add a script to your credit
card account that outputs the credit card information, and then run Avendesora
in such a way that the credit card information into the webpage. To do this
requires two things. First, add a script to the account that combines and
outputs the credit card information. For example:

ccn = Script('{account}{tab}{cvv}{tab}')

In this case the amount of information requested is limited to increase the
chance that the result will be compatible with a large number of websites. Then
run Avendesora from the window manager:

Alt-F2 avendesora citi ccn

Here, Alt-F2 is the hot key Gnome uses to execute a command. This causes
Avendesora to run the ccn script. Since Avendesora running from the window
manager does not have access to a TTY it will instead mimic the keyboard and
autotype the credit card information into the active window.

Alternately, if you did not set up the ccn script, you can simply request the
individual fields. For example, to enter the account number into a field use:

Alt-F2 avendesora citi account

Then to enter the CVV use:

Alt-F2 avendesora citi cvv

The expiration date is difficult to enter in this way because there is so much
variation in the way that websites expect the date to be entered, and they often
expect drop-downs rather than simple typing.

Swarm Accounts

You might find the need to have many accounts at one website, and for simplicity
would like to share most of the account information. For example, you would
share the URL and perhaps the password, but not the usernames.

You might wish to have multiple email addresses from a single email provider
like gmail, or perhaps you you would multiple accounts at a review site, like
yelp.

In this case we give the list of account name in the usernames attribute. Then
we use Python list comprehensions that use the usernames array to construct
other values. That way to add a new account, you only need modify usernames
and everything else is updated automatically.

class YandexMail(Account):
 aliases = 'yandex'
 usernames = 'rand.alThor aviendha rhuarc sorilea amys'.split()
 credentials = ' '.join(
 ['usernames.%d' % i for i in range(len(usernames))] + ['passcode']
)
 email = [n + '@yandex.com' for n in usernames]
 passcode = PasswordRecipe('12 2u 2d 2s')
 questions = [
 Question('Surname of favorite musician?'),
]
 urls = 'https://mail.yandex.com'
 discovery = [
 RecognizeURL(
 'https://mail.yandex.com',
 script='{email[%s]}{tab}{passcode}{return}' % i,
 name=n,
) for i, n in enumerate(usernames)
]

Now, running the credentials command gives:

> avendesora yandex
usernames: rand.alThor
usernames: aviendha
usernames: rhuarc
usernames: sorilea
usernames: amys
passcode: B-F?i0z8GcDL

This example shows that the capabilities of the Python language can be used in
the accounts files to increase the capabilities of Avendesora in unexpected
ways.

Recognizing Shell Commands

Modern shells inform their terminal emulator of the currently running command.
Modern terminal emulators then use that information to display the command in
the window title. Generally this happens automatically, but if it is not working
for you, you may have to manually configure your shell. Generally, you configure
the shell by changing the value of the variable that sets the command prompt.

If your window manager is configured to not show window titles, you can still
determine the title using xwininfo.

If your shell does not set the window title you can still use the window title
to trigger Avendesora secrets recognition by explicitly setting the window
title using xdotool. For example:

#!/bin/bash

original_title=`xdotool getactivewindow getwindowname`
xdotool getactivewindow set_window --name 'Home email'
mutt -F ~/.config/mutt/home
xdotool getactivewindow set_window --name "$original_title"

Once you have desired information in the window title, you can use the use
avendesora.RecognizeTitle to trigger Avendesora. For example, you
might use the following as the entry for you Linux password:

class Login(Account):
 desc = 'Linux login'
 aliases = 'linux sudo'
 passcode = Passphrase()
 discovery = RecognizeTitle(
 'sudo *',
 script='{passcode}{return}'
)

You cannot use Avendesora to login to Linux, however once you have logged in
you can use Avendesora to deliver your linux password to the sudo command.

An alternative to using window titles is to trigger Avendesora secrets
recognition is to use avendesora.RecognizeFile as shown in
Account Discovery.

Accessories

A collection companion programs have been developed that work with Avendesora
to provide additional useful capabilities.

AddSSHkeys

An Avendesora accessory that allows you to load all of your keys into the SSH
agent with one simple command.

