

 [image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/readme/header.png]
A fast library for increasing the number of training images
by applying various transformations.

Augmentor.jl’s documentation

Augmentor is a real-time image augmentation library designed to
render the process of artificial dataset enlargement more
convenient, less error prone, and easier to reproduce. It offers
the user the ability to build a stochastic augmentation pipeline
using simple building blocks. In other words, a stochastic
augmentation pipeline is simply a sequence of operations for
which the parameters can (but need not) be random variables as
the following code snippet demonstrates.

julia> pipeline = Rotate([-5, -3, 0, 3, 5]) |> CropSize(64, 64) |> Zoom(1:0.1:1.2)
3-step Augmentor.ImmutablePipeline:
 1.) Rotate by θ ∈ [-5, -3, 0, 3, 5] degree
 2.) Crop a 64×64 window around the center
 3.) Zoom by I ∈ {1.0×1.0, 1.1×1.1, 1.2×1.2}

The Julia version of Augmentor is engineered specifically for
high performance applications. It makes use of multiple
heuristics to generate efficient tailor-made code for the
concrete user-specified augmentation pipeline. In particular
Augmentor tries to avoid the need for any intermediate images,
but instead aims to compute the output image directly from the
input in one single pass.

Where to begin?

If this is the first time you consider using Augmentor.jl for
your machine learning related experiments or packages, make sure
to check out the “Getting Started” section. There we list the
installation instructions and some simple hello world examples.

	Getting Started
	Installation

	Overview

	Getting Help

Augmentor.jl is the Julia [http://julialang.org] package
for Augmentor. You can find the Python version here [https://github.com/mdbloice/Augmentor] .

Introduction and Motivation

If you are new to image augmentation in general, or are simply
interested in some background information, feel free to take a
look at the following sections. There we discuss the concepts
involved and outline the most important terms and definitions.

	Background and Motivation
	What is Image Augmentation?

	Label-preserving Transformations

In case you have not worked with image data in Julia before, feel
free to browse the following documents for a crash course on how
image data is represented in the Julia language, as well as how
to visualize it.

	Working with Images in Julia
	Multi-dimensional Arrays

	Vertical-Major vs Horizontal-Major

	Reinterpreting Elements

	Introduction to Color Models

	Fixed Point Numbers

User’s Guide

Augmentor provides a number of already implemented functionality.
The following section provides a complete list of all the
exported operations and their documentation.

	Supported Operations
	Affine Transformations
	Mirroring

	Rotating

	Shearing

	Scaling

	Distorting

	Resizing and Subsetting
	Cropping

	Resizing

	Conversion

	Information Layout
	Color Channels

	Array Shape

	Utility Operations
	Buffering

	Identity Function

	Stochastic Branches

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

In this section we will provide a condensed overview of the
package. In order to keep this overview concise, we will not
discuss any background information or theory on the losses here
in detail.

Installation

To install Augmentor.jl [https://github.com/Evizero/Augmentor.jl], start up Julia
and type the following code-snipped into the REPL. It makes use
of the native Julia package manger.

Pkg.add("Augmentor")

Additionally, for example if you encounter any sudden issues,
or in the case you would like to contribute to the package,
you can manually choose to be on the latest (untagged) version.

Pkg.checkout("Augmentor")

Overview

Getting Help

To get help on specific functionality you can either look up the
information here, or if you prefer you can make use of Julia’s
native doc-system.
The following example shows how to get additional information
on augment within Julia’s REPL:

?augment

Background and Motivation

In this section we will discuss the concept of image augmentation
in general. In particular we will introduce some terminology and
useful definitions.

What is Image Augmentation?

The term data augmentation is commonly used to describe the
process of repeatedly applying various transformations to some
dataset, with the hope that the output (i.e. the newly generated
observations) bias the model towards learning better features.
Depending on the structure and semantics of the data, coming up
with such transformations can be a challenge by itself.

Images are a special class of data that exhibit some interesting
properties in respect to their structure. For example do the
dimensions of an image (i.e. the pixel) exhibit a spatial
relationship to each other. As such, a lot of commonly used
augmentation strategies for image data revolve around affine
transformations, such as translations or rotations. Because
images are such a popular and special case of data, they deserve
their own sub-category of data augmentation, which we will
unsurprisingly refer to as image augmentation.

The general idea is the following: if we want our model to
generalize well, then we should design the learning process in
such a way as to bias the model into learning such
transformation-equivariant properties. One way to do this is via
the design of the model itself, which for example was idea behind
convolutional neural networks. An orthogonal approach to bias the
model to learn about this equivariance - and the focus of this
package - is by using label-preserving transformations.

Label-preserving Transformations

Before attempting to train a model using some augmentation
pipeline, it’s a good idea to invest some time in deciding on an
appropriate set of transformations to choose from. Some of these
transformations also have parameters to tune, and we should also
make sure that we settle on a decent set of values for those.

