

Avalon Music Server

The Avalon Music Server is a Python WSGI application and several CLI scripts
that, together, scan metadata from a music collection, store it in a database,
and expose it as a JSON web service. It is available under the MIT license.

The Avalon Music Server is able to read metadata from ogg, flac, and mp3 files.
Clients can then query the server for information about songs, albums, artists,
and genres in the collection.

Features include:

	Support for Mp3, Vorbis (Ogg), or Flac audio files

	Support for multiple database backends

	Simple JSON interface including fast prefix matching

	Unicode output support

	Python 2.6 – 3.4

To install it simply run

$ pip install avalonms

Then, to scan your music collection

$ avalon-scan ~/Music

Then, start the application using a WSGI server like Gunicorn [http://gunicorn.org/]

$ gunicorn --preload avalon.app.wsgi:application

The documentation linked below will go into more detail about how to configure and run
the Avalon Music Server in a production environment, how to interact with it using the
JSON web service, and how to set up an environment to develop it.

Contents

	Requirements

	Installation
	Quick Start Installation

	Production Installation

	CLI Tools
	avalon-echo-config

	avalon-scan

	WSGI Application
	Running

	Configuration

	Settings

	Architecture

	Deployment

	API
	Heartbeat Endpoint

	Songs endpoint

	Albums endpoint

	Artists endpoint

	Genres endpoint

	UUID Generation
	Albums

	Artists

	Genres

	Songs

	Developers
	Prerequisites

	Environment Setup

	Running The Server

	Memory Profiling

	Contributing

	Useful Commands

	Maintainers
	Versioning

	Change Log

	Tagging

	Building

	Update PyPI

	Change Log
	0.6.0 - 2015-11-09

	0.5.1 - 2015-04-04

	0.5.0 - 2015-01-04

	0.4.0 - 2014-11-24

	0.3.1 - 2014-10-12

	0.3.0 - 2014-08-17

	0.2.25 - 2014-03-19

	0.2.24 - 2013-08-19

	0.2.23 - 2013-06-17

	0.2.22 - 2013-05-20

	0.2.21 - 2013-02-18

	0.2.20 - 2013-02-02

	0.2.15 - 2013-01-30

	0.2.14 - 2013-01-21

	0.2.13 - 2013-01-10

	0.2.12 - 2012-12-28

	0.2.11 - 2012-12-23

	0.2.10 - 2012-12-17

	0.2.9 - 2012-12-17

	0.2.8 - 2012-12-15

	0.2.5 - 2012-12-13

	0.2.0 - 2012-12-13

	0.1.0 - 2012-05-20

Indices and tables

	Index

	Module Index

	Search Page

Requirements

If you follow the instructions in Installation (using pip) most of
these requirements should be installed for you.

Python requirements:

	Python 2 >= 2.6 or Python 3 >= 3.3

	Argparse >= 1.2.1 (Or >= Python 2.7)

	Flask >= 0.10.1

	Mutagen >= 1.25.1

	SimpleJSON >= 3.5.2

	SQLAlchemy >= 0.9.4

In addition to the libraries above, you’ll need a WSGI compatible server to
run the Avalon Music Server. Gunicorn [http://gunicorn.org] or uWSGI [http://uwsgi-docs.readthedocs.org/en/latest/] are both excellent choices.
The rest of the documentation will assume you are using Gunicorn since that
is what the reference install of the Avalon Music Server uses.

By default, the Avalon Music Server uses a SQLite database to store music
meta data. If you wish to use another database type supported [http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls] by SQLAlchemy
(e.g. MySQL, PostgreSQL) you’ll need to install an appropriate library for
it.

For example, to install a PostgreSQL driver.

$ pip install psycopg2

Or a MySQL driver.

$ pip install mysql-python

Installation

Two possible ways to install the Avalon Music Server are described below.
One is very simple and designed to get you up and running as quickly as
possible. The other is more involved and designed to run the Avalon Music
Server in a production environment.

All of these instructions are based on a machine running Debian Linux, but
they should be applicable to any UNIX-like operating system (with a few
modifications).

Quick Start Installation

This section will describe an extremely simple installation of the Avalon
Music Server. If you just want to play around with the Avalon Music Server
and don’t have plans to run it in production, this guide is for you.

First, we’ll install the virtualenv tool.

$ apt-get install python-virtualenv

Next, create a virtual environment that we’ll install the Avalon Music Server into.

$ virtualenv ~/avalon

“Activate” the virtual environment.

$ source ~/avalon/bin/activate

Install the Avalon Music Server and Gunicorn [http://www.gunicorn.org/].

$ pip install avalonms gunicorn

Scan your music collection and build a database with the meta data from it.

$ avalon-scan ~/path/to/music

Start the server.

$ gunicorn --preload avalon.app.wsgi:application

Then, in a different terminal, test it out!

$ curl http://localhost:8000/avalon/heartbeat

You should see the result OKOKOK if the server started correctly. To stop
the server, just hit CTRL-C in the terminal that it is running in.

Production Installation

This section will describe one potential way to install, configure, and
run the Avalon Music Server in production.

This particular installation uses Gunicorn [http://www.gunicorn.org/], Supervisord [http://www.supervisord.org/], and Nginx [http://nginx.org/]. We’ll
set it up so that it can be deployed to using the included Fabric [http://www.fabfile.org/] files in
the future. We’ll also make use of the bundled Gunicorn and Supervisor
configurations.

Installing Dependencies

First, we’ll install the virtualenv tool, Supervisor and Nginx using the package
manager.

$ apt-get install python-virtualenv supervisor nginx

Setting Up The Environment

Next, we’ll set up the environment on our server:

Create the group that will own the deployed code.

$ sudo groupadd dev

Add our user to it so that we can perform deploys without using sudo.

$ sudo usermod -g dev `whoami`

Create the directories that the server will be deployed into.

$ sudo mkdir -p /var/www/avalon/releases

Set the ownership and permissions of the directories.

$ sudo chown -R root:dev /var/www/avalon
$ sudo chmod -R u+rw,g+rw,o+r /var/www/avalon
$ sudo chmod g+s /var/www/avalon /var/www/avalon/releases

Add a new unprivileged user that the Avalon Music Server will run as.

$ sudo useradd --shell /bin/false --home /var/www/avalon --user-group avalon

Create a virtual environment that we’ll install the Avalon Music Server into.

