
Avalon Music Server Documentation
Release 0.6.0

TSH Labs

Feb 16, 2018

Contents

1 Contents 3
1.1 Requirements . 3
1.2 Installation . 4
1.3 CLI Tools . 7
1.4 WSGI Application . 8
1.5 API . 11
1.6 UUID Generation . 21
1.7 Developers . 22
1.8 Maintainers . 24
1.9 Change Log . 25

2 Indices and tables 31

i

ii

Avalon Music Server Documentation, Release 0.6.0

The Avalon Music Server is a Python WSGI application and several CLI scripts that, together, scan metadata from a
music collection, store it in a database, and expose it as a JSON web service. It is available under the MIT license.

The Avalon Music Server is able to read metadata from ogg, flac, and mp3 files. Clients can then query the server for
information about songs, albums, artists, and genres in the collection.

Features include:

• Support for Mp3, Vorbis (Ogg), or Flac audio files

• Support for multiple database backends

• Simple JSON interface including fast prefix matching

• Unicode output support

• Python 2.6 – 3.4

To install it simply run

$ pip install avalonms

Then, to scan your music collection

$ avalon-scan ~/Music

Then, start the application using a WSGI server like Gunicorn

$ gunicorn --preload avalon.app.wsgi:application

The documentation linked below will go into more detail about how to configure and run the Avalon Music Server in
a production environment, how to interact with it using the JSON web service, and how to set up an environment to
develop it.

Contents 1

http://gunicorn.org/

Avalon Music Server Documentation, Release 0.6.0

2 Contents

CHAPTER 1

Contents

1.1 Requirements

If you follow the instructions in Installation (using pip) most of these requirements should be installed for you.

Python requirements:

• Python 2 >= 2.6 or Python 3 >= 3.3

• Argparse >= 1.2.1 (Or >= Python 2.7)

• Flask >= 0.10.1

• Mutagen >= 1.25.1

• SimpleJSON >= 3.5.2

• SQLAlchemy >= 0.9.4

In addition to the libraries above, you’ll need a WSGI compatible server to run the Avalon Music Server. Gunicorn
or uWSGI are both excellent choices. The rest of the documentation will assume you are using Gunicorn since that is
what the reference install of the Avalon Music Server uses.

By default, the Avalon Music Server uses a SQLite database to store music meta data. If you wish to use another
database type supported by SQLAlchemy (e.g. MySQL, PostgreSQL) you’ll need to install an appropriate library for
it.

For example, to install a PostgreSQL driver.

$ pip install psycopg2

Or a MySQL driver.

$ pip install mysql-python

3

http://gunicorn.org
http://uwsgi-docs.readthedocs.org/en/latest/
http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls

Avalon Music Server Documentation, Release 0.6.0

1.2 Installation

Two possible ways to install the Avalon Music Server are described below. One is very simple and designed to get you
up and running as quickly as possible. The other is more involved and designed to run the Avalon Music Server in a
production environment.

All of these instructions are based on a machine running Debian Linux, but they should be applicable to any UNIX-like
operating system (with a few modifications).

1.2.1 Quick Start Installation

This section will describe an extremely simple installation of the Avalon Music Server. If you just want to play around
with the Avalon Music Server and don’t have plans to run it in production, this guide is for you.

First, we’ll install the virtualenv tool.

$ apt-get install python-virtualenv

Next, create a virtual environment that we’ll install the Avalon Music Server into.

$ virtualenv ~/avalon

“Activate” the virtual environment.

$ source ~/avalon/bin/activate

Install the Avalon Music Server and Gunicorn.

$ pip install avalonms gunicorn

Scan your music collection and build a database with the meta data from it.

$ avalon-scan ~/path/to/music

Start the server.

$ gunicorn --preload avalon.app.wsgi:application

Then, in a different terminal, test it out!

$ curl http://localhost:8000/avalon/heartbeat

You should see the result OKOKOK if the server started correctly. To stop the server, just hit CTRL-C in the terminal
that it is running in.

1.2.2 Production Installation

This section will describe one potential way to install, configure, and run the Avalon Music Server in production.

This particular installation uses Gunicorn, Supervisord, and Nginx. We’ll set it up so that it can be deployed to using
the included Fabric files in the future. We’ll also make use of the bundled Gunicorn and Supervisor configurations.

4 Chapter 1. Contents

http://www.gunicorn.org/
http://www.gunicorn.org/
http://www.supervisord.org/
http://nginx.org/
http://www.fabfile.org/

Avalon Music Server Documentation, Release 0.6.0

Installing Dependencies

First, we’ll install the virtualenv tool, Supervisor and Nginx using the package manager.

$ apt-get install python-virtualenv supervisor nginx

Setting Up The Environment

Next, we’ll set up the environment on our server:

Create the group that will own the deployed code.

$ sudo groupadd dev

Add our user to it so that we can perform deploys without using sudo.

$ sudo usermod -g dev `whoami`

Create the directories that the server will be deployed into.

$ sudo mkdir -p /var/www/avalon/releases

Set the ownership and permissions of the directories.

$ sudo chown -R root:dev /var/www/avalon
$ sudo chmod -R u+rw,g+rw,o+r /var/www/avalon
$ sudo chmod g+s /var/www/avalon /var/www/avalon/releases

Add a new unprivileged user that the Avalon Music Server will run as.

$ sudo useradd --shell /bin/false --home /var/www/avalon --user-group avalon

Create a virtual environment that we’ll install the Avalon Music Server into.

$ virtualenv /var/www/avalon/releases/20140717214022

Set the “current” symlink to the virtual environment we just created. This is the path that we’ll we pointing our
Supervisor and Gunicorn configurations at.

$ ln -s /var/www/avalon/releases/20140717214022 /var/www/avalon/current

Installing from PyPI

Now, let’s install the Avalon Music Server, Gunicorn, and a Sentry client into the virtual environment we just created.

$ /var/www/avalon/current/bin/pip install avalonms gunicorn raven

The Avalon Music Server has an embedded default configuration file. In addition to that, we’ll create our own copy of
that configuration that we can customize.