AddSSHkeys [https://github.com/KenKundert/addsshkeys]

Avendesora Export

An Avendesora accessory that exports selected accounts to an Avendesora
installation on a different host. In this way you can easily maintain satellite
installations that provide only the accounts needed on that host.

avendesora-export [https://github.com/KenKundert/avendesora-export]

BitWarden Export

Allows you to export select accounts to BitWarden [https://bitwarden.com], an
open source password manager with a GUI, phone apps, and syncing.

bw-export [https://github.com/KenKundert/bw-export]

Emborg

A front-end for BorgBackup [https://borgbackup.readthedocs.io/en/stable] that
makes it easy to manage your backups interactively from the command line.

Emborg [https://github.com/KenKundert/emborg]

Networth

An Avendesora accessory that allows you to track and summarize your net worth.

Networth [https://github.com/KenKundert/networth]

PostMortem

An Avendesora accessory that allows send account information to your partners
to give them the information they need to manage your affairs if you die or
become disabled.

PostMortem [https://github.com/KenKundert/postmortem]

SpareKeys

Spare Keys makes and distributes encrypted copies of the files that you would
need to recover from a catastrophic hard drive failure, e.g. SSH keys, GPG keys,
password vaults, encryption keys for backups, etc.

SpareKeys [https://github.com/kalekundert/sparekeys]

Known Issues

Spotty Account Recognition

When using account discovery you may find that sometimes accounts do not get
recognized but other times they do. There are two causes for this. Account
recognition is based on the window title, and browsers tend not to update the
window title until the page is completely loaded. So generally intermittent
account recognition occurs because you trigger Avendesora before the page has
completed loaded. This problem is aggravated with modern websites because they
often continue loading images, scripts, advertisements, etc. even after the page
initially renders. You can generally work around this issue by simply hitting
the stop button on the browser or by typing the ESC key, which should do the
same thing.

The second cause is a bit more problematic. The Chrome browser, or perhaps the
URL in Title extension, seems to have a bug that interferes with its use with
account discovery, and ironically it tends to interfere when logging into your
Google accounts. The problem is that in some cases Chrome does not update its
title when you navigate to a new but related page; the title from the previous
page persists. This can occur if you give the URL for a particular service,
like gmail.com or tv.youtube.com, and you get forwarded to the generic login
page. It can also happen during the two step login process used when logging in
where the title occasionally does not update as you go from the username page to
the password page. In these cases Avendesora sees the wrong URL and either
enters the wrong thing or does not recognize the page. Generally, refreshing
the page allows you to work around this bug.

Reporting Issues

If you discover any issues with Avendesora, or have some suggestions, or
simply want to help out, please visit Avendesora issues [https://github.com/KenKundert/avendesora/issues].

Upgrading

Avendesora is primarily a password generator. As a result, there is always
a chance that something could change in the password generation algorithm that
causes the generated passwords to change. Of course, the program is thoroughly
tested to assure this does not happen, but there is still a small chance that
something slips through. To assure that you are not affected by this, you
should archive your passwords before you upgrade with:

avendesora changed
avendesora archive

The changed command should always be run before an
archive command. It allows you to review all the
changes that have occurred so that you can verify that they were all
intentional. Once you are comfortable, run the archive command to save all the changes. This creates a file
(~/.config/avendesora/archive.gpg) that contains all of your account
information, including the secrets. Be sure to keep it safe.

Once you have created/updated your archive, you can upgrade Avendesora with:

pip install -upgrade --user avendesora

Finally, run:

avendesora version

to confirm that your version of Avendesora was updated and:

avendesora changed

to confirm that none of your generated passwords have changed.

It is a good idea to run ‘avendesora changed’ and ‘avendesora archive’ on
a routine basis to keep your archive up to date. Doing so can help protect you
against common mistake you might make.

Upon updating you may find that Avendesora produces a message that a ‘hash’ has
changed. This is an indication that something has changed in the program that
could affect the generated secrets. Again, care is taken when developing
Avendesora to prevent this from happening. But it is an indication that you
should take extra care. Specifically you should follow the above procedure to
assure that the value of your generated secrets have not changed. Once you have
confirmed that the upgrade has not affected your generated secrets, you should
follow the directions given in the warning and update the appropriate hash
contained in ~/.config/avendesora/.hashes.

Releases

Latest Development Version

Version: 1.25

Released: 2023-04-22

1.25 (2023-04-22)

	minor refinements.

1.24 (2022-11-04)

	minor refinements.