$ virtualenv /var/www/avalon/releases/20140717214022

Set the “current” symlink to the virtual environment we just created. This is
the path that we’ll we pointing our Supervisor and Gunicorn configurations at.

$ ln -s /var/www/avalon/releases/20140717214022 /var/www/avalon/current

Installing from PyPI

Now, let’s install the Avalon Music Server, Gunicorn, and a Sentry client into
the virtual environment we just created.

$ /var/www/avalon/current/bin/pip install avalonms gunicorn raven

The Avalon Music Server has an embedded default configuration file. In addition
to that, we’ll create our own copy of that configuration that we can customize.

$ /var/www/avalon/current/bin/avalon-echo-config > /var/www/avalon/local-settings.py

Avalon WSGI Application

We won’t configure the Avalon WSGI application here, as part of installation. For
more information about the available configuration settings for it, see the WSGI Application
section.

Gunicorn

The installed Avalon Music Server comes with a simple Gunicorn configuration file
that is available at /var/www/avalon/current/share/avalonms/avalon-gunicorn.py
(or ext/avalon-gunicorn.py in the codebase). This file configures Gunicorn to:

	Bind the server to only the local interface, port 8000.

	Spawn three worker processes that will handle requests.

	Use preload mode so that the workers will be able to take advantage of copy-on-write [https://en.wikipedia.org/wiki/Copy-on-write#Copy-on-write_in_virtual_memory_management]
optimizations done by the operating system to save RAM.

Supervisor

The installed Avalon Music server also comes with a simple Supervisord configuration
file. This file runs the Avalon Music Server as an unprivileged user, uses the Gunicorn
HTTP WSGI server, restarts it if it crashes, and pipes all output to a log file. This
is available at /var/www/avalon/current/share/avalonms/avalon-supervisor-gunicorn.conf
(or ext/avalon-supervisor-gunicorn.conf in the codebase).

When you installed Supervisor earlier (if you’re on Debian) it created a directory that
configurations can be placed into: /etc/supervisor/conf.d. Copy the bundled Supervisor
configuration file into this directory and set the owner and permissions appropriately.

$ sudo cp /var/www/avalon/current/share/avalonms/avalon-supervisor-gunicorn.conf /etc/supervisor/conf.d/
$ sudo chown root:root /etc/supervisor/conf.d/avalon-supervisor-gunicorn.conf
$ sudo chmod 644 /etc/supervisor/conf.d/avalon-supervisor-gunicorn.conf

Nginx

Though Gunicorn can run as an HTTP server, you should [http://docs.gunicorn.org/en/latest/deploy.html] use a dedicated web server in front
of it as a reverse proxy if you plan on exposing it on the public Internet. If so, Nginx is
a solid, lightweight, easy to configure choice. In the instructions below, replace
api.example.com with the domain that you wish to run the Avalon Music Server at.

When you installed Nginx earlier it created a directory that server configurations can be
placed into: /etc/nginx/sites-available/ (if you’re on Debian). If you’re not on Debian
the directory may be in a different location such as /etc/nginx/conf.d or you may have
a single configuration file: /etc/nginx/nginx.conf.

If you have a directory for configurations, create a new file named api_example_com.conf
with the contents below. If you only have a single configuration file, add the contents below
inside the http section.

upstream avalon {
 server localhost:8000;
}

server {
 listen 80;
 server_name api.example.com;

 location /avalon {
 proxy_pass http://avalon;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 }
}

If you’re on Debian, enable the configuration like so.

$ sudo ln -s /etc/nginx/sites-available/api_example_com.conf /etc/nginx/sites-enabled/

Start the Server

Now that everything is configured, let’s try starting Nginx and Supervisor (which will, in turn,
start the Avalon Music Server) and testing it out.

$ sudo service supervisor start
$ sudo service nginx start
$ curl http://api.example.com/avalon/heartbeat

If everything was installed correctly, the curl command should return the string
OKOKOK.

CLI Tools

There are several CLI tools that are used as part of the Avalon Music Server
besides the actual server part.

Each of these tools will be detailed below.

avalon-echo-config

Print the contents of the default configuration for the Avalon Music Server
WSGI application to STDOUT.

Useful for creating a configuration file for the server that can be customized
as described below.

Synopsis

$ avalon-echo-config [options]

Options

	-h --help

	Prints how to invoke the command and supported options and exits.

	-V --version

	Prints the installed version of the Avalon Music Server and exits.

Examples

$ avalon-echo-config > /var/www/avalon/local-settings.py

avalon-scan

Scan a music collection for meta data and insert it into a database, making
sure to create the database schema if it does not already exist.

Database connection information is loaded from the default configuration file
and optionally a configuration override file (whose location is specified by
the AVALON_CONFIG environmental variable). This can also be overridden using
the --database option.

Synopsis

$ avalon-scan [options] {music collection path}

Options

	-h --help

	Prints how to invoke the command and supported options and exits.

	-V --version

	Prints the installed version of the Avalon Music Server and exits.

	-d <URL> --database <URL>

	Database URL connection string for the database to write music collection
meta data to. If not specified the value from the default configuration file
and configuration file override will be used. The URL must be one supported
by SQLAlchemy [http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls].

	-q --quiet

	Be less verbose, only emit ERROR level messages to the console.

Examples

Use the database type and location specified by the default configuration
file (usually SQLite and /tmp/avalon.sqlite) and scan the music collection
in the directory ‘music’.

$ avalon-scan ~/music

Use the database type and location specified by a custom configuration file
and scan the music collection in the ‘media’ directory.

$ AVALON_CONFIG=/home/user/avalon/local-settings.py avalon-scan /home/media

Use a PostgreSQL database type and connect to a remote database server and
scan the music collection in the directory ‘music’.

$ avalon-scan --database 'postgresql+psycopg2://user:password@server/database' ~/music

Use a SQLite database type in a non-default location and scan the music collection
in the directory ‘/home/files/music’.

$ avalon-scan --database 'sqlite:////var/db/avalon.sqlite' /home/files/music

WSGI Application

The Avalon WSGI application is meant to be run with a Python WSGI server such as
Gunicorn [http://gunicorn.org].

The application will…

	Load music collection meta data from a database (as specified by the configuration
files described below).

	Build structures that can be used to search and query a music collection.

	Begin serving HTTP requests with a JSON API.

Running

The main entry point for the Avalon Music Server WSGI application is the module
avalon.app.wsgi – the WSGI callable is the attribute application within
the module. An example of how to use this module and callable with Gunicorn (with
three worker processes) is below.

