

autopush

[image: _images/autopush.svg]
 [https://travis-ci.org/mozilla-services/autopush][image: _images/coverage.svg]
 [https://codecov.io/github/mozilla-services/autopush]Mozilla Push server and Push Endpoint utilizing PyPy, twisted, and DynamoDB.

Please note: The python components of this server are being deprecated in favor of
a pure rust [https://github.com/mozilla-services/autopush-rs] implementation.
We are planning on moving the websocket handler first, followed by the endpoint
handlers. See Migrating to Rust for details.

This is the third generation of Push server built in Mozilla Services, first
to handle Push for FirefoxOS clients, then extended for push notifications for
Firefox (via the W3C Push spec [http://w3c.github.io/push-api/index.html].)

For how to read and respond to autopush error codes, see
Errors.

For an overview of the Mozilla Push Service and where autopush fits in, see
the Mozilla Push Service architecture diagram [http://mozilla-push-service.readthedocs.io/en/latest/#architecture]. This push service uses
websockets to talk to Firefox, with a Push endpoint that implements the
WebPush standard for its HTTP Endpoints for Notifications API.

Autopush APIs

For developers writing mobile applications in Mozilla, or web developers using
Push on the web with Firefox.

	HTTP Endpoints for Notifications

	Push Service HTTP API
	Lexicon

	Response

	Error Codes

	Calls

	Push Service Bridge HTTP Interface
	Lexicon

	Calls

Running Autopush

If you just want to run autopush, for testing Push locally with
Firefox, or to deploy autopush to a production environment for Firefox.

	Architecture
	Overview

	Cryptography

	DynamoDB Tables

	Push Characteristics

	Running Autopush
	Overview

	Setup

	Start Autopush

	Configuration

Developing Autopush

For developers wishing to work with the latest autopush source code, it’s
recommended that you first familiarize yourself with
running Autopush before proceeding.

	Installing
	System Requirements

	Check-out the Autopush Repository

	Python 2.7.7+ w/virtualenv

	Scripts

	Building Documentation

	Using a Local DynamoDB Server

	Testing
	Testing Configuration

	Running Tests

	Firefox Testing

	Release Process
	Versions

	Dev Releases

	Stage/Production Releases

	Coding Style Guide
	Exceptions

Source Code

All source code is available on github under autopush [https://github.com/mozilla-services/autopush].

Code Documentation

We are using rust [https://rust-lang.org] for a number of optimizations
and speed improvements. These efforts are ongoing and may be subject to
change. Unfortunately, this also means that formal documentation is not
yet available. You are, of course, welcome to review the code located in
./autopush_rs.

Changelog

	Changelog [https://github.com/mozilla-services/autopush/blob/master/CHANGELOG.md]

Bugs/Support

Bugs should be reported on the autopush github issue tracker [https://github.com/mozilla-services/autopush/issues].

The developers of autopush can frequently be found on the Mozilla IRC
network (irc.mozilla.org) in the #push channel.

autopush Endpoints

autopush is automatically deployed from master to a dev environment for testing,
a stage environment for tagged releases, and the production environment used by
Firefox/FirefoxOS.

dev

	Websocket: wss://autopush.dev.mozaws.net/

	Endpoint: https://updates-autopush.dev.mozaws.net/

stage

	Websocket: wss://autopush.stage.mozaws.net/

	Endpoint: https://updates-autopush.stage.mozaws.net/

production

	Websocket: wss://push.services.mozilla.com/

	Endpoint: https://updates.push.services.mozilla.com/

Reference

	Index

	Module Index

	Glossary

License

autopush is offered under the Mozilla Public License 2.0.

HTTP Endpoints for Notifications

Autopush exposes three HTTP endpoints:

/wpush/…

This is tied to the Endpoint Handler WebPushHandler
This endpoint is returned by the Push
registration process and is used by the AppServer to send Push
alerts to the Application. See Send Notification.

/m/…

This is tied to MessageHandler. This endpoint allows
a message that has not yet been delivered to be deleted. See Cancel Notification.

/v1/…/…/registration/…

This is tied to the Registration Handlers. This endpoint is used by
devices that wish to use bridging protocols to register new channels.

NOTE: This is not intended to be used by app developers. Please see the
Web Push API on MDN [https://developer.mozilla.org/en-US/docs/Web/API/Push_API]
for how to use WebPush.
See Push Service Bridge HTTP Interface.

—

Push Service HTTP API

The following section describes how remote servers can send Push
Notifications to apps running on remote User Agents.

Lexicon

	{UAID}

	The Push User Agent Registration ID

Push assigns each remote recipient a unique identifier. {UAID}s are UUIDs in
lower case, undashed format. (e.g. ‘01234567abcdabcdabcd01234567abcd’) This
value is assigned during Registration

	{CHID}

	The Channel Subscription ID

Push assigns a unique identifier for each subscription for a given {UAID}.
Like {UAID}s, {CHID}s are UUIDs, but in lower case, dashed format(e.g.
‘01234567-abcd-abcd-abcd-0123456789ab’). The User Agent usually creates this
value and passes it as part of the Channel Subscription. If no value is
supplied, the server will create and return one.

	{message-id}

	The unique Message ID

Push assigns each message for a given Channel Subscription a unique
identifier. This value is assigned during Send Notification.

Response

The responses will be JSON formatted objects. In addition, API calls
will return valid HTTP error codes (see Error Codes sub-section for
descriptions of specific errors).

For non-success responses, an extended error code object will be
returned with the following format:

{
 "code": 404, // matches the HTTP status code
 "errno": 103, // stable application-level error number
 "error": "Not Found", // string representation of the status
 "message": "No message found" // optional additional error information
}

Error Codes

Autopush uses error codes based on HTTP response codes [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html].
An error response will contain a JSON body including an additional error
information (see Response).

Unless otherwise specified, all calls return one the following error statuses:

	20x - Success - The message was accepted for transmission to the client. Please note that the message may still be rejected by the User Agent if there is an error with the message’s encryption.

	301 - Moved + `Location:` if {client_token} is invalid (Bridge API Only) - Bridged services (ones that run over third party services like GCM and APNS), may require a new URL be used. Please stop using the old URL immediately and instead use the new URL provided.

	400 - Bad Parameters – One or more of the parameters specified is invalid. See the following sub-errors indicated by errno

	errno 101 - Missing necessary crypto keys - One or more required crypto key elements are missing from this transaction. Refer to the appropriate specification [https://datatracker.ietf.org/doc/draft-ietf-httpbis-encryption-encoding/] for the requested content-type.

	errno 108 - Router type is invalid - The URL contains an invalid router type, which may be from URL corruption or an unsupported bridge. Refer to Push Service Bridge HTTP Interface.

	errno 110 - Invalid crypto keys specified - One or more of the crytpo key elements are invalid. Refer to the appropriate specification [https://datatracker.ietf.org/doc/draft-ietf-httpbis-encryption-encoding/] for the requested content-type.

	errno 111 - Missing Required Header - A required crypto element header is missing. Refer to the appropriate specification [https://datatracker.ietf.org/doc/draft-ietf-httpbis-encryption-encoding/] for the requested content-type.

	Missing TTL Header - Include the Time To Live header (IETF WebPush protocol §6.2 [https://tools.ietf.org/html/draft-ietf-webpush-protocol#section-6.2])

	Missing Crypto Headers - Include the appropriate encryption headers (WebPush Encryption §3.2 [https://webpush-wg.github.io/webpush-encryption/#rfc.section.3.2] and WebPush VAPID §4 [https://tools.ietf.org/html/draft-ietf-webpush-vapid-02#section-4])

	errno 112 - Invalid TTL header value - The Time To Live “TTL” header contains an invalid or unreadable value. Please change to a number of seconds that this message should live, between 0 (message should be dropped immediately if user is unavailable) and 2592000 (hold for delivery within the next approximately 30 days).

	errno 113 - Invalid Topic header value - The Topic header contains an invalid or unreadable value. Please use only ASCII alphanumeric values [A-Za-z0-9] and a maximum length of 32 bytes..

	401 - Bad Authorization - Authorization header is invalid or missing. See the VAPID specification [https://datatracker.ietf.org/doc/draft-ietf-webpush-vapid/].

	errno 109 - Invalid authentication

	404 - Endpoint Not Found - The URL specified is invalid and should not be used again.

	errno 102 - Invalid URL endpoint

	410 - Endpoint Not Valid - The URL specified is no longer valid and should no longer be used. A User has become permanently unavailable at this URL.

	errno 103 - Expired URL endpoint

	errno 105 - Endpoint became unavailable during request

	errno 106 - Invalid subscription

	413 - Payload too large - The body of the message to send is too large. The max data that can be sent is 4028 characters. Please reduce the size of the message.

	errno 104 - Data payload too large

	500 - Unknown server error - An internal error occurred within the Push Server.

	errno 999 - Unknown error

	502 - Bad Gateway - The Push Service received an invalid response from an upstream Bridge service.

	errno 900 - Internal Bridge misconfiguration

	errno 901 - Invalid authentication

	errno 902 - An error occurred while establishing a connection

	errno 903 - The request timed out

	503 - Server temporarily unavaliable. - The Push Service is currently unavailable. See the error number “errno” value to see if retries are available.

	errno 201 - Use exponential back-off for retries

	errno 202 - Immediate retry ok

Calls

Send Notification

Send a notification to the given endpoint identified by its push_endpoint.
Please note, the Push endpoint URL (which is what is used to send notifications)
should be considered “opaque”. We reserve the right to change any portion
of the Push URL in future provisioned URLs.

The Topic HTTP header allows new messages to replace previously sent, unreceived
subscription updates. See Message Topics.

Call:

	
POST {push_endpoint}

	If the client is using webpush style data delivery, then the body in its
entirety will be regarded as the data payload for the message per
the WebPush spec [https://tools.ietf.org/html/draft-thomson-webpush-http2-02#section-5].

Note

Some bridged connections require data transcription and may limit the
length of data that can be sent. For instance, using a GCM/FCM bridge
will require that the data be converted to base64. This means that
data may be limited to only 2744 bytes instead of the normal 4096
bytes.

Reply:

{"message-id": {message-id}}

Return Codes:

	statuscode 404

	Push subscription is invalid.

	statuscode 202

	Message stored for delivery to client at a later
time.

	statuscode 200

	Message delivered to node client is connected to.

Message Topics

Message topics allow newer message content to replace previously sent, unread messages.
This prevents the UA from displaying multiple messages upon reconnect. A blog post [https://hacks.mozilla.org/2016/11/mozilla-push-server-now-supports-topics/]
provides an example of how to use Topics, but a summary is provided here.

To specify a Topic, include a Topic HTTP header along with your Send Notification. The topic can be
any 32 byte alpha-numeric string (including “_” and “-“).

Example topics might be MailMessages, Current_Score, or 20170814-1400_Meeting_Reminder

For example:

curl -X POST \
 https://push.services.mozilla.com/wpush/abc123... \
 -H "TTL: 86400" \
 -H "Topic: new_mail" \
 -H "Authorization: Vapid AbCd..." \
 ...

Would create or replace a message that is valid for the next 24 hours that has the topic
of new_mail. The body of this might contain the number of unread messages. If a new
message arrives, the Application Server could send a second message with a body
containing a revised message count.

Later, when the User reconnects, she will only see a single notification containing
the latest notification, with the most recent new mail message count.

Cancel Notification

Delete the message given the message_id.

Call:

	
DELETE /m/{message_id}

	

Parameters:

None

Reply:

{}

Return Codes:

See Error Codes.

—

Push Service Bridge HTTP Interface

Push allows for remote devices to perform some functions using an HTTP
interface. This is mostly used by devices that are bridging via an
external protocol like
GCM [https://developers.google.com/cloud-messaging/]/FCM [https://firebase.google.com/docs/cloud-messaging/] or
APNs [https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Introduction.html#//apple_ref/doc/uid/TP40008196-CH1-SW1]. All message bodies must be UTF-8 encoded.

API methods requiring Authorization must provide the Authorization
header containing the registration secret. The registration secret is
returned as “secret” in the registration response.

Lexicon

For the following call definitions:

	{type}

	The bridge type.

Allowed bridges are gcm (Google Cloud Messaging), fcm (Firebase Cloud
Messaging), and apns (Apple Push Notification system)

	{app_id}

	The bridge specific application identifier

Each bridge may require a unique token that addresses the remote application
For GCM/FCM, this is the SenderID (or ‘project number’) and is pre-negotiated outside of the push
service. You can find this number using the
Google developer console [https://console.developers.google.com/iam-admin/settings/project].
For APNS, this value is the “platform” or “channel” of development (e.g.
“firefox”, “beta”, “gecko”, etc.)
For our examples, we will use a client token of
“33clienttoken33”.

	{instance_id}

	The bridge specific private identifier token

Each bridge requires a unique token that addresses the
application on a given user’s device. This is the
“Registration Token [https://firebase.google.com/docs/cloud-messaging/android/client#sample-register]” for
GCM/FCM or “Device Token [https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/IPhoneOSClientImp.html#//apple_ref/doc/uid/TP40008194-CH103-SW2]”
for APNS. This is usually the product of the
application registering the {instance_id} with the native bridge via the user
agent. For our examples, we will use an instance ID of “11-instance-id-11”.

	{secret}

	The registration secret from the Registration call.

Most calls to the HTTP interface require a Authorization header. The
Authorization header is a simple bearer token, which has been provided by the
Registration call and is preceded by the scheme name “Bearer”. For
our examples, we will use a registration secret of “00secret00”.

