

Hedwig documentation

Hedwig is a inter-service communication bus that works on AWS SQS/SNS, while keeping things pretty simple and
straight forward. It uses json schema [http://json-schema.org/] draft v4 [http://json-schema.org/specification-links.html#draft-4] for schema validation so all incoming
and outgoing messages are validated against pre-defined schema.

Hedwig allows separation of concerns between consumers and publishers so your services are loosely coupled, and the
contract is enforced by the schema validation. Hedwig may also be used to build asynchronous APIs.

For intra-service messaging, see Taskhawk [http://taskhawk.rtfd.io/].

Only Python 3.6+ is supported currently.

This project uses semantic versioning [http://semver.org/].

Quickstart

	Quickstart
	Installation

	Configuration

	Provisioning

	Fan Out

	Using Hedwig

Usage

	Usage Guide
	Callbacks

	Publisher

	Consumer

	Schema

	Testing

	Configuration

	API reference
	Testing

	Exceptions

	Release Notes
	v1.0

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

Getting started with Hedwig is easy, but requires a few steps.

Installation

Install the latest hedwig release via pip:

$ pip install authedwig

You may also install a specific version:

$ pip install authedwig==1.0.0

The latest development version can always be found on Github [https://github.com/Automatic/hedwig-python].

Configuration

Before you can use Hedwig, you need to set up a few settings. For Django projects,
simple use Django settings [https://docs.djangoproject.com/en/2.0/topics/settings/] to configure Hedwig, for non-Django projects, you
must declare an environment variable called SETTINGS_MODULE that points to a module
where settings may be found.

Required settings are:

AWS_ACCESS_KEY = <YOUR AWS KEY>
AWS_ACCOUNT_ID = <YOUR AWS ACCOUNT ID>
AWS_REGION = <YOUR AWS REGION>
AWS_SECRET_KEY = <YOUR AWS SECRET KEY>

HEDWIG_QUEUE = <YOUR APP HEDWIG QUEUE>

HEDWIG_CALLBACKS = <YOUR CALLBACKS>

HEDWIG_ROUTING = <YOUR INFRA ROUTES>

HEDWIG_SCHEMA_FILE = <PATH TO YOUR SCHEMA FILE>

Provisioning

Hedwig works on SQS and SNS as backing queues. Before you can publish/consume messages, you
need to provision the required infra. This may be done manually, or, preferably,
using Terraform. Hedwig provides tools to make infra configuration easier: see
Terraform [https://github.com/Automatic/hedwig-terraform] and Hedwig Terraform Generator [https://github.com/Automatic/hedwig-terraform-generator] for further details.

Fan Out

Hedwig utilizes SNS [https://aws.amazon.com/sns/] for fan-out configuration. A publisher publishes messages on a topic. This message
may be received by zero or more consumers. The publisher needn’t be aware of the consuming application at all. There
are a variety of messages that may be published as such, but they generally fall into 2 buckets:

	Asynchronous API Requests: Hedwig may be used to call APIs asynchronously. The contract is enforced by your
infra-structure by connecting SNS topics to SQS queues, and payload is validated using the schema you define.
Response is a delivered using a separate message if required.

	Notifications: The most common use case is to notify other services/apps that may be interested in events. For
example, your User Management app can publish a user.created message notification to all your apps.
As publishers and consumers are loosely coupled, this separation of concerns is very effective in ensuring a
stable eco-system.

Using Hedwig

To use hedwig, simply add a message handler like so:

def send_email(message: hedwig.models.Message) -> None:
 # send email

And then send a message:

message = hedwig.models.Message.new(
 hedwig.models.MessageType.send_email,
 StrictVersion('1.0'),
 {
 'to': 'example@email.com',
 'subject': 'Hello!',
 },
)
message.publish()

Messages are held in SQS queue until they’re successfully executed, or until they fail a
configurable number of times. Failed tasks are moved to a Dead Letter Queue, where they’re
held for 14 days, and may be examined for further debugging.