$ gunicorn --preload --workers 3 avalon.app.wsgi:application

Note that we’re using the --preload mode which will save us memory when using
multiple worker processes.

Configuration

The Avalon WSGI application uses an embedded default configuration file. Settings
in that file (described below) can be overridden with a custom configuration file
generated as below (assuming the Avalon Music Server has already been installed).

$ avalon-echo-config > /var/www/avalon/local-settings.py

The file at /var/www/avalon/local-settings.py will be an exact copy of the default
configuration file. You can change the settings in this new copy and they will
override the default settings. Any settings you do not change (or settings removed from
the file) will use their default values.

After you have customized this file, you need to tell the Avalon WSGI application
to use this file. This is done by setting the value of the AVALON_CONFIG
environmental variable to the path of this configuration file. An example (once
again, using Gunicorn) is below.

$ gunicorn --env AVALON_CONFIG=/var/www/avalon/local-settings.py \
 --preload --workers 3 avalon.app.wsgi:application

Settings

The following configuration settings are available to customize the behavior of
the Avalon WSGI application. The table below describes the settings and how they
are used.

Note

Note that some settings available in the configuration are not meant to be changed
by end users and are hence omitted below.

	DATABASE_URL

	URL that describes the type of database to connect to and the
credentials for connecting to it. The URL must be one
supported by SQLAlchemy [http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls]. For example, to connect to a local
SQLite database: sqlite:////var/db/avalon.sqlite, or to
connect to a remote PostgreSQL database:
postgresql+psycopg2://user:password@server/database

	LOG_DATE_FORMAT

	Date format for timestamps in logging messages. The supported
tokens for this setting are described in the Python
documentation [http://docs.python.org/2/library/time.html#time.strftime].

	LOG_FORMAT

	Format for messages logged directly by the Avalon Music
Server. See the Python logging [http://docs.python.org/2/library/logging.html#logrecord-attributes] documentation for more
information.

	LOG_LEVEL

	How verbose should logging done by the Avalon WSGI application
be? By default, all messages INFO and higher are logging.
Available levels are DEBUG, INFO, WARN, ERROR,
and CRITICAL. Setting this to a higher value means that
fewer messages will be logged, but you may miss some useful
messages.

	LOG_PATH

	Where should messages be logged to? By default all messages
are logged to the STDERR stream (the console). Typically,
these will be captured by the Supervisord daemon and end up
in a log file. If you would like to have the Avalon WSGI
application write to the file itself, set this to the path
of the file.

	REQUEST_PATH

	Base path to use for handling requests to the WSGI application. For
example, with a value of ‘/avalon’ the heartbeat endpoint will be at
‘/avalon/heartbeat’. With a value of ‘/’ the heartbeat endpoint will
be at ‘/heartbeat’. Note that this value must begin with a ‘/’, may
not end with a ‘/’, and will apply to all URLs handled by the Avalon
Music Server. The default is ‘/avalon’.

	SENTRY_DSN

	URL that describes how to log errors to a centralized 3rd party
error-logging service, Sentry [https://getsentry.com/welcome/]. This functionality is disabled
by default. Enabling this logging requires supplying a Sentry
DSN configuration string and installing the Raven Sentry client [https://pypi.python.org/pypi/raven].

	STATSD_HOST

	Hostname to write Statsd timers and counters to if there is a
client installed. The expected client will discard any errors
encountered when trying to write metrics so setting this value
to a host not running the Statsd daemon is equivalent to
disabling it.

	STATSD_PORT

	Port to write Statsd timers and counters to. Port 8125 is the
port that the Etsy Statsd implementation runs on by default.

	STATSD_PREFIX

	Prefix all metrics emitted with this string. Useful to make
sure metrics from the Avalon Music Server don’t pollute the
top-level namespace. You may want further split metrics by
the environment you are running in (dev vs staging vs prod).
This can be done by adding a dot-separated string to the
existing prefix, e.g. ‘avalon.prd’ or ‘avalon.dev’.

Architecture

Database

The Avalon Music Server CLI tool avalon-scan writes music metadata to a database
when it scans a music collection. The WSGI application and reads the meta back when it
starts.

In each case, when connecting to a database for the first time, the CLI script and
the WSGI application will attempt to create the required database schema if it does
not already exist.

Provided that you attempt to scan your music collection before running the WSGI
application, the scanning portion must have read/write access to the database and
the WSGI application must have read access. Otherwise, if you are running the WSGI
application, connecting to a database before inserting anything into it via scanning,
the WSGI application will attempt create the required schema and will require read/write
access.

Workers

The Avalon WSGI application is, for the most part, CPU bound and immutable after start
up. Therefore it is a good fit for multiprocess workers and (if your Python implementation
doesn’t have a Global-Interpreter-Lock [https://wiki.python.org/moin/GlobalInterpreterLock]) threaded workers.

Logging

By default, the Avalon WSGI application sends logging messages to STDERR. This means
that if you want to send these messages to a file or a Syslog, you have to configure the
logging of the WSGI HTTP server that you are using to run it (or the process manager that
runs the WSGI HTTP server).

The Avalon WSGI application can also be configured to send log messages directly to a log
file. In this case, the file must be writable by the user that the application is being
run as.

Sentry

Sentry [https://getsentry.com/welcome/] is a centralized, 3rd-party, error-logging service. It is available as a
paid, hosted, service. However, both the client and server are Free Software [https://github.com/getsentry/sentry] and
can be run by anyone.

The Avalon WSGI application will optionally log unhandled exceptions to a Sentry
instance provided these things are true (otherwise logging to Sentry will not be
used).

	The Sentry client [https://pypi.python.org/pypi/raven] is installed and can be imported.

	There is a SENTRY_DSN configuration setting available and correctly configured.

To install the client run the following command from within the virtualenv that
the Avalon WSGI application is installed in.

$ pip install raven

Statsd

Statsd [https://codeascraft.com/2011/02/15/measure-anything-measure-everything/] is a daemon that listens for metrics sent over UDP and periodically pushes
them to Graphite [http://graphite.readthedocs.org/en/latest/].

The Avalon WSGI application will optionally record the execution time of each endpoint
if the Statsd client [https://github.com/jsocol/pystatsd] is installed. The Statsd service to send metrics to can be
configured with the STATSD_HOST and STATSD_PORT configuration settings.

To install the client run the following command from within the virtualenv that
the Avalon WSGI application is installed in.

