
AURA
Release 0.2.0

Mar 07, 2021

Contents

1 Core API Specification 3
1.1 Organization . 3
1.2 Server Information . 3
1.3 Resources and Collections . 4
1.4 Tracks . 7
1.5 Albums . 9
1.6 Artists . 10
1.7 Images . 10
1.8 Audio . 11

API Reference 13

i

ii

AURA, Release 0.2.0

AURA is an API specification for music libraries. Music players—from HTML5 applications to mobile apps to
embedded devices—use AURA to access servers that host catalogs of music. An AURA server can act as a personal
alternative to centralized cloud services like Spotify or Rdio.

The AURA protocol is a lightweight and open alternative to DLNA or DAAP.

The API specification is organized as a core API that reflects the basic concepts and optional extensions. While not
every sever will implement the same extensions, clients can assume that those that do will implement them in the same
way.

Contents:

Contents 1

http://www.dlna.org
http://en.wikipedia.org/wiki/Digital_Audio_Access_Protocol

AURA, Release 0.2.0

2 Contents

CHAPTER 1

Core API Specification

This document describes the core AURA protocol, which is a simple REST API built on JSON resources. The core
protocol includes basic, read-only access to tracks and, optionally, organization into albums and artists. It exposes
both metadata and audio.

The API adheres to the JSON API 1.0 specification.

This description uses words like “SHOULD” and “MUST” in all caps to invoke their meaning according to RFC 2119.

1.1 Organization

The API root SHOULD appear under a prefix named /aura/. This facilitates servers with multiple APIs, allows for
human-readable content at the root on the same server, and provides for forward compatibility: future versions of this
spec may recommend /aura2/, for example.

1.1.1 Response Format and Errors

The MIME type for all responses MUST be application/vnd.api+json. Every response is a JSON object.
When a request is successful, the document has a top-level key data corresponding to the response’s “primary data.”
When it fails, the document has an errors key, which maps to an array of JSON API error objects. Other keys may
also be present, as described below.

1.2 Server Information

GET /aura/server
The “root” endpoint exposes global information and status for the AURA server. The response’s data key
maps to a resource object dictionary representing the server. The object’s attributes key MUST contain
these keys:

• aura-version, string: The version of the AURA spec implemented.

3

http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.json.org
http://jsonapi.org
http://tools.ietf.org/html/rfc2119
http://www.json.org
http://jsonapi.org/format/#errors
http://jsonapi.org/format/#document-resource-objects

AURA, Release 0.2.0

• server, string: The name of the server software.

• server-version, string: The version number of the server.

• auth-required, bool: Whether the user has access to the server. For unsecured servers, this may be true
even before authenticating.

It MAY also contain these keys:

• features, string array: A list of optional features the server supports.

GET /aura/server HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {
"type": "server",
"id": "0",
"attributes": {
"aura-version": "0.2.0",
"server": "aura-ref",
"server-version": "0.2.1",
"auth-required": false,
"features": ["albums"]

}
}

}

1.3 Resources and Collections

The core resource in AURA is the track, which represents a single audio file and its associated metadata.

The server may also optionally group tracks into albums and artists. Since tracks represent the music itself, albums
and artists are not required—clients SHOULD disable features that depend on browsing by album, for example, when
the server only exposes individual tracks. Clients can still filter tracks by metadata that indicates the album or artist
they belong to. AURA’s optional concepts of albums and artists are appropriate when the server supports metadata
that is independent of the constituent tracks: cover art for albums, for example, or home towns for artists.

Every resource is represented as a JSON object. Each resource type has a list of keys that are required on each object
and a list of optional fields that the server may support. Servers may also provide other, non-standard fields not listed
in this specification. The optional fields are included in an effort to standardize the name and format of common (albeit
not universal) metadata.

Names of attributes, including non-standard attributes, SHOULD only contain characters matched by the regular
expression [a-zA-Z0-9_-].

1.3.1 Relationships

In AURA, there are relationships among resources. For example, a track can have a relationship to its containing
album and, conversely, an album has relationships to its tracks.

JSON API relationships appear under the relationships key within the resource object, which maps to an object.
Values in that object are JSON API “relationship objects”: in AURA, these are wrappers for resource linkages, which
indicate the ID of another resource. For example, a track object links to its album like this:

4 Chapter 1. Core API Specification

http://jsonapi.org/format/#document-resource-object-relationships
http://jsonapi.org/format/#document-resource-object-linkage

AURA, Release 0.2.0

GET /aura/tracks/42 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {
"type": "track",
"id": "42",
"attributes": {

// ...
},
"relationships": {

"albums": {
"data": [{ "type": "album", "id": "84" }]

}
}

}
}

This means that the client can get more information about the album at /aura/albums/84.