$ /var/www/avalon/current/bin/avalon-echo-config > /var/www/avalon/local-settings.py

1.2. Installation 5

Avalon Music Server Documentation, Release 0.6.0

Avalon WSGI Application

We won’t configure the Avalon WSGI application here, as part of installation. For more information about the available
configuration settings for it, see the WSGI Application section.

Gunicorn

The installed Avalon Music Server comes with a simple Gunicorn configuration file that is available at /var/
www/avalon/current/share/avalonms/avalon-gunicorn.py (or ext/avalon-gunicorn.py in
the codebase). This file configures Gunicorn to:

• Bind the server to only the local interface, port 8000.

• Spawn three worker processes that will handle requests.

• Use preload mode so that the workers will be able to take advantage of copy-on-write optimizations done by the
operating system to save RAM.

Supervisor

The installed Avalon Music server also comes with a simple Supervisord configuration file. This file runs the
Avalon Music Server as an unprivileged user, uses the Gunicorn HTTP WSGI server, restarts it if it crashes,
and pipes all output to a log file. This is available at /var/www/avalon/current/share/avalonms/
avalon-supervisor-gunicorn.conf (or ext/avalon-supervisor-gunicorn.conf in the code-
base).

When you installed Supervisor earlier (if you’re on Debian) it created a directory that configurations can be placed
into: /etc/supervisor/conf.d. Copy the bundled Supervisor configuration file into this directory and set the
owner and permissions appropriately.

$ sudo cp /var/www/avalon/current/share/avalonms/avalon-supervisor-gunicorn.conf /etc/
→˓supervisor/conf.d/
$ sudo chown root:root /etc/supervisor/conf.d/avalon-supervisor-gunicorn.conf
$ sudo chmod 644 /etc/supervisor/conf.d/avalon-supervisor-gunicorn.conf

Nginx

Though Gunicorn can run as an HTTP server, you should use a dedicated web server in front of it as a reverse proxy
if you plan on exposing it on the public Internet. If so, Nginx is a solid, lightweight, easy to configure choice. In the
instructions below, replace api.example.com with the domain that you wish to run the Avalon Music Server at.

When you installed Nginx earlier it created a directory that server configurations can be placed into: /etc/nginx/
sites-available/ (if you’re on Debian). If you’re not on Debian the directory may be in a different location
such as /etc/nginx/conf.d or you may have a single configuration file: /etc/nginx/nginx.conf.

If you have a directory for configurations, create a new file named api_example_com.conf with the contents
below. If you only have a single configuration file, add the contents below inside the http section.

upstream avalon {
server localhost:8000;

}

server {
listen 80;
server_name api.example.com;

6 Chapter 1. Contents

https://en.wikipedia.org/wiki/Copy-on-write#Copy-on-write_in_virtual_memory_management
http://docs.gunicorn.org/en/latest/deploy.html

Avalon Music Server Documentation, Release 0.6.0

location /avalon {
proxy_pass http://avalon;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;

}
}

If you’re on Debian, enable the configuration like so.

$ sudo ln -s /etc/nginx/sites-available/api_example_com.conf /etc/nginx/sites-enabled/

Start the Server

Now that everything is configured, let’s try starting Nginx and Supervisor (which will, in turn, start the Avalon Music
Server) and testing it out.

$ sudo service supervisor start
$ sudo service nginx start
$ curl http://api.example.com/avalon/heartbeat

If everything was installed correctly, the curl command should return the string OKOKOK.

1.3 CLI Tools

There are several CLI tools that are used as part of the Avalon Music Server besides the actual server part.

Each of these tools will be detailed below.

1.3.1 avalon-echo-config

Print the contents of the default configuration for the Avalon Music Server WSGI application to STDOUT.

Useful for creating a configuration file for the server that can be customized as described below.

Synopsis

$ avalon-echo-config [options]

Options

-h --help Prints how to invoke the command and supported options and exits.

-V --version Prints the installed version of the Avalon Music Server and exits.

Examples

$ avalon-echo-config > /var/www/avalon/local-settings.py

1.3. CLI Tools 7

Avalon Music Server Documentation, Release 0.6.0

1.3.2 avalon-scan

Scan a music collection for meta data and insert it into a database, making sure to create the database schema if it does
not already exist.

Database connection information is loaded from the default configuration file and optionally a configuration override
file (whose location is specified by the AVALON_CONFIG environmental variable). This can also be overridden using
the --database option.

Synopsis

$ avalon-scan [options] {music collection path}

Options

-h --help Prints how to invoke the command and supported options and exits.

-V --version Prints the installed version of the Avalon Music Server and exits.

-d <URL> --database <URL> Database URL connection string for the database to write music
collection meta data to. If not specified the value from the default configuration file and configuration
file override will be used. The URL must be one supported by SQLAlchemy.

-q --quiet Be less verbose, only emit ERROR level messages to the console.

Examples

Use the database type and location specified by the default configuration file (usually SQLite and /tmp/avalon.
sqlite) and scan the music collection in the directory ‘music’.

$ avalon-scan ~/music

Use the database type and location specified by a custom configuration file and scan the music collection in the ‘media’
directory.

$ AVALON_CONFIG=/home/user/avalon/local-settings.py avalon-scan /home/media

Use a PostgreSQL database type and connect to a remote database server and scan the music collection in the directory
‘music’.

$ avalon-scan --database 'postgresql+psycopg2://user:password@server/database' ~/music

Use a SQLite database type in a non-default location and scan the music collection in the directory ‘/home/files/music’.

$ avalon-scan --database 'sqlite:////var/db/avalon.sqlite' /home/files/music

1.4 WSGI Application

The Avalon WSGI application is meant to be run with a Python WSGI server such as Gunicorn.

The application will. . .

• Load music collection meta data from a database (as specified by the configuration files described below).

8 Chapter 1. Contents

http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls
http://gunicorn.org

Avalon Music Server Documentation, Release 0.6.0

• Build structures that can be used to search and query a music collection.

• Begin serving HTTP requests with a JSON API.

1.4.1 Running

The main entry point for the Avalon Music Server WSGI application is the module avalon.app.wsgi – the WSGI
callable is the attribute application within the module. An example of how to use this module and callable with
Gunicorn (with three worker processes) is below.