Usage Guide

Callbacks

Callbacks are simple python functions that accept a single argument of type hedwig.models.Message -

def send_email(message: hedwig.models.Message) -> None:
 # send email

You can access the data dict using message.data as well as custom headers using message.headers and other
metadata fields as described in the API docs: hedwig.models.Message().

Publisher

You can run publish messages like so:

models.Message.new(MessageType.my_message, StrictVersion('1.0'), data).publish()

If you want to include a custom headers with the message (for example, you can include a request_id field for
cross-application tracing), you can pass in additional parameter headers.

Consumer

A consumer for SQS based workers can be started as following:

consumer.listen_for_messages()

This is a blocking function. Don’t use threads since this library is NOT guaranteed to be thread-safe.

A consumer for Lambda based workers can be started as following:

consumer.process_messages_for_lambda_consumer(lambda_event)

where lambda_event is the event provided by AWS to your Lambda function as described in lambda sns format [https://docs.aws.amazon.com/lambda/latest/dg/eventsources.html#eventsources-sns].

Schema

The schema file must be a JSON-Schema draft v4 [http://json-schema.org/specification-links.html#draft-4] schema. There’s a few more restrictions in addition to being
a valid schema:

	There must be a top-level key called schemas. The value must be an object.

	schemas: The keys of this object must be message types. The value must be an object.

	schemas/<message_type>: The keys of this object must be major version patterns for this message type. The
value must be an object.

	schemas/<message_type>/<major_version>.*: This object must represent the data schema for given message type, and
major version. Any minor version updates must be applied in-place, and must be non-breaking per semantic
versioning.

Note that the schema file only contains definitions for major versions. This is by design since minor version MUST be
backwards compatible.

Optionally, a key x-versions may be used to list full versions under a major version.

For an example, see test hedwig schema [https://github.com/Automatic/hedwig-python/blob/master/tests/schema.json].

Testing

Hedwig supports pytest by default and provides pytest testing utilities as part of the
hedwig.testing.pytest_plugin module.

Configuration

Add appropriate configuration to the app. If not using a Django app, ensure that SETTINGS_MODULE is
defined to the path of a module where all settings can be found.

AWS_REGION

AWS region

required; string

AWS_ACCOUNT_ID

AWS account id

required; string

AWS_ACCESS_KEY

AWS access key

required; string

AWS_CONNECT_TIMEOUT_S

AWS connection timeout

optional; int; default: 2

AWS_ENDPOINT_SNS

AWS endpoint for SNS. This may be used to customized AWS endpoints to assist with testing, for example, using
localstack.

optional; string

AWS_ENDPOINT_SQS

AWS endpoint for SQS. This may be used to customized AWS endpoints to assist with testing, for example, using
localstack.

optional; string

AWS_READ_TIMEOUT_S

AWS read timeout

optional; int; default: 2

AWS_SECRET_KEY

AWS secret key

required; string

AWS_SESSION_TOKEN

AWS session token that represents temporary credentials (for example, for Lambda apps)

optional; string

HEDWIG_DATA_VALIDATOR_CLASS

The validator class to use for schema validation. This class must be a sub-class of hedwig.validator.MessageValidator,
and may add additional validation logic, based on pyjsonschema [http://python-jsonschema.readthedocs.io] docs.

For example, to add a new format called vin, use this validator:

class CustomValidator(hedwig.validator.MessageValidator):
 # simplistic check: 17 alphanumeric characters except i, o, q
 _vin_re = re.compile("^[a-hj-npr-z0-9]{17}$")

 @staticmethod
 @hedwig.models.MessageValidator.checker.checks('vin')
 def check_vin(instance) -> bool:
 if not isinstance(instance, str):
 return True
 return bool(CustomValidator._vin_re.match(instance))

optional; fully-qualified class name

HEDWIG_DEFAULT_HEADERS

A function that may be used to inject custom headers into every message, for example, request id. This hook is called
right before dispatch, and any headers that are explicitly specified when dispatching may override these headers.

If specified, it’s called with the following arguments:

default_headers(message=message)

where message is the outgoing Message object, and its expected to return a dict of strings.