What constitutes as “decent” depends on the dataset. In general
we want the augmented images to be fairly dissimilar to the
originals. However, we need to be careful that the augmented
images still visually represent the same concept (and thus
label). If a pipeline only produces output images that have this
property we call this pipeline label-preserving.

Example: MNIST Handwritten Digits

Consider the following example from the MNIST database of
handwritten digits [MNIST1998]. Our input image clearly
represents its associated label “6”. If we were to use the
transformation Rotate180 in our augmentation pipeline
for this type of images, we could end up with the situation
depicted by the image on the right side.

using Augmentor, Images, MNIST
input_img = MNIST.trainimage(19)
output_img = augment(input_img, Rotate180())

	Input
	Output

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/readthedocs/background_mnist_in.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/readthedocs/background_mnist_out.png]

To a human, this newly transformed image clearly represents the
label “9”, and not “6” like the original image did. In image
augmentation, however, the assumption is that the output of the
pipeline has the same label as the input. That means that in this
example we would tell our model that the correct answer for the
image on the right side is “6”, which is clearly undesirable for
obvious reasons.

Thus, for the MNIST dataset, the transformation
Rotate180 is not label-preserving and should not be
used for augmentation.

	[MNIST1998]	LeCun, Yan, Corinna Cortes, Christopher J.C. Burges. “The MNIST database of handwritten digits” [http://yann.lecun.com/exdb/mnist/] Website. 1998.

Example: ISIC Skin Lesions

On the other hand, the exact same transformation could very well
be label-preserving for other types of images. Let us take a look
at a different set of image data; this time from the medical
domain.

The International Skin Imaging Collaboration [ISIC] hosts a
large collection of publicly available and labeled skin lesion
images. A subset of that data was used in 2016’s ISBI challenge
[ISBI2016] where a subtask was lesion classification.

Let’s consider the following input image on the left side. It
shows a photo of a skin lesion that was taken from above. By
applying the Rotate180 operation to the input image, we
end up with a transformed version shown on the right side.

using Augmentor, ISICArchive
input_img = get(ImageThumbnailRequest(id = "5592ac599fc3c13155a57a85"))
output_img = augment(input_img, Rotate180())

	Input
	Output

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/readthedocs/background_isic_in.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/readthedocs/background_isic_out.png]

After looking at both images, one could argue that the
orientation of the camera is somewhat arbitrary as long as it
points to the lesion at an approximately orthogonal angle. Thus,
for the ISIC dataset, the transformation Rotate180 could
be considered as label-preserving and very well be tried for
augmentation. Of course this does not guarantee that it will
improve training time or model accuracy, but the point is that it
is unlikely to hurt.

	[ISIC]	https://isic-archive.com/

	[ISBI2016]	Gutman, David; Codella, Noel C. F.; Celebi, Emre; Helba, Brian; Marchetti, Michael; Mishra, Nabin; Halpern, Allan. “Skin Lesion Analysis toward Melanoma Detection: A Challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC)”. eprint arXiv:1605.01397 [https://arxiv.org/abs/1605.01397]. 2016.

Working with Images in Julia

The Julia language [http://julialang.org/] provides a rich
syntax as well as large set of highly-optimized functionality for
working with (multi-dimensional) arrays of what is known as “bit
types” or compositions of such. Because of this, the language
lends itself particularly well to the fairly simple idea of
treating images as just plain arrays. Even though this may sound
as a rather tedious low-level approach, Julia makes it possible
to still allow for powerful abstraction layers without the loss
of generality that usually comes with that. This is accomplished
with help of Julia’s flexible type system and multiple dispatch
(both of which are beyond the scope of this tutorial).

While the images-are-arrays-approach makes working with images in
Julia very performant, it has also been source of confusion to
new community members. This beginner’s guide is an attempt to
provide a step-by-step overview of how pixel data is handled in
Julia. To get a more detailed explanation on some particular
concept involved, please take a look at the documentation of the
JuliaImages [http://juliaimages.github.io/] ecosystem.

Multi-dimensional Arrays

To wrap our heads around Julia’s array-based treatment of images,
we first need to understand what Julia arrays are and how we can
work with them.

Note

This section is only intended provide a simplified and thus
partial overview of Julia’s arrays capabilities in order to
gain some intuition about pixel data. For a more detailed
treatment of the topic please have a look at the official
documentation [https://docs.julialang.org/en/latest/manual/arrays.html]

Whenever we work with an Array in which the elements are
bit-types (e.g. Int64, Float32, UInt8, etc), we can
think of the array as a continuous block of memory. This is
useful for many different reasons, such as cache locality and
interacting with external libraries.