An example of the Authorization header would be:

Authorization: Bearer 00secret00

Calls

Registration

Request a new UAID registration, Channel ID, and set a bridge
type and 3rd party bridge instance ID token for this connection. (See
NewRegistrationHandler)

NOTE: This call is designed for devices to register endpoints to be
used by bridge protocols. Please see Web Push API [https://developer.mozilla.org/en-US/docs/Web/API/Push_API]
for how to use Web Push in your application.

Call:

	
POST /v1/{type}/{app_id}/registration

	

This call requires no Authorization header.

Parameters:

{“token”:{instance_id}}

Note

If additional information is required for the bridge, it may be
included in the parameters as JSON elements. Currently, no additional
information is required.

Reply:

`{"uaid": {UAID}, "secret": {secret},
"endpoint": "https://updates-push...", "channelID": {CHID}}`

example:

> POST /v1/fcm/33clienttoken33/registration
>
> {"token": "11-instance-id-11"}

< {"uaid": "01234567-0000-1111-2222-0123456789ab",
< "secret": "00secret00",
< "endpoint": "https://updates-push.services.mozaws.net/push/...",
< "channelID": "00000000-0000-1111-2222-0123456789ab"}

Return Codes:

See Error Codes.

Token updates

Update the current bridge token value. Note, this is a *PUT* call, since
we are updating existing information. (See UaidRegistrationHandler)

Call:

	
PUT /v1/{type}/{app_id}/registration/{uaid}

	

Authorization: Bearer {secret}

Parameters:

{“token”: {instance_id}}

Note

If additional information is required for the bridge, it may be
included in the parameters as JSON elements. Currently, no additional
information is required.

Reply:

{}

example:

> PUT /v1/fcm/33clienttoken33/registration/abcdef012345
> Authorization: Bearer 00secret00
>
> {"token": "22-instance-id-22"}

< {}

Return Codes:

See Error Codes.

Channel Subscription

Acquire a new ChannelID for a given UAID. (See SubRegistrationHandler)

Call:

	
POST /v1/{type}/{app_id}/registration/{uaid}/subscription

	

Authorization: Bearer {secret}

Parameters:

{}

Reply:

{"channelID": {CHID}, "endpoint": "https://updates-push..."}

example:

> POST /v1/fcm/33clienttoken33/registration/abcdef012345/subscription
> Authorization: Bearer 00secret00
>
> {}

< {"channelID": "01234567-0000-1111-2222-0123456789ab",
< "endpoint": "https://updates-push.services.mozaws.net/push/..."}

Return Codes:

See Error Codes.

Unregister UAID (and all associated ChannelID subscriptions)

Indicate that the UAID, and by extension all associated subscriptions,
is no longer valid. (See UaidRegistrationHandler)

Call:

	
DELETE /v1/{type}/{app_id}/registration/{uaid}

	

Authorization: Bearer {secret}

Parameters:

{}

Reply:

{}

Return Codes:

See Error Codes.

Unsubscribe Channel

Remove a given ChannelID subscription from a UAID. (See: ChannelRegistrationHandler)

Call:

	
DELETE /v1/{type}/{app_id}/registration/{UAID}/subscription/{CHID}

	

Authorization: Bearer {secret}

Parameters:

{}

Reply:

{}

Return Codes:

See Error Codes.

Get Known Channels for a UAID

Fetch the known ChannelIDs for a given bridged endpoint. This is useful to check link status.
If no channelIDs are present for a given UAID, an empty set of channelIDs will be returned.
(See: UaidRegistrationHandler)

Call:

	
GET /v1/{type}/{app_id}/registration/{UAID}/

	Authorization: Bearer {secret}

Parameters:

{}

Reply:

{"uaid": {UAID}, "channelIDs": [{ChannelID}, ...]}

example:

> GET /v1/gcm/33clienttoken33/registration/abcdef012345/
> Authorization: Bearer 00secret00
>
> {}

< {"uaid": "abcdef012345",
< "channelIDS": ["01234567-0000-1111-2222-0123456789ab", "76543210-0000-1111-2222-0123456789ab"]}

Return Codes:

See Error Codes.

Architecture

[image: _images/push_architecture.svg]
Overview

For Autopush, we will focus on the section in the above diagram in the
Autopush square.

Autopush consists of two types of server daemons:

autopush (connection node)

Run a connection node. These handle large amounts of user agents (Firefox)
using the Websocket protocol.

autoendpoint (endpoint node)

Run an endpoint node. These provide a WebPush HTTP API for
Application Servers to HTTP POST messages to endpoints.

To have a running Push Service for Firefox, both of these server daemons must
be running and communicating with the same DynamoDB tables. A local DynamoDB
can be run or AWS DynamoDB.

Endpoint nodes handle all Notification POST requests, looking up in
DynamoDB to see what Push server the UAID is connected to. The Endpoint nodes
then attempt delivery to the appropriate connection node. If the UAID is not
online, the message may be stored in DynamoDB in the appropriate message table.

Push connection nodes accept websocket connections (this can easily be HTTP/2
for WebPush), and deliver notifications to connected clients. They check
DynamoDB for missed notifications as necessary.

There will be many more Push servers to handle the connection node, while more
Endpoint nodes can be handled as needed for notification throughput.

Cryptography

The HTTP endpoint URL’s generated by the connection nodes contain encrypted
information, the UAID and Subscription to send the message to.
This means that they both must have the same CRYPTO_KEY supplied to each.

See make_endpoint() for the endpoint
URL generator.

If you are only running Autopush locally, you can skip to Running Autopush as
later topics in this document apply only to developing or production scale
deployments of Autopush.

DynamoDB Tables

Autopush uses a single router table and multiple messages tables, one for
each month of the year. On startup, Autopush will create the router table and
a message table for the prior month and the current month of the year.

For more information on DynamoDB tables, see
http://docs.aws.amazon.com/amazondynamodb/latest/gettingstartedguide/Welcome.html

Router Table Schema

The router table stores metadata for a given UAID as well as which
month table should be used for clients with a router_type of webpush.

For Bridging, additional bridge-specific data may be stored in the
router record for a UAID.

	uaid

	partition key - UAID

	router_type

	Router Type

	node_id

	Hostname of the connection node the client is connected to.

	connected_at

	Precise time (in milliseconds) the client connected to the node.

	last_connect

	global secondary index - year-month-hour that the client has
last connected.

	curmonth

	Message table name to use for storing WebPush messages.

Autopush uses an optimistic deletion policy for node_id to avoid delete
calls when not needed. During a delivery attempt, the endpoint will check the
node_id for the corresponding UAID. If the client is not connected, it will
clear the node_id record for that UAID in the router table.

If an endpoint node discovers during a delivery attempt that
the node_id on record does not have the client connected, it will clear the
node_id record for that UAID in the router table.

The last_connect has a secondary global index on it to allow for maintenance
scripts to locate and purge stale client records and messages.

Clients with a router_type of webpush drain stored messages from the
message table named curmonth after completing their initial handshake. If the
curmonth entry is not the current month then it updates it to store new
messages in the latest message table after stored message retrieval.

Message Table Schema

The message table stores messages for users while they’re offline or unable to
get immediate message delivery.

	uaid

	partition key - UAID

	chidmessageid

	sort key - CHID + Message-ID.

	chids

	Set of CHID that are valid for a given user. This
entry is only present in the item when chidmessageid is a space.

	data

	Payload of the message, provided in the Notification body.

	headers

	HTTP headers for the Notification.

	ttl

	Time-To-Live for the Notification.

	timestamp

	Time (in seconds) that the message was saved.

	updateid

	UUID generated when the message is stored to track if the message
is updated between a client reading it and attempting to delete
it.

The subscribed channels are stored as chids in a record stored with a blank
space set for chidmessageid. Before storing or delivering a Notification
a lookup is done against these chids.

Message Table Rotation (legacy)

As of version 1.45.0, message table rotation can be disabled. This is because
DynamoDB now provides automatic entry expiration. This is controlled in our
data by the “expiry” field. (*Note*, field expiration is only available in
full DynamoDB, and is not replicated with the mock DynamoDB API provided for
development.) The following feature is disabled with the no_table_rotation
flag set in the autopush_shared.ini configuration file.

If table rotation is disabled, the last message table used will become
‘frozen’ and will be used for all future messages. While this may not be
aesthetically pleasing, it’s more efficient than copying data to a new,
generic table. If it’s preferred, service can be shut down, previous tables
dropped, the current table renamed, and service brought up again.

Message Table Rotation information

To avoid costly table scans, autopush uses a rotating message and router
table.
Clients that haven’t connected in 30-60 days will have their router and
message table entries dropped and need to re-register.

Tables are post-fixed with the year/month they are meant for, i.e.

messages_2015_02

Tables must be created and have their read/write units properly allocated
by a separate process in advance of the month switch-over as autopush
nodes will assume the tables already exist. Scripts are provided that can be
run weekly to ensure all necessary tables are present, and tables old
enough are dropped.

See also

Table maintenance script: https://github.com/mozilla-services/autopush/blob/master/maintenance.py

Within a few days of the new month, the load on the prior months table will
fall as clients transition to the new table. The read/write units on the
prior month may then be lowered.

Rotating Message Table Interaction Rules (legacy)

Due to the complexity of having notifications spread across two tables, several
rules are used to avoid losing messages during the month transition.

The logic for connection nodes is more complex, since only the connection node
knows when the client connects, and how many messages it has read through.

When table rotation is allowed, the router table uses the curmonth field
to indicate the last month the client has read notifications through. This is
independent of the last_connect since it is possible for a client to
connect, fail to read its notifications, then reconnect. This field is
updated for a new month when the client connects after it has ack’d all
the notifications out of the last month.

To avoid issues with time synchronization, the node the client is connected to
acts as the source of truth for when the month has flipped over. Clients are
only moved to the new table on connect, and only after reading/acking all the
notifications for the prior month.

Rules for Endpoints

	Check the router table to see the current_month the client is on.

	Read the chan list entry from the appropriate month message table to see if
its a valid channel.

If its valid, move to step 3.

	Store the notification in the current months table if valid. (Note that this
step does not copy the blank entry of valid channels)

Rules for Connection Nodes

After Identification:

	Check to see if the current_month matches the current month, if it does then
proceed normally using the current months message table.

If the connection node month does not match stored current_month in the
clients router table entry, proceed to step 2.

	Read notifications from prior month and send to client.

Once all ACKs are received for all the notifications for that month proceed
to step 3.

	Copy the blank message entry of valid channels to the new month message
table.

	Update the router table for the current_month.

During switchover, only after the router table update are new commands from the
client accepted.

Handling of Edge Cases:

	Connection node gets more notifications during step 3, enough to buffer, such
that the endpoint starts storing them in the previous current_month. In this
case the connection node will check the old table, then the new table to
ensure it doesn’t lose message during the switch.

	Connection node dies, or client disconnects during step 3/4. Not a problem as
the reconnect will pick it up at the right spot.

Push Characteristics

	When the Push server has sent a client a notification, no further
notifications will be accepted for delivery (except in one edge case).
In this state, the Push server will reply to the Endpoint with a 503 to
indicate it cannot currently deliver the notification. Once the Push
server has received ACKs for all sent notifications, new notifications
can flow again, and a check of storage will be done if the Push server had
to reply with a 503. The Endpoint will put the Notification in storage in
this case.

	(Edge Case) Multiple notifications can be sent at once, if a notification
comes in during a Storage check, but before it has completed.

	If a connected client is able to accept a notification, then the Endpoint
will deliver the message to the client completely bypassing Storage. This
Notification will be referred to as a Direct Notification vs. a Stored
Notification.

	Provisioned Write Throughput for the Router table determines how many
connections per second can be accepted across the entire cluster.

	Provisioned Read Throughput for the Router table and Provisioned Write
throughput for the Storage table determine maximum possible notifications
per second that can be handled. In theory notification throughput can be
higher than Provisioned Write Throughput on the Storage as connected
clients will frequently not require using Storage at all. Read’s to the
Router table are still needed for every notification, whether Storage is
hit or not.

	Provisioned Read Throughput on for the Storage table is an important factor
in maximum notification throughput, as many slow clients may require frequent
Storage checks.

	If a client is reconnecting, their Router record will be old. Router records
have the node_id cleared optimistically by Endpoints when the Endpoint
discovers it cannot deliver the notification to the Push node on file. If
the conditional delete fails, it implies that the client has during this
period managed to connect somewhere again. It’s entirely possible that the
client has reconnected and checked storage before the Endpoint stored the
Notification, as a result the Endpoint must read the Router table again, and
attempt to tell the node_id for that client to check storage. Further action
isn’t required, since any more reconnects in this period will have seen the
stored notification.

Push Endpoint Length

The Endpoint URL may seem excessively long. This may seem needless and
confusing since the URL consists of the unique User Agent Identifier (UAID)
and the Subscription Channel Identifier (CHID). Both of these are class 4
Universally Unique Identifiers (UUID) meaning that an endpoint contains
256 bits of entropy (2 * 128 bits). When used in string format, these UUIDs
are always in lower case, dashed format (e.g.
“01234567-0123-abcd-0123-0123456789ab”).

Unfortunately, since the endpoint contains an identifier that can be
easily traced back to a specific device, and therefore a specific user,
there is the risk that a user might inadvertently disclose personal
information via their metadata. To prevent this, the server obscures the
UAID and CHID pair to prevent casual determination.

As an example, it is possible for a user to get a Push endpoint for
two different accounts from the same User Agent. If the UAID were disclosed,
then a site may be able to associate a single user to both of those
accounts. In addition, there are reasons that storing the UAID and CHID in
the URL makes operating the server more efficient.