It’s recommended that this function be declared with **kwargs so it doesn’t break on new versions of the library.

optional; fully-qualified function name

HEDWIG_CALLBACKS

A dict of Hedwig callbacks, with values as callables or fully-qualified function names. The key is a tuple of
message type and major version pattern of the schema.

required for consumers; dict[tuple[string, string], string]

HEDWIG_MESSAGE_ROUTING

A dict of Hedwig message types, with values as topic names. The key is a tuple of message type and
major version pattern of the schema. An entry is required for every message type that the app wants to consumer or
publish.

It’s recommended that major versions of a message be published on separate topics.

required; dict[tuple[string, string], string]

HEDWIG_PRE_PROCESS_HOOK

A function which can used to plug into the message processing pipeline before any processing happens. This hook
may be used to perform initializations such as set up a global request id based on message headers. If
specified, this will be called with the following arguments for SQS apps:

pre_process_hook(sqs_queue_message=sqs_queue_message)

where sqs_queue_message is of type boto3.sqs.Message. And for Lambda apps as so:

pre_process_hook(sns_record=record)

where sns_record is a dict of a single record with format as described in lambda sns format [https://docs.aws.amazon.com/lambda/latest/dg/eventsources.html#eventsources-sns].

It’s recommended that this function be declared with **kwargs so it doesn’t break on new versions of the library.

optional; fully-qualified function name

HEDWIG_POST_DESERIALIZE_HOOK

A function which can used to plug into the message processing pipeline after serializing from JSON succeeds. This
hook may be used to modify the format over the wire. If specified, this will be called with the following arguments:

post_deserialize_hook(message_data=message_data)

where message_data is of type dict.

It’s recommended that this function be declared with **kwargs so it doesn’t break on new versions of the library.

optional; fully-qualified function name

HEDWIG_PRE_SERIALIZE_HOOK

A function which can used to plug into the message processing pipeline before serializing to JSON. This hook may be
used to modify the format over the wire. If specified, this will be called with the following arguments:

pre_serialize_hook(message_data=message_data)

where message_data is of type dict.

It’s recommended that this function be declared with **kwargs so it doesn’t break on new versions of the library.

optional; fully-qualified function name

HEDWIG_PUBLISHER

Name of the publisher

required for publishers; string

HEDWIG_QUEUE

The name of the hedwig queue (exclude the HEDWIG- prefix).

required; string

HEDWIG_SCHEMA_FILE

The filepath to a JSON-Schema file representing the Hedwig schema. This json-schema must contain all messages under a
top-level key schemas. Each message’s schema must include all valid versions for that message.

required; string; filepath

HEDWIG_SYNC

Flag indicating if Hedwig should work synchronously. If set to True a published message will be
dispatched immediately using HEDWIG_CALLBACKS without calling any SQS APIs. This is similar to
Celery’s Eager mode and is helpful for integration testing. It’s assumed that your service handles
the message you’re dispatching in sync mode.

optional; bool; default False

API reference

	
hedwig.consumer.listen_for_messages(num_messages=10, visibility_timeout_s=None, loop_count=None, shutdown_event=None)

	Starts a Hedwig listener for message types provided and calls the callback handlers like so:

callback_fn(message).

The message is explicitly deleted only if callback function ran successfully. In case of an exception the message is
kept on queue and processed again. If the callback keeps failing, SQS dead letter queue mechanism kicks in and
the message is moved to the dead-letter queue.

This function is blocking by default. It may be run for specific number of loops by passing loop_count. It may
also be stopped by passing a shut down event object which can be set to stop the function.

	Parameters

	
	num_messages (int) – Maximum number of messages to fetch in one SQS API call. Defaults to 10

	visibility_timeout_s (Optional[int]) – The number of seconds the message should remain invisible to other queue readers.
Defaults to None, which is queue default

	loop_count (Optional[int]) – How many times to fetch messages from SQS. Default to None, which means loop forever.

	shutdown_event (Optional[Event]) – An event to signal that the process should shut down. This prevents more messages from
being de-queued and function exits after the current messages have been processed.