The same block of memory can be interpreted in a number of ways.
Consider the following example in which we allocate a vector
(i.e. a one dimensional array) of UInt8 (i.e. bytes) with
some ordered example values ranging from 1 to 6. We will think of
this as our physical memory block, since it is a pretty close
representation.

julia> memory = [0x1, 0x2, 0x3, 0x4, 0x5, 0x6]
6-element Array{UInt8,1}:
 0x01
 0x02
 0x03
 0x04
 0x05
 0x06

The same block of memory could also be interpreted differently.
For example we could think of this as a matrix with 3 rows and 2
columns instead (or even the other way around). The function
reinterpret allows us to do just that

julia> A = reinterpret(UInt8, memory, (3,2))
3x2 Array{UInt8,2}:
 0x01 0x04
 0x02 0x05
 0x03 0x06

Note how we specified the number of rows first. This is because
the Julia language follows the column-major convention [https://docs.julialang.org/en/latest/manual/performance-tips.html#Access-arrays-in-memory-order,-along-columns-1]
for multi dimensional arrays. What this means can be observed
when we compare our new matrix A with the initial vector
memory and look at the element layout. Both variables are
using the same underlying memory (i.e the value 0x01 is
physically stored right next to the value 0x02 in our
example, while 0x01 and 0x04 are quite far apart even
though the matrix interpretation makes it look like they are
neighbors; which they are not).

Tip

A quick and dirty way to check if two variables are
representing the same block of memory is by comparing the
output of pointer(myvariable). Note, however, that
technically this only tells you where a variable starts in
memory and thus has its limitations.

This idea can also be generalized for higher dimensions. For
example we can think of this as a 3D array as well.

julia> reinterpret(UInt8, memory, (3,1,2))
3x1x2 Array{UInt8,3}:
[:, :, 1] =
 0x01
 0x02
 0x03

[:, :, 2] =
 0x04
 0x05
 0x06

If you take a closer look at the dimension sizes, you can see
that all we did in that example was add a new dimension of size
1, while not changing the other numbers. In fact we can add
any number of practically empty dimensions, otherwise known as
singleton dimensions.

reinterpret(UInt8, memory, (3,1,1,1,2))
3x1x1x1x2 Array{UInt8,5}:
[:, :, 1, 1, 1] =
 0x01
 0x02
 0x03

[:, :, 1, 1, 2] =
 0x04
 0x05
 0x06

This is a useful property to have when we are confronted with
greyscale datasets that do not have a color channel, yet we still
want to work with a library that expects the images to have one.

Vertical-Major vs Horizontal-Major

There are a number of different conventions for how to store
image data into a binary format. The first question one has to
address is the order in which the image dimensions are
transcribed.

We have seen before that Julia follows the column-major
convention for its arrays, which for images would lead to the
corresponding convention of being vertical-major. In the image
domain, however, it is fairly common to store the pixels in a
horizontal-major layout. In other words, horizontal-major means
that images are stored in memory (or file) one pixel row after
the other.

In most cases, when working within the JuliaImages ecosystem, the
images should already be in the Julia-native column major layout.
If for some reason that is not the case there are two possible
ways to convert the image to that format.

julia> At = reinterpret(UInt8, memory, (3,2))' # "row-major" layout
2×3 Array{UInt8,2}:
 0x01 0x02 0x03
 0x04 0x05 0x06

	The first way to alter the pixel order is by using the
function Base.permutedims. In contrast to what we have
seen before, this function will allocate a new array and copy
the values in the appropriate manner.

julia> B = permutedims(At, (2, 1))
3×2 Array{UInt8,2}:
 0x01 0x04
 0x02 0x05
 0x03 0x06

	The second way is using the function
ImageCore.permuteddimsview which results in a lazy view
that does not allocate a new array but instead only computes
the correct values when queried.

julia> using ImageCore

julia> C = permuteddimsview(At, (2, 1))
3×2 permuteddimsview(::Array{UInt8,2}, (2,1)) with element type UInt8:
 0x01 0x04
 0x02 0x05
 0x03 0x06

Either way, it is in general a good idea to make sure that the
array one is working with ends up in a column-major layout.

Reinterpreting Elements

Up to this point, all we talked about was how to reinterpreting
or permuting the dimensional layout of some continuous memory
block. If you look at the examples above you will see that all
the arrays have elements of type UInt8, which just means that
each element is represented by a single byte in memory.

Knowing all this, we can now take the idea a step further and
think about reinterpreting the element types of the array. Let us
consider our original vector memory again.

julia> memory = [0x1, 0x2, 0x3, 0x4, 0x5, 0x6]
6-element Array{UInt8,1}:
 0x01
 0x02
 0x03
 0x04
 0x05
 0x06

Note how each byte is thought of as an individual element. One
thing we could do instead, is think of this memory block as a
vector of 3 UInt16 elements.

julia> reinterpret(UInt16, memory)
3-element Array{UInt16,1}:
 0x0201
 0x0403
 0x0605

Pay attention to where our original bytes ended up. In contrast
to just rearranging elements as we did before, we ended up with
significantly different element values. One may ask why it would
ever be practical to reinterpret a memory block like this. The
one word answer to this is Colors! As we will see in the
remainder of this tutorial, it turns out to be a very useful
thing to do when your arrays represent pixel data.