Naturally, we’re always looking at ways to improve and reduce the length
of the URL. This is why it’s important to store the entire length of the
endpoint URL, rather than try and optimize in some manner.

Running Autopush

Overview

To run Autopush, you will need to run at least one connection node, one endpoint
node, and a local DynamoDB server or AWS DynamoDB. The prior section on
Autopush architecture documented these components and their relation to each
other.

The recommended way to run the latest development or tagged Autopush release is
to use docker [https://www.docker.com/]. Autopush has docker [https://www.docker.com/] images built automatically for every
tagged release and when code is merged to master.

If you want to run the latest Autopush code from source then you should follow
the Developing Autopush instructions.

The instructions below assume that you want to run Autopush with a local
DynamoDB server for testing or local verification. The docker containers can
be run on separate hosts as well, or with AWS DynamoDB instead.

Setup

These instructions will yield a locally running Autopush setup with the
connection node listening on localhost port 8080, with the endpoint node
listening on localhost port 8082. Make sure these ports are available on
localhost before running, or change the configuration to have the Autopush
daemons use other ports.

	Install docker [https://www.docker.com/]

	Install docker-compose [https://docs.docker.com/compose/]

	Create a directory for your docker and Autopush configuration:

$ mkdir autopush-config
$ cd autopush-config

	Fetch the latest docker-compose.yml file:

$ curl -O https://raw.githubusercontent.com/mozilla-services/autopush/master/docker-compose.yml

Note

The docker images used take approximately 1.5 GB of disk-space, make sure
you have appropriate free-space before proceeding.

Generate a Crypto-Key

As the Cryptography section notes, you will need a CRYPTO_KEY to
run both of the Autopush daemons. To generate one with the docker image:

$ docker run -t -i bbangert/autopush autokey
CRYPTO_KEY="hkclU1V37Dnp-0DMF9HLe_40Nnr8kDTYVbo2yxuylzk="

Store the key for later use (including any trailing =).

Start Autopush

Once you’ve completed the setup and have a crypto key, you can run a local
Autopush with a single command:

$ CRYPTO_KEY="hkclU1V37Dnp-0DMF9HLe_40Nnr8kDTYVbo2yxuylzk=" docker-compose up

docker-compose [https://docs.docker.com/compose/] will start up three containers, two for each Autopush daemon,
and a third for DynamoDB.

By default, the following services will be exposed:

ws://localhost:8080/ - websocket server

http://localhost:8082/ - HTTP Endpoint Server (See the HTTP API)

You could set the CRYPTO_KEY as an environment variable if you are using Docker.
If you are running these programs “stand-alone” or outside of docker-compose, you may
setup a more thorough configuration using config files as documented below.

Note:

The load-tester can be run against it or you can run Firefox with the
local Autopush per the Firefox Testing docs.

Configuration

Autopush can be configured in three ways; by option flags, by environment variables,
and by configuration files. Autopush uses three configuration files. These files use
standard ini formatting similar to the following:

A comment description
;a_disabled_option
;another_disabled_option=default_value
option=value

Options can either have values or act as boolean flags. If the option is a flag
it is either True if enabled, or False if disabled. The configuration files are
usually richly commented, and you’re encouraged to read them to learn how to
set up your installation of autopush.

Note: any line that does not begin with a # or ; is considered an option
line. if an unexpected option is present in a configuration file, the application
will fail to start.

Configuration files can be located in:

	in the /etc/ directory

	in the configs subdirectory

	in the $HOME or current directory (prefixed by a period ‘.’)

The three configuration files are:

	autopush_connection.ini - contains options for use by the websocket handler.
This file’s path can be specified by the --config-connection option.

	autopush_shared.ini - contains options shared between the connection and
endpoint handler. This file’s path can be specified by the --config-shared
option.

	autopush_endpoint.ini - contains options for the HTTP handlers This file’s
path can be specified by the --config-endpoint option.

Sample Configurations

Three sample configurations, a base config, and a config for each Autopush
daemon can be found at https://github.com/mozilla-services/autopush/tree/master/config

These can be downloaded and modified as desired.

Config Files with Docker

To use a configuration file with docker [https://www.docker.com/], ensure the config files are
accessible to the user running docker-compose [https://docs.docker.com/compose/]. Then you will need to update
the docker-compose.yml to use the config files and make them available to
the appropriate docker containers.

Mounting a config file to be available in a docker container is fairly simple,
for instance, to mount a local file autopush_connection.ini into a container
as /etc/autopush_connection.ini, update the autopush section of the
docker-compose.yml to be:

volumes:
 - ./boto-compose.cfg:/etc/boto.cfg:ro
 - ./autopush_connection.ini:/etc/autopush_connection.ini

Autopush automatically searches for a configuration file at this location so
nothing else is needed.

Note: The docker-compose.yml file provides a number of overrides as environment
variables, such as CRYPTO_KEY. If these values are not defined, they are submitted
as “”, which will prevent values from being read from the config files. In the case
of CRYPTO_KEY, a new, random key is automatically generated, which will result in
existing endpoints no longer being valid. It is recommended that for docker based
images, that you *always* supply a CRYPTO_KEY as part of the run command.

Notes on GCM/FCM support

Note: GCM is no longer supported by Google. Some legacy users can still use GCM,
but it is strongly recommended that applications use FCM.

Autopush is capable of routing messages over Firebase
Cloud Messaging for android devices. You will need to set up a valid
FCM [https://firebase.google.com/docs/cloud-messaging/] account. Once you have an account open the Google Developer Console:

	create a new project. Record the Project Number as “SENDER_ID”. You will need
this value for your android application.

	in the .autopush_endpoint server config file:

	add fcm_enabled to enable FCM routing.

	add fcm_creds. This is a json block with the following format:

{“app id”: {“projectid”: “project id name”, “auth”: “path to Private Key File”}, …}

where:

app_id: the URL identifier to be used when registering endpoints. (e.g. if “reference_test” is
chosen here, registration requests should go to https://updates.push.services.mozilla.com/v1/fcm/reference_test/registration

project id name: the name of the Project ID as specified on the https://console.firebase.google.com/ Project Settings > General page.

path to Private Key File: path to the Private Key file provided by the Settings > Service accounts > Firebase Admin SDK page. NOTE: This is *NOT* the “google-services.json” config file.

Additional notes on using the FCM bridge are available on the wiki [https://github.com/mozilla-services/autopush/wiki/Bridging-Via-GCM].

Installing

System Requirements

Autopush requires the following to be installed. Since each system has different
methods and package names, it’s best to search for each package.

	
	Python 2.7.7 (or later 2.7.x), either

	
	PyPy 5.0.1 or later or

	
	CPython compiled with the following flags:

	
	–enable-unicode=usc4 –enable-ipv6

	
	build-essential (a meta package that includes):

	
	autoconf

	automake

	gcc

	make

	pypy or python (CPython) development (header files)

	libffi development

	openssl development

	python virtualenv

	git

For instance, if installing on a Fedora or RHEL-like Linux (e.g. an Amazon EC2
instance):

$ sudo yum install autoconf automake gcc make libffi-devel \
openssl-devel pypy pypy-devel python-virtualenv git -y

Or a Debian based system (like Ubuntu):

$ sudo apt-get install build-essential libffi-dev \
libssl-dev pypy-dev python-virtualenv git --assume-yes

Autopush uses the Boto3 python library [https://boto3.readthedocs.io/en/latest/]. Be sure to properly set up your boto
config file [http://boto3.readthedocs.io/en/docs/guide/quickstart.html#configuration].

Notes on OS X

autopush depends on the Python cryptography [https://cryptography.io/en/latest/installation] library, which requires
OpenSSL. If you’re installing autopush on OS X with a custom version of
OpenSSL, you’ll need to set the ARCHFLAGS environment variable, and add
your OpenSSL library path to LDFLAGS and CFLAGS before running
make:

export ARCHFLAGS="-arch x86_64"
Homebrew installs OpenSSL to `/usr/local/opt/openssl` instead of
`/usr/local`.
export LDFLAGS="-L/usr/local/lib" CFLAGS="-I/usr/local/include"

Check-out the Autopush Repository

You should now be able to check-out the autopush repository.

$ git clone https://github.com/mozilla-services/autopush.git

Alternatively, if you’re planning on submitting a patch/pull-request to
autopush then fork the repo and follow the Github Workflow documented in
Mozilla Push Service - Code Development [http://mozilla-push-service.readthedocs.io/en/latest/development/#code-development].

Python 2.7.7+ w/virtualenv

You will need virtualenv installed per the above requirements. Set up your
virtual environment by running the following (if using PyPy, you’ll likely need
to specify the -p <path to pypy> option):

$ virtualenv -p `which pypy` .

Then run the Makefile with make to setup the application.

Scripts

After installation of autopush the following command line utilities are
available in the virtualenv bin/ directory:

	autopush

	Runs a Connection Node

	autoendpoint

	Runs an Endpoint Node

	endpoint_diagnostic

	Runs Endpoint diagnostics

	autokey

	Endpoint encryption key generator

You will need to have a boto config file [http://boto3.readthedocs.io/en/docs/guide/quickstart.html#configuration] file or AWS environment keys
setup before the first 3 utilities will run properly.

Building Documentation

To build the documentation, you will need additional packages installed:

$ pip install -r doc-requirements.txt

You can then build the documentation:

$ cd docs
$ make html

Using a Local DynamoDB Server

Amazon supplies a Local DynamoDB Java server [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tools.DynamoDBLocal.html] to use for local testing that
implements the complete DynamoDB API. This is used for automated unit testing
on Travis and can be used to run autopush locally for testing.

You will need the Java JDK 6.x or newer.

To setup the server locally:

$ mkdir ddb
$ curl -sSL http://dynamodb-local.s3-website-us-west-2.amazonaws.com/dynamodb_local_latest.tar.gz | tar xzvC ddb/
$ java -Djava.library.path=./ddb/DynamoDBLocal_lib -jar ./ddb/DynamoDBLocal.jar -sharedDb -inMemory

An example boto config file [http://boto3.readthedocs.io/en/docs/guide/quickstart.html#configuration] is provided in automock/boto.cfg that
directs autopush to your local DynamoDB instance.

Configuring for Third Party Bridge services:

	Configuring for the APNS bridge

	Configuring the Amazon Device Messaging Bridge

Configuring for the APNS bridge

APNS requires a current Apple Developer License for the platform
or platforms you wish to bridge to (e.g. iOS, desktop, etc.). Once
that license has been acquired, you will need to create and export
a valid .p12 type key file. For this document, we will concentrate
on creating an iOS certificate.

Create the App ID

First, you will need an Application ID. If you do not already have an
application, you will need to create an application ID [https://developer.apple.com/account/ios/identifier/bundle/create].
For an App ID to use Push Notifications, it must be created as an Explicit App ID.
Please be sure that under “App Services” you select Push Notifications.
Once these values are set, click on [Continue].

Confirm that the app settings are as you desire and click [Register], or click [Back] and correct them.
Push Notifications should appear as “Configurable”.

Create the Certificate

Then Create a new certificate [https://developer.apple.com/account/ios/certificate/create].
Select “Apple Push Notification service SSL” for either Development or Production, depending on
intended usage of the certificate. “Development”, in this case, means a certificate that will
not be used by an application released for general public use, but instead only for personal
or team development. This is also known as a “Sandbox” application and will require
setting the “use_sandbox” flag. Once the preferred option is selected, click
[Continue].

Select the App ID that matches the Application that will use Push Notifications. Several
Application IDs may be present, be sure to match the correct App ID. This will be the App ID which
will act as the recipient bridge for Push Notifications. Select [Continue].

Follow the on-screen instructions to generate a CSR file, click [Continue],
and upload the CSR.

Download the newly created iOSTeam_Provisioning_Profile_.mobileprovision keyset, and
import it into your KeyChain Access app.

Exporting the .p12 key set

In KeyChain Access, for the login keychain, in the Certificates category,
you should find an Apple Push Services: *your AppID* certificate. Right click on
this certificate and select Export “Apple Push Services:”…. Provide the file
with a reasonably unique name, such as “Push_Production_APNS_Keys.p12”, so that you can find it easily
later. You may wish to secure these keys with a password.

Converting .p12 to PEM

You will need to convert the .p12 file to PEM format. openssl can perform
these steps for you. A simple script you could use might be:

#!/bin/bash
echo Converting $1 to PEM
openssl pkcs12 -in $1 -out $1_cert.pem -clcerts -nokeys
openssl pkcs12 -in $1 -out $1_key.pem -nocerts -nodes

This will divide the p12 key into two components that can be read by the autopush application.

Sending the APNS message

The APNS post message contains JSON formatted data similar to the following:

{
 "aps": {
 "content-available": 1
 },
 "key": "value",
 ...
}

aps is reserved as a sub-dictionary. All other key: value slots are open.

In addition, you must specify the following headers:

	apns-id: A lowercase, dash formatted UUID for this message.

	apns-priority: Either 10 for Immediate delivery or 5 for delayable delivery.

	apns-topic: The bundle ID for the recipient application. This must match the bundle ID of the AppID used to create the “Apple Push Services:…” certificate. It usually has the format of com.example.ApplicationName.

	apns-expiration: The timestamp for when this message should expire in UTC based seconds. A zero (“0”) means immediate expiration.

Handling APNS responses

APNS returns a status code and an optional JSON block describing the error. A list of these
responses are provided in the APNS documentation [https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/CommunicatingwithAPNs.html] (Note, Apple may change the document locaiton without warning. you may be able to search using DeviceTokenNotForTopic [https://developer.apple.com/search/?q=DeviceTokenNotForTopic&type=Guides] or similar error messages.)