$ gunicorn --preload --workers 3 avalon.app.wsgi:application

Note that we’re using the --preload mode which will save us memory when using multiple worker processes.

1.4.2 Configuration

The Avalon WSGI application uses an embedded default configuration file. Settings in that file (described below) can
be overridden with a custom configuration file generated as below (assuming the Avalon Music Server has already
been installed).

$ avalon-echo-config > /var/www/avalon/local-settings.py

The file at /var/www/avalon/local-settings.py will be an exact copy of the default configuration file.
You can change the settings in this new copy and they will override the default settings. Any settings you do not
change (or settings removed from the file) will use their default values.

After you have customized this file, you need to tell the Avalon WSGI application to use this file. This is done by
setting the value of the AVALON_CONFIG environmental variable to the path of this configuration file. An example
(once again, using Gunicorn) is below.

$ gunicorn --env AVALON_CONFIG=/var/www/avalon/local-settings.py \
--preload --workers 3 avalon.app.wsgi:application

1.4.3 Settings

The following configuration settings are available to customize the behavior of the Avalon WSGI application. The
table below describes the settings and how they are used.

Note: Note that some settings available in the configuration are not meant to be changed by end users and are hence
omitted below.

DATABASE_URL URL that describes the type of database to connect to and the credentials for connecting to it. The URL must be one supported by SQLAlchemy. For example, to connect to a local SQLite database: sqlite:////var/db/avalon.sqlite, or to connect to a remote PostgreSQL database: postgresql+psycopg2://user:password@server/database
LOG_DATE_FORMAT Date format for timestamps in logging messages. The supported tokens for this setting are described in the Python documentation.
LOG_FORMAT Format for messages logged directly by the Avalon Music Server. See the Python logging documentation for more information.
LOG_LEVEL How verbose should logging done by the Avalon WSGI application be? By default, all messages INFO and higher are logging. Available levels are DEBUG, INFO, WARN, ERROR, and CRITICAL. Setting this to a higher value means that fewer messages will be logged, but you may miss some useful messages.
LOG_PATH Where should messages be logged to? By default all messages are logged to the STDERR stream (the console). Typically, these will be captured by the Supervisord daemon and end up in a log file. If you would like to have the Avalon WSGI application write to the file itself, set this to the path of the file.
REQUEST_PATH Base path to use for handling requests to the WSGI application. For example, with a value of ‘/avalon’ the heartbeat endpoint will be at ‘/avalon/heartbeat’. With a value of ‘/’ the heartbeat endpoint will be at ‘/heartbeat’. Note that this value must begin with a ‘/’, may not end with a ‘/’, and will apply to all URLs handled by the Avalon Music Server. The default is ‘/avalon’.
SENTRY_DSN URL that describes how to log errors to a centralized 3rd party error-logging service, Sentry. This functionality is disabled by default. Enabling this logging requires supplying a Sentry DSN configuration string and installing the Raven Sentry client.
STATSD_HOST Hostname to write Statsd timers and counters to if there is a client installed. The expected client will discard any errors encountered when trying to write metrics so setting this value to a host not running the Statsd daemon is equivalent to disabling it.
STATSD_PORT Port to write Statsd timers and counters to. Port 8125 is the port that the Etsy Statsd implementation runs on by default.
STATSD_PREFIX Prefix all metrics emitted with this string. Useful to make sure metrics from the Avalon Music Server don’t pollute the top-level namespace. You may want further split metrics by the environment you are running in (dev vs staging vs prod). This can be done by adding a dot-separated string to the existing prefix, e.g. ‘avalon.prd’ or ‘avalon.dev’.

1.4. WSGI Application 9

http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls
http://docs.python.org/2/library/time.html#time.strftime
http://docs.python.org/2/library/logging.html#logrecord-attributes
https://getsentry.com/welcome/
https://pypi.python.org/pypi/raven

Avalon Music Server Documentation, Release 0.6.0

1.4.4 Architecture

Database

The Avalon Music Server CLI tool avalon-scan writes music metadata to a database when it scans a music collec-
tion. The WSGI application and reads the meta back when it starts.

In each case, when connecting to a database for the first time, the CLI script and the WSGI application will attempt to
create the required database schema if it does not already exist.

Provided that you attempt to scan your music collection before running the WSGI application, the scanning portion
must have read/write access to the database and the WSGI application must have read access. Otherwise, if you are
running the WSGI application, connecting to a database before inserting anything into it via scanning, the WSGI
application will attempt create the required schema and will require read/write access.

Workers

The Avalon WSGI application is, for the most part, CPU bound and immutable after start up. Therefore it is a good
fit for multiprocess workers and (if your Python implementation doesn’t have a Global-Interpreter-Lock) threaded
workers.

Logging

By default, the Avalon WSGI application sends logging messages to STDERR. This means that if you want to send
these messages to a file or a Syslog, you have to configure the logging of the WSGI HTTP server that you are using to
run it (or the process manager that runs the WSGI HTTP server).

The Avalon WSGI application can also be configured to send log messages directly to a log file. In this case, the file
must be writable by the user that the application is being run as.

Sentry

Sentry is a centralized, 3rd-party, error-logging service. It is available as a paid, hosted, service. However, both the
client and server are Free Software and can be run by anyone.

The Avalon WSGI application will optionally log unhandled exceptions to a Sentry instance provided these things are
true (otherwise logging to Sentry will not be used).

1. The Sentry client is installed and can be imported.

2. There is a SENTRY_DSN configuration setting available and correctly configured.

To install the client run the following command from within the virtualenv that the Avalon WSGI application is
installed in.

$ pip install raven

Statsd

Statsd is a daemon that listens for metrics sent over UDP and periodically pushes them to Graphite.

The Avalon WSGI application will optionally record the execution time of each endpoint if the Statsd client is installed.
The Statsd service to send metrics to can be configured with the STATSD_HOST and STATSD_PORT configuration
settings.

10 Chapter 1. Contents

https://wiki.python.org/moin/GlobalInterpreterLock
https://getsentry.com/welcome/
https://github.com/getsentry/sentry
https://pypi.python.org/pypi/raven
https://codeascraft.com/2011/02/15/measure-anything-measure-everything/
http://graphite.readthedocs.org/en/latest/
https://github.com/jsocol/pystatsd

Avalon Music Server Documentation, Release 0.6.0

To install the client run the following command from within the virtualenv that the Avalon WSGI application is
installed in.