The client can request inclusion of related resources. The client provides an include request parameter con-
taining a comma-separated list of resources. The response then MUST include any such objects referenced in
relationships under an included key in the top-level response object. That included key maps to an
array of resource objects. (This kind of response is called a compound document in JSON API.) For example:

GET /aura/tracks/42?include=album HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {
"type": "track",
"id": "42",
"attributes": {

// ...
},
"relationships": {

"albums": {
"data": [{ "type": "album", "id": "84" }]

}
}

},
"included": [
{

"type": "album",
"id": "84",
// ...

}
]

}

1.3. Resources and Collections 5

http://jsonapi.org/format/#fetching-includes
http://jsonapi.org/format/#document-compound-documents

AURA, Release 0.2.0

1.3.2 Filtering

Servers provide filtered lists of resources according to metadata. To request a subset of a collection, the client uses
request parameters specifying the fields or links to filter on. If the client sends a parameter filter[key]=value,
the server MUST respond with only those resources whose key field exactly matches value.

For example, the request /aura/tracks?filter[title]=Blackbird finds the track titled “Blackbird”.

Filtering is by exact match only (i.e., no substring or case-insensitive matching is performed). More flexible queries
may be eventually be specified in an AURA extension.

If there are no exact matches, or if the server does not support filtering by the given key, then the data key of the
response should be an empty array.

1.3.3 Sorting

Sorting of collections and subsets of collections follows the JSON API sorting specification. Sort fields correspond to
keys in a resource’s attributes member.

This example shows albums sorted by descending release date (newest first):

GET /aura/albums?sort=-year,-month,-day HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [
{

"type": "album",
"id": "42",
"attributes": {

// ...
"year": 2019,
"month": 3,
"day": 24,
// ...

}
},
{

"type": "album",
"id": "39",
"attributes": {

// ...
"year": 2018,
"month": 12,
"day": 6,
// ...

}
},
// ...

]
}

If not all resources in the collection have the attribute specified by the sort parameter, then the server SHOULD return
only those resources with the attribute. For example, the request /aura/tracks?sort=composer should return
only those tracks with a composer attribute.

6 Chapter 1. Core API Specification

https://jsonapi.org/format/#fetching-sorting

AURA, Release 0.2.0

1.3.4 Pagination

Collection endpoints can return truncated results to avoid potential performance issues on both the client and the
server. Pagination works using a pagination token that describes how to retrieve the next chunk of results. (In practice,
the token could be the offset in the collection, the id of the next item to return, or a reference to a database cursor.)
Truncation can be requested by the client or unilaterally imposed by the server.

Pagination applies to the three collection endpoints (/aura/tracks, /aura/albums, and /aura/artists).
A server MAY truncate its responses. If it does so, it MUST provide pagination information in the links object of
its response. That object MUST have a next member with a URL to the next page if one is available—otherwise,
the next member may be null or missing altogether. The URL for the next page MUST be the same as the original,
except that the page request holds a different value.

A pagination token is not guaranteed to be useful indefinitely. If a token expires, the server MAY respond to subsequent
requests with the same token with an HTTP 410 “Gone” error. (This is critical for servers that retain state for each
in-progress pagination sequence.)

The client MAY include a limit parameter (an integer) with a collection GET request. The server MUST respond
with at most that number of resources, although it may return fewer. (A next link must be supplied if there are more
results, as above.)

For example, a client could request a “page” of results with a single result:

GET /aura/tracks?limit=1

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [...],
"links": {
"next": "http://example.org/aura/tracks?limit=1&page=sometoken"

}
}

The client can then issue another request for the next chunk:

GET /aura/tracks?limit=1&page=sometoken

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [...]

}

The absence of a links.next URL indicates that the sequence is finished (there are only two tracks in the library).

1.4 Tracks

An AURA server MUST expose a collection of tracks (i.e., individual songs). Information about a track is provided
in a track resource object, which is in the form of a JSON API resource object. The top-level key type of all track
resource objects MUST be the string "track".

1.4. Tracks 7

http://jsonapi.org/format/#fetching-pagination
http://jsonapi.org/format/#document-resource-objects

AURA, Release 0.2.0

GET /aura/tracks
The collection of all tracks in the library. The reponse is a JSON object whose data key maps to an array of
track resource objects.

