
auto_cli

Joris van Vugt

Sep 29, 2019

CONTENTS:

1 Installation 3

2 Getting Started 5

3 ac cli 7

4 Benefits over other CLI packages 9
4.1 API Reference . 9
4.2 auto_cli’s Command-Line Interface . 9

5 Indices and tables 11

Index 13

i

ii

auto_cli

auto_cli is a tool for calling Python functions directly from the command-line, without the need for writing argu-
ment parsers. Instead, the argument parser is automatically generated from the annotation of the function, including
default arguments and types. When you use auto_cli, you can still use your Python functions from code without
any changes. In fact, you can use auto_cli to generate a CLI for functions in a stand-alone script, or for an external
library, as long as the functions have type annotations.

CONTENTS: 1

https://circleci.com/gh/jvanvugt/auto_cli
https://auto-cli.readthedocs.io/en/latest/?badge=latest

auto_cli

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

auto_cli requires Python 3.6+ and can be installed as follows

$ git clone https://github.com/jvanvugt/auto_cli
$ pip install ./auto_cli

3

auto_cli

4 Chapter 1. Installation

CHAPTER

TWO

GETTING STARTED

Add a file called auto_cli.py to any directory. This file registers all the functions that are available from the
command-line. Imagine you wrote a package called weather, containing just a single function with the signature

def get_weather(location: str = "London") -> WeatherReport:
...

You can add a command-line interface for this function by making your auto_cli.py look like

import auto_cli

auto_cli.register_command("weather.get_weather")

Register your command-line app with auto_cli, by running the following command from the directory with
auto_cli.py:

$ ac cli register_app --name weather

All auto_cli commands start with ac. When you install auto_cli, the cli app will automatically be registered.
The cli app is used for interacting with auto_cli itself. After running the command above, the commands that
are registered in auto_cli.py are available via ac weather <command>.

Now, you can call your function from the command-line:

$ ac weather get_weather --location Amsterdam
21 degrees celsius. Sunny all day in Amsterdam!

$ ac weather get_weather # It will use the default value for location
16 degrees celsius. Rainy all day in London!

Instead of giving a string to register_command (which is convenient when the package is installed), you can also
give it the function object directly. That will allow you to create a CLI for functions in arbitrary Python scripts. Then
your auto_cli.py would look like this:

import auto_cli
from weather import get_weather

auto_cli.register_command(get_weather)

Alternatively, you could manipulate the PYTHONPATH environment variable to make sure Python can find your func-
tion.

5

auto_cli

6 Chapter 2. Getting Started

CHAPTER

THREE

AC CLI

The following commands are available with ac cli:

apps Get all registered apps
register_app Register an app with auto_cli
delete_app Delete the app

In general, you can figure out which commands are available for an app by running

$ ac <app>

If you want to know how to use a command, you can run it with --help:

$ ac cli register_app --help

7

auto_cli

8 Chapter 3. ac cli

CHAPTER

FOUR

BENEFITS OVER OTHER CLI PACKAGES

• Write your function once, call it from Python code and the command-line

• Automatically generate argument parsers, no need to duplicate argument names, default values, documentation
and types.

• Automatically print the result of the function to the console, no need to clutter your code with print or log.

• Keep your production code free of decorators to describe command-line interfaces.

• Easily view all the available commands for your app.

4.1 API Reference

auto_cli.cli.register_command(function: Union[str, Callable[[...], Any]], name: Optional[str] =
None, parameter_types: Optional[Dict[str, Callable]] = None, re-
turn_type: Optional[Callable[[Any], Any]] = None, short_names:
Optional[Dict[str, str]] = None)→ None

Register function as an available command.

Parameters

• function – the function to register.

• name – Override the name of the function in the cli. Defaults to function.__name__

• parameter_types – Override the type of an argument. Dictionary of name of the pa-
rameter to type.

• return_type – Override the return type of the function. Will be called with the return
value of function before it is printed to stdout.

• short_names – Optionally add a short version of the parameter. Dictionary of name of
the parameter to shorter name. For instance {"very_long_name": "-l"}.

4.2 auto_cli’s Command-Line Interface

4.2.1 Registering an app

usage: ac [-h] --name NAME [--location LOCATION]

register_app: Register an app with auto_cli

(continues on next page)

9

auto_cli

(continued from previous page)

required arguments:
--name NAME Name of the app

optional arguments:
--location LOCATION Parent directory of the auto_cli.py file.

Example:

$ ac cli register_app --name my_app

4.2.2 Listing all registered apps

usage: ac [-h]

apps: Get all registered apps

Example:

$ ac cli apps
['cli']

4.2.3 Deleting an app

usage: ac [-h] --name NAME

delete_app: Delete the app

required arguments:
--name NAME Name of the app

Example:

$ ac cli delete_app --name my_app
Deleted my_app

4.2.4 Listing registered commands

usage: ac APP

positional arguments:
APP Name of the app

Example:

$ ac cli
No command given. Available commands:
apps Get all registered apps
register_app Register an app with auto_cli
delete_app Delete the app

10 Chapter 4. Benefits over other CLI packages

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

11

auto_cli

12 Chapter 5. Indices and tables

INDEX

R
register_command() (in module auto_cli.cli), 9

13

	Installation
	Getting Started
	ac cli
	Benefits over other CLI packages
	API Reference
	auto_cli’s Command-Line Interface

	Indices and tables
	Index