$ pip install statsd

1.4.5 Deployment

If you followed the steps in Installation you should be able to use the bundled Fabric deploy scripts to manage your
Avalon WSGI application installation.

Note that the Fabric deploy scripts will also install the Gunicorn HTTP server and a client for the Sentry service
(however, Sentry won’t be used unless you have explicitly configured it).

Some assumptions made by the Fabric deploy scripts:

• You have already created and set the permissions of the directory that will be getting deployed to (as described
in installation).

• You have SSH access to the server you are deploying to.

• You have the ability to sudo on the server you are deploying to.

If all these things are true, you should be able to deploy a new version of the Avalon WSGI application with a few
simple steps.

First, make sure the build environment is clean and then generate packages to install.

$ fab clean build.released

Next, upload the generated packages, and install them.

$ fab -H api.example.com deploy.install

Restart the Avalon WSGI application if it’s already running.

$ fab -H api.example.com deploy.restart

That’s it! The Avalon WSGI application should now be running on your server.

1.5 API

The Avalon Music Server handles requests on the specified interface and port at the path /avalon.

Endpoints return information about a music collection in JSON format based on path and/or query string parameters.
Endpoints will return data as JSON for sucessful and error requests.

1.5.1 Heartbeat Endpoint

The heartbeat endpoint returns the plain text string OKOKOK if the server has completed starting and loading
collection data. Requests to the heartbeat will hang until the server has completed starting. The heartbeat does NOT
indicate if the server is healthy and serving requests correctly, only that it has completed start up. The idea being, that
this is used durning a rolling deploy process where there are multiple nodes behind a load balancer.

1.5. API 11

http://www.fabfile.org/
http://gunicorn.org
https://getsentry.com/welcome/

Avalon Music Server Documentation, Release 0.6.0

Path and method

GET /avalon/heartbeat

Note: This path may be different depending on your REQUEST_PATH configuration setting.

Parameters

• The heartbeat endpoint doesn’t support any parameters.

Possible error responses

• The heartbeat endpoint doesn’t return a JSON response object.

Success output format

OKOKOK

Error output format

NONONO

Example request

• http://localhost:8000/avalon/heartbeat

1.5.2 Songs endpoint

The songs endpoint returns data for individual songs. The results returned can be limited and filtered based on query
string parameters.

Path and method

GET /avalon/songs

Note: This path may be different depending on your REQUEST_PATH configuration setting.

12 Chapter 1. Contents

http://localhost:8000/avalon/heartbeat

Avalon Music Server Documentation, Release 0.6.0

Filtering Parameters

NameRe-
quired?

Type Mu-
ti-
ple?

Description

albumNo stringNo Select only songs belonging to this album, exact match, not case sensitive.
album_idNo stringNo Select only songs belonging to this album by UUID. The UUID is expected to be for-

matted using hexadecimal digits or hexadecimal digits with hyphens. If the UUID is
not formatted correctly error code 101 (invalid parameter type) will be returned.

artistNo stringNo Select only songs by this artist, exact match, not case sensitive.
artist_idNo stringNo Select only songs by this artist by UUID. The UUID is expected to be formatted using

hexadecimal digits or hexadecimal digits with hyphens. If the UUID is not formatted
correctly error code 101 (invalid parameter type) will be returned.

genreNo stringNo Select only songs belonging to this genre, exact match, not case sensitive.
genre_idNo stringNo Select only songs belonging to this genre by UUID. The UUID is expected to be for-

matted using hexadecimal digits or hexadecimal digits with hyphens. If the UUID is
not formatted correctly error code 101 (invalid parameter type) will be returned.

queryNo stringNo Select only songs whose album, artist, genre, or name contains query. The match is
not case sensitive and unicode characters will be normalized if possible before being
compared (in the query and fields being compared). The query is compared using
prefix matching against each portion of the album, artist, genre, or song name (delimited
by whitespace).

Other Parameters

NameRe-
quired?

Type Mu-
ti-
ple?

Description

limitNo integerNo If there are more than limit results, only limit will be returned. This must be a
positive integer. If the offset parameter is present, the limit will be applied
after the offset. If the limit is not an integer error code 101 (invalid parameter
type) will be returned. If the limit is not positive error code 102 (invalid parameter
value) will be returned.

offsetNo integerNo Skip the first offset entries returned as part of a result set. This must be a positive
integer. This parameter does not have any effect if the limit parameter is not also
present. If the offset is not an integer error code 101 (invalid parameter type) will
be returned.

orderNo stringNo Name of the field to use for ordering the result set. Any valid field of the members of
the result set may be used. If the order is not a valid field error code 100 (invalid
parameter name) will be returned.

directionNo stringNo Direction to sort the results in. Valid values are asc or desc. This parameter does not
have any effect if the order parameter is not also present. If the direction is not
asc or desc error code 102 (invalid parameter value) will be returned.

Example requests

• http://localhost:8000/avalon/songs?artist=NOFX

• http://localhost:8000/avalon/songs?artist_id=b048612e-1207-59f4-bbeb-ba0bc9a48cd1

• http://localhost:8000/avalon/songs?query=Live&artist=The+Bouncing+Souls

1.5. API 13

http://localhost:8000/avalon/songs?artist=NOFX
http://localhost:8000/avalon/songs?artist_id=b048612e-1207-59f4-bbeb-ba0bc9a48cd1
http://localhost:8000/avalon/songs?query=Live&artist=The+Bouncing+Souls

Avalon Music Server Documentation, Release 0.6.0

• http://localhost:8000/avalon/songs?album_id=2d24515c-a459-552a-b022-e85d1621425a

• http://localhost:8000/avalon/songs?album_id=2d24515ca459552ab022e85d1621425a

• http://localhost:8000/avalon/songs?genre=Ska

• http://localhost:8000/avalon/songs?genre_id=8794d7b7-fff3-50bb-b1f1-438659e05fe5

• http://localhost:8000/avalon/songs?query=anywhere

Possible error responses

Code Message key HTTP
code

Description

100 avalon.service.error.invalid_input_name400 An error that indicates that the name of a field specified is not a
valid field.

