AutoWIG Documentation
Release 0.1

P. Fernique, C. Pradal

Feb 13, 2018

Contents

Installation 3
1.1 Installation from binaries e e e e e e e e e e 3
1.2 Installation from source code e e e e e e e e 3
Documentation 5
2.1 Userguide o . e e e e e e e e e e e e 5
2.2 Frequently Asked Questions L e e 6
Tutorials 7
Authors 9

AutoWIG Documentation, Release 0.1

High-level programming languages, such as Python and R, are popular among scientists. They are concise, readable,
lead to rapid development cycles, but suffer from performance drawback compared to compiled language. However,
these languages allow to interface C, C++ and Fortran code. In this way, most of the scientific packages incorporate
compiled scientific libraries to both speed up the code and reuse legacy libraries. While several semi-automatic
solutions and tools exist to wrap these compiled libraries, the process of wrapping a large library is cumbersome and
time consuming. AutoWIG is a Python library that wraps automatically compiled libraries into high-level languages.
Our approach consists in parsing C++ code using the LLVM/Clang technologies and generating the wrappers using
the Mako templating engine. Our approach is automatic, extensible, and applies to very complex C++ libraries,
composed of thousands of classes or incorporating modern meta-programming constructs.

External Ressources I

Contents 1

AutoWIG Documentation, Release 0.1

2 Contents

CHAPTER 1

Installation

1.1 Installation from binaries

In order to ease the installation of the AutoWIG software on multiple operating systems, the Conda package and
environment management system is used. To install Conda, please refers to its documentation or follow the installation
instructions given on the StatisKit documentation. Once Conda is installed, you can install AutoWIG binaries into a
special environment that will be used for wrapper generation by typing the following command line in your terminal:

conda create —-n autowig python-autowig -c statiskit

Warning: When compiling wrappers generated by AutoWIG in its environment some issues can be encountered
at compile time or run time (from within the Python interpreter) due to compiler or dependency incompatibilies.
This is why it is recommended to install AutoWIG in a separate environment that will only be used for wrappers’
generation. If the problem persits, please refers to the StatisKit documentation concerning the configuration of the
development environment.

1.2 Installation from source code

For installing AutoWIG from source code, please refers to the StatisKit documentation concerning the configuration
of the development environment.

Warning: AutoWIG and ClangLite repositories are considered as submodule of the StatisKit repository. To
update these repositories and benefit from the last development, you must first go to these submodules and pull
the code from the actual repositories. This step, described below, has to be as soon as the StatisKit repository is
cloned.

cd StatisKit
cd share
cd git

Ak T
T TN rITe

git pull origin master

http://conda.pydata.org/docs
https://statiskit.rtfd.io
http://statiskit.rtfd.io
https://statiskit.rtfd.io

AutoWIG Documentation, Release 0.1

4 Chapter 1. Installation

CHAPTER 2

Documentation

2.1 User guide

Note: In this section, we introduce wrapping problems and how AutoWIG aims at minimize developers effort. Basic
concepts and conventions are introduced.

2.1.1 Problem setting

Consider a scientist who has designed multiple C++ libraries for statistical analysis. He would like to distribute his
libraries and decide to make them available in Python in order to reach a public of statisticians but also less expert
scientists such as biologists. Yet, he is not interested in becoming an expert in C++/Python wrapping, even if it
exists classical approaches consisting in writing wrappers with SWIG [Bea03] or Boost.Python [AG03]. Moreover,
he would have serious difficulties to maintain the wrappers, since this semi-automatic process is time consuming and
error prone. Instead, he would like to automate the process of generating wrappers in sync with his evolving C++
libraries. That’s what the AutoWIG software aspires to achieve.

2.1.2 Automating the process

Building such a system entails achieving some minimal features:

C++ parsing In order to automatically expose C++ components in Python, the system requires parsing full legacy
code implementing the last C++ standard. It has also to represent C++ constructs in Python, like namespaces,
enumerators, enumerations, variables, functions, classes or aliases.

Documentation The documentation of C++ components has to be associated automatically to their corresponding
Python components in order to reduce the redundancy and to keep it up-to-date in only one place.

Pythonic interface To respect the Python philosophy, C++ language patterns need to be consistently translated into
Python. Some syntax or design patterns in C++ code are specific and need to be adapted in order to obtain
a functional Python package. Note that this is particularly sensible for C++ operators (e.g. (), <, []) and

AutoWIG Documentation, Release 0.1

corresponding Python special functions (e.g. __call__,_1t_ ,__getitem_,__setitem__) or for
object serialization.

Memory management C++ libraries expose in their interfaces either raw pointers, shared pointers or references,
while Python handles memory allocation and garbage collection automatically. The concepts of pointer or ref-
erences are thus not meaningful in Python. These language differences entail several problems in the memory
management of C++ components into Python. A special attention is therefore required for dealing with refer-
ences (&) and pointers () that are highly used in C++.

Error management C++ exceptions need to be consistently managed in Python. Python doesn’t have the necessary
equipment to properly unwind the C++ stack when exception are thrown. It is therefore important to make sure
that exceptions thrown by C++ code do not pass into the Python interpreter core. All C++ exceptions thrown
by wrappers must therefore be translated into Python errors. This translation must preserve exception names
and contents in order to raise informative Python errors.

Dependency management between components The management of multiple dependencies between C++ libraries
with Python bindings is required at run-time from Python. C++ libraries tends to have dependencies. For
instance the C++ Standard Template Library containers [PLMS00] are used in many C++ libraries (e.g
std::vector, std: :set). For such cases, it doesn’t seem relevant that every wrapped C++ library con-
tains wrappers for usual STL containers (e.g. std: :vector< double >, std::set< int >). More-
over, loading in the Python interpreter multiple compiled libraries sharing different wrappers from same C++
components could lead to serious side effects. It is therefore required that dependencies across different library
bindings can be handled automatically.

2.2 Frequently Asked Questions

Note: Frequently asked questions about the project and contributing.

6 Chapter 2. Documentation

CHAPTER 3

Tutorials

AutoWIG Documentation, Release 0.1

8 Chapter 3. Tutorials

CHAPTER 4

Authors

¢ Pierre Fernique

e Christophe Pradal

mailto:pierre.fernique@inria.fr
mailto:christophe.pradal@cirad.fr

	Installation
	Installation from binaries
	Installation from source code

	Documentation
	User guide
	Frequently Asked Questions

	Tutorials
	Authors