Introduction to Color Models

As we discussed before, there are a various number of conventions
on how to store pixel data into a binary format. That is not only
true for dimension priority, but also for color information.

One way color information can differ is in the color model [https://en.wikipedia.org/wiki/Color_model] in which they are
described in. Two famous examples for color models are RGB and
HSV. They essentially define how colors are conceptually made
up in terms of some components. Additionally, one can decide on
how many bits to use to describe each color component. By doing
so one defines the available color depth [https://en.wikipedia.org/wiki/Color_depth].

Before we look into using the actual implementation of Julia’s
color models, let us prototype our own imperfect toy model in
order to get a better understanding of what is happening under
the hood.

define our toy color model
immutable MyRGB
 r::UInt8
 b::UInt8
 g::UInt8
end

Note how we defined our new toy color model as immutable.
Because of this and the fact that all its components are bit
types (in this case UInt8), any instantiation of our new type
will be represented as a continuous block of memory as well.

We can now apply our color model to our memory vector from
above, and interpret the underlying memory as a vector of to
MyRGB values instead.

julia> reinterpret(MyRGB, memory)
2-element Array{MyRGB,1}:
 MyRGB(0x01,0x02,0x03)
 MyRGB(0x04,0x05,0x06)

Similar to the UInt16 example, we now group neighboring bytes
into larger units (namely MyRGB). In contrast to the
UInt16 example we are still able to access the individual
components underneath. This simple toy color model already allows
us to do a lot of useful things. We could define functions that
work on MyRGB values in a color-space appropriate fashion. We
could also define other color models and implement function to
convert between them.

However, our little toy color model is not yet optimal. For
example it hard-codes a predefined color depth of 24 bit. We may
have use-cases where we need a richer color space. One thing we
could do to achieve that would be to introduce a new type in
similar fashion. Still, because they have a different range of
available numbers per channel (because they have a different
amount of bits per channel), we would have to write a lot of
specialized code to be able to appropriately handle all color
models and depth.

Luckily, the creators of ColorTypes.jl went a with a more
generic strategy: Using parameterized types and fixed point
numbers.

Tip

If you are interested in how various color models are
actually designed and/or implemented in Julia, you can take a
look at the ColorTypes.jl [https://github.com/JuliaGraphics/ColorTypes.jl] package

Fixed Point Numbers

The idea behind using fixed point numbers for each color
component is fairly simple. No matter how many bits a component
is made up of, we always want the largest possible value of the
component to be equal to 1.0 and the smallest possible value
to be equal to 0. Of course, the amount of possible
intermediate numbers still depends on the number of underlying
bits in the memory, but that is not much of an issue.

julia> reinterpret(UFixed8, 0xFF)
UFixed8(1.0)

julia> reinterpret(UFixed16, 0xFFFF)
UFixed16(1.0)

Not only does this allow for simple conversion between different
color depths, it also allows us to implement generic algorithms,
that are completely agnostic to the utilized color depth.

It is worth pointing out again, that we get all these goodies
without actually changing or copying the original memory block.
Remember how during this whole tutorial we have only changed the
interpretation of some underlying memory, and have not had the
need to copy any data so far.

Tip

For pixel data we are mainly interested in unsigned fixed
point numbers, but there are others too. Check out the
package FixedPointNumbers.jl [https://github.com/JuliaMath/FixedPointNumbers.jl] for
more information on fixed point numbers in general.

Let us now leave our toy model behind and use the actual
implementation of RGB on our example vector memory. With
the first command we will interpret our data as two pixels with 8
bit per color channel, and with the second command as a single
pixel of 16 bit per color channel

julia> reinterpret(RGB{UFixed8}, memory)
2-element Array{ColorTypes.RGB{FixedPointNumbers.UFixed{UInt8,8}},1}:
 RGB{UFixed8}(0.004,0.008,0.012)
 RGB{UFixed8}(0.016,0.02,0.024)

julia> reinterpret(RGB{UFixed16}, memory)
1-element Array{ColorTypes.RGB{FixedPointNumbers.UFixed{UInt16,16}},1}:
 RGB{UFixed16}(0.00783,0.01567,0.02351)

Note how the values are now interpreted as floating point numbers.

Supported Operations

This page lists and describes all supported image operations, and
is mainly intended as a quick preview of the available
functionality.

	Category
	Available Operations

	Mirroring
	FlipX FlipY

	Rotating
	Rotate90 Rotate270 Rotate180 Rotate

	Shearing
	ShearX ShearY

	Distorting
	ElasticDistortion

	Scaling and Resizing
	Scale Zoom Resize

	Cropping
	Crop CropNative CropSize CropRatio
RCropRatio

	Conversion
	ConvertEltype

	Information Layout
	SplitChannels CombineChannels PermuteDims
Reshape

	Utility Operations
	NoOp CacheImage Either

Affine Transformations

A good portion of the provided operations fall under the category
of affine transformations. As such, they can be described
using what is known as an affine map [https://en.wikipedia.org/wiki/Affine_transformation], which
are inherently compose-able if chained together. However,
utilizing such a affine formulation requires (costly)
interpolation, which may not always be needed to achieve the
desired effect. For that reason do some of the operations below
also provide a special purpose implementation to produce their
specified result. Those are usually preferred over the affine
formulation if sensible considering the complete pipeline.