1.23 (2022-08-31)

	enhanced bw-export scripts.

	with value command, only the first few characters of
the field name need be specified.

	when ? is passed as field to the value command,
the list of available fields is displayed.

	added additional_account_templates setting.

1.22 (2021-11-10)

	Allow remind commands in Script.

1.21 (2021-08-08)

	Added fold_level to Account.export().

	Added paste attribute to scripts that might help avoid captchas.

1.20 (2021-02-13)

	added hidden_fields setting.

1.19 (2021-01-03)

	Make OTP less persnickety about form of shared secrets.

	Automatically fix file permission issues when found.

1.18 (2020-11-12)

	Deprecate Python 2.7 and Python 3.5.

	
	Add PasswordGenerator.get_value(), a method of getting an account

	value from a string that includes the account and field names.

	Add hidden account attributes.

	Require secondary arguments on secrets to be passed by name.

	
	Renamed alphabet argument to Passphrase and Question

	to dictionary.

Warning

This change is not backward compatible and may require you to change
entries in your account files.

	This release requires secrets_hash to be updated.

1.17 (2020-04-15)

	
	Enhance conceal command so that it can read text

	from a file.

	
	Add WriteFile; allows the contents of a file to be held as an

	account field. When requested, the contents are written to the file
system.

1.16 (2019-12-25)

	Added ms_per_char setting that allows user to
slow autotyping.

	Added rate attribute to scripts that allows user to slow autotyping.

	Added command_aliases setting to allow user
to define their own command short-cuts. As part of this the built-in short
cuts were removed. See description of command_aliases in
Configuring to get them back.

	interactive command now accepts ‘*’.

1.15 (2019-09-28)

	Add remind script command.

1.14 (2019-04-28)

	Allow title recognizers to be functions.

	Add –all option to values command.

	Add vs alias to values command.

	Add instructions on how to mimic Symantec VIP authentication app.

1.13 (2019-02-06)

	Added interactive command.

	Added looping to questions command.

	Retargeted i and I command aliases.

	Use natural sort order by default.

	Refactored code to speed up start up with account discovery.

1.12 (2019-01-17)

	Updated the networth API example.

	Incorporated shlib package into Avendesora for better security.

	Added questions command.

	Refactored code to speed up start up.

1.11 (2018-06-14)

	Added is_secret argument to Secret classes.

	Added support for dmenu as alternative to built-in selection utility.

	Added –delete option to log command.

	Rename master and seed Account attributes to master_seed and account_seed.

	Improve portmortem and networth api examples.

	Improve the account value formatting.

1.10 (2018-02-18)

	Added support for qutebrowser.

1.9 (2017-12-25)

	Adds one-time passwords (an alternative to Google Authenticator).

	Added ‘vc’ command as an alias for ‘value –clipboard’.

1.8 (2017-11-23)

	Created the manual.

	Use keyboard writer if there is no access to TTY.

	Shifted to skinny config file.

	Warn the user if the archive is missing or stale.

	Improved get_value(), added add get_values(), add get_fields().

	Canonicalize names.

	Allow account name to be given even if TTY is not available.

	Allow default_field setting to be a list.

	Add render method to AccountValue.

	Changed the way multiple gpg ids are specified.

	Improved browse command.

	Added shift_sort to password generators.

	Added log command.

	Added phonetic command.

	Added browser version of help command.

It is recommended that in this release you trim your
~/.config/avendesora/config file to only include those settings that you
explicitly wish to override.

1.7 (2017-06-01)

	add credentials command.

1.6 (2017-04-07)

	Fix issues in sleep feature in autotype scripts.

1.5 (2017-03-01)

	Fixed bug in account discovery for URLs.

	Added get_composite, renamed get_field to get_scalar.

1.4 (2017-01-09)

	Improved error reporting on encrypted files.

	Added RecognizeFile().

1.3 (2017-01-08)

	Warn about duplicate account names.

1.2 (2017-01-05)

1.1 (2017-01-03)

1.0 (2017-01-01)

	Initial production release.