	Return type

	None

	
hedwig.consumer.process_messages_for_lambda_consumer(lambda_event)

	
	Return type

	None

	
class hedwig.models.Message(data)

	Model for Hedwig messages. All properties of a message should be considered immutable.
A Message object will always have known message format schema and message format schema version even if the data
may not be valid.

	
validate()

	Validates a message using JSON schema.

	Raise

	hedwig.ValidationError if validation fails.

	Return type

	None

	
classmethod new(msg_type, data_schema_version, data, msg_id=None, headers=None)

	Creates Message object given type, data schema version and data. This is typically used by the publisher code.

	Parameters

	
	msg_type (MessageType) – MessageType instance

	data_schema_version (StrictVersion) – StrictVersion representing data schema

	data (dict) – The dict to pass in data field of Message.

	msg_id (Optional[str]) – Custom message identifier. If not passed, a randomly generated uuid will be used.

	headers (Optional[dict]) – Custom headers

	Return type

	Message

	
publish()

	Publish this message on Hedwig infra

	
extend_visibility_timeout(visibility_timeout_s)

	Extends visibility timeout of a message for long running tasks.

	Return type

	None

	
data_schema_version

	StrictVersion object representing data schema version. May be None if message can’t be validated.

	Return type

	StrictVersion

	
id

	Message identifier

	Return type

	str

	
schema

	Message schema

	Return type

	str

	
type

	MessageType. May be none if message is invalid

	Return type

	MessageType

	
format_version

	Message format version (this is different from data schema version)

	Return type

	StrictVersion

	
metadata

	Message metadata

	Return type

	Metadata

	
timestamp

	Timestamp of message creation in epoch milliseconds

	Return type

	int

	
headers

	Custom headers sent with the message

	Return type

	dict

	
receipt

	SQS receipt for the task. This may be used to extend message visibility if the task is running longer
than expected using Message.extend_visibility_timeout()

	Return type

	Optional[str]

	
publisher

	Publisher of message

	Return type

	Optional[str]

	
data

	Message data

	Return type

	dict

	
topic

	The SNS topic name for routing the message

	Return type

	str

	
class hedwig.models.Metadata(data)

	
	
timestamp

	Timestamp of message creation in epoch milliseconds

	Return type

	int

	
publisher

	Publisher of message

	Return type

	str

	
receipt

	SQS receipt for the task. This may be used to extend message visibility if the task is running longer
than expected using Message.extend_visibility_timeout()

	Return type

	Optional[str]

	
headers

	Custom headers sent with the message

	Return type

	dict

	
class hedwig.models.MessageType

	Enumeration representing the message types supported for this service. This is automatically created based on setting HEDWIG_MESSAGE_ROUTING

	
class hedwig.validator.MessageValidator(schema=None)

	
	
checker = <jsonschema._format.FormatChecker object>

	FormatChecker that checks for format JSON-schema field. This may be customized by an app by overriding setting
HEDWIG_DATA_VALIDATOR_CLASS and defining more format checkers.

	
validate(message)

	Validates a message using JSON Schema

	Return type

	None

	
hedwig.commands.requeue_dead_letter(num_messages=10, visibility_timeout=None)

	Re-queues everything in the Hedwig DLQ back into the Hedwig queue.

	Parameters

	
	num_messages (int) – Maximum number of messages to fetch in one SQS call. Defaults to 10.

	visibility_timeout (Optional[int]) – The number of seconds the message should remain invisible to other queue readers.
Defaults to None, which is queue default

	Return type

	None

Testing

	
hedwig.testing.pytest_plugin.mock_hedwig_publish()

	A pytest fixture that mocks Hedwig publisher and lets you verify that your test publishes appropriate messages.

	Return type

	Generator[HedwigPublishMock, None, None]

	
class hedwig.testing.pytest_plugin.HedwigPublishMock(*args, **kw)

	Custom mock class used by hedwig.testing.pytest_plugin.mock_hedwig_publish() to mock the publisher.

	
assert_message_not_published(msg_type, data=None, version=StrictVersion ('1.0'))

	Helper function to check that a Hedwig message of given type, data
and schema was NOT sent.