101 avalon.service.error.invalid_input_type400 An error that indicates the type of a parameter is not valid for
that particular parameter.

102 avalon.service.error.invalid_input_value400 An error that indicates the value of a parameter is not valid for
that particular parameter.

Success output format

{
"warnings": [],
"success": [

{
"year": 2004,
"track": 8,
"name": "She's a Rebel",
"album": "American Idiot",
"album_id": "9ff51c16-2a7a-581c-b0b6-e28f5004139f",
"artist": "Green Day",
"artist_id": "b048612e-1207-59f4-bbeb-ba0bc9a48cd1",
"genre": "Punk",
"genre_id": "8794d7b7-fff3-50bb-b1f1-438659e05fe5",
"id": "176cdea2-eb07-59ea-a809-2c6e23198cc8",
"length": 120

},
{

"year": 2002,
"track": 11,
"name": "Rotting",
"album": "Shenanigans",
"album_id": "9ddfbc73-6519-5ddf-a493-116cf3add9e1",
"artist": "Green Day",
"artist_id": "b048612e-1207-59f4-bbeb-ba0bc9a48cd1",
"genre": "Punk",
"genre_id": "8794d7b7-fff3-50bb-b1f1-438659e05fe5",
"id": "840d20d8-58c6-50f6-b031-2a5a1b7c6f91",
"length": 171

}
],
"errors": []

}

14 Chapter 1. Contents

http://localhost:8000/avalon/songs?album_id=2d24515c-a459-552a-b022-e85d1621425a
http://localhost:8000/avalon/songs?album_id=2d24515ca459552ab022e85d1621425a
http://localhost:8000/avalon/songs?genre=Ska
http://localhost:8000/avalon/songs?genre_id=8794d7b7-fff3-50bb-b1f1-438659e05fe5
http://localhost:8000/avalon/songs?query=anywhere

Avalon Music Server Documentation, Release 0.6.0

Error output format

{
"warnings": [],
"success": null,
"errors": [

{
"payload": {
"value": -1,
"field": "limit"

},
"message_key": "avalon.service.error.invalid_input_value",
"message": "The value of limit may not be negative",
"code": 102

}
]

}

1.5.3 Albums endpoint

The albums endpoint returns data for all the different albums that songs in the music collection belong to.

Path and method

GET /avalon/albums

Note: This path may be different depending on your REQUEST_PATH configuration setting.

Filtering Parameters

NameRe-
quired?

Type Mu-
ti-
ple?

Description

queryNo stringNo Select only albums whose name contains query. The match is not case sensitive and
unicode characters will be normalized if possible before being compared (in the query
and fields being compared). The query is compared using prefix matching against
each portion of the album (delimited by whitespace).

1.5. API 15

Avalon Music Server Documentation, Release 0.6.0

Other Parameters

NameRe-
quired?

Type Mu-
ti-
ple?

Description

limitNo integerNo If there are more than limit results, only limit will be returned. This must be a
positive integer. If the offset parameter is present, the limit will be applied
after the offset. If the limit is not an integer error code 101 (invalid parameter
type) will be returned. If the limit is not positive error code 102 (invalid parameter
value) will be returned.

offsetNo integerNo Skip the first offset entries returned as part of a result set. This must be a positive
integer. This parameter does not have any effect if the limit parameter is not also
present. If the offset is not an integer error code 101 (invalid parameter type) will
be returned.

orderNo stringNo Name of the field to use for ordering the result set. Any valid field of the members of
the result set may be used. If the order is not a valid field error code 100 (invalid
parameter name) will be returned.

directionNo stringNo Direction to sort the results in. Valid values are asc or desc. This parameter does not
have any effect if the order parameter is not also present. If the direction is not
asc or desc error code 102 (invalid parameter value) will be returned.

Example request

• http://localhost:8000/avalon/albums

• http://localhost:8000/avalon/albums?query=live

• http://localhost:8000/avalon/albums?order=name&direction=asc

• http://localhost:8000/avalon/albums?order=name&direction=desc&limit=5

Possible error responses

Code Message key HTTP
code

Description

100 avalon.service.error.invalid_input_name400 An error that indicates that the name of a field specified is not a
valid field.

101 avalon.service.error.invalid_input_type400 An error that indicates the type of a parameter is not valid for
that particular parameter.

102 avalon.service.error.invalid_input_value400 An error that indicates the value of a parameter is not valid for
that particular parameter.

Success output format

{
"warnings": [],
"success": [

{
"name": "The Living End",
"id": "9f311017-f1a8-598c-b842-fe873a4d198f"

},

16 Chapter 1. Contents

http://localhost:8000/avalon/albums
http://localhost:8000/avalon/albums?query=live
http://localhost:8000/avalon/albums?order=name&direction=asc
http://localhost:8000/avalon/albums?order=name&direction=desc&limit=5

Avalon Music Server Documentation, Release 0.6.0

{
"name": "End of the Century",
"id": "5209928c-4527-5fa5-a1de-affc4d9f6c11"

},
{

"name": "Endgame",
"id": "491672c5-adbe-5414-a4b5-cb6f3af03a6a"

}
],
"errors": []

}

Error output format

{
"warnings": [],
"success": null,
"errors": [

{
"payload": {
"value": -1,
"field": "limit"

},
"message_key": "avalon.service.error.invalid_input_value",
"message": "The value of limit may not be negative",
"code": 102

}
]

}

1.5.4 Artists endpoint

The artists endpoint returns data for all the different artists that songs in the music collection are performed by.

Path and method

GET /avalon/artists

Note: This path may be different depending on your REQUEST_PATH configuration setting.

Filtering Parameters

NameRe-
quired?

Type Mu-
ti-
ple?

Description

queryNo stringNo Select only artists whose name contains query. The match is not case sensitive and
unicode characters will be normalized if possible before being compared (in the query
and fields being compared). The query is compared using prefix matching against
each portion of the artist (delimited by whitespace).

1.5. API 17

Avalon Music Server Documentation, Release 0.6.0

Other Parameters

NameRe-
quired?