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

Symbols

 	
 	2FA

A

 	
 	abbreviations

 	abraxas

 	accessories

 	Account (class in avendesora)

 	account discovery

 	account files

 	account_file_mask setting

 	account_templates setting

 	accounts_files file

 	AccountValue (class in avendesora)

 	add command, [1]

 	adding account

 	
 	adding account file

 	additional_account_templates setting

 	aliases, command

 	all_accounts() (avendesora.PasswordGenerator method)

 	alphabet command

 	alphabet, phonetic

 	ALPHANUMERIC (avendesora attribute)

 	amazon

 	archive command

 	archive file, [1], [2]

 	archive_file setting

 	archive_stale setting

 	Authy

B

 	
 	bank account

 	BirthDate

 	(class in avendesora)

 	bitwarden export

 	browse

 	add

 	
 	browse command

 	browser configuration

 	browsers

 	browsers setting

C

 	
 	challenge questions, [1]

 	challenge response

 	challenge_response() (avendesora.PasswordGenerator method)

 	
 changed

 	add

 	changed command

 	Chrome

 	Chrome browser

 	Chrome issues

 	collaboration

 	color_scheme setting

 	
 command

 	add

 	alphabet

 	archive

 	conceal

 	credentials

 	edit

 	find

 	help

 	identity

 	initialize

 	interactive

 	log

 	login

 	new

 	phonetic

 	questions

 	reveal

 	search

 	value

 	values

 	
 	command aliases

 	command_aliases setting

 	compulsion

 	conceal command

 	config file

 	config.doc file

 	config_dir_mask setting

 	configuring

 	configuring browser

 	configuring window manager

 	confirming identity

 	credential_ids setting

 	credential_secrets setting

 	credentials command

 	credit cards

D

 	
 	default_account_template setting

 	default_browser setting

 	default_field setting

 	default_protocol setting

 	default_vector_field setting

 	deleting account

 	deleting account file

 	
 	DIGITS (avendesora attribute)

 	discover_account() (avendesora.PasswordGenerator method)

 	discovery

 	display_time setting

 	DISTINGUISHABLE (avendesora attribute)

 	dmenu_executable setting

 	duress

 	dynamic_fields setting

E

 	
 	edit command

 	edit_account setting

 	edit_template setting

 	
 	encoding setting

 	entropy

 	exclude() (in module avendesora)

 	export() (avendesora.Account class method)

F

 	
 	files as secrets

 	find command

 	
 	find_accounts() (avendesora.PasswordGenerator method)

 	Firefox browser

G

 	
 	generated secrets, [1]

 	get_account() (avendesora.PasswordGenerator method)

 	get_codicil() (avendesora.PasswordError method)

 	get_composite() (avendesora.Account class method)

 	get_culprit() (avendesora.PasswordError method)

 	get_fields() (avendesora.Account class method)

 	get_message() (avendesora.PasswordError method)

 	get_name() (avendesora.Account class method)

 	get_passcode() (avendesora.Account class method)

 	get_scalar() (avendesora.Account class method)

 	get_username() (avendesora.Account class method)

 	
 	get_value() (avendesora.Account class method)

 	(avendesora.PasswordGenerator method)

 	get_values() (avendesora.Account class method)

 	gmail

 	google

 	Google Authenticator

 	GPG

 	(class in avendesora)

 	gpg_armor setting

 	gpg_executable setting

 	gpg_home setting

 	gpg_ids setting

H

 	
 	hashes file

 	help command

 	HEXDIGITS (avendesora attribute)

 	Hidden

 	(class in avendesora)

 	
 	hidden_fields setting

 	Hide

 	(class in avendesora)

 	highlight_color setting

I

 	
 	identity command

 	initial configuration

 	initialize command

 	
 	installing

 	interactive command

 	interactive queries

 	issues, reporting

K

 	
 	known issues

 	
 	kpns

L

 	
 	label_color setting

 	LETTERS (avendesora attribute)

 	log command

 	
 	log file, [1]

 	log_file setting

 	login command

 	LOWERCASE (avendesora attribute)

M

 	
 	misdirection

 	
 	MixedPassword (class in avendesora)

 	ms_per_char setting

N

 	
 	networth example

 	
 	new command

 	None

O

 	
 	obscured secrets

 	One-time passwords

 	
 	OTB

 	OTP

 	(class in avendesora)

P

 	
 	Passphrase

 	(class in avendesora)

 	Password

 	(class in avendesora)

 	PasswordError

 	PasswordGenerator (class in avendesora)

 	PasswordRecipe

 	(class in avendesora)

 	paste (in script)

 	
 	phishing

 	phonetic alphabet

 	phonetic command

 	PIN

 	(class in avendesora)

 	postmortem summary example

 	previous_archive_file setting

 	PRINTABLE (avendesora attribute)