GET /aura/tracks/(id)
An individual track resource. The response is a JSON object whose data key maps to a single track resource
object.

1.4.1 Required Attributes

Track resource objects MUST have these attributes:

• title, string: The song’s name.

• artist, string: The recording artist.

1.4.2 Optional Attributes

Tracks resource objects MAY have these attributes:

• album, string: The name of the release the track appears on.

• track, integer: The index of the track on its album.

• tracktotal, integer: The number of tracks on the album.

• disc, integer: The index of the medium in the album.

• disctotal, integer: The number of media in the album.

• year, integer: The year the track was released.

• month, integer: The release date’s month.

• day, integer: The release date’s day of the month.

• bpm, integer: Tempo, in beats per minute.

• genre, string: The track’s musical genre.

• recording-mbid, string: A MusicBrainz recording id.

• track-mbid, string: A MusicBrainz track id.

• composer, string: The name of the music’s composer.

• albumartist, string: The artist for the release the track appears on.

• comments, string: Free-form, user-specified information.

These optional attributes reflect audio metadata:

• mimetype, string: The MIME type of the associated audio file.

• duration, float: The (approximate) length of the audio in seconds.

• framerate, integer: The number of frames per second in the audio.

• framecount, integer: The total number of frames in the audio. (The exact length can be calculated as the
product of the frame rate and frame count.)

• channels, integer: The number of audio channels. (A frame consists of one sample per channel.)

• bitrate, integer: The number of bits per second in the encoding.

8 Chapter 1. Core API Specification

http://musicbrainz.org

AURA, Release 0.2.0

• bitdepth, integer: The number of bits per sample.

• size, integer: The size of the audio file in bytes.

Support for multi-valued attributes like artists and genres may be specified in a future AURA extension.

1.4.3 Relationships

Track resources MAY have relationships to albums they appear on, their recording artists and any associated images
using the albums, artists and images fields respectively. These keys are also the valid values for the include
parameter (see Relationships).

1.5 Albums

Album resources are optional. If a server supports artists, it MUST indicate the support by including the string
"albums" in its features list (see Server Information). If the server does not support albums, it MUST respond
with an HTTP 404 error for all /aura/albums URLs. Information about an album is provided in an album resource
object, which is in the form of a JSON API resource object. The top-level key type of all album resource objects
MUST be the string "album".

GET /aura/albums
The collection of all albums in the library. The response is a JSON object whose data key maps to an array of
album resource objects.

GET /aura/albums/(id)
An individual album resource. The response is a JSON object whose data key maps to a single album resource
object.

1.5.1 Required Attributes

Album resource objects MUST have these attributes:

• title, string: The album’s name.

• artist, string: The names of the artist responsible for the release (or another indicator such as “Various
Artists” when no specific artist is relevant).

1.5.2 Optional Attributes

Album resource objects MAY have these attributes:

• tracktotal, integer: The number of tracks on the album.

• disctotal, integer: The number of media in the album.

• year, integer: The year the album was released.

• month, integer: The release date’s month.

• day, integer: The release date’s day of the month.

• genre, string: The album’s musical genres.

• release-mbid, string: A MusicBrainz release id.

• release-group-mbid, string: A MusicBrainz release group id.

1.5. Albums 9

http://jsonapi.org/format/#document-resource-objects
http://musicbrainz.org

AURA, Release 0.2.0

Support for multi-valued attributes like artists and genres may be specified in a future AURA extension.

1.5.3 Relationships

Album resources MUST link to their constituent tracks via the tracks field. They MAY also link their performing
artists and associated images under the artists and images fields. These keys are also the valid values for the
include parameter (see Relationships).

1.6 Artists

Artist resources are optional. If a server supports artists, it MUST indicate the support by including the string
"artists" in its features list (see Server Information). If the server does not support artists, it MUST re-
spond with an HTTP 404 error for all /aura/artists URLs. Information about an artist is provided in an artist
resource object, which is in the form of a JSON API resource object. The top-level key type of all artist resource
objects MUST be the string "artist".

GET /aura/artists
The collection of all artists in the library. The response is a JSON object whose data key maps to an array of
artist resource objects.

GET /aura/artists/(id)
An individual artist resource. The response is a JSON object whose data key maps to a single artist resource
object.

1.6.1 Required Attributes

Artist resource objects MUST have these attributes:

• name, string: The artist’s name.

1.6.2 Optional Attributes

Artist resource objects MAY have these attributes:

• artist-mbid, string: A MusicBrainz artist id.