Type Mu-
ti-
ple?

Description

limitNo integerNo If there are more than limit results, only limit will be returned. This must be a
positive integer. If the offset parameter is present, the limit will be applied
after the offset. If the limit is not an integer error code 101 (invalid parameter
type) will be returned. If the limit is not positive error code 102 (invalid parameter
value) will be returned.

offsetNo integerNo Skip the first offset entries returned as part of a result set. This must be a positive
integer. This parameter does not have any effect if the limit parameter is not also
present. If the offset is not an integer error code 101 (invalid parameter type) will
be returned.

orderNo stringNo Name of the field to use for ordering the result set. Any valid field of the members of
the result set may be used. If the order is not a valid field error code 100 (invalid
parameter name) will be returned.

directionNo stringNo Direction to sort the results in. Valid values are asc or desc. This parameter does not
have any effect if the order parameter is not also present. If the direction is not
asc or desc error code 102 (invalid parameter value) will be returned.

Example request

• http://localhost:8000/avalon/artists

• http://localhost:8000/avalon/artists?query=who

• http://localhost:8000/avalon/artists?order=id

• http://localhost:8000/avalon/artists?order=name&limit=10&offset=20

Possible error responses

Code Message key HTTP
code

Description

100 avalon.service.error.invalid_input_name400 An error that indicates that the name of a field specified is not a
valid field.

101 avalon.service.error.invalid_input_type400 An error that indicates the type of a parameter is not valid for
that particular parameter.

102 avalon.service.error.invalid_input_value400 An error that indicates the value of a parameter is not valid for
that particular parameter.

Success output format

{
"warnings": [],
"success": [

{
"name": "Bad Religion",
"id": "5cede078-e88e-5929-b8e1-cfda7992b8fd"

},

18 Chapter 1. Contents

http://localhost:8000/avalon/artists
http://localhost:8000/avalon/artists?query=who
http://localhost:8000/avalon/artists?order=id
http://localhost:8000/avalon/artists?order=name&limit=10&offset=20

Avalon Music Server Documentation, Release 0.6.0

{
"name": "Bad Brains",
"id": "09b00809-23b3-50a3-a4ca-bba26d769c3b"

}
],
"errors": []

}

Error output format

{
"warnings": [],
"success": null,
"errors": [

{
"payload": {
"value": "foo",
"field": "offset"

},
"message_key": "avalon.service.error.invalid_input_type",
"message": "Invalid field value for integer field offset: 'foo'",
"code": 101

}
]

}

1.5.5 Genres endpoint

The genres endpoint returns data for all the different genres that songs in the music collection belong to.

Path and method

GET /avalon/genres

Note: This path may be different depending on your REQUEST_PATH configuration setting.

Filtering Parameters

NameRe-
quired?

Type Mu-
ti-
ple?

Description

queryNo stringNo Select only genres whose name contains query. The match is not case sensitive and
unicode characters will be normalized if possible before being compared (in the query
and fields being compared). The query is compared using prefix matching against
each portion of the genre (delimited by whitespace).

1.5. API 19

Avalon Music Server Documentation, Release 0.6.0

Other Parameters

NameRe-
quired?

Type Mu-
ti-
ple?

Description

limitNo integerNo If there are more than limit results, only limit will be returned. This must be a
positive integer. If the offset parameter is present, the limit will be applied
after the offset. If the limit is not an integer error code 101 (invalid parameter
type) will be returned. If the limit is not positive error code 102 (invalid parameter
value) will be returned.

offsetNo integerNo Skip the first offset entries returned as part of a result set. This must be a positive
integer. This parameter does not have any effect if the limit parameter is not also
present. If the offset is not an integer error code 101 (invalid parameter type) will
be returned.

orderNo stringNo Name of the field to use for ordering the result set. Any valid field of the members of
the result set may be used. If the order is not a valid field error code 100 (invalid
parameter name) will be returned.

directionNo stringNo Direction to sort the results in. Valid values are asc or desc. This parameter does not
have any effect if the order parameter is not also present. If the direction is not
asc or desc error code 102 (invalid parameter value) will be returned.

Example request

• http://localhost:8000/avalon/genres

• http://localhost:8000/avalon/genres?query=rock

• http://localhost:8000/avalon/genres?order=name

• http://localhost:8000/avalon/genres?order=name&limit=10

Possible error responses

Code Message key HTTP
code

Description

100 avalon.service.error.invalid_input_name400 An error that indicates that the name of a field specified is not a
valid field.

101 avalon.service.error.invalid_input_type400 An error that indicates the type of a parameter is not valid for
that particular parameter.

102 avalon.service.error.invalid_input_value400 An error that indicates the value of a parameter is not valid for
that particular parameter.

Success output format

{
"warnings": [],
"success": [

{
"name": "Hard Rock",
"id": "ec93d3f1-3642-5beb-bb10-07f29bb18fc5"

},

20 Chapter 1. Contents

http://localhost:8000/avalon/genres
http://localhost:8000/avalon/genres?query=rock
http://localhost:8000/avalon/genres?order=name
http://localhost:8000/avalon/genres?order=name&limit=10

Avalon Music Server Documentation, Release 0.6.0

{
"name": "Punk Ska",
"id": "3af7ba62-d87f-5258-af62-d7c5655ec567"

}
],
"errors": []

}

Error output format

{
"warnings": [],
"success": null,
"errors": [

{
"payload": {
"value": -10,
"field": "offset"

},
"message_key": "avalon.service.error.invalid_input_value",
"message": "The value of offset may not be negative",
"code": 102

}
]

}

1.6 UUID Generation

The Avalon Music Server uses UUIDs (version 5) to act as unique identifiers for albums, artists, genres, and tracks. If
you wish to generate compatible IDs outside of the Avalon Music Server the process is as follows (in Python):

1.6.1 Albums

Album IDs are generated from the lowercase, UTF-8 encoded, name of the album.

The namespace UUID is 7655e605-6eaa-40d8-a25f-5c6c92a4d31a.