 	PUNCTUATION (avendesora attribute)

Q

 	
 	Question

 	(class in avendesora)

 	
 	questions, [1]

 	questions command

 	qutebrowser

R

 	
 	rate (in script)

 	RecognizeAll

 	(class in avendesora)

 	RecognizeAny

 	(class in avendesora)

 	RecognizeCWD (class in avendesora)

 	RecognizeEnvVar (class in avendesora)

 	RecognizeFile

 	(class in avendesora)

 	RecognizeHost (class in avendesora)

 	RecognizeNetwork (class in avendesora)

 	RecognizeTitle

 	(class in avendesora)

 	
 	RecognizeURL

 	(class in avendesora)

 	RecognizeUser (class in avendesora)

 	remind (in script)

 	render() (avendesora.AccountValue method)

 	(avendesora.PasswordError method)

 	report() (avendesora.PasswordError method)

 	(avendesora.SecretExhausted method)

 	reporting issues

 	reraise() (avendesora.PasswordError method)

 	return (in script)

 	reveal command

S

 	
 	Script (class in avendesora)

 	scripts

 	Scrypt

 	(class in avendesora)

 	search command

 	search_accounts() (avendesora.PasswordGenerator method)

 	second factor

 	SecretExhausted

 	secrets

 	security questions, [1]

 	selection_utility setting

 	settings

 	
 	shell account

 	shell command recognition

 	shell windows

 	SHIFTED (avendesora attribute)

 	short cuts

 	short cuts, command

 	sleep (in script)

 	ssh key example

 	stealth accounts

 	stealth_accounts file

 	swarm accounts

 	Symantec VIP

 	SYMBOLS (avendesora attribute)

T

 	
 	tab (in script)

 	terminal windows

 	terminate() (avendesora.PasswordError method)

 	(avendesora.SecretExhausted method)

 	
 	two page authentication

 	typing, reducing

U

 	
 	updating a secret

 	upgrading

 	
 	UPPERCASE (avendesora attribute)

 	use_pager setting

V

 	
 	value command

 	values command

 	
 	verbose setting

 	versioning a secret

W

 	
 	website account

 	WHITESPACE (avendesora attribute)

 	window manager

 	
 	wireless router

 	with_traceback() (avendesora.PasswordError method)

 	WriteFile (class in avendesora)

 	writing files

X

 	
 	xdotool_executable setting

 	
 	xsel_executable setting

 _static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Avendesora Collaborative Password Manager