Configuring the Amazon Device Messaging Bridge

ADM [https://developer.amazon.com/docs/adm/overview.html] requires
credentials that are provided on the Amazon Developer portal [https://developer.amazon.com/myapps.html] page. Note, this is different than
the Amazon Web Services page.

If you’ve not already done so, create a new App under the Apps & Services
tab. You will need to create an app so that you can associate a Security
Profile to it.

Device Messaging can be created by generating a new Security Profile (located
under the Security Profiles sub-tab. If specifying for Android or Kindle,
you will need to provide the Java Package name you’ve used to identify the
application (e.g. org.mozilla.services.admpushdemo)

You will need to provide the MD5 Signature and SHA256 Signature for the
package’s Certificate.

Getting the Key Signatures

Amazon provides some instructions [https://developer.amazon.com/docs/login-with-amazon/register-android.html#app-signatures-and-keys]
for getting the signature values of the CERT.RSA file. Be aware that android
and ADM are both moving targets and some information may no longer be correct.

I was able to use the keytool to fetch out the SHA256 signature, but had to
get the MD5 signature from inside Android Studio by looking under the
Gradle tab, then under the Project (root)

> Task
 > android
 * signingReport

You do not need the SHA1: key provided from the signingReport output.

Once the fields have been provided an API Key will be generated. This is a
long JWT that must be stored in a file named api_key.txt located in the
/assets directory. The file should only contain the key. Extra white
space, comments, or other data will cause the key to fail to be read.

This file MUST be included with any client application that uses the ADM
bridge. Please note that the only way to test ADM messaging features is to
side load the application on a FireTV or Kindle device.

Configuring the server

The server requires the Client ID and Client Secret from the ADM Security
Profile page. Since a given server may need to talk to different
applications using different profiles, the server can be configured to use
one of several profiles.

The autopush_endpoint.ini file may contain the adm_creds option. This is
a JSON structure similar to the APNS configuration. The configuration can
specify one or more “profiles”. Each profile contains a “client_id” and
“client_secret”.

For example, let’s say that we want to have a “dev” (for developers) and a
“stage” (for testing). We could specify the profiles as:

{
 "dev": {
 "client_id": "amzn1.application.0e7299...",
 "client_secret": "559dac53757a571d2fee78e5fcb2..."
 },
 "stage": {
 "client_id": "amzn1.application.0e7300...",
 "client_secret": "589dcc53957a971d2fee78e5fee4..."
 },
}

For the configuration, we’d collapse this to one line, e.g.

adm_creds={"dev":{"client_id":"amzn1.application.0e7299...","client_secret":"559dac53757a571d2fee78e5fcb2..."},"stage":{"client_id":"amzn1.application.0e7300...","client_secret": "589dcc53957a971d2fee78e5fee4..."},}

Much like other systems, a sender invokes the profile by using it in the
Registration URL. e.g. to register a new endpoint using the dev profile:

https://push.service.mozilla.org/v1/adm/dev/registration/

Testing

Testing Configuration

When testing, it’s important to reduce the number of potential conflicts as much
as possible. To that end, it’s advised to have as clean a testing environment as
possible before running tests.

This includes:

	Making sure notifications are not globally blocked by your browser.

	“Do Not Disturb” or similar “distraction free” mode is disabled on your OS

	You run a “fresh” Firefox profile (start firefox –P to display the profile picker) which does not have extra extensions or optional plug-ins running. Running firefox –P –no-remote allows two different firefox profiles run at the same time.)

You may find it useful to run firefox in a Virtual Machine (like VirtualBox or
VMWare), but this is not required.

In addition, it may be useful to open the Firefox Brower Console (Ctrl+Shift+J)
as well as the Firefox Web Console (Ctrl+Shift+K). Both are located under the Web
Developer sub-menu.

Running Tests

If you plan on doing development and testing, you will need to install some
additional packages.

$ bin/pip install -r test-requirements.txt

Once the Makefile has been run, you can run make test to run the test suite.

Note

Failures may occur if a .boto file exists in your home directory. This
file should be moved elsewhere before running the tests.

Disabling Integration Tests

make test runs the tox program which can be difficult to break for
debugging purposes. The following bash script has been useful for running
tests outside of tox:

#! /bin/bash
mv autopush/tests/test_integration.py{,.hold}
mv autopush/tests/test_logging.py{,.hold}
bin/nosetests -sv autopush
mv autopush/tests/test_integration.py{.hold,}
mv autopush/tests/test_logging.py{.hold,}

This script will cause the integration and logging tests to not run.

Firefox Testing

To test a locally running Autopush with Firefox, you will need to edit
several config variables in Firefox.

	Open a New Tab.

	Go to about:config in the Location bar and hit Enter, accept the disclaimer
if it’s shown.

	Search for dom.push.serverURL, make a note of the existing value (you can
right-click the preference and choose Reset to restore the default).

	Double click the entry and change it to ws://localhost:8080/.

	Right click in the page and choose New -> Boolean, name it
dom.push.testing.allowInsecureServerURL and set it to true.

You should then restart Firefox to begin using your local Autopush.

Debugging

On Android, you can set dom.push.debug to enable debug logging of Push
via adb logcat.

For desktop use, you can set dom.push.loglevel to "debug". This will
log all push messages to the Browser Console (Tools > Web Developer > Browser
Console).

Release Process

Autopush has a regular 2-3 week release to production depending on developer
and QA availability. The developer creating a release should handle all aspects
of the following process as they’re done closely in order and time.

Versions

Autopush uses a {major}.{minor}.{patch} version scheme, new {major}
versions are only issued if backwards compatibility is affected. Patch
versions are used if a critical bug occurs after production deployment that
requires a bug fix immediately.

Dev Releases

When changes are committed to the master branch, an operations Jenkins
instance will build and deploy the code automatically to the dev environment.

The development environment can be verified at its endpoint/wss endpoints:

	Websocket: wss://autopush.dev.mozaws.net/

	Endpoint: https://updates-autopush.dev.mozaws.net/

Stage/Production Releases

Pre-Requisites

To create a release, you will need appropriate access to the autopush
GitHub repository with push permission.

You will also need clog [https://github.com/clog-tool/clog-cli] installed
to create the CHANGELOG.md update.

Release Steps

In these steps, the {version} refers to the full version of the release.

i.e. If a new minor version is being released after 1.21.0, the
{version} would be 1.22.0.

	Switch to the master branch of autopush.

	git pull to ensure the local copy is completely up-to-date.

	git diff origin/master to ensure there are no local staged or uncommited
changes.

	Run tox locally to ensure no artifacts or other local changes that might
break tests have been introduced.

	Change to the release branch.

If this is a new major/minor release,
git checkout -b release/{major}.{minor} to create a new release branch.

If this is a new patch release, you will first need to ensure you have the
minor release branch checked out, then:

	git checkout release/{major}.{minor}

	git pull to ensure the branch is up-to-date.

	git merge master to merge the new changes into the release branch.

Note that the release branch does not include a ``{patch}`` component.

	Edit autopush/__init__.py so that the version number reflects the
desired release version.

	Run clog --setversion {version}, verify changes were properly
accounted for in CHANGELOG.md.

	git add CHANGELOG.md autopush/__init__.py to add the two changes to the
new release commit.

	git commit -m "chore: tag {version}" to commit the new version and
record of changes.

	git tag -s -m "chore: tag {version}" {version} to create a signed tag of the current HEAD commit for release.

	git push --set-upstream origin release/{major}.{minor} to push the
commits to a new origin release branch.

	git push --tags origin release/{major}.{minor} to push the tags to the
release branch.

	Submit a pull request on github to merge the release branch to master.

	Go to the autopush releases page [https://github.com/mozilla-services/autopush/releases], you should see the new tag with no
release information under it.

	Click the Draft a new release button.

	Enter the tag for Tag version.

	Copy/paste the changes from CHANGELOG.md into the release description
omitting the top 2 lines (the a name HTML and the version) of the file.

Keep these changes handy, you’ll need them again shortly.

	Once the release branch pull request is approved and merged, click Publish
Release.

	File a bug for stage deployment in Bugzilla, in the Cloud Services
product, under the Operations: Deployment Requests component. It should
be titled Please deploy autopush {major}.{minor} to STAGE and include
the changes in the Description along with any additional instructions to
operations regarding deployment changes and special test cases if needed
for QA to verify.

At this point, QA will take-over, verify stage, and create a production
deployment Bugzilla ticket. QA will also schedule production deployment for the
release.

Coding Style Guide

Autopush uses Python styling guides based on
PEP8 [https://www.python.org/dev/peps/pep-0008/] and
PEP257 [https://www.python.org/dev/peps/pep-0257/].

Exceptions

	Single sentence docstrings are formatted the same way as a single line
docstring, but may not always include ending punctuation.

	File level docstrings may not include a line break before the first line of
code.

Code Documentation

Comprehensive code documentation for autopush is available within. The code
documentation is organized alphabetically by module name.

	autopush.config

	autopush.db

	autopush.exceptions

	autopush.logging

	autopush.main

	autopush.metrics

	autopush.protocol

	autopush.router.apnsrouter

	autopush.router.gcm

	autopush.router.gcmclient

	autopush.router.fcm

	autopush.router.interface

	autopush.web.base

	autopush.web.webpush

	autopush.web.log_check

	autopush.web.message

	autopush.web.registration

	autopush.web.healthhandler

	autopush.web.statushandler

	autopush.ssl

	autopush.utils

	autopush.websocket

	autopush.jwt

autopush.config

Autopush Config Object and Setup

	
class autopush.config.AutopushConfig(debug=False, crypto_key=None, bear_hash_key=NOTHING, human_logs=True, hostname=None, port=None, resolve_hostname=False, router_scheme=None, router_hostname=None, router_port=None, endpoint_scheme=None, endpoint_hostname=None, endpoint_port=None, proxy_protocol_port=None, memusage_port=None, statsd_host='localhost', statsd_port=8125, megaphone_api_url=None, megaphone_api_token=None, megaphone_poll_interval=30, datadog_api_key=None, datadog_app_key=None, datadog_flush_interval=None, router_table={'tablename': 'router'}, message_table={'tablename': 'message'}, preflight_uaid='deadbeef00000000deadbeef00000000', ssl=NOTHING, router_ssl=NOTHING, client_certs=None, router_conf=NOTHING, connect_timeout=0.5, max_data=4096, env='development', ami_id=None, cors=False, hello_timeout=0, msg_limit=100, auto_ping_interval=None, auto_ping_timeout=None, max_connections=None, close_handshake_timeout=None, notification_legacy=False, use_cryptography=False, sts_max_age=31536000, no_sslcontext_cache=False, aws_ddb_endpoint=None, allow_table_rotation=True)

	Main Autopush Settings Object

	
enable_tls_auth

	Whether TLS authentication w/ client certs is enabled

	
classmethod from_argparse(ns, **kwargs)

	Create an instance from argparse/additional kwargs

	
make_endpoint(uaid, chid, key=None)

	Create an v1 or v2 WebPush endpoint from the identifiers.

Both endpoints use bytes instead of hex to reduce ID length.
v1 is the uaid + chid
v2 is the uaid + chid + sha256(key).bytes

	Parameters

	
	uaid – User Agent Identifier

	chid – Channel or Subscription ID

	key – Optional Base64 URL-encoded application server key

	Returns

	Push endpoint

	
parse_endpoint(metrics, token, version='v1', ckey_header=None, auth_header=None)

	Parse an endpoint into component elements of UAID, CHID and optional
key hash if v2

	Parameters

	
	token – The obscured subscription data.

	version – This is the API version of the token.

	ckey_header – the Crypto-Key header bearing the public key
(from Crypto-Key: p256ecdsa=)

	auth_header – The Authorization header bearing the VAPID info

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – In the case of a malformed endpoint.

	Returns

	a dict containing (uaid=UAID, chid=CHID, public_key=KEY)

	
__init__(debug=False, crypto_key=None, bear_hash_key=NOTHING, human_logs=True, hostname=None, port=None, resolve_hostname=False, router_scheme=None, router_hostname=None, router_port=None, endpoint_scheme=None, endpoint_hostname=None, endpoint_port=None, proxy_protocol_port=None, memusage_port=None, statsd_host='localhost', statsd_port=8125, megaphone_api_url=None, megaphone_api_token=None, megaphone_poll_interval=30, datadog_api_key=None, datadog_app_key=None, datadog_flush_interval=None, router_table={'tablename': 'router'}, message_table={'tablename': 'message'}, preflight_uaid='deadbeef00000000deadbeef00000000', ssl=NOTHING, router_ssl=NOTHING, client_certs=None, router_conf=NOTHING, connect_timeout=0.5, max_data=4096, env='development', ami_id=None, cors=False, hello_timeout=0, msg_limit=100, auto_ping_interval=None, auto_ping_timeout=None, max_connections=None, close_handshake_timeout=None, notification_legacy=False, use_cryptography=False, sts_max_age=31536000, no_sslcontext_cache=False, aws_ddb_endpoint=None, allow_table_rotation=True)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
class autopush.config.SSLConfig(key=None, cert=None, dh_param=None)

	AutopushSSLContextFactory configuration

	
cf(**kwargs)

	Build our AutopushSSLContextFactory (if configured)

	
class autopush.config.DDBTableConfig(tablename, read_throughput=5, write_throughput=5)

	A DynamoDB Table’s configuration

autopush.db

Database Interaction

WebPush Sort Keys

Messages for WebPush are stored using a partition key + sort key, originally
the sort key was:

CHID : Encrypted(UAID: CHID)

The encrypted portion was returned as the Location to the Application Server.
Decrypting it resulted in enough information to create the sort key so that
the message could be deleted and located again.