Mirroring

	
class FlipX

	Reverses the x-order of each pixel row. Another way of describing
it would be to mirror the image on the y-axis, or to mirror the
image horizontally.

julia> FlipX()
Flip the X axis

julia> FlipX(0.3)
Augmentor.Either (1 out of 2 operation(s)):
 - 30% chance to: Flip the X axis
 - 70% chance to: No operation

	Input
	Output for FlipX()

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/FlipX.png]

	
class FlipY

	Reverses the y-order of each pixel column. Another way of
describing it would be to mirror the image on the x-axis, or to
mirror the image vertically.

julia> FlipY()
Flip the Y axis

julia> FlipY(0.3)
Augmentor.Either (1 out of 2 operation(s)):
 - 30% chance to: Flip the Y axis
 - 70% chance to: No operation

	Input
	Output for FlipY()

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/FlipY.png]

Rotating

	
class Rotate90

	Rotates the image upwards 90 degrees. This is a special case
rotation because it can be performed very efficiently by simply
rearranging the existing pixels. However, it is generally not the
case that the output image will have the same size as the input
image, which is something to be aware of.

julia> Rotate90()
Rotate 90 degree

julia> Rotate90(0.3)
Augmentor.Either (1 out of 2 operation(s)):
 - 30% chance to: Rotate 90 degree
 - 70% chance to: No operation

	Input
	Output for Rotate90()

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/Rotate90.png]

	
class Rotate180

	Rotates the image 180 degrees. This is a special case rotation
because it can be performed very efficiently by simply
rearranging the existing pixels. Furthermore, the output image
will have the same dimensions as the input image.

julia> Rotate180()
Rotate 180 degree

julia> Rotate180(0.3)
Augmentor.Either (1 out of 2 operation(s)):
 - 30% chance to: Rotate 180 degree
 - 70% chance to: No operation

	Input
	Output for Rotate180()

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/Rotate180.png]

	
class Rotate270

	Rotates the image upwards 270 degrees, which can also be described
as rotating the image downwards 90 degrees. This is a special case
rotation, because it can be performed very efficiently by simply
rearranging the existing pixels. However, it is generally not the
case that the output image will have the same size as the input
image, which is something to be aware of.

julia> Rotate270()
Rotate 270 degree

julia> Rotate270(0.3)
Augmentor.Either (1 out of 2 operation(s)):
 - 30% chance to: Rotate 270 degree
 - 70% chance to: No operation

	Input
	Output for Rotate270()

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/Rotate270.png]

	
class Rotate

	Rotate the image upwards for the given degrees. This operation
can only be described as an affine transformation and will in
general cause other operations of the pipeline to use their
affine formulation as well (if they have one).

In contrast to the special case rotations outlined above, the
type Rotate can describe any arbitrary number of degrees.
It will always perform the rotation around the center of the image.
This can be particularly useful when combining the operation with
CropNative.

julia> Rotate(15)
Rotate 15 degree

	Input
	Output for Rotate(15)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/Rotate.png]

It is also possible to pass some abstract vector to the
constructor, in which case Augmentor will randomly sample one of
its elements every time the operation is applied.

julia> Rotate(-10:10)
Rotate by θ ∈ -10:10 degree

julia> Rotate([-3,-1,0,1,3])
Rotate by θ ∈ [-3, -1, 0, 1, 3] degree

	Input
	Sampled outputs for Rotate(-10:10)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/Rotate.gif]

Shearing

	
class ShearX

	Shear the image horizontally for the given degree. This
operation can only be described as an affine transformation
and will in general cause other operations of the pipeline to
use their affine formulation as well (if they have one).

It will always perform the transformation around the center of
the image. This can be particularly useful when combining the
operation with CropNative.

julia> ShearX(10)
ShearX 10 degree

	Input
	Output for ShearX(10)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/ShearX.png]

It is also possible to pass some abstract vector to the
constructor, in which case Augmentor will randomly sample one of
its elements every time the operation is applied.

julia> ShearX(-10:10)
ShearX by ϕ ∈ -10:10 degree

julia> ShearX([-3,-1,0,1,3])
ShearX by ϕ ∈ [-3,-1,0,1,3] degree

	Input
	Sampled outputs for ShearX(-10:10)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/ShearX.gif]

	
class ShearY

	Shear the image vertically for the given degree. This
operation can only be described as an affine transformation
and will in general cause other operations of the pipeline to
use their affine formulation as well (if they have one).