$ pip install statsd

Deployment

If you followed the steps in Installation you should be able to use the
bundled Fabric [http://www.fabfile.org/] deploy scripts to manage your Avalon WSGI application installation.

Note that the Fabric deploy scripts will also install the Gunicorn [http://gunicorn.org] HTTP server and
a client for the Sentry [https://getsentry.com/welcome/] service (however, Sentry won’t be used unless you have
explicitly configured it).

Some assumptions made by the Fabric deploy scripts:

	You have already created and set the permissions of the directory that will be
getting deployed to (as described in installation).

	You have SSH access to the server you are deploying to.

	You have the ability to sudo on the server you are deploying to.

If all these things are true, you should be able to deploy a new version of the
Avalon WSGI application with a few simple steps.

First, make sure the build environment is clean and then generate packages to install.

$ fab clean build.released

Next, upload the generated packages, and install them.

$ fab -H api.example.com deploy.install

Restart the Avalon WSGI application if it’s already running.

$ fab -H api.example.com deploy.restart

That’s it! The Avalon WSGI application should now be running on your server.

API

The Avalon Music Server handles requests on the specified interface and
port at the path /avalon.

Endpoints return information about a music collection in JSON format based
on path and/or query string parameters. Endpoints will return data as JSON
for sucessful and error requests.

	Heartbeat Endpoint

	Songs endpoint

	Albums endpoint

	Artists endpoint

	Genres endpoint

Heartbeat Endpoint

The heartbeat endpoint returns the plain text string OKOKOK if the server has
completed starting and loading collection data. Requests to the heartbeat will hang until
the server has completed starting. The heartbeat does NOT indicate if the server is healthy
and serving requests correctly, only that it has completed start up. The idea being, that
this is used durning a rolling deploy process where there are multiple nodes behind a load
balancer.

Path and method

GET /avalon/heartbeat

Note

This path may be different depending on your REQUEST_PATH configuration setting.

Parameters

	The heartbeat endpoint doesn’t support any parameters.

Possible error responses

	The heartbeat endpoint doesn’t return a JSON response object.

Success output format

OKOKOK

Error output format

NONONO

Example request

	http://localhost:8000/avalon/heartbeat

Songs endpoint

The songs endpoint returns data for individual songs. The results returned
can be limited and filtered based on query string parameters.

Path and method

GET /avalon/songs

Note

This path may be different depending on your REQUEST_PATH configuration setting.

Filtering Parameters

	Name

	Required?

	Type

	Mutiple?

	Description

	album

	No

	string

	No

	Select only songs belonging to this album, exact match, not
case sensitive.

	album_id

	No

	string

	No

	Select only songs belonging to this album by UUID. The UUID is
expected to be formatted using hexadecimal digits or
hexadecimal digits with hyphens. If the UUID is not formatted
correctly error code 101 (invalid parameter type) will be
returned.

	artist

	No

	string

	No

	Select only songs by this artist, exact match, not case
sensitive.

	artist_id

	No

	string

	No

	Select only songs by this artist by UUID. The UUID is expected
to be formatted using hexadecimal digits or hexadecimal digits
with hyphens. If the UUID is not formatted correctly error code
101 (invalid parameter type) will be returned.

	genre

	No

	string

	No

	Select only songs belonging to this genre, exact match, not
case sensitive.

	genre_id

	No

	string

	No

	Select only songs belonging to this genre by UUID. The UUID is
expected to be formatted using hexadecimal digits or
hexadecimal digits with hyphens. If the UUID is not formatted
correctly error code 101 (invalid parameter type) will be
returned.

	query

	No

	string

	No

	Select only songs whose album, artist, genre, or name contains
query. The match is not case sensitive and unicode
characters will be normalized if possible before being compared
(in the query and fields being compared). The query is
compared using prefix matching against each portion of the
album, artist, genre, or song name (delimited by whitespace).

Other Parameters

	Name

	Required?

	Type

	Mutiple?

	Description

	limit

	No

	integer

	No

	If there are more than limit results, only limit will
be returned. This must be a positive integer. If the
offset parameter is present, the limit will be applied
after the offset. If the limit is not an integer
error code 101 (invalid parameter type) will be returned.
If the limit is not positive error code 102 (invalid
parameter value) will be returned.

	offset

	No

	integer

	No

	Skip the first offset entries returned as part of a result
set. This must be a positive integer. This parameter does
not have any effect if the limit parameter is not also
present. If the offset is not an integer error code
101 (invalid parameter type) will be returned.

	order

	No

	string

	No

	Name of the field to use for ordering the result set. Any valid
field of the members of the result set may be used. If the
order is not a valid field error code 100 (invalid
parameter name) will be returned.

	direction

	No

	string

	No

	Direction to sort the results in. Valid values are asc or
desc. This parameter does not have any effect if the
order parameter is not also present. If the direction
is not asc or desc error code 102 (invalid
parameter value) will be returned.

Example requests

	http://localhost:8000/avalon/songs?artist=NOFX

	http://localhost:8000/avalon/songs?artist_id=b048612e-1207-59f4-bbeb-ba0bc9a48cd1

	http://localhost:8000/avalon/songs?query=Live&artist=The+Bouncing+Souls

	http://localhost:8000/avalon/songs?album_id=2d24515c-a459-552a-b022-e85d1621425a

	http://localhost:8000/avalon/songs?album_id=2d24515ca459552ab022e85d1621425a

	http://localhost:8000/avalon/songs?genre=Ska

	http://localhost:8000/avalon/songs?genre_id=8794d7b7-fff3-50bb-b1f1-438659e05fe5

	http://localhost:8000/avalon/songs?query=anywhere

Possible error responses

	Code

	Message key

	HTTP code

	Description

	100

	avalon.service.error.invalid_input_name

	400

	An error that indicates that the
name of a field specified is not a
valid field.

	101

	avalon.service.error.invalid_input_type

	400

	An error that indicates the type of
a parameter is not valid for that
particular parameter.

	102

	avalon.service.error.invalid_input_value

	400

	An error that indicates the value
of a parameter is not valid for
that particular parameter.