For WebPush Topic messages, a new scheme was needed since the only way to
locate the prior message is the UAID + CHID + Topic. Using Encryption in
the sort key is therefore not useful since it would change every update.

The sort key scheme for WebPush messages is:

VERSION : CHID : TOPIC

To ensure updated messages are not deleted, each message will still have an
update-id key/value in its item.

Non-versioned messages are assumed to be original messages from before this
scheme was adopted.

VERSION is a 2-digit 0-padded number, starting at 01 for Topic messages.

DynamoDB Table Functions

	
autopush.db.create_router_table(tablename='router', read_throughput=5, write_throughput=5, boto_resource=None)

	Create a new router table

The last_connect index is a value used to determine the last month a user
was seen in. To prevent hot-keys on this table during month switchovers the
key is determined based on the following scheme:

(YEAR)(MONTH)(DAY)(HOUR)(0001-0010)

Note that the random key is only between 1-10 at the moment, if the key is
still too hot during production the random range can be increased at the
cost of additional queries during GC to locate expired users.

	
autopush.db.get_router_table(tablename='router', read_throughput=5, write_throughput=5, boto_resource=None)

	Get the main router table object

Creates the table if it doesn’t already exist, otherwise returns the
existing table.

Utility Functions

	
autopush.db.preflight_check(message, router, uaid='deadbeef00000000deadbeef00000000')

	Performs a pre-flight check of the router/message to ensure
appropriate permissions for operation.

Failure to run correctly will raise an exception.

DynamoDB Table Class Abstractions

	
class autopush.db.Router(conf, metrics, resource=None)

	Create a Router table abstraction on top of a DynamoDB Table object

	
__init__(conf, metrics, resource=None)

	Create a new Router object

	Parameters

	
	conf – configuration data.

	metrics – Metrics object that implements the
autopush.metrics.IMetrics interface.

	resource – Boto3 resource handle

	
get_uaid(uaid)

	Get the database record for the UAID

	Raises

	ItemNotFound if there is no record for this UAID.
ProvisionedThroughputExceededException if dynamodb table
exceeds throughput.

	
register_user(*args, **kwargs)

	Register this user

If a record exists with a newer connected_at, then the user will
not be registered.

	Returns

	Whether the user was registered or not.

	Raises

	ProvisionedThroughputExceededException if dynamodb table
exceeds throughput.

	
drop_user(*args, **kwargs)

	Drops a user record

	
update_message_month(*args, **kwargs)

	Update the route tables current_message_month

Note that we also update the last_connect at this point since webpush
users when connecting will always call this once that month. The
current_timestamp is also reset as a new month has no last read
timestamp.

	
clear_node(*args, **kwargs)

	Given a router item and remove the node_id

The node_id will only be cleared if the connected_at matches up
with the item’s connected_at.

	Returns

	Whether the node was cleared or not.

	Raises

	ProvisionedThroughputExceededException if dynamodb table
exceeds throughput.

autopush.exceptions

Autopush Exceptions

	
class autopush.exceptions.AutopushException

	Parent Autopush Exception

	
class autopush.exceptions.RouterException(message, status_code=500, response_body='', router_data=None, headers=None, log_exception=True, errno=None, logged_status=None, **kwargs)

	Exception if routing has failed, may include a custom status_code and
body to write to the response.

	
__init__(message, status_code=500, response_body='', router_data=None, headers=None, log_exception=True, errno=None, logged_status=None, **kwargs)

	Create a new RouterException

autopush.logging

Custom Logging Setup

	
class autopush.logging.PushLogger(logger_name, log_level='debug', log_format='json', log_output='stdout', sentry_dsn=None, firehose_delivery_stream=None)

	Twisted LogObserver implementation

Supports firehose delivery, Raven exception reporting, and json/test
console debugging output.

	
__init__(logger_name, log_level='debug', log_format='json', log_output='stdout', sentry_dsn=None, firehose_delivery_stream=None)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
__call__(...) <==> x(...)

	

	
class autopush.logging.FirehoseProcessor(stream_name, maxsize=0)

	Batches log events for sending to AWS FireHose

	
__init__(stream_name, maxsize=0)

	x.__init__(…) initializes x; see help(type(x)) for signature

autopush.main

autopush/autoendpoint daemon scripts

Daemon Script Entry Points

	
class autopush.main.ConnectionApplication(conf, resource=None)

	The autopush application

	
static parse_args(config_files, args)

	Parse out connection node arguments for an autopush node

	
websocket_factory

	alias of autopush.websocket.PushServerFactory

	
websocket_site_factory

	alias of autopush.websocket.ConnectionWSSite

	
setup(rotate_tables=True)

	Initialize the services

	
add_internal_router()

	Start the internal HTTP notification router

	
add_websocket()

	Start the public WebSocket server

	
class autopush.main.EndpointApplication(conf, resource=None)

	The autoendpoint application

	
static parse_args(config_files, args)

	Parses out endpoint arguments for an autoendpoint node

	
setup(rotate_tables=True)

	Initialize the services

	
add_endpoint()

	Start the Endpoint HTTP router

Common Root

	
class autopush.main.AutopushMultiService(conf, resource=None)

	
	
static parse_args(config_files, args)

	Parse command line args via argparse

	
setup(rotate_tables=True)

	Initialize the services

	
add_maybe_ssl(port, factory, ssl_cf)

	Add a Service from factory, optionally behind TLS

	
add_timer(*args, **kwargs)

	Add a TimerService

	
add_memusage()

	Add the memusage Service

	
run()

	Start the services and run the reactor

	
classmethod _from_argparse(ns, resource=None, **kwargs)

	Create an instance from argparse/additional kwargs

	
classmethod main(args=None, use_files=True, resource=None)

	Entry point to autopush’s main command line scripts.

aka autopush/autoendpoint.

autopush.metrics

Metrics interface and implementations

Interface

	
class autopush.metrics.IMetrics(*args, **kwargs)

	Metrics interface

Each method except __init__() and start() must be implemented.

Additional kwargs may be recorded as additional metric tags for metric
systems that support it, otherwise they should be ignored.

	
__init__(*args, **kwargs)

	Setup the metrics

	
start()

	Start any connection needed for metric transmission

	
increment(name, count=1, **kwargs)

	Increment a counter for a metric name

	
gauge(name, count, **kwargs)

	Record a gauge for a metric name

	
timing(name, duration, **kwargs)

	Record a timing in ms for a metric name

Implementations

	
class autopush.metrics.SinkMetrics(*args, **kwargs)

	Exists to ignore metrics when metrics are not active

	
increment(name, count=1, **kwargs)

	Increment a counter for a metric name

	
gauge(name, count, **kwargs)

	Record a gauge for a metric name

	
timing(name, duration, **kwargs)

	Record a timing in ms for a metric name

autopush.protocol

Basic Protocol for ignoring data

	
class autopush.protocol.IgnoreBody(response, deferred)

	A protocol that discards any data it receives

This is necessary to support persistent HTTP connections. If the
response body is never read using Response.deliverBody, or
stopProducing() is called, the connection will not be reused.

	
classmethod ignore(response)

	Class method helper for ignoring the response

	
dataReceived(data)

	Ignore received data

	
connectionLost(reason)

	Relay back the loss of connection to the deferred

autopush.router.apnsrouter

APNS Router

	
class autopush.router.apnsrouter.APNSRouter(conf, router_conf, metrics, load_connections=True)

	APNS Router Implementation

	
_connect(rel_channel, load_connections=True)

	Connect to APNS

	Parameters

	
	rel_channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – Release channel name (e.g. Firefox. FirefoxBeta,..)

	load_connections (bool [https://docs.python.org/3/library/functions.html#bool]) – (used for testing)

	Returns

	APNs to be stored under the proper release channel name.

	Return type

	apns.APNs

	
__init__(conf, router_conf, metrics, load_connections=True)

	Create a new APNS router and connect to APNS

	Parameters

	
	conf (autopush.config.AutopushConfig) – Configuration settings

	router_conf (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Router specific configuration

	load_connections (bool [https://docs.python.org/3/library/functions.html#bool]) – (used for testing)

	
register(uaid, router_data, app_id, *args, **kwargs)

	Register an endpoint for APNS, on the app_id release channel.

This will validate that an APNs instance token is in the
router_data,

	Parameters

	
	uaid – User Agent Identifier

	router_data – Dict containing router specific configuration info

	app_id – The release channel identifier for cert info lookup

	
amend_endpoint_response(response, router_data)

	Stubbed out for this router

	
route_notification(notification, uaid_data)

	Start the APNS notification routing, returns a deferred

	Parameters

	
	notification (autopush.endpoint.Notification) – Notification data to send

	uaid_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – User Agent specific data

	
_route(notification, router_data)

	Blocking APNS call to route the notification

	Parameters

	
	notification (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Notification data to send

	router_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Pre-initialized data for this connection

	
class autopush.router.apns2.APNSClient(cert_file, key_file, topic, alt=False, use_sandbox=False, max_connections=20, logger=None, metrics=None, load_connections=True, max_retry=2)

	
	
__init__(cert_file, key_file, topic, alt=False, use_sandbox=False, max_connections=20, logger=None, metrics=None, load_connections=True, max_retry=2)

	Create the APNS client connector.

The cert_file and key_file can be derived from the exported .p12
Apple Push Services: *bundleID* ** key contained in the **Keychain
Access application. To extract the proper PEM formatted data, you
can use the following commands:

`
openssl pkcs12 -in file.p12 -out apns_cert.pem -clcerts -nokeys
openssl pkcs12 -in file.p12 -out apns_key.pem -nocerts -nodes
`

The topic is the Bundle ID of the bridge recipient iOS application.
Since the cert needs to be tied directly to an application, the topic
is usually similar to “com.example.MyApplication”.

	Parameters

	
	cert_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the PEM formatted APNs certification file.

	key_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the PEM formatted APNs key file.

	topic (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Bundle ID that identifies the assoc. iOS app.

	alt (bool [https://docs.python.org/3/library/functions.html#bool]) – Use the alternate APNs publication port (if 443 is blocked)

	use_sandbox (bool [https://docs.python.org/3/library/functions.html#bool]) – Use the development sandbox

	max_connections (int [https://docs.python.org/3/library/functions.html#int]) – Max number of pooled connections to use

	logger (logger) – Status logger

	metrics (autopush.metrics.IMetric) – Metric recorder

	load_connections (bool [https://docs.python.org/3/library/functions.html#bool]) – used for testing

	max_retry (int [https://docs.python.org/3/library/functions.html#int]) – Number of HTTP2 transmit attempts

	
send(router_token, payload, apns_id, priority=True, topic=None, exp=None)

	Send the dict of values to the remote bridge

This sends the raw data to the remote bridge application using the
APNS2 HTTP2 API.

	Parameters

	
	router_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – APNs provided hex token identifying recipient

	payload (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Data to send to recipient

	priority (bool [https://docs.python.org/3/library/functions.html#bool]) – True is high priority, false is low priority

	topic (str [https://docs.python.org/3/library/stdtypes.html#str]) – BundleID for the recipient application (overides default)

	exp (timestamp) – Message expiration timestamp

autopush.router.gcm

GCM Router

	
class autopush.router.gcm.GCMRouter(conf, router_conf, metrics)

	GCM Router Implementation

	
__init__(conf, router_conf, metrics)

	Create a new GCM router and connect to GCM

	
register(uaid, router_data, app_id, *args, **kwargs)

	Validate that the GCM Instance Token is in the router_data

	
route_notification(notification, uaid_data)

	Start the GCM notification routing, returns a deferred

	
_route(notification, uaid_data)

	Blocking GCM call to route the notification

	
_error(err, status, **kwargs)

	Error handler that raises the RouterException

	
_process_reply(reply, uaid_data, ttl, notification)

	Process GCM send reply

autopush.router.gcmclient

	
class autopush.router.gcmclient.GCM(api_key=None, logger=None, metrics=None, endpoint='gcm-http.googleapis.com/gcm/send', **options)

	Primitive HTTP GCM service handler.

	
__init__(api_key=None, logger=None, metrics=None, endpoint='gcm-http.googleapis.com/gcm/send', **options)

	Initialize the GCM primitive.

	Parameters

	
	api_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The GCM API key (from the Google developer console)

	logger (logger) – Status logger

	metrics (autopush.metrics.IMetric) – Metric recorder

	endpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) – GCM endpoint override

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional options

	
send(payload)

	Send a payload to GCM

	Parameters

	payload (JSONMessage) – Dictionary of GCM formatted data

	Returns

	Result

	
class autopush.router.gcmclient.JSONMessage(registration_ids, collapse_key, time_to_live, dry_run, data)

	GCM formatted payload

	
__init__(registration_ids, collapse_key, time_to_live, dry_run, data)

	Convert data elements into a GCM payload.

	Parameters

	
	registration_ids (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]) – Single or list of registration ids to send to

	collapse_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – GCM collapse key for the data.

	time_to_live (int [https://docs.python.org/3/library/functions.html#int]) – Seconds to keep message alive

	dry_run (bool [https://docs.python.org/3/library/functions.html#bool]) – GCM Dry run flag to allow remote verification

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Data elements to send

	
class autopush.router.gcmclient.Result(response, message)

	Abstraction object for GCM response

	
__init__(response, message)

	Process GCM message and response into abstracted object

	Parameters

	
	message (JSONMessage) – Message payload

	response (requests.Response) – GCM response

autopush.router.fcm

FCM legacy HTTP Router

	
class autopush.router.fcm.FCMRouter(conf, router_conf, metrics)

	FCM Router Implementation

Note: FCM is a newer branch of GCM. While there’s not much change
required for the server, there is significant work required for the
client. To that end, having a separate router allows the “older” GCM
to persist and lets the client determine when they want to use the
newer FCM route.