It will always perform the transformation around the center of
the image. This can be particularly useful when combining the
operation with CropNative.

julia> ShearY(10)
ShearY 10 degree

	Input
	Output for ShearY(10)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/ShearY.png]

It is also possible to pass some abstract vector to the
constructor, in which case Augmentor will randomly sample one of
its elements every time the operation is applied.

julia> ShearY(-10:10)
ShearY by ψ ∈ -10:10 degree

julia> ShearY([-3,-1,0,1,3])
ShearY by ψ ∈ [-3, -1, 0, 1, 3] degree

	Input
	Sampled outputs for ShearY(-10:10)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/ShearY.gif]

Scaling

	
class Scale

	Multiplies the image height and image width by individually
specified constant factors. This means that the size of the
output image depends on the size of the input image.

julia> Scale(0.9,0.5)
Scale by 0.9×0.5

	Input
	Output for Scale(0.9,0.5)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/Scale.png]

In the case that only a single scale factor is specified, the
operation will assume that the intention is to scale all
dimensions uniformly by that factor.

julia> Scale(1.2)
Scale by 1.2×1.2

	Input
	Output for Scale(1.2)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/Scale2.png]

It is also possible to pass some abstract vector(s) to the
constructor, in which case Augmentor will randomly sample one of
its elements every time the operation is applied.

julia> Scale([1.1, 1.2], [0.8, 0.9])
Scale by I ∈ {1.1×0.8, 1.2×0.9}

julia> Scale([1.1, 1.2])
Scale by I ∈ {1.1×1.1, 1.2×1.2}

julia> Scale(0.9:0.05:1.2)
Scale by I ∈ {0.9×0.9, 0.95×0.95, 1.0×1.0, 1.05×1.05, 1.1×1.1, 1.15×1.15, 1.2×1.2}

	Input
	Sampled outputs for Scale(0.9:0.05:1.3)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/Scale.gif]

	
class Zoom

	Multiplies the image height and image width by individually
specified constant factors. In contrast to Scale, the
size of the input image will be preserved. This is useful to
implement a strategy known as “scale jitter”.

julia> Zoom(1.2)
Zoom by 1.2×1.2

	Input
	Output for Zoom(1.2)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/Zoom.png]

It is also possible to pass some abstract vector to the
constructor, in which case Augmentor will randomly sample one of
its elements every time the operation is applied.

julia> Zoom([1.1, 1.2], [0.8, 0.9])
Zoom by I ∈ {1.1×0.8, 1.2×0.9}

julia> Zoom([1.1, 1.2])
Zoom by I ∈ {1.1×1.1, 1.2×1.2}

julia> Zoom(0.9:0.05:1.2)
Zoom by I ∈ {0.9×0.9, 0.95×0.95, 1.0×1.0, 1.05×1.05, 1.1×1.1, 1.15×1.15, 1.2×1.2}

	Input
	Sampled outputs for Zoom(0.9:0.05:1.3)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/Zoom.gif]

Distorting

	
class ElasticDistortion

	

	Input
	Sampled outputs for ElasticDistortion(15,15,0.1)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/ElasticDistortion.gif]

	Input
	Sampled outputs for ElasticDistortion(10,10,0.2,4,3,true)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/ElasticDistortion2.gif]

Resizing and Subsetting

The process of cropping is useful to discard parts of the input
image. To provide this functionality lazily, applying a crop
introduces a layer of representation called a “view” or
SubArray. This is different yet compatible with how affine
operations or other special purpose implementations work. This
means that chaining a crop with some affine operation is
perfectly fine if done sequentially. However, it is generally not
advised to combine affine operations with crop operations within
an Either block. Doing that would force the
Either() to trigger the eager computation of its branches
in order to preserve type-stability.

Cropping

	
class Crop

	Crops out the area of the specified pixel dimensions starting
at a specified position, which in turn denotes the top-left corner
of the crop. A position of x = 1, and y = 1 would mean that
the crop is located in the top-left corner of the given image

julia> Crop(1:10, 5:20)
Crop region 1:10×5:20

julia> Crop(5, 1, 20, 10)
Crop region 1:10×5:24

	Input
	Output for Crop(70:140,25:155)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/Crop.png]

	
class CropNative

	Crops out the area of the specified pixel dimensions starting
at a specified position. In contrast to Crop, the the
position (1,1) is not located at the top left of the current
image, but instead depends on the previous transformations.
This is useful for combining transformations such as
Rotation or ShearX with a crop around the
center area.

julia> CropNative(1:10, 5:20)
Crop native region 1:10×5:20

	Output for (Rotate(45), Crop(1:210,1:280))
	Output for (Rotate(45), CropNative(1:210,1:280))

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/Crop2.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/CropNative.png]

	
class CropSize

	Crops out the area of the specified pixel dimensions
around the center of the given image.

julia> CropSize(45,250)
Crop a 45×250 window around the center

	Input
	Output for CropSize(45,225)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/CropSize.png]

	
class CropRatio

	Crops out the biggest area around the center of the given
image such that the output image satisfies the specified
aspect ratio (i.e. width divided by height).