>>> import uuid
>>> album_namespace = uuid.UUID('7655e605-6eaa-40d8-a25f-5c6c92a4d31a')
>>> album_name = u'¡Uno!'.lower().encode('utf-8')
>>> album_id = uuid.uuid5(album_namespace, album_name)
>>> album_id
UUID('32792eb5-03ff-5837-9869-d77ac9b5c99f')

1.6.2 Artists

Artist IDs are generated from the lowercase, UTF-8 encoded, name of the artist.

The namespace UUID is fe4df0f6-2c55-4ba6-acf3-134eae3e710e.

1.6. UUID Generation 21

Avalon Music Server Documentation, Release 0.6.0

>>> import uuid
>>> artist_namespace = uuid.UUID('fe4df0f6-2c55-4ba6-acf3-134eae3e710e')
>>> artist_name = u'Minor Threat'.lower().encode('utf-8')
>>> artist_id = uuid.uuid5(artist_namespace, artist_name)
>>> artist_id
UUID('debcc564-211b-559c-b810-e72598bdaf47')

1.6.3 Genres

Genre IDs are generated from the lowercase, UTF-8 encoded, name of the genre.

The namespace UUID is dd8dbd9c-8ed7-4719-80c5-71d978665dd0.

>>> import uuid
>>> genre_namespace = uuid.UUID('dd8dbd9c-8ed7-4719-80c5-71d978665dd0')
>>> genre_name = u'Punk Ska'.lower().encode('utf-8')
>>> genre_id = uuid.uuid5(genre_namespace, genre_name)
>>> genre_id
UUID('3af7ba62-d87f-5258-af62-d7c5655ec567')

1.6.4 Songs

Song IDs are generated from the case sensitive path of the file, encoded as UTF-8.

The namespace UUID is 4151ace3-6a98-41cd-a3de-8c242654cb67.

>>> import uuid
>>> song_namespace = uuid.UUID('4151ace3-6a98-41cd-a3de-8c242654cb67')
>>> song_path = u'/music/Voodoo_Glow_Skulls/02-adicción,_tradición,_revolución.ogg'.
→˓encode('utf-8')
>>> song_id = uuid.uuid5(song_namespace, song_path)
>>> song_id
UUID('56b33b92-d5b6-5971-b166-dc959b442c0c')

1.7 Developers

1.7.1 Prerequisites

Make sure you have the virtualenv tool available. You can find further instructions in the Installation section or at the
virtualenv website.

All steps below assume you are using a virtual environment named env inside the root directory of the git checkout.
It’s not important what name you use, this is only chosen to make the documentation consistent. Most of the commands
below reference the pip, virtualenv, and python instances installed in the env environment. This ensures that
they run in the context of the environment where we’ve set up the Avalon Music Server.

1.7.2 Environment Setup

First, fork the Avalon Music Server on GitHub.

Check out your fork of the source code.

22 Chapter 1. Contents

https://virtualenv.pypa.io/en/latest/
https://help.github.com/articles/fork-a-repo

Avalon Music Server Documentation, Release 0.6.0

$ git clone https://github.com/you/avalonms.git

Add the canonical Avalon Music Server repo as upstream. This might be useful if you have to keep your branch /
repo up to date before creating a pull request.

$ git remote add upstream https://github.com/tshlabs/avalonms.git

Create and set up a branch for your awesome new feature or bug fix.

$ cd avalonms
$ git checkout -b feature-xyz
$ git push origin feature-xyz:feature-xyz
$ git branch -u origin/feature-xyz

Set up a virtual environment.

$ virtualenv env

Enter the virtualenv install required dependencies.

$ source env/bin/activate
$ pip install --allow-external argparse -r requirements.txt
$ pip install -r requirements-dev.txt
$ pip install -r requirements-prod.txt

Install the checkout in “development mode”.

$ pip install -e .

1.7.3 Running The Server

The Avalon Music Server WSGI application can be run with Gunicorn (which was installed above from the
requirements-prod.txt file) or any other WSGI application server. Make sure that you have entered the
virtualenv you created earlier.

$ gunicorn --preload avalon.app.wsgi:application

1.7.4 Memory Profiling

The Avalon Music Server WSGI application can optionally log the memory used by various internal data structures.
This can be useful for minimizing the resource footprint of the server when adding new features.

When enabled, memory usage will be writen to the configured logger. This feature is only enabled when the Pympler
package is installed and the configured log level is DEBUG.

To enable this do the following.

Install the profiler.

$ pip install pympler

Change the Avalon Music Server log level in your local settings.py file.

LOG_LEVEL = logging.DEBUG

1.7. Developers 23

https://pypi.python.org/pypi/Pympler

Avalon Music Server Documentation, Release 0.6.0

1.7.5 Contributing

Next, code up your feature or bug fix and create a pull request. If you’re new to Git or GitHub, take a look at the
GitHub help site.

1.7.6 Useful Commands

The Avalon Music Server uses tox to run tests in isolated virtualenvs. You can run the tests using the command below.
Make sure that you have entered the virtualenv you created earlier.

$ tox test

You can also run the unit tests for a specific Python version.

$ TOXENV=py33 tox test

If you’re making changes to the documentation, the command below will build the documentation for you. To view it,
open up doc/build/html/index.html in your web browser.

$ fab clean docs

1.8 Maintainers

Note: The intended audience for this section is the Avalon Music Server maintainers. If you are a user of the Avalon
Music Server, you don’t need worry about this.

These are the steps for releasing a new version of the Avalon Music Server. The steps assume that all the changes you
want to release have already been merged to the master branch. The steps further assumed that you’ve run all the
unit tests and done some ad hoc testing of the changes.

1.8.1 Versioning

The Avalon Music Server uses semantic versioning of the form major.minor.patch. All backwards incompatible
changes after version 1.0.0 will increment the major version number. All backwards incompatible changes prior to
version 1.0.0 will increment the minor version number.

Since this is a Python project, only the subset of the semantic versioning spec that is compatible with PEP-440 will be
used.

The canonical version number for the Avalon Music Server is contained in the file avalon/__init__.py (relative
to the project root). Increment this version number based on the nature of the changes being included in this release.

Do not commit.

1.8.2 Change Log

Update the change log to include all relevant changes since the last release. Make sure to note which changes are
backwards incompatible.