 		
 Conceptual Underpinnings

 		
 Generated Secrets

 		
 Entropy

 		
 Installing and First Use

 		
 GPG Key

 		
 Vim

 		
 Initializing Avendesora

 		
 Initial Configuration

 		
 Configuring Your Window Manager

 		
 Configuring Your Browser

 		
 Overview

 		
 Shell Account

 		
 Short Cuts

 		
 Auto Entry

 		
 Website Account

 		
 Bank Account

 		
 Finding Accounts

 		
 Modifying Accounts

 		
 Additional Features

 		
 Accounts

 		
 Secrets

 		
 Obscured Secrets

 		
 Hide

 		
 Hidden

 		
 GPG

 		
 Scrypt

 		
 Generated Secrets

 		
 Password

 		
 Passphrase

 		
 PIN

 		
 Question

 		
 PasswordRecipe

 		
 BirthDate

 		
 OTP

 		
 Changing a Generated Secret

 		
 Advanced Usage

 		
 Avoiding Phishing Attacks

 		
 Account Discovery

 		
 Recognizers

 		
 Terminal Windows

 		
 Security Questions

 		
 Opening Accounts in your Browser

 		
 Selecting the URL

 		
 Selecting the Browser

 		
 Interactive Queries

 		
 One-Time Passwords

 		
 Google Authenticator

 		
 Authy

 		
 Symantec VIP

 		
 Scripts

 		
 Files as Secrets

 		
 Stealth Accounts

 		
 Misdirection

 		
 Collaborating with a Partner

 		
 Confirming the Identity of a Partner

 		
 Phonetic Alphabet

 		
 Upgrading from Abraxas

 		
 Command Reference

 		
 add – Add a new account

 		
 archive – Generates archive of all account information

 		
 browse – Open account URL in web browser

 		
 changed – Show changes since archive was created

 		
 conceal – Conceal text by encoding it

 		
 credentials – Show login credentials

 		
 edit – Edit an account

 		
 find – Find an account

 		
 help – Give information about commands or other topics

 		
 identity – Generate an identifying response to a challenge

 		
 initialize – Create initial set of Avendesora files

 		
 interactive – Interactively query account values

 		
 log – Open the logfile

 		
 new – Create new accounts file

 		
 phonetic – Display NATO phonetic alphabet

 		
 questions – Answer a Security Question

 		
 reveal – Reveal concealed text

 		
 search – Search accounts

 		
 value – Show an account value

 		
 values – Display all account values

 		
 version – Display Avendesora version

 		
 Account Helpers

 		
 Generated Secret Classes

 		
 Character Sets

 		
 Obscured Secret Classes

 		
 Recognizer Classes

 		
 Utility Classes

 		
 Configuring

 		
 Configuration Files

 		
 accounts_files

 		
 config, config.doc

 		
 hashes

 		
 stealth_accounts

 		
 <accounts file>

 		
 <archive file>

 		
 <log file>

 		
 Settings

 		
 log_file

 		
 archive_file

 		
 previous_archive_file

 		
 archive_stale

 		
 default_field

 		
 default_vector_field

 		
 dynamic_fields

 		
 hidden_fields

 		
 credential_ids

 		
 credential_secrets

 		
 display_time

 		
 ms_per_char

 		
 encoding

 		
 edit_account

 		
 edit_template

 		
 browsers

 		
 default_browser

 		
 command_aliases

 		
 default_protocol

 		
 config_dir_mask

 		
 account_file_mask

 		
 label_color

 		
 highlight_color

 		
 color_scheme

 		
 use_pager

 		
 selection_utility

 		
 verbose

 		
 account_templates

 		
 additional_account_templates

 		
 default_account_template

 		
 gpg_ids

 		
 gpg_armor

 		
 gpg_home

 		
 gpg_executable

 		
 xdotool_executable

 		
 xsel_executable

 		
 dmenu_executable

 		
 Python API

 		
 Introductory Examples

 		
 Access an Account Value

 		
 Access Several Values for a Particular Account

 		
 Using an Account Value

 		
 Components

 		
 PasswordGenerator Class

 		
 Account Class

 		
 AccountValue Class

 		
 PasswordError Exception

 		
 Example: Displaying Account Values

 		
 Example: Add SSH Keys

 		
 Example: Export to BitWarden

 		
 Example: Postmortem Summaries

 		
 Example: Net Worth

 		
 Examples

 		
 Challenge Questions

 		
 Two Page Authentication

 		
 Chrome

 		
 Wireless Router

 		
 Credit Card Information

 		
 Swarm Accounts

 		
 Recognizing Shell Commands

 		
 Accessories

 		
 AddSSHkeys

 		
 Avendesora Export

 		
 BitWarden Export

 		
 Emborg

 		
 Networth

 		
 PostMortem

 		
 SpareKeys

 		
 Known Issues

 		
 Spotty Account Recognition

 		
 Reporting Issues

 		
 Upgrading

 		
 Releases

 		
 Latest Development Version

 		
 1.25 (2023-04-22)

 		
 1.24 (2022-11-04)

 		
 1.23 (2022-08-31)

 		
 1.22 (2021-11-10)

 		
 1.21 (2021-08-08)

 		
 1.20 (2021-02-13)

 		
 1.19 (2021-01-03)

 		
 1.18 (2020-11-12)

 		
 1.17 (2020-04-15)

 		
 1.16 (2019-12-25)

 		
 1.15 (2019-09-28)

 		
 1.14 (2019-04-28)

 		
 1.13 (2019-02-06)

 		
 1.12 (2019-01-17)

 		
 1.11 (2018-06-14)

 		
 1.10 (2018-02-18)

 		
 1.9 (2017-12-25)

 		
 1.8 (2017-11-23)

 		
 1.7 (2017-06-01)

 		
 1.6 (2017-04-07)

 		
 1.5 (2017-03-01)

 		
 1.4 (2017-01-09)

 		
 1.3 (2017-01-08)

 		
 1.2 (2017-01-05)

 		
 1.1 (2017-01-03)

 		
 1.0 (2017-01-01)

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