Success output format

{
 "warnings": [],
 "success": [
 {
 "year": 2004,
 "track": 8,
 "name": "She's a Rebel",
 "album": "American Idiot",
 "album_id": "9ff51c16-2a7a-581c-b0b6-e28f5004139f",
 "artist": "Green Day",
 "artist_id": "b048612e-1207-59f4-bbeb-ba0bc9a48cd1",
 "genre": "Punk",
 "genre_id": "8794d7b7-fff3-50bb-b1f1-438659e05fe5",
 "id": "176cdea2-eb07-59ea-a809-2c6e23198cc8",
 "length": 120
 },
 {
 "year": 2002,
 "track": 11,
 "name": "Rotting",
 "album": "Shenanigans",
 "album_id": "9ddfbc73-6519-5ddf-a493-116cf3add9e1",
 "artist": "Green Day",
 "artist_id": "b048612e-1207-59f4-bbeb-ba0bc9a48cd1",
 "genre": "Punk",
 "genre_id": "8794d7b7-fff3-50bb-b1f1-438659e05fe5",
 "id": "840d20d8-58c6-50f6-b031-2a5a1b7c6f91",
 "length": 171
 }
],
 "errors": []
}

Error output format

{
 "warnings": [],
 "success": null,
 "errors": [
 {
 "payload": {
 "value": -1,
 "field": "limit"
 },
 "message_key": "avalon.service.error.invalid_input_value",
 "message": "The value of limit may not be negative",
 "code": 102
 }
]
}

Albums endpoint

The albums endpoint returns data for all the different albums that songs
in the music collection belong to.

Path and method

GET /avalon/albums

Note

This path may be different depending on your REQUEST_PATH configuration setting.

Filtering Parameters

	Name

	Required?

	Type

	Mutiple?

	Description

	query

	No

	string

	No

	Select only albums whose name contains query. The match is
not case sensitive and unicode characters will be normalized if
possible before being compared (in the query and fields
being compared). The query is compared using prefix
matching against each portion of the album (delimited by
whitespace).

Other Parameters

	Name

	Required?

	Type

	Mutiple?

	Description

	limit

	No

	integer

	No

	If there are more than limit results, only limit will
be returned. This must be a positive integer. If the
offset parameter is present, the limit will be applied
after the offset. If the limit is not an integer
error code 101 (invalid parameter type) will be returned.
If the limit is not positive error code 102 (invalid
parameter value) will be returned.

	offset

	No

	integer

	No

	Skip the first offset entries returned as part of a result
set. This must be a positive integer. This parameter does
not have any effect if the limit parameter is not also
present. If the offset is not an integer error code
101 (invalid parameter type) will be returned.

	order

	No

	string

	No

	Name of the field to use for ordering the result set. Any valid
field of the members of the result set may be used. If the
order is not a valid field error code 100 (invalid
parameter name) will be returned.

	direction

	No

	string

	No

	Direction to sort the results in. Valid values are asc or
desc. This parameter does not have any effect if the
order parameter is not also present. If the direction
is not asc or desc error code 102 (invalid
parameter value) will be returned.

Example request

	http://localhost:8000/avalon/albums

	http://localhost:8000/avalon/albums?query=live

	http://localhost:8000/avalon/albums?order=name&direction=asc

	http://localhost:8000/avalon/albums?order=name&direction=desc&limit=5

Possible error responses

	Code

	Message key

	HTTP code

	Description

	100

	avalon.service.error.invalid_input_name

	400

	An error that indicates that the
name of a field specified is not a
valid field.

	101

	avalon.service.error.invalid_input_type

	400

	An error that indicates the type of
a parameter is not valid for that
particular parameter.

	102

	avalon.service.error.invalid_input_value

	400

	An error that indicates the value
of a parameter is not valid for
that particular parameter.

Success output format

{
 "warnings": [],
 "success": [
 {
 "name": "The Living End",
 "id": "9f311017-f1a8-598c-b842-fe873a4d198f"
 },
 {
 "name": "End of the Century",
 "id": "5209928c-4527-5fa5-a1de-affc4d9f6c11"
 },
 {
 "name": "Endgame",
 "id": "491672c5-adbe-5414-a4b5-cb6f3af03a6a"
 }
],
 "errors": []
}

Error output format

{
 "warnings": [],
 "success": null,
 "errors": [
 {
 "payload": {
 "value": -1,
 "field": "limit"
 },
 "message_key": "avalon.service.error.invalid_input_value",
 "message": "The value of limit may not be negative",
 "code": 102
 }
]
}

Artists endpoint

The artists endpoint returns data for all the different artists that songs
in the music collection are performed by.

Path and method

GET /avalon/artists

Note

This path may be different depending on your REQUEST_PATH configuration setting.

Filtering Parameters

	Name

	Required?

	Type

	Mutiple?

	Description

	query

	No

	string

	No

	Select only artists whose name contains query. The match is
not case sensitive and unicode characters will be normalized if
possible before being compared (in the query and fields
being compared). The query is compared using prefix
matching against each portion of the artist (delimited by
whitespace).

Other Parameters

	Name

	Required?

	Type

	Mutiple?

	Description

	limit

	No

	integer

	No

	If there are more than limit results, only limit will
be returned. This must be a positive integer. If the
offset parameter is present, the limit will be applied
after the offset. If the limit is not an integer
error code 101 (invalid parameter type) will be returned.
If the limit is not positive error code 102 (invalid
parameter value) will be returned.

	offset

	No

	integer

	No

	Skip the first offset entries returned as part of a result
set. This must be a positive integer. This parameter does
not have any effect if the limit parameter is not also
present. If the offset is not an integer error code
101 (invalid parameter type) will be returned.

	order

	No

	string

	No

	Name of the field to use for ordering the result set. Any valid
field of the members of the result set may be used. If the
order is not a valid field error code 100 (invalid
parameter name) will be returned.

	direction

	No

	string

	No

	Direction to sort the results in. Valid values are asc or
desc. This parameter does not have any effect if the
order parameter is not also present. If the direction
is not asc or desc error code 102 (invalid
parameter value) will be returned.

Example request

	http://localhost:8000/avalon/artists

	http://localhost:8000/avalon/artists?query=who

	http://localhost:8000/avalon/artists?order=id

	http://localhost:8000/avalon/artists?order=name&limit=10&offset=20

Possible error responses

	Code

	Message key

	HTTP code

	Description

	100

	avalon.service.error.invalid_input_name

	400

	An error that indicates that the
name of a field specified is not a
valid field.

	101

	avalon.service.error.invalid_input_type

	400

	An error that indicates the type of
a parameter is not valid for that
particular parameter.

	102

	avalon.service.error.invalid_input_value

	400

	An error that indicates the value
of a parameter is not valid for
that particular parameter.