1.6.3 Relationships

Artist resources MUST have relationships to their associated tracks under the tracks field. They MAY also link to
their albums and associated images under the albums and images fields. These keys are also the valid values for
the include parameter (see Relationships).

1.7 Images

Image resources are optional. If a server supports images, it MUST indicate the support by including the string
"images" in its features list (see Server Information). If the server does not support images, it MUST respond
with an HTTP 404 error for all /aura/images URLs. Information about an image is provided in an image resource
object, which is in the form of a JSON API resource object. The top-level key type of all image resource objects
MUST be the string "image".

10 Chapter 1. Core API Specification

http://jsonapi.org/format/#document-resource-objects
http://musicbrainz.org
http://jsonapi.org/format/#document-resource-objects

AURA, Release 0.2.0

Images can be associated with tracks, albums, and artists. Most pertinently, albums may have associated cover art.

In contrast to the other resource types, servers SHOULD respond with an HTTP 404 error for the URL /aura/
images. This is because enumerating all images may be difficult for the server, and a large collection of image
metadata is not generally useful to music browsers and players.

The flexible string nature of resources’ id field can be used to easily give images globally unique ids. For example,
"album-3-cover.jpg" could be used to identify the cover image of the album with id "3". This type of id may
be useful if image information is not stored in a database.

GET /aura/images/(id)
Get metadata about a specific image. The response is a JSON object where the data key maps to a single image
resource object.

GET /aura/images/(id)/file
Download an image file. The response’s Content-Type header MUST indicate the mimetype of the image
file returned.

1.7.1 Required Attributes

Image resource objects have no required attributes.

1.7.2 Optional Attributes

These fields on image resource objects are optional:

• role, string: A description of the image’s purpose: “cover” for primary album art, etc.

• mimetype, string: The MIME type of the image.

• width, integer: The image’s width in pixels.

• height, integer: The image’s height in pixels.

• size, integer: The size of the image data in bytes.

1.7.3 Relationships

Images MAY have relationships to any associated tracks, albums or artists using the tracks, albums and artists
fields. These keys are also the valid values for the include parameter (see Relationships). Each image resource
MUST have at least one relationship.

1.8 Audio

The server supplies audio files for each track.

GET /aura/tracks/(id)/audio
Download the audio file for a track.

The file is returned in an arbitrary audio file format. The server MUST set the Content-Type header to
indicate the format.

The server SHOULD use the HTTP Content-Disposition header to supply a filename.

The server SHOULD support HTTP range requests to facilitate seeking in the file.

1.8. Audio 11

http://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html#sec19.5.1
https://tools.ietf.org/html/rfc7233

AURA, Release 0.2.0

1.8.1 Audio Formats and Quality

The server can provide multiple encodings of the same audio—i.e., by transcoding the file. This can help when the
client supports a limited range of audio codecs (e.g., in browser environments) and when bandwidth is limited (e.g., to
avoid streaming lossless audio over a mobile connection).

The server decides which version of the file to send using HTTP content negotiation. Specifically, the client MAY
specify the kinds of content it requests in the HTTP Accept header. The header is a comma-separated list of types,
which consist of a MIME type and (optionally) some parameters. To request audio under a maximum bitrate, the client
uses a bitrate parameter to specify the maximum bits per second it is willing to accept.

For example, the header Accept: audio/ogg, audio/mpeg requests audio in either MP3 or Ogg (Vorbis,
Opus, etc.) format with no quality constraints. Similarly, Accept: audio/ogg;bitrate=128000 requests
Ogg audio at a bitrate of 128kbps or lower.

The server SHOULD respond with one of the requested types or a 406 Not Acceptable status (i.e., if it does not
support transcoding). An omitted Accept header is considered equivalent to audio/*.

Also see the complete list of endpoints.

12 Chapter 1. Core API Specification

https://developer.mozilla.org/en-US/docs/Web/HTTP/Content_negotiation#The_Accept.3a_header
https://wiki.xiph.org/Ogg
http-routingtable.html

API Reference

/aura/albums
GET /aura/albums, 9
GET /aura/albums/(id), 9

/aura/artists
GET /aura/artists, 10
GET /aura/artists/(id), 10

/aura/images
GET /aura/images/(id), 11
GET /aura/images/(id)/file, 11

/aura/server
GET /aura/server, 3

/aura/tracks
GET /aura/tracks, 7
GET /aura/tracks/(id), 8
GET /aura/tracks/(id)/audio, 11

13

	Core API Specification
	Organization
	Server Information
	Resources and Collections
	Tracks
	Albums
	Artists
	Images
	Audio

	API Reference