	
__init__(conf, router_conf, metrics)

	Create a new FCM router and connect to FCM

	
register(uaid, router_data, app_id, *args, **kwargs)

	Validate that the FCM Instance Token is in the router_data

	
route_notification(notification, uaid_data)

	Start the FCM notification routing, returns a deferred

	
_route(notification, router_data)

	Blocking FCM call to route the notification

	
_error(err, status, **kwargs)

	Error handler that raises the RouterException

	
_process_reply(reply, notification, router_data, ttl)

	Process FCM send reply

autopush.router.interface

Router interface

	
class autopush.router.interface.RouterResponse(status_code=200, response_body='', router_data=None, headers=None, errno=None, logged_status=None)

	Router response if routing has succeeded.

If the router data needs to change as a result of this message, either the
router got invalidated, or needs updating, then the router_data should be
set.

	
__init__(status_code=200, response_body='', router_data=None, headers=None, errno=None, logged_status=None)

	Create a new RouterResponse

	
class autopush.router.interface.IRouter(conf, router_conf, **kwargs)

	
	
__init__(conf, router_conf, **kwargs)

	Initialize the Router to handle notifications and registrations with
the given conf and router conf.

	
register(uaid, router_data, app_id, *args, **kwargs)

	Register the uaid with router_data however is preferred prior to
storing router_data for this user.

	Parameters

	
	uaid – User Agent Identifier

	router_data – Route specific configuration info

	app_id – Application identifier from URI

	Raises

	RouterException if data supplied is invalid.

	
amend_endpoint_response(response, router_data)

	Modify an outbound Endpoint registration response to
include router info.

Some routers require additional info to be returned to
clients.

	Parameters

	
	response – The response data to be sent to the client

	router_data – Route specific configuration info

	
route_notification(notification, uaid_data)

	Route a notification

	Parameters

	
	notification – A Notificaiton
instance.

	uaid_data – A dict of the full user item from the db record.

	Returns

	A response object upon successful routing.

	Return type

	RouterResponse

	Raises

	RouterException if routing fails.

This function runs in the main reactor, if a yield is needed then a
deferred must be returned for the callback chain.

autopush.web.base

	
class autopush.web.base.ThreadedValidate(schema)

	A cyclone request validation decorator

Exposed as a classmethod for running a marshmallow-based validation schema
in a separate thread for a cyclone request handler.

	
_validate_request(request_handler, *args, **kwargs)

	Validates a schema_class against a cyclone request

	
_track_validation_timing(result, request_handler, start_time)

	Track the validation timing

	
classmethod validate(schema)

	Validate a request schema in a separate thread before calling the
request handler

An alias threaded_validate should be used from this module.

Using cyclone.web.asynchronous is not needed as this function
will attach equivilant functionality to the method handler. Calling
self.finish() is needed on decorated handlers.

Validated requests are deserialized into the **kwargs of the wrapped
request handler method.

class MySchema(Schema):
 uaid = fields.UUID(allow_none=True)

class MyHandler(cyclone.web.RequestHandler):
 @threaded_validate(MySchema())
 def post(self, uaid=None):
 ...

	
class autopush.web.base.BaseWebHandler(application, request, **kwargs)

	Common overrides for Push web API’s

	
initialize()

	Setup basic aliases and attributes

	
prepare()

	Common request preparation

	
options(*args, **kwargs)

	HTTP OPTIONS Handler

	
head(*args, **kwargs)

	HTTP HEAD Handler

	
_write_response(status_code, errno, message=None, error=None, headers=None, url='http://autopush.readthedocs.io/en/latest/http.html#error-codes', router_type=None, vapid=None)

	Writes out a full JSON error and sets the appropriate status

	
_validation_err(fail)

	errBack for validation errors

	
_response_err(fail)

	errBack for all exceptions that should be logged

This traps all exceptions to prevent any further callbacks from
running.

	
_boto_err(fail)

	errBack for boto exceptions (ClientError)

	
_router_fail_err(fail, router_type=None, vapid=False, uaid=None)

	errBack for router failures

	
_write_validation_err(errors)

	Writes a set of validation errors out with details about what
went wrong

	
_db_error_handling(d)

	Tack on the common error handling for a dynamodb request and
uncaught exceptions

	
_track_timing(status_code=None)

	Logs out the request timing tracking stats

Note: The status code should be set before calling this function or
passed in.

	
class autopush.web.base.BaseWebHandler(application, request, **kwargs)

	Common overrides for Push web API’s

	
initialize()

	Setup basic aliases and attributes

	
prepare()

	Common request preparation

	
options(*args, **kwargs)

	HTTP OPTIONS Handler

	
head(*args, **kwargs)

	HTTP HEAD Handler

	
_write_response(status_code, errno, message=None, error=None, headers=None, url='http://autopush.readthedocs.io/en/latest/http.html#error-codes', router_type=None, vapid=None)

	Writes out a full JSON error and sets the appropriate status

	
_validation_err(fail)

	errBack for validation errors

	
_response_err(fail)

	errBack for all exceptions that should be logged

This traps all exceptions to prevent any further callbacks from
running.

	
_boto_err(fail)

	errBack for boto exceptions (ClientError)

	
_router_fail_err(fail, router_type=None, vapid=False, uaid=None)

	errBack for router failures

	
_write_validation_err(errors)

	Writes a set of validation errors out with details about what
went wrong

	
_db_error_handling(d)

	Tack on the common error handling for a dynamodb request and
uncaught exceptions

	
_track_timing(status_code=None)

	Logs out the request timing tracking stats

Note: The status code should be set before calling this function or
passed in.

autopush.web.webpush

	
class autopush.web.webpush.WebPushHandler(application, request, **kwargs)

	
	
initialize()

	Must run on initialization to set ahead of validation

	
_router_completed(response, uaid_data, warning='', router_type=None, vapid=None)

	Called after router has completed successfully

autopush.web.log_check

	
class autopush.web.log_check.LogCheckHandler(application, request, **kwargs)

	
	
authenticate_peer_cert()

	LogCheck skips authentication checks

	
get(*args, **kwargs)

	HTTP GET

Generate a dummy error message for logging

autopush.web.message

	
class autopush.web.message.MessageHandler(application, request, **kwargs)

	
	
delete(*args, **kwargs)

	Drops a pending message.

The message will only be removed from DynamoDB. Messages that were
successfully routed to a client as direct updates, but not delivered
yet, will not be dropped.

autopush.web.registration

	
class autopush.web.registration.NewRegistrationHandler(application, request, **kwargs)

	Handle new bridge uaid registrations

	
post(*args, **kwargs)

	HTTP POST

Router type/data registration.

	
_register_user_and_channel(uaid, chid, router_type, router_data)

	Register a new user/channel, return its endpoint

	
class autopush.web.registration.UaidRegistrationHandler(application, request, **kwargs)

	Handles UAID bridge methods

	
get(*args, **kwargs)

	HTTP GET

Return a list of known channelIDs for a given UAID

	
put(*args, **kwargs)

	HTTP PUT

Update router type/data for a UAID.

	
post(*args, **kwargs)

	HTTP PUT

Update router type/data for a UAID.

	
delete(*args, **kwargs)

	HTTP DELETE

Delete all pending records for the given UAID

	
_uaid_not_found_err(fail)

	errBack for uaid lookup not finding the user

	
class autopush.web.registration.SubRegistrationHandler(application, request, **kwargs)

	Handle a new bridge channel id registration for a bridge user

	
class autopush.web.registration.ChannelRegistrationHandler(application, request, **kwargs)

	Handle deleting a channel for a bridge user

	
_chid_not_found_err(fail)

	errBack for unknown chid

autopush.web.healthhandler

Health Check HTTP Handler

	
class autopush.web.health.HealthHandler(application, request, **kwargs)

	HTTP Health Handler

	
authenticate_peer_cert()

	Skip authentication checks

	
get(*args, **kwargs)

	HTTP Get

Returns basic information about the version and how many clients are
connected in a JSON object.

	
_check_table(table, name_over=None)

	Checks the tables known about in DynamoDB

	
_check_success(exists, name)

	Verifies a Table exists

	
_check_error(failure, name)

	Returns an error, and why

	
_finish_response(results)

	Returns whether the check succeeded or not

autopush.web.statushandler

	
class autopush.web.health.StatusHandler(application, request, **kwargs)

	HTTP Status Handler

	
authenticate_peer_cert()

	skip authentication checks

	
get()

	HTTP Get

Returns that this node is alive, and the version.

autopush.ssl

Custom SSL configuration

	
class autopush.ssl.AutopushSSLContextFactory(*args, **kwargs)

	A SSL context factory

	
cacheContext()

	Setup the main context factory with custom SSL settings

autopush.utils

	
autopush.utils.canonical_url(scheme, hostname, port=None)

	Return a canonical URL given a scheme/hostname and optional port

	
autopush.utils.resolve_ip(hostname)

	Resolve a hostname to its IP if possible

	
autopush.utils.validate_uaid(uaid)

	Validates a UAID a tuple indicating if its valid and the original
uaid, or a new uaid if its invalid

	
autopush.utils.generate_hash(key, payload)

	Generate a HMAC for the uaid using the secret

	Returns

	HMAC hash and the nonce used as a tuple (nonce, hash).

autopush.websocket

Websocket Protocol handler and HTTP Endpoints for Connection Node

Private HTTP Endpoints

These HTTP endpoints are only for communication from endpoint nodes and must
not be publicly exposed.

	
PUT /push/(uuid: uaid)

	Send a notification to a connected client with the given uaid.

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Client is connected and delivery will be attempted.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Client is not connected to this node.

	503 Service Unavailable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4] – Client is connected, but currently busy.

	
PUT /notif/(uuid: uaid)

	Trigger a stored notification check for a connected client.

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Client is connected, and has started checking.

	202 Accepted [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Client is connected but busy, will check notifications
when not busy.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Client is not connected to this node.

	
DELETE /notif/(uuid: uaid)/(int: connected_at)

	Immediately drop a client of this uaid if its connection time matches the
connected_at provided.

Websocket Protocol

	
class autopush.websocket.PushServerProtocol

	Main Websocket Connection Protocol

	
parent_class

	alias of autobahn.twisted.websocket.WebSocketServerProtocol

	
classmethod randrange(start, stop=None, step=1, _int=<type 'int'>, _maxwidth=9007199254740992L)

	Choose a random item from range(start, stop[, step]).

This fixes the problem with randint() which includes the
endpoint; in Python this is usually not what you want.

	
deferToThread(func, *args, **kwargs)

	deferToThread helper that tracks defers outstanding

	
deferToLater(when, func, *args, **kwargs)

	deferToLater helper that tracks defers outstanding

	
force_retry(func, *args, **kwargs)

	Forcefully retry a function in a thread until it doesn’t error

Note that this does not use self.deferToThread, so this will
continue to retry even if the client drops.

	
base_tags

	Property that uses None if there’s no tags due to a DataDog library
bug

	
log_failure(failure, **kwargs)

	Log a twisted failure out through twisted’s log.failure

	
paused

	Indicates if we are paused for output production or not

	
_sendAutoPing(*args, **kwargs)

	Override for sanity checking during auto-ping interval

	
sendClose(*args, **kwargs)

	Override to add tracker that ensures the connection is truly
torn down

	
nukeConnection(*args, **kwargs)

	Aggressive connection shutdown using abortConnection if onClose
still hadn’t run by this point

	
onConnect(*args, **kwargs)

	autobahn onConnect handler for when a connection has started

	
processHandshake(*args, **kwargs)

	Disable host port checking on nonstandard ports since some
clients are buggy and don’t provide it

	
onMessage(*args, **kwargs)

	autobahn onMessage processor for incoming messages

	
timeoutConnection()

	Idle timer fired.

	
onAutoPingTimeout()

	Override to track that this shut-down is from a ping timeout

	
onClose(*args, **kwargs)

	autobahn onClose handler for shutting down the connection and any
outstanding deferreds related to this connection

	
cleanUp(wasClean, code, reason)

	Thorough clean-up method to cancel all remaining deferreds, and send
connection metrics in

	
_save_webpush_notif(notif)

	Save a direct_update webpush style notification

	
_lookup_node(results)

	Looks up the node to send a notify for it to check storage if
connected

	
_trap_uaid_not_found(fail)

	Traps UAID not found error

	
_notify_node(result)

	Checks the result of lookup node to send the notify if the client is
connected elsewhere now

	
returnError(messageType, reason, statusCode, close=True, url='http://autopush.readthedocs.io/en/latest/api/websocket.html#private-http-endpoint')

	Return an error to a client, and optionally shut down the connection
safely

	
error_overload(failure, message_type, disconnect=True)

	Handle database overloads and errors

If disconnect is False, the an overload error is returned and the
client is not disconnected.

Otherwise, pause producing to cease incoming notifications while we
wait a random interval up to 8 seconds before closing down the
connection. Most clients wait up to 10 seconds for a command,
but this is not a guarantee, so rather than never reply, we still
shut the connection down.

	Parameters

	disconnect – Whether the client should be disconnected or not.

	
error_finish_overload(message_type)

	Close the connection down and resume consuming input after the
random interval from a db overload

	
sendJSON(body)

	Send a Python dict as a JSON string in a websocket message

	
process_hello(data)

	Process a hello message

	
_register_user(existing_user=True)

	Register a returning or new user

	
_verify_user_record()

	Verify a user record is valid

Returns a record that is ready for registering in the database if
the user record was found.