Update the date of the most recent version to today’s date.

24 Chapter 1. Contents

https://help.github.com/articles/be-social/#pull-requests
https://help.github.com/
https://testrun.org/tox/latest/
http://semver.org/
https://www.python.org/dev/peps/pep-0440/

Avalon Music Server Documentation, Release 0.6.0

Commit the version number and change log updates.

1.8.3 Tagging

Create a new tag based on the new version of the Avalon Music Server.

$ git tag avalonms-0.5.0

Push the committed changes and new tags.

$ fab push push_tags

1.8.4 Building

Clean the checkout before trying to build.

$ fab clean

Build source and binary distributions and upload them.

$ fab pypi

1.8.5 Update PyPI

If the package metadata has changed since the last release, login to PyPI and update the description field or anything
else that needs it.

https://pypi.python.org/pypi/avalonms

1.9 Change Log

1.9.1 0.6.0 - 2015-11-09

• Add REQUEST_PATH configuration setting to allow the base URL for the server to be customized. The default
will remain /avalon.

• Minor code and documentation cleanup.

1.9.2 0.5.1 - 2015-04-04

• Packaging fixes (use twine for uploads to PyPI, stop using the setup.py register command).

• Add documentation of the steps for performing a release (Maintainers).

• Split usage documentation between the CLI and the server.

1.9. Change Log 25

https://pypi.python.org/pypi/avalonms

Avalon Music Server Documentation, Release 0.6.0

1.9.3 0.5.0 - 2015-01-04

• Add optional support for recording method execution times to Statsd. Enabling timing requires installing the
pystatsd client and setting configuration values to point to your statsd instance.

• Remove supervisor.config and supervisor.user tasks from bundled Fabric script and move
supervisor.restart to deploy.supervisor (along with having Supervisor gracefully reload instead
of restart).

1.9.4 0.4.0 - 2014-11-24

• Change to Mutagen for reading audio tags now that it supports Python 3.

• Support for Python 3.3 and 3.4.

• Reduce memory usage during bootstrap by reading metadata in batches.

• Reduce memory usage during collection scanning by inserting tracks in batches.

1.9.5 0.3.1 - 2014-10-12

• Include installation of a Sentry client in Fabric deploy task

• Use Py.test and Tox for running tests.

• Added a “Quick Start” section to the installation docs.

• Use Tunic library in Fabric deploy scripts.

1.9.6 0.3.0 - 2014-08-17

• Breaking change: Avalon Music Server is now a WSGI application and CLI scripts, not a stand-alone server.

• Breaking change: Response format changed to include errors, warnings, and success top-level ele-
ments. Response format of individual results remains unchanged.

• Change from using CherryPy web framework to Flask.

• Change from Mutagen to Mutagenx for potential Python 3 support.

• Change from Py.test to Nosetests.

• Lots of changes to potentially support Python 3.3 and 3.4 including use of the six library and testing those
versions on Travis CI.

• Include reference Fabric deploy script.

• Include reference Gunicorn, uWSGI, and Supervisor configurations.

1.9.7 0.2.25 - 2014-03-19

• License change from Apache 2 to MIT

• Unit test coverage improvements

• Removed server status page

• Remove dependency on the daemon library

26 Chapter 1. Contents

https://github.com/jsocol/pystatsd
http://tunic.rtfd.org

Avalon Music Server Documentation, Release 0.6.0

• Various code quality improvements

1.9.8 0.2.24 - 2013-08-19

• Fix bug in setup.py that prevented installation in Python 2.6

• Unit test coverage improvements

• Testing infrastructure improvements (Tox, Travis CI)

• Documentation for development environment setup

• Various typo and documentation updates

1.9.9 0.2.23 - 2013-06-17

• Changes to the names of API errors and setting HTTP statuses correctly

• Sample deploy and init scripts for the Avalon Music Server

• Testability improvements for the avalon.cache layer

• Documentation improvements

1.9.10 0.2.22 - 2013-05-20

• Handle database errors during rescan better

• Various code quality improvements

• Improved test coverage

1.9.11 0.2.21 - 2013-02-18

• Bug fixes for the /heartbeat endpoint

• JSON responses now set the correct encoding (UTF-8)

• Improved test coverage

1.9.12 0.2.20 - 2013-02-02

• Updates to status page to use Twitter Bootstrap

• Packaging fixes

1.9.13 0.2.15 - 2013-01-30

• Changed to Apache license 2.0 instead of FreeBSD license

• Updated copyright for 2013

1.9. Change Log 27

Avalon Music Server Documentation, Release 0.6.0

1.9.14 0.2.14 - 2013-01-21

• Text searching using a Trie for faster matching

• Documentation improvements

1.9.15 0.2.13 - 2013-01-10

• Unicode code folding for better search results

• Beginnings of a test suite for the supporting library

• Documentation links to reference server installation

1.9.16 0.2.12 - 2012-12-28

• Text searching functionality via ‘query’ param for albums, artists, genres, and songs endpoints

• Documentation updates for installation

1.9.17 0.2.11 - 2012-12-23

• Refactor avalon.scan into avalon.tags package

• Switch to use Mutagen by default instead of TagPy

• Allow avalon.tags package to fall back to TagPy if Mutagen isn’t installed

1.9.18 0.2.10 - 2012-12-17

• Fix build dependencies and remove setuptools/distribute requirement

1.9.19 0.2.9 - 2012-12-17

• Minor documentation updates

1.9.20 0.2.8 - 2012-12-15

• Updates to the build process

1.9.21 0.2.5 - 2012-12-13

• Packaging fixes

1.9.22 0.2.0 - 2012-12-13

• Breaking change: Use of UUIDs for stable IDs for albums, artists, genres, and songs

• Documentation improvements

• Ordering, limit, and offset parameter support

28 Chapter 1. Contents

Avalon Music Server Documentation, Release 0.6.0

1.9.23 0.1.0 - 2012-05-20

• Initial release

1.9. Change Log 29

Avalon Music Server Documentation, Release 0.6.0

30 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

31

	Contents
	Requirements
	Installation
	CLI Tools
	WSGI Application
	API
	UUID Generation
	Developers
	Maintainers
	Change Log

	Indices and tables