Success output format

{
 "warnings": [],
 "success": [
 {
 "name": "Bad Religion",
 "id": "5cede078-e88e-5929-b8e1-cfda7992b8fd"
 },
 {
 "name": "Bad Brains",
 "id": "09b00809-23b3-50a3-a4ca-bba26d769c3b"
 }
],
 "errors": []
}

Error output format

{
 "warnings": [],
 "success": null,
 "errors": [
 {
 "payload": {
 "value": "foo",
 "field": "offset"
 },
 "message_key": "avalon.service.error.invalid_input_type",
 "message": "Invalid field value for integer field offset: 'foo'",
 "code": 101
 }
]
}

Genres endpoint

The genres endpoint returns data for all the different genres that songs in
the music collection belong to.

Path and method

GET /avalon/genres

Note

This path may be different depending on your REQUEST_PATH configuration setting.

Filtering Parameters

	Name

	Required?

	Type

	Mutiple?

	Description

	query

	No

	string

	No

	Select only genres whose name contains query. The match is
not case sensitive and unicode characters will be normalized if
possible before being compared (in the query and fields
being compared). The query is compared using prefix
matching against each portion of the genre (delimited by
whitespace).

Other Parameters

	Name

	Required?

	Type

	Mutiple?

	Description

	limit

	No

	integer

	No

	If there are more than limit results, only limit will
be returned. This must be a positive integer. If the
offset parameter is present, the limit will be applied
after the offset. If the limit is not an integer
error code 101 (invalid parameter type) will be returned.
If the limit is not positive error code 102 (invalid
parameter value) will be returned.

	offset

	No

	integer

	No

	Skip the first offset entries returned as part of a result
set. This must be a positive integer. This parameter does
not have any effect if the limit parameter is not also
present. If the offset is not an integer error code
101 (invalid parameter type) will be returned.

	order

	No

	string

	No

	Name of the field to use for ordering the result set. Any valid
field of the members of the result set may be used. If the
order is not a valid field error code 100 (invalid
parameter name) will be returned.

	direction

	No

	string

	No

	Direction to sort the results in. Valid values are asc or
desc. This parameter does not have any effect if the
order parameter is not also present. If the direction
is not asc or desc error code 102 (invalid
parameter value) will be returned.

Example request

	http://localhost:8000/avalon/genres

	http://localhost:8000/avalon/genres?query=rock

	http://localhost:8000/avalon/genres?order=name

	http://localhost:8000/avalon/genres?order=name&limit=10

Possible error responses

	Code

	Message key

	HTTP code

	Description

	100

	avalon.service.error.invalid_input_name

	400

	An error that indicates that the
name of a field specified is not a
valid field.

	101

	avalon.service.error.invalid_input_type

	400

	An error that indicates the type of
a parameter is not valid for that
particular parameter.

	102

	avalon.service.error.invalid_input_value

	400

	An error that indicates the value
of a parameter is not valid for
that particular parameter.

Success output format

{
 "warnings": [],
 "success": [
 {
 "name": "Hard Rock",
 "id": "ec93d3f1-3642-5beb-bb10-07f29bb18fc5"
 },
 {
 "name": "Punk Ska",
 "id": "3af7ba62-d87f-5258-af62-d7c5655ec567"
 }
],
 "errors": []
}

Error output format

{
 "warnings": [],
 "success": null,
 "errors": [
 {
 "payload": {
 "value": -10,
 "field": "offset"
 },
 "message_key": "avalon.service.error.invalid_input_value",
 "message": "The value of offset may not be negative",
 "code": 102
 }
]
}

UUID Generation

The Avalon Music Server uses UUIDs (version 5) to act as unique identifiers for albums,
artists, genres, and tracks. If you wish to generate compatible IDs outside of the Avalon
Music Server the process is as follows (in Python):

Albums

Album IDs are generated from the lowercase, UTF-8 encoded, name of the album.

The namespace UUID is 7655e605-6eaa-40d8-a25f-5c6c92a4d31a.

>>> import uuid
>>> album_namespace = uuid.UUID('7655e605-6eaa-40d8-a25f-5c6c92a4d31a')
>>> album_name = u'¡Uno!'.lower().encode('utf-8')
>>> album_id = uuid.uuid5(album_namespace, album_name)
>>> album_id
UUID('32792eb5-03ff-5837-9869-d77ac9b5c99f')

Artists

Artist IDs are generated from the lowercase, UTF-8 encoded, name of the artist.

The namespace UUID is fe4df0f6-2c55-4ba6-acf3-134eae3e710e.

>>> import uuid
>>> artist_namespace = uuid.UUID('fe4df0f6-2c55-4ba6-acf3-134eae3e710e')
>>> artist_name = u'Minor Threat'.lower().encode('utf-8')
>>> artist_id = uuid.uuid5(artist_namespace, artist_name)
>>> artist_id
UUID('debcc564-211b-559c-b810-e72598bdaf47')

Genres

Genre IDs are generated from the lowercase, UTF-8 encoded, name of the genre.

The namespace UUID is dd8dbd9c-8ed7-4719-80c5-71d978665dd0.

>>> import uuid
>>> genre_namespace = uuid.UUID('dd8dbd9c-8ed7-4719-80c5-71d978665dd0')
>>> genre_name = u'Punk Ska'.lower().encode('utf-8')
>>> genre_id = uuid.uuid5(genre_namespace, genre_name)
>>> genre_id
UUID('3af7ba62-d87f-5258-af62-d7c5655ec567')

Songs

Song IDs are generated from the case sensitive path of the file, encoded as UTF-8.

The namespace UUID is 4151ace3-6a98-41cd-a3de-8c242654cb67.

>>> import uuid
>>> song_namespace = uuid.UUID('4151ace3-6a98-41cd-a3de-8c242654cb67')
>>> song_path = u'/music/Voodoo_Glow_Skulls/02-adicción,_tradición,_revolución.ogg'.encode('utf-8')
>>> song_id = uuid.uuid5(song_namespace, song_path)
>>> song_id
UUID('56b33b92-d5b6-5971-b166-dc959b442c0c')

Developers

Prerequisites

Make sure you have the virtualenv [https://virtualenv.pypa.io/en/latest/] tool available. You can find further instructions
in the Installation section or at the virtualenv website.

All steps below assume you are using a virtual environment named env inside
the root directory of the git checkout. It’s not important what name you use, this
is only chosen to make the documentation consistent. Most of the commands below
reference the pip, virtualenv, and python instances installed in
the env environment. This ensures that they run in the context of the
environment where we’ve set up the Avalon Music Server.