For example the operation CropRatio(1) would denote a crop
for the biggest square around the center of the image, while
CropRatio(16/9) would result in a rectangle with 16:9
aspect ratio.

julia> CropRatio(1)
Crop to 1:1 aspect ratio

julia> CropRatio(2.5)
Crop to 5:2 aspect ratio

	Input
	Output for CropRatio(1)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/CropRatio.png]

	
class RCropRatio

	Crops out the biggest possible area at some random position of
the given image, such that the output image satisfies the
specified aspect ratio (i.e. width divided by height).

For example the operation RCropRatio(1) would denote a
crop for the biggest possible square. If there is more than
one such square, then one will be selected at random.

julia> RCropRatio(1)
Crop random window with 1:1 aspect ratio

julia> CropRatio(2.5)
Crop random window with 5:2 aspect ratio

	Input
	Sampled outputs for RCropRatio(1)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/RCropRatio.gif]

Resizing

	
class Resize

	Transforms the image into a fixed specified pixel size. This
operation does not take any measures to preserve aspect ratio
of the source image. Instead, the original image will simply be
resized to the given dimensions. This is useful when one needs a
set of images to all be of the exact same size.

julia> Resize(30,40)
Resize to 30×40

	Input
	Output for Resize(100,150)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/Resize.png]

Conversion

	
class ConvertEltype

	Convert the element type of the given array/image into the
given eltype. This operation is especially useful for
converting color images to grayscale (or the other way
around). That said the operation is not specific to color
types and can also be used for numeric arrays (e.g. with
separated channels).

Note that this is an element-wise convert function. Thus it
can not be used to combine or separate color channels. Use
SplitChannels or CombineChannels for those
purposes.

julia> op = ConvertEltype(Gray)
Convert eltype to Gray

julia> img = testpattern()
300×400 Array{RGBA{N0f8},2}:
[...]

julia> augment(img, op)
300×400 Array{Gray{N0f8},2}:
[...]

	Input
	Output for ConvertEltype(GrayA)

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/testpattern_small.png]

	[image: https://raw.githubusercontent.com/JuliaML/FileStorage/master/Augmentor/operations/ConvertEltype.png]

Information Layout

It is not uncommon that machine learning frameworks require the
data in a specific form and layout. For example many deep
learning frameworks expect the colorchannel of the images to be
encoded in the third dimension of a 4-dimensional array.

Augmentor allows to convert from (and to) these different layouts
using special operations that are mainly useful in the beginning
or end of a augmentation pipeline.

Color Channels

	
class SplitChannels

	Separate the color channels of the given image into a
dedicated array dimension. This will effectively create a new
array dimension for the colors as the first dimension. In the
case of greyscale images a singleton dimension will be created

This operation is mainly useful at the end of a pipeline in
combination with PermuteDims in order to prepare the
image for the training algorithm, which often requires the
color channels to be separate.

julia> op = SplitChannels()
Split colorant into its color channels

julia> img = testpattern()
300×400 Array{RGBA{N0f8},2}:
[...]

julia> augment(img, op))
4×300×400 Array{N0f8,3}:
[...]

	
class CombineChannels

	Combines the first dimension of a given array into a colorant
of the specified type colortype. A separate color channel
is also expected for Gray images.

The shape of the input image has to be appropriate for the
given colortype, which also means that the separated color
channel has to be the first dimension of the array. Use
PermuteDims and/or Reshape if that is not
the case.

This operation is mainly useful at the beginning of the
pipline, if the colorchannels of the input images are
separated.

julia> op = CombineChannels(RGB)
Combine color channels into colorant RGB{Any}

julia> A = rand(3, 10, 10) # random 10x10 RGB image
3×10×10 Array{Float64,3}:
[...]

julia> augment(A, op)
10×10 Array{RGB{Float64},2}:
[...]

Array Shape

	
class PermuteDims

	Permute the dimensions of the given array with the predefined
permutation perm. This operation is particularly useful if
the order of the dimensions needs to be different than the
default “julian” layout.

More concretely, Augmentor expects the given images to be in
vertical-major layout for which the colors are encoded in the
element type itself. Many deep learning frameworks however
require their input in a different order. For example it is
not untypical that the color channels are expected to be
encoded in the third dimension.

julia> op = PermuteDims(3,2,1)
Permute dimension order to (3,2,1)

julia> img = testpattern()
300×400 Array{RGBA{N0f8},2}:
[...]

julia> augment(img, PermuteDims(2,1))
400×300 Array{RGBA{N0f8},2}:
[...]

	
class Reshape

	Reinterpret the shape of the given array of numbers or
colorants. This is useful for example to create singleton
dimensions that deep learning frameworks may need for
colorless images, or for converting an image to a feature
vector and vice versa.

Note that this operation has nothing to do with image
resizing, but instead is strictly concerned with changing
the shape of the array.

julia> Reshape(10,15)
Reshape array to 10×15

julia> op = Reshape(25)
Reshape array to 25-element vector

julia> A = rand(5,5)
5×5 Array{Float64,2}:
[...]

julia> augment(A, op)
25-element Array{Float64,1}:
[...]