	Return type

	None

	
assert_message_published(msg_type, data=None, version=StrictVersion ('1.0'))

	Helper function to check if a Hedwig message with given type, data
and schema version was sent.

	Return type

	None

Exceptions

	
class hedwig.exceptions.RetryException(*args, **kwargs)

	Special exception that does not log an exception when it is received.
This is a retryable error.

	
class hedwig.exceptions.IgnoreException

	Indicates that this task should be ignored.

	
class hedwig.exceptions.ValidationError

	Message failed JSON schema validation

	
class hedwig.exceptions.ConfigurationError

	There was some problem with settings

	
class hedwig.exceptions.CallbackNotFound

	No callback found that can handle the given message. Check your CALLBACKS settings.

Release Notes

Current version: v3.1.0

v1.0

	Initial version

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hedwig	

 	
 	
 hedwig.commands	

 	
 	
 hedwig.consumer	

 	
 	
 hedwig.exceptions	

 	
 	
 hedwig.models	

 	
 	
 hedwig.testing.pytest_plugin	

 	
 	
 hedwig.validator	

Index

 A
 | C
 | D
 | E
 | F
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V

A

 	
 	assert_message_not_published() (hedwig.testing.pytest_plugin.HedwigPublishMock method)

 	
 	assert_message_published() (hedwig.testing.pytest_plugin.HedwigPublishMock method)

C

 	
 	CallbackNotFound (class in hedwig.exceptions)

 	
 	checker (hedwig.validator.MessageValidator attribute)

 	ConfigurationError (class in hedwig.exceptions)

D

 	
 	data (hedwig.models.Message attribute)

 	
 	data_schema_version (hedwig.models.Message attribute)

E

 	
 	extend_visibility_timeout() (hedwig.models.Message method)

F

 	
 	format_version (hedwig.models.Message attribute)

H

 	
 	headers (hedwig.models.Message attribute)

 	(hedwig.models.Metadata attribute)

 	hedwig.commands (module)

 	hedwig.consumer (module)

 	
 	hedwig.exceptions (module)

 	hedwig.models (module)

 	hedwig.testing.pytest_plugin (module)

 	hedwig.validator (module)

 	HedwigPublishMock (class in hedwig.testing.pytest_plugin)

I

 	
 	id (hedwig.models.Message attribute)

 	
 	IgnoreException (class in hedwig.exceptions)

L

 	
 	listen_for_messages() (in module hedwig.consumer)

M

 	
 	Message (class in hedwig.models)

 	MessageType (class in hedwig.models)

 	MessageValidator (class in hedwig.validator)

 	
 	Metadata (class in hedwig.models)

 	metadata (hedwig.models.Message attribute)

 	mock_hedwig_publish() (in module hedwig.testing.pytest_plugin)

N

 	
 	new() (hedwig.models.Message class method)

P

 	
 	process_messages_for_lambda_consumer() (in module hedwig.consumer)

 	publish() (hedwig.models.Message method)

 	
 	publisher (hedwig.models.Message attribute)

 	(hedwig.models.Metadata attribute)

R

 	
 	receipt (hedwig.models.Message attribute)

 	(hedwig.models.Metadata attribute)

 	
 	requeue_dead_letter() (in module hedwig.commands)

 	RetryException (class in hedwig.exceptions)

S

 	
 	schema (hedwig.models.Message attribute)

T

 	
 	timestamp (hedwig.models.Message attribute)

 	(hedwig.models.Metadata attribute)

 	
 	topic (hedwig.models.Message attribute)

 	type (hedwig.models.Message attribute)

V

 	
 	validate() (hedwig.models.Message method)

 	(hedwig.validator.MessageValidator method)

 	
 	ValidationError (class in hedwig.exceptions)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Hedwig documentation

 		
 Quickstart

 		
 Installation

 		
 Configuration

 		
 Provisioning

 		
 Fan Out

 		
 Using Hedwig

 		
 Usage Guide

 		
 Callbacks

 		
 Publisher

 		
 Consumer

 		
 Schema

 		
 Testing

 		
 Configuration

 		
 API reference

 		
 Testing

 		
 Exceptions

 		
 Release Notes

 		
 v1.0

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