Environment Setup

First, fork [https://help.github.com/articles/fork-a-repo] the Avalon Music Server on GitHub.

Check out your fork of the source code.

$ git clone https://github.com/you/avalonms.git

Add the canonical Avalon Music Server repo as upstream. This might be
useful if you have to keep your branch / repo up to date before creating
a pull request.

$ git remote add upstream https://github.com/tshlabs/avalonms.git

Create and set up a branch for your awesome new feature or bug fix.

$ cd avalonms
$ git checkout -b feature-xyz
$ git push origin feature-xyz:feature-xyz
$ git branch -u origin/feature-xyz

Set up a virtual environment.

$ virtualenv env

Enter the virtualenv install required dependencies.

$ source env/bin/activate
$ pip install --allow-external argparse -r requirements.txt
$ pip install -r requirements-dev.txt
$ pip install -r requirements-prod.txt

Install the checkout in “development mode”.

$ pip install -e .

Running The Server

The Avalon Music Server WSGI application can be run with Gunicorn (which
was installed above from the requirements-prod.txt file) or any other
WSGI application server. Make sure that you have entered the virtualenv
you created earlier.

$ gunicorn --preload avalon.app.wsgi:application

Memory Profiling

The Avalon Music Server WSGI application can optionally log the memory used by
various internal data structures. This can be useful for minimizing the resource
footprint of the server when adding new features.

When enabled, memory usage will be writen to the configured logger. This feature
is only enabled when the Pympler [https://pypi.python.org/pypi/Pympler] package is installed and the configured log
level is DEBUG.

To enable this do the following.

Install the profiler.

$ pip install pympler

Change the Avalon Music Server log level in your local settings.py file.

LOG_LEVEL = logging.DEBUG

Contributing

Next, code up your feature or bug fix and create a pull request [https://help.github.com/articles/be-social/#pull-requests]. If you’re new to
Git or GitHub, take a look at the GitHub help [https://help.github.com/] site.

Useful Commands

The Avalon Music Server uses tox [https://testrun.org/tox/latest/] to run tests in isolated virtualenvs. You can run
the tests using the command below. Make sure that you have entered the virtualenv
you created earlier.

$ tox test

You can also run the unit tests for a specific Python version.

$ TOXENV=py33 tox test

If you’re making changes to the documentation, the command below will build the
documentation for you. To view it, open up doc/build/html/index.html in your
web browser.

$ fab clean docs

Maintainers

Note

The intended audience for this section is the Avalon Music Server
maintainers. If you are a user of the Avalon Music Server, you don’t
need worry about this.

These are the steps for releasing a new version of the Avalon Music Server.
The steps assume that all the changes you want to release have already been
merged to the master branch. The steps further assumed that you’ve run
all the unit tests and done some ad hoc testing of the changes.

Versioning

The Avalon Music Server uses semantic versioning [http://semver.org/] of the form major.minor.patch.
All backwards incompatible changes after version 1.0.0 will increment the major
version number. All backwards incompatible changes prior to version 1.0.0 will
increment the minor version number.

Since this is a Python project, only the subset of the semantic versioning spec that
is compatible with PEP-440 [https://www.python.org/dev/peps/pep-0440/] will be used.

The canonical version number for the Avalon Music Server is contained in the file
avalon/__init__.py (relative to the project root). Increment this version number based
on the nature of the changes being included in this release.

Do not commit.

Change Log

Update the change log to include all relevant changes since the
last release. Make sure to note which changes are backwards incompatible.

Update the date of the most recent version to today’s date.

Commit the version number and change log updates.

Tagging

Create a new tag based on the new version of the Avalon Music Server.

$ git tag avalonms-0.5.0

Push the committed changes and new tags.

$ fab push push_tags

Building

Clean the checkout before trying to build.

$ fab clean

Build source and binary distributions and upload them.

$ fab pypi

Update PyPI

If the package metadata has changed since the last release, login to
PyPI and update the description field or anything else that needs it.

https://pypi.python.org/pypi/avalonms

Change Log

0.6.0 - 2015-11-09

	Add REQUEST_PATH configuration setting to allow the base URL for the server
to be customized. The default will remain /avalon.

	Minor code and documentation cleanup.

0.5.1 - 2015-04-04

	Packaging fixes (use twine for uploads to PyPI, stop using the setup.py
register command).

	Add documentation of the steps for performing a release (Maintainers).

	Split usage documentation between the CLI and
the server.

0.5.0 - 2015-01-04

	Add optional support for recording method execution times to Statsd. Enabling
timing requires installing the pystatsd [https://github.com/jsocol/pystatsd]
client and setting configuration values to point to your statsd instance.

	Remove supervisor.config and supervisor.user tasks from bundled Fabric
script and move supervisor.restart to deploy.supervisor (along with
having Supervisor gracefully reload instead of restart).

0.4.0 - 2014-11-24

	Change to Mutagen for reading audio tags now that it supports Python 3.

	Support for Python 3.3 and 3.4.

	Reduce memory usage during bootstrap by reading metadata in batches.

	Reduce memory usage during collection scanning by inserting tracks in batches.

0.3.1 - 2014-10-12

	Include installation of a Sentry client in Fabric deploy task

	Use Py.test and Tox for running tests.

	Added a “Quick Start” section to the installation docs.

	Use Tunic [http://tunic.rtfd.org] library in Fabric deploy scripts.

0.3.0 - 2014-08-17

	Breaking change: Avalon Music Server is now a WSGI application and CLI
scripts, not a stand-alone server.

	Breaking change: Response format changed to include errors, warnings,
and success top-level elements. Response format of individual results
remains unchanged.

	Change from using CherryPy web framework to Flask.

	Change from Mutagen to Mutagenx for potential Python 3 support.

	Change from Py.test to Nosetests.

	Lots of changes to potentially support Python 3.3 and 3.4 including use of
the six library and testing those versions on Travis CI.

	Include reference Fabric deploy script.

	Include reference Gunicorn, uWSGI, and Supervisor configurations.