	Return type

	Item or None

	
error_hello(failure)

	errBack for hello failures

	
_check_other_nodes(result, url='http://autopush.readthedocs.io/en/latest/api/websocket.html#private-http-endpoint')

	callback to check other nodes for clients and send them a delete as
needed

	
finish_hello(previous)

	callback for successful hello message, that sends hello reply

	
process_notifications()

	Run a notification check against storage

	
webpush_fetch()

	Helper to return an appropriate function to fetch messages

	
error_notifications(fail)

	errBack for notification check failing

	
error_notification_overload(fail)

	errBack for provisioned errors during notification check

	
error_message_overload(fail)

	errBack for handling excessive messages per UAID

	
finish_notifications(notifs)

	callback for processing notifications from storage

	
finish_webpush_notifications(result)

	WebPush notification processor

	
_rotate_message_table()

	Function to fire off a message table copy of channels + update the
router current_month entry

	
_monthly_transition()

	Transition the client to use a new message month

Utilized to migrate a users channels to a new message month and
update the router record reflecting the proper month.

This is a blocking function that does not run on the event loop.

	
_finish_monthly_transition(result)

	Mark the client as successfully transitioned and resume

	
error_monthly_rotation_overload(fail)

	Capture overload on monthly table rotation attempt

If a provision exceeded error hits while attempting monthly table
rotation, schedule it all over and re-scan the messages. Normal
websocket client flow is returned in the meantime.

	
_send_ping()

	Helper for ping sending that tracks when the ping was sent

	
process_ping()

	Ping Handling

Clients in the wild have a bug that lowers their ping interval to 0. It
will never increase for them, as there is no way to remedy this without
causing the client to use drastically more battery/data-usage we send
them a code 4774 close to signify that they should stop until network
change.

No other client should ping more than once per minute, or we tell them
to go away.

	
process_register(data)

	Process a register message

	
error_register(fail)

	errBack handler for registering to fail

	
finish_register(endpoint, chid)

	callback for successful endpoint creation, sends register reply

	
process_unregister(data)

	Process an unregister message

	
ack_update(update)

	Helper function for tracking ack’d updates

Returns either None, if no delete_notification call is needed, or a
deferred for the delete_notification call if it was needed.

	
_handle_webpush_ack(chid, version, code)

	Handle clearing out a webpush ack

	
_handle_webpush_update_remove(result, chid, notif)

	Handle clearing out the updates_sent

It’s possible the client may leave before this runs, so this is
wrapped in a try/except in case the tear-down of self has started.

	
process_ack(data)

	Process an ack message, delete notifications from storage if
needed

	
process_nack(data)

	Process a nack message and log its contents

	
check_missed_notifications(results, resume=False)

	Check to see if notifications were missed

	
bad_message(typ, message=None, url='http://autopush.readthedocs.io/en/latest/api/websocket.html#private-http-endpoint')

	Error helper for sending a 401 status back

	
send_notification(update)

	Utility function for external use

This function is called by the HTTP handler to deliver an incoming
update notification from an endpoint.

HTTP Handlers

	
class autopush.websocket.RouterHandler(application, request, **kwargs)

	Router Handler

Handles routing a notification to a connected client from an endpoint.

	
put(uaid)

	HTTP Put

Attempt delivery of a notification to a connected client.

	
class autopush.websocket.NotificationHandler(application, request, **kwargs)

	
	
put(uaid, *args)

	HTTP Put

Notify a connected client that it should check storage for new
notifications.

	
delete(uaid, connected_at)

	HTTP Delete

Drop a connected client as the client has connected to a new node.

Utility Functions

	
autopush.websocket.ms_time()

	Return current time.time call as ms and a Python int

	
autopush.websocket.log_exception(func)

	Exception Logger Decorator for protocol methods

autopush.jwt

	
class autopush.jwt.VerifyJWT

	Minimally verify a Vapid JWT object.

Why hand roll? Most python JWT libraries either use a python elliptic
curve library directly, or call one that does, or is abandoned, or a
dozen other reasons.

After spending half a day looking for reasonable replacements, I
decided to just write the functions we need directly.

THIS IS NOT A FULL JWT REPLACEMENT.

	
static extract_signature(auth)

	Fix the JWT auth token.

The JWA spec defines the signature to be a pair of 32octet encoded
longs.
The ecdsa library signs using a raw, 32octet pair of values (s, r).
Cryptography, which uses OpenSSL, uses a DER sequence of (s, r).
This function converts the raw ecdsa to DER.

	Parameters

	auth (str [https://docs.python.org/3/library/stdtypes.html#str]) – A JWT authorization token.

:return tuple containing the signature material and signature

	
static extract_assertion(token)

	Extract the assertion dictionary from the passed token. This does
NOT do validation.

	Parameters

	token (str [https://docs.python.org/3/library/stdtypes.html#str]) – Partial or full VAPID auth token

:return dict of the VAPID claims

	
static validate_and_extract_assertion(token, key)

	Decode a web token into a assertion dictionary.

This attempts to rectify both ecdsa and openssl generated
signatures. We use the built-in cryptography library since it wraps
libssl and is faster than the python only approach.

	Parameters

	
	token (str [https://docs.python.org/3/library/stdtypes.html#str]) – VAPID auth token

	key (str [https://docs.python.org/3/library/stdtypes.html#str] or bitarray) – bitarray containing public key

:return dict of the VAPID claims

:raise InvalidSignature

Glossary

	AppServer

	A third-party Application Server that delivers notifications to client
applications via Push.

	Bridging

	Using a third party or proprietary network in order to deliver
Push notifications to an App. This may be preferred for mobile devices
where such a network may improve battery life or other reasons.

	Channel

	A unique route between an AppServer and the Application. May
also be referred to as Subscription

	CHID

	The Channel Subscription ID. Push assigns each subscription (or channel)
a unique identifier.

	Message-ID

	A unique message ID. Each message for a given subscription is given a
unique identifier that is returned to the AppServer in the
Location header.

	Notification

	A message sent to an endpoint node intended for delivery to a HTTP
endpoint. Autopush stores these in the message tables.

	Router Type

	Every UAID that connects has a router type. This indicates the
type of routing to use when dispatching notifications. For most clients, this
value will be webpush. Clients using Bridging it will use either
gcm, fcm, apns, or adm.

	Subscription

	A unique route between an AppServer and the Application. May
also be referred to as a Channel

	UAID

	The Push User Agent Registration ID. Push assigns each remote recipient
(Firefox client) a unique identifier. These may occasionally be reset
by the Push Service or the client.

	WebPush

	An IETF standard for communication between Push Services, the clients,
and application servers.

See: https://datatracker.ietf.org/doc/draft-ietf-webpush-protocol/

Migrating to Rust

Progress never comes from resting. One of the significant considerations of running a service that needs to communicate
with hundreds of millions of clients is cost. We are forced to continually evaluate and optimize. When a lower cost
option is presented, we seriously consider it.

There is some risk, of course, so rapid change is avoided and testing is strongly encouraged. As of early 2018, the
decision was made to move the costlier elements of the server to Rust. The rust based application is at
autopush-rs [https://github.com/mozilla-services/autopush-rs].

Why Rust?

Rust is a strongly typed, memory efficient language. It has matured rapidly and offers structure that vastly reduces
the memory requirements for running connections. As a bonus, it’s also forced us to handle potential bugs, making the
service more reliable.

The current python environment we use (pypy) continues to improve as well, but does not offer the sort of improvements
that rust does when it comes to handling socket connections.

To that end we’re continuing to use pypy for the endpoint connection management for the time being.

When is the switch going to happen?

As of the end of June 2018, our rust handler is in testing. We expect to deploy it soon, but since this deployment
should not impact external users, we’re not rushing to deploy just to hit an arbitrary milestone. It will be deployed
when all parties have determined it’s ready.

What will happen to autopush?

Currently, the plan is to maintain it so long as it’s in production use. Since we plan on continuing to have autopush
handle endpoints for some period, even after autopush-rs has been deployed to production and is handling connections.
However, we do reserve the right to archive this repo at some future date.

 HTTP Routing Table

 /m |
 /notif |
 /push |
 /v1 |
 /{push_endpoint}

 		 	

 		
 /m	

 	
 	
 DELETE /m/{message_id}	

 		 	

 		
 /notif	

 	
 	
 PUT /notif/(uuid:uaid)	

 	
 	
 DELETE /notif/(uuid:uaid)/(int:connected_at)	

 		 	

 		
 /push	

 	
 	
 PUT /push/(uuid:uaid)	

 		 	

 		
 /v1	

 	
 	
 GET /v1/{type}/{app_id}/registration/{UAID}/	

 	
 	
 POST /v1/{type}/{app_id}/registration	

 	
 	
 POST /v1/{type}/{app_id}/registration/{uaid}/subscription	

 	
 	
 PUT /v1/{type}/{app_id}/registration/{uaid}	

 	
 	
 DELETE /v1/{type}/{app_id}/registration/{UAID}/subscription/{CHID}	

 	
 	
 DELETE /v1/{type}/{app_id}/registration/{uaid}	

 		 	

 		
 /{push_endpoint}	

 	
 	
 POST {push_endpoint}	

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 autopush	

 	
 	
 autopush.config	

 	
 	
 autopush.db	

 	
 	
 autopush.exceptions	

 	
 	
 autopush.jwt	

 	
 	
 autopush.logging	

 	
 	
 autopush.main	

 	
 	
 autopush.metrics	

 	
 	
 autopush.protocol	

 	
 	
 autopush.router.apns2	

 	
 	
 autopush.router.apnsrouter	

 	
 	
 autopush.router.fcm	

 	
 	
 autopush.router.gcm	

 	
 	
 autopush.router.gcmclient	

 	
 	
 autopush.router.interface	

 	
 	
 autopush.ssl	

 	
 	
 autopush.utils	

 	
 	
 autopush.web.base	

 	
 	
 autopush.web.health	

 	
 	
 autopush.web.log_check	

 	
 	
 autopush.web.message	

 	
 	
 autopush.web.registration	

 	
 	
 autopush.web.webpush	

 	
 	
 autopush.websocket	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__call__() (autopush.logging.PushLogger method)

 	__init__() (autopush.config.AutopushConfig method)

 	(autopush.db.Router method)

 	(autopush.exceptions.RouterException method)

 	(autopush.logging.FirehoseProcessor method)

 	(autopush.logging.PushLogger method)

 	(autopush.metrics.IMetrics method)

 	(autopush.router.apns2.APNSClient method)

 	(autopush.router.apnsrouter.APNSRouter method)

 	(autopush.router.fcm.FCMRouter method)

 	(autopush.router.gcm.GCMRouter method)

 	(autopush.router.gcmclient.GCM method)

 	(autopush.router.gcmclient.JSONMessage method)

 	(autopush.router.gcmclient.Result method)

 	(autopush.router.interface.IRouter method)

 	(autopush.router.interface.RouterResponse method)

 	_boto_err() (autopush.web.base.BaseWebHandler method), [1]

 	_check_error() (autopush.web.health.HealthHandler method)

 	_check_other_nodes() (autopush.websocket.PushServerProtocol method)

 	_check_success() (autopush.web.health.HealthHandler method)

 	_check_table() (autopush.web.health.HealthHandler method)

 	_chid_not_found_err() (autopush.web.registration.ChannelRegistrationHandler method)

 	_connect() (autopush.router.apnsrouter.APNSRouter method)

 	_db_error_handling() (autopush.web.base.BaseWebHandler method), [1]

 	_error() (autopush.router.fcm.FCMRouter method)

 	(autopush.router.gcm.GCMRouter method)

 	_finish_monthly_transition() (autopush.websocket.PushServerProtocol method)

 	_finish_response() (autopush.web.health.HealthHandler method)

 	
 	_from_argparse() (autopush.main.AutopushMultiService class method)

 	_handle_webpush_ack() (autopush.websocket.PushServerProtocol method)

 	_handle_webpush_update_remove() (autopush.websocket.PushServerProtocol method)

 	_lookup_node() (autopush.websocket.PushServerProtocol method)

 	_monthly_transition() (autopush.websocket.PushServerProtocol method)

 	_notify_node() (autopush.websocket.PushServerProtocol method)

 	_process_reply() (autopush.router.fcm.FCMRouter method)

 	(autopush.router.gcm.GCMRouter method)

 	_register_user() (autopush.websocket.PushServerProtocol method)

 	_register_user_and_channel() (autopush.web.registration.NewRegistrationHandler method)

 	_response_err() (autopush.web.base.BaseWebHandler method), [1]

 	_rotate_message_table() (autopush.websocket.PushServerProtocol method)

 	_route() (autopush.router.apnsrouter.APNSRouter method)

 	(autopush.router.fcm.FCMRouter method)

 	(autopush.router.gcm.GCMRouter method)

 	_router_completed() (autopush.web.webpush.WebPushHandler method)

 	_router_fail_err() (autopush.web.base.BaseWebHandler method), [1]

 	_save_webpush_notif() (autopush.websocket.PushServerProtocol method)

 	_send_ping() (autopush.websocket.PushServerProtocol method)

 	_sendAutoPing() (autopush.websocket.PushServerProtocol method)

 	_track_timing() (autopush.web.base.BaseWebHandler method), [1]

 	_track_validation_timing() (autopush.web.base.ThreadedValidate method)

 	_trap_uaid_not_found() (autopush.websocket.PushServerProtocol method)