Utility Operations

Aside from “true” operations that specify some kind of
transformation, there are also a couple of special utility
operations used for functionality such as stochastic branching.

Buffering

	
class CacheImage

	Write the current state of the image into the working memory.
Optionally a user has the option to specify a preallocated
buffer to write the image into.

Even without a preallocated buffer it can be beneficial to
cache the image in some situations. For example when chaining
a number of affine transformations after an elastic
distortion, because performing that lazily requires nested
interpolation.

julia> CacheImage()
Cache into temporary buffer

julia> CacheImage(rand(5,5))
Cache into preallocated 5×5 Array{Float64,2}

Identity Function

	
class NoOp

	Pass the image along unchanged. Usually used in combination
with Either to denote a “branch” that does not
perform any computation.

julia> NoOp()
No operation

Stochastic Branches

	
class Either

	Allows for choosing between different operations at random
when applied. This is particularly useful if one for example
wants to first either rotate the image 90 degree clockwise or
anticlockwise (but never both) and then apply some other
operation(s) afterwards.

When compiling a pipeline, Either will analyze the
provided operations in order to identify the most preferred
way to apply the individual operation when sampled, that is
supported by all given operations. This way the output of
applying Either will be inferable and the whole
pipeline will remain type-stable, even though randomness is
involved.

By default each specified image operation has the same
probability of occurrence. This default behaviour can be
overwritten by specifying the chance manually.

julia> FlipX() * FlipY()
Augmentor.Either (1 out of 2 operation(s)):
 - 50% chance to: Flip the X axis
 - 50% chance to: Flip the Y axis

julia> Either(FlipX(), FlipY())
Augmentor.Either (1 out of 2 operation(s)):
 - 50% chance to: Flip the X axis
 - 50% chance to: Flip the Y axis

julia> Either((FlipX(), FlipY(), NoOp()), (1,1,2))
Augmentor.Either (1 out of 3 operation(s)):
 - 25% chance to: Flip the X axis
 - 25% chance to: Flip the Y axis
 - 50% chance to: No operation

julia> Either(1=>FlipX(), 1=>FlipY(), 2=>NoOp())
Augmentor.Either (1 out of 3 operation(s)):
 - 25% chance to: Flip the X axis
 - 25% chance to: Flip the Y axis
 - 50% chance to: No operation

julia> (1=>FlipX()) * (1=>FlipY()) * (2=>NoOp())
Augmentor.Either (1 out of 3 operation(s)):
 - 25% chance to: Flip the X axis
 - 25% chance to: Flip the Y axis
 - 50% chance to: No operation

LICENSE

The Augmentor.jl package is licensed under the MIT “Expat”
License

see LICENSE.md [https://github.com/Evizero/Augmentor.jl/blob/master/LICENSE.md]
in the Github repository.

Index

 C
 | E
 | F
 | N
 | P
 | R
 | S
 | Z

C

 	
 	CacheImage (built-in class)

 	CombineChannels (built-in class)

 	ConvertEltype (built-in class)

 	
 	Crop (built-in class)

 	CropNative (built-in class)

 	CropRatio (built-in class)

 	CropSize (built-in class)

E

 	
 	Either (built-in class)

 	
 	ElasticDistortion (built-in class)

F

 	
 	FlipX (built-in class)

 	
 	FlipY (built-in class)

N

 	
 	NoOp (built-in class)

P

 	
 	PermuteDims (built-in class)

R

 	
 	RCropRatio (built-in class)

 	Reshape (built-in class)

 	Resize (built-in class)

 	
 	Rotate (built-in class)

 	Rotate180 (built-in class)

 	Rotate270 (built-in class)

 	Rotate90 (built-in class)

S

 	
 	Scale (built-in class)

 	ShearX (built-in class)

 	
 	ShearY (built-in class)

 	SplitChannels (built-in class)

Z

 	
 	Zoom (built-in class)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		Augmentor.jl's documentation

 		Getting Started

 		Installation

 		Overview

 		Getting Help

 		Background and Motivation

 		What is Image Augmentation?

 		Label-preserving Transformations

 		Example: MNIST Handwritten Digits

 		Example: ISIC Skin Lesions

 		Working with Images in Julia

 		Multi-dimensional Arrays

 		Vertical-Major vs Horizontal-Major

 		Reinterpreting Elements

 		Introduction to Color Models

 		Fixed Point Numbers

 		Supported Operations

 		Affine Transformations

 		Mirroring

 		Rotating

 		Shearing

 		Scaling

 		Distorting

 		Resizing and Subsetting

 		Cropping

 		Resizing

 		Conversion

 		Information Layout

 		Color Channels

 		Array Shape

 		Utility Operations

 		Buffering

 		Identity Function

 		Stochastic Branches

_static/comment.png

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/up.png

_static/logo.png

_static/comment-close.png

_static/comment-bright.png