0.2.25 - 2014-03-19

	License change from Apache 2 to MIT

	Unit test coverage improvements

	Removed server status page

	Remove dependency on the daemon library

	Various code quality improvements

0.2.24 - 2013-08-19

	Fix bug in setup.py that prevented installation in Python 2.6

	Unit test coverage improvements

	Testing infrastructure improvements (Tox, Travis CI)

	Documentation for development environment setup

	Various typo and documentation updates

0.2.23 - 2013-06-17

	Changes to the names of API errors and setting HTTP statuses correctly

	Sample deploy and init scripts for the Avalon Music Server

	Testability improvements for the avalon.cache layer

	Documentation improvements

0.2.22 - 2013-05-20

	Handle database errors during rescan better

	Various code quality improvements

	Improved test coverage

0.2.21 - 2013-02-18

	Bug fixes for the /heartbeat endpoint

	JSON responses now set the correct encoding (UTF-8)

	Improved test coverage

0.2.20 - 2013-02-02

	Updates to status page to use Twitter Bootstrap

	Packaging fixes

0.2.15 - 2013-01-30

	Changed to Apache license 2.0 instead of FreeBSD license

	Updated copyright for 2013

0.2.14 - 2013-01-21

	Text searching using a Trie for faster matching

	Documentation improvements

0.2.13 - 2013-01-10

	Unicode code folding for better search results

	Beginnings of a test suite for the supporting library

	Documentation links to reference server installation

0.2.12 - 2012-12-28

	Text searching functionality via ‘query’ param for
albums, artists, genres, and songs endpoints

	Documentation updates for installation

0.2.11 - 2012-12-23

	Refactor avalon.scan into avalon.tags package

	Switch to use Mutagen by default instead of TagPy

	Allow avalon.tags package to fall back to TagPy if
Mutagen isn’t installed

0.2.10 - 2012-12-17

	Fix build dependencies and remove setuptools/distribute requirement

0.2.9 - 2012-12-17

	Minor documentation updates

0.2.8 - 2012-12-15

	Updates to the build process

0.2.5 - 2012-12-13

	Packaging fixes

0.2.0 - 2012-12-13

	Breaking change: Use of UUIDs for stable IDs for albums, artists, genres, and songs

	Documentation improvements

	Ordering, limit, and offset parameter support

0.1.0 - 2012-05-20

	Initial release

Index

	Name

	Required?

	Type

	Mutiple?

	Description

	limit

	No

	integer

	No

	If there are more than limit results, only limit will
be returned. This must be a positive integer. If the
offset parameter is present, the limit will be applied
after the offset. If the limit is not an integer
error code 101 (invalid parameter type) will be returned.
If the limit is not positive error code 102 (invalid
parameter value) will be returned.

	offset

	No

	integer

	No

	Skip the first offset entries returned as part of a result
set. This must be a positive integer. This parameter does
not have any effect if the limit parameter is not also
present. If the offset is not an integer error code
101 (invalid parameter type) will be returned.

	order

	No

	string

	No

	Name of the field to use for ordering the result set. Any valid
field of the members of the result set may be used. If the
order is not a valid field error code 100 (invalid
parameter name) will be returned.

	direction

	No

	string

	No

	Direction to sort the results in. Valid values are asc or
desc. This parameter does not have any effect if the
order parameter is not also present. If the direction
is not asc or desc error code 102 (invalid
parameter value) will be returned.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Avalon Music Server

 		
 Requirements

 		
 Installation

 		
 Quick Start Installation

 		
 Production Installation

 		
 Installing Dependencies

 		
 Setting Up The Environment

 		
 Installing from PyPI

 		
 Avalon WSGI Application

 		
 Gunicorn

 		
 Supervisor

 		
 Nginx

 		
 Start the Server

 		
 CLI Tools

 		
 avalon-echo-config

 		
 Synopsis

 		
 Options

 		
 Examples

 		
 avalon-scan

 		
 Synopsis

 		
 Options

 		
 Examples

 		
 WSGI Application

 		
 Running

 		
 Configuration

 		
 Settings

 		
 Architecture

 		
 Database

 		
 Workers

 		
 Logging

 		
 Sentry

 		
 Statsd

 		
 Deployment

 		
 API

 		
 Heartbeat Endpoint

 		
 Path and method

 		
 Parameters

 		
 Possible error responses

 		
 Success output format

 		
 Error output format

 		
 Example request

 		
 Songs endpoint

 		
 Path and method

 		
 Filtering Parameters

 		
 Other Parameters

 		
 Example requests

 		
 Possible error responses

 		
 Success output format

 		
 Error output format

 		
 Albums endpoint

 		
 Path and method

 		
 Filtering Parameters

 		
 Other Parameters

 		
 Example request

 		
 Possible error responses

 		
 Success output format

 		
 Error output format

 		
 Artists endpoint

 		
 Path and method

 		
 Filtering Parameters

 		
 Other Parameters

 		
 Example request

 		
 Possible error responses

 		
 Success output format

 		
 Error output format

 		
 Genres endpoint

 		
 Path and method

 		
 Filtering Parameters

 		
 Other Parameters

 		
 Example request

 		
 Possible error responses

 		
 Success output format

 		
 Error output format

 		
 UUID Generation

 		
 Albums

 		
 Artists

 		
 Genres

 		
 Songs

 		
 Developers

 		
 Prerequisites

 		
 Environment Setup

 		
 Running The Server

 		
 Memory Profiling

 		
 Contributing

 		
 Useful Commands

 		
 Maintainers

 		
 Versioning

 		
 Change Log

 		
 Tagging

 		
 Building

 		
 Update PyPI

 		
 Change Log

 		
 0.6.0 - 2015-11-09

 		
 0.5.1 - 2015-04-04

 		
 0.5.0 - 2015-01-04

 		
 0.4.0 - 2014-11-24

 		
 0.3.1 - 2014-10-12

 		
 0.3.0 - 2014-08-17

 		
 0.2.25 - 2014-03-19

 		
 0.2.24 - 2013-08-19

 		
 0.2.23 - 2013-06-17

 		
 0.2.22 - 2013-05-20

 		
 0.2.21 - 2013-02-18

 		
 0.2.20 - 2013-02-02

 		
 0.2.15 - 2013-01-30

 		
 0.2.14 - 2013-01-21

 		
 0.2.13 - 2013-01-10

 		
 0.2.12 - 2012-12-28

 		
 0.2.11 - 2012-12-23

 		
 0.2.10 - 2012-12-17

 		
 0.2.9 - 2012-12-17

 		
 0.2.8 - 2012-12-15

 		
 0.2.5 - 2012-12-13

 		
 0.2.0 - 2012-12-13

 		
 0.1.0 - 2012-05-20

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