 	_uaid_not_found_err() (autopush.web.registration.UaidRegistrationHandler method)

 	_validate_request() (autopush.web.base.ThreadedValidate method)

 	_validation_err() (autopush.web.base.BaseWebHandler method), [1]

 	_verify_user_record() (autopush.websocket.PushServerProtocol method)

 	_write_response() (autopush.web.base.BaseWebHandler method), [1]

 	_write_validation_err() (autopush.web.base.BaseWebHandler method), [1]

A

 	
 	ack_update() (autopush.websocket.PushServerProtocol method)

 	add_endpoint() (autopush.main.EndpointApplication method)

 	add_internal_router() (autopush.main.ConnectionApplication method)

 	add_maybe_ssl() (autopush.main.AutopushMultiService method)

 	add_memusage() (autopush.main.AutopushMultiService method)

 	add_timer() (autopush.main.AutopushMultiService method)

 	add_websocket() (autopush.main.ConnectionApplication method)

 	amend_endpoint_response() (autopush.router.apnsrouter.APNSRouter method)

 	(autopush.router.interface.IRouter method)

 	APNSClient (class in autopush.router.apns2)

 	APNSRouter (class in autopush.router.apnsrouter)

 	AppServer

 	authenticate_peer_cert() (autopush.web.health.HealthHandler method)

 	(autopush.web.health.StatusHandler method)

 	(autopush.web.log_check.LogCheckHandler method)

 	autopush.config (module)

 	autopush.db (module)

 	autopush.exceptions (module)

 	autopush.jwt (module)

 	autopush.logging (module)

 	autopush.main (module)

 	
 	autopush.metrics (module)

 	autopush.protocol (module)

 	autopush.router.apns2 (module)

 	autopush.router.apnsrouter (module)

 	autopush.router.fcm (module)

 	autopush.router.gcm (module)

 	autopush.router.gcmclient (module)

 	autopush.router.interface (module)

 	autopush.ssl (module)

 	autopush.utils (module)

 	autopush.web.base (module)

 	autopush.web.health (module)

 	autopush.web.log_check (module)

 	autopush.web.message (module)

 	autopush.web.registration (module)

 	autopush.web.webpush (module)

 	autopush.websocket (module)

 	AutopushConfig (class in autopush.config)

 	AutopushException (class in autopush.exceptions)

 	AutopushMultiService (class in autopush.main)

 	AutopushSSLContextFactory (class in autopush.ssl)

B

 	
 	bad_message() (autopush.websocket.PushServerProtocol method)

 	base_tags (autopush.websocket.PushServerProtocol attribute)

 	
 	BaseWebHandler (class in autopush.web.base), [1]

 	Bridging

C

 	
 	cacheContext() (autopush.ssl.AutopushSSLContextFactory method)

 	canonical_url() (in module autopush.utils)

 	cf() (autopush.config.SSLConfig method)

 	Channel

 	ChannelRegistrationHandler (class in autopush.web.registration)

 	check_missed_notifications() (autopush.websocket.PushServerProtocol method)

 	
 	CHID

 	cleanUp() (autopush.websocket.PushServerProtocol method)

 	clear_node() (autopush.db.Router method)

 	ConnectionApplication (class in autopush.main)

 	connectionLost() (autopush.protocol.IgnoreBody method)

 	create_router_table() (in module autopush.db)

D

 	
 	dataReceived() (autopush.protocol.IgnoreBody method)

 	DDBTableConfig (class in autopush.config)

 	deferToLater() (autopush.websocket.PushServerProtocol method)

 	deferToThread() (autopush.websocket.PushServerProtocol method)

 	
 	delete() (autopush.web.message.MessageHandler method)

 	(autopush.web.registration.UaidRegistrationHandler method)

 	(autopush.websocket.NotificationHandler method)

 	drop_user() (autopush.db.Router method)

E

 	
 	enable_tls_auth (autopush.config.AutopushConfig attribute)

 	EndpointApplication (class in autopush.main)

 	error_finish_overload() (autopush.websocket.PushServerProtocol method)

 	error_hello() (autopush.websocket.PushServerProtocol method)

 	error_message_overload() (autopush.websocket.PushServerProtocol method)

 	error_monthly_rotation_overload() (autopush.websocket.PushServerProtocol method)

 	
 	error_notification_overload() (autopush.websocket.PushServerProtocol method)

 	error_notifications() (autopush.websocket.PushServerProtocol method)

 	error_overload() (autopush.websocket.PushServerProtocol method)

 	error_register() (autopush.websocket.PushServerProtocol method)

 	extract_assertion() (autopush.jwt.VerifyJWT static method)

 	extract_signature() (autopush.jwt.VerifyJWT static method)

F

 	
 	FCMRouter (class in autopush.router.fcm)

 	finish_hello() (autopush.websocket.PushServerProtocol method)

 	finish_notifications() (autopush.websocket.PushServerProtocol method)

 	finish_register() (autopush.websocket.PushServerProtocol method)

 	
 	finish_webpush_notifications() (autopush.websocket.PushServerProtocol method)

 	FirehoseProcessor (class in autopush.logging)

 	force_retry() (autopush.websocket.PushServerProtocol method)

 	from_argparse() (autopush.config.AutopushConfig class method)

G

 	
 	gauge() (autopush.metrics.IMetrics method)

 	(autopush.metrics.SinkMetrics method)

 	GCM (class in autopush.router.gcmclient)

 	GCMRouter (class in autopush.router.gcm)

 	generate_hash() (in module autopush.utils)

 	
 	get() (autopush.web.health.HealthHandler method)

 	(autopush.web.health.StatusHandler method)

 	(autopush.web.log_check.LogCheckHandler method)

 	(autopush.web.registration.UaidRegistrationHandler method)

 	get_router_table() (in module autopush.db)

 	get_uaid() (autopush.db.Router method)

H

 	
 	head() (autopush.web.base.BaseWebHandler method), [1]

 	
 	HealthHandler (class in autopush.web.health)

I

 	
 	ignore() (autopush.protocol.IgnoreBody class method)

 	IgnoreBody (class in autopush.protocol)

 	IMetrics (class in autopush.metrics)

 	increment() (autopush.metrics.IMetrics method)

 	(autopush.metrics.SinkMetrics method)

 	
 	initialize() (autopush.web.base.BaseWebHandler method), [1]

 	(autopush.web.webpush.WebPushHandler method)

 	IRouter (class in autopush.router.interface)

J

 	
 	JSONMessage (class in autopush.router.gcmclient)

L

 	
 	log_exception() (in module autopush.websocket)

 	
 	log_failure() (autopush.websocket.PushServerProtocol method)

 	LogCheckHandler (class in autopush.web.log_check)

M

 	
 	main() (autopush.main.AutopushMultiService class method)

 	make_endpoint() (autopush.config.AutopushConfig method)

 	
 	Message-ID

 	MessageHandler (class in autopush.web.message)

 	ms_time() (in module autopush.websocket)

N

 	
 	NewRegistrationHandler (class in autopush.web.registration)

 	Notification

 	
 	NotificationHandler (class in autopush.websocket)

 	nukeConnection() (autopush.websocket.PushServerProtocol method)

O

 	
 	onAutoPingTimeout() (autopush.websocket.PushServerProtocol method)

 	onClose() (autopush.websocket.PushServerProtocol method)

 	
 	onConnect() (autopush.websocket.PushServerProtocol method)

 	onMessage() (autopush.websocket.PushServerProtocol method)

 	options() (autopush.web.base.BaseWebHandler method), [1]

P

 	
 	parent_class (autopush.websocket.PushServerProtocol attribute)

 	parse_args() (autopush.main.AutopushMultiService static method)

 	(autopush.main.ConnectionApplication static method)

 	(autopush.main.EndpointApplication static method)

 	parse_endpoint() (autopush.config.AutopushConfig method)

 	paused (autopush.websocket.PushServerProtocol attribute)

 	post() (autopush.web.registration.NewRegistrationHandler method)

 	(autopush.web.registration.UaidRegistrationHandler method)

 	preflight_check() (in module autopush.db)

 	prepare() (autopush.web.base.BaseWebHandler method), [1]

 	process_ack() (autopush.websocket.PushServerProtocol method)

 	
 	process_hello() (autopush.websocket.PushServerProtocol method)

 	process_nack() (autopush.websocket.PushServerProtocol method)

 	process_notifications() (autopush.websocket.PushServerProtocol method)

 	process_ping() (autopush.websocket.PushServerProtocol method)

 	process_register() (autopush.websocket.PushServerProtocol method)

 	process_unregister() (autopush.websocket.PushServerProtocol method)

 	processHandshake() (autopush.websocket.PushServerProtocol method)

 	PushLogger (class in autopush.logging)

 	PushServerProtocol (class in autopush.websocket)

 	put() (autopush.web.registration.UaidRegistrationHandler method)

 	(autopush.websocket.NotificationHandler method)

 	(autopush.websocket.RouterHandler method)

R

 	
 	randrange() (autopush.websocket.PushServerProtocol class method)

 	register() (autopush.router.apnsrouter.APNSRouter method)

 	(autopush.router.fcm.FCMRouter method)

 	(autopush.router.gcm.GCMRouter method)

 	(autopush.router.interface.IRouter method)

 	register_user() (autopush.db.Router method)

 	resolve_ip() (in module autopush.utils)

 	Result (class in autopush.router.gcmclient)

 	returnError() (autopush.websocket.PushServerProtocol method)

 	
 	route_notification() (autopush.router.apnsrouter.APNSRouter method)

 	(autopush.router.fcm.FCMRouter method)

 	(autopush.router.gcm.GCMRouter method)

 	(autopush.router.interface.IRouter method)

 	Router (class in autopush.db)

 	Router Type

 	RouterException (class in autopush.exceptions)

 	RouterHandler (class in autopush.websocket)

 	RouterResponse (class in autopush.router.interface)

 	run() (autopush.main.AutopushMultiService method)

S

 	
 	send() (autopush.router.apns2.APNSClient method)

 	(autopush.router.gcmclient.GCM method)

 	send_notification() (autopush.websocket.PushServerProtocol method)

 	sendClose() (autopush.websocket.PushServerProtocol method)

 	sendJSON() (autopush.websocket.PushServerProtocol method)

 	setup() (autopush.main.AutopushMultiService method)

 	(autopush.main.ConnectionApplication method)

 	(autopush.main.EndpointApplication method)

 	
 	SinkMetrics (class in autopush.metrics)

 	SSLConfig (class in autopush.config)

 	start() (autopush.metrics.IMetrics method)

 	StatusHandler (class in autopush.web.health)

 	SubRegistrationHandler (class in autopush.web.registration)

 	Subscription

T

 	
 	ThreadedValidate (class in autopush.web.base)

 	timeoutConnection() (autopush.websocket.PushServerProtocol method)

 	
 	timing() (autopush.metrics.IMetrics method)

 	(autopush.metrics.SinkMetrics method)

U

 	
 	UAID

 	
 	UaidRegistrationHandler (class in autopush.web.registration)

 	update_message_month() (autopush.db.Router method)

V

 	
 	validate() (autopush.web.base.ThreadedValidate class method)

 	validate_and_extract_assertion() (autopush.jwt.VerifyJWT static method)

 	
 	validate_uaid() (in module autopush.utils)

 	VerifyJWT (class in autopush.jwt)

W

 	
 	WebPush

 	webpush_fetch() (autopush.websocket.PushServerProtocol method)

 	
 	WebPushHandler (class in autopush.web.webpush)

 	websocket_factory (autopush.main.ConnectionApplication attribute)

 	websocket_site_factory (autopush.main.ConnectionApplication attribute)

 _static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 autopush

 		
 HTTP Endpoints for Notifications

 		
 Push Service HTTP API

 		
 Lexicon

 		
 Response

 		
 Error Codes

 		
 Calls

 		
 Send Notification

 		
 Message Topics

 		
 Cancel Notification

 		
 Push Service Bridge HTTP Interface

 		
 Lexicon

 		
 Calls

 		
 Registration

 		
 Token updates

 		
 Channel Subscription

 		
 Unregister UAID (and all associated ChannelID subscriptions)

 		
 Unsubscribe Channel

 		
 Get Known Channels for a UAID

 		
 Architecture

 		
 Overview

 		
 Cryptography

 		
 DynamoDB Tables

 		
 Router Table Schema

 		
 Message Table Schema

 		
 Message Table Rotation (legacy)

 		
 Rotating Message Table Interaction Rules (legacy)

 		
 Push Characteristics

 		
 Push Endpoint Length

 		
 Running Autopush

 		
 Overview

 		
 Setup

 		
 Generate a Crypto-Key

 		
 Start Autopush

 		
 Configuration

 		
 Sample Configurations

 		
 Config Files with Docker

 		
 Notes on GCM/FCM support

 		
 Installing

 		
 System Requirements

 		
 Notes on OS X

 		
 Check-out the Autopush Repository

 		
 Python 2.7.7+ w/virtualenv

 		
 Scripts

 		
 Building Documentation

 		
 Using a Local DynamoDB Server

 		
 Configuring for the APNS bridge

 		
 Configuring the Amazon Device Messaging Bridge

 		
 Testing

 		
 Testing Configuration

 		
 Running Tests

 		
 Disabling Integration Tests

 		
 Firefox Testing

 		
 Debugging

 		
 Release Process

 		
 Versions

 		
 Dev Releases

 		
 Stage/Production Releases

 		
 Pre-Requisites

 		
 Release Steps

 		
 Coding Style Guide

 		
 Exceptions

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/up-pressed.png

_static/up.png

