

Audrey

Audrey is a minimal framework for creating
Pyramid [http://www.pylonsproject.org/] applications that
use MongoDB [http://www.mongodb.org/] for persistence,
ElasticSearch [http://www.elasticsearch.org/] for full text
search (optional), traversal [http://docs.pylonsproject.org/projects/pyramid/en/1.4-branch/narr/traversal.html] for resource/view lookup, and
colander [http://pypi.python.org/pypi/colander] for schema declaration
and user input validation.

Audrey also provides views that implement a RESTful API. In an attempt
to satisfy the hypermedia constraint (HATEOAS), GET responses use the
HAL+JSON [http://stateless.co/hal_specification.html] mediatype.
In a further attempt to be self-describing, links to JSON Schema [http://json-schema.org/] documents (generated automatically from your
types’ colander schemas) are provided which describe the bodies for
POST and PUT requests. Audrey doesn’t provide any HTML views, but it
does include HAL-Browser [https://github.com/mikekelly/hal-browser]
which can be used to explore the RESTful API. (Please be aware that
the included API is tightly coupled to your resource models. Such an
API may be handy for prototypes or even in cases where you control
all client use, but it is definitely not recommended for use by
third-parties. Creating your own custom versioned API is highly
recommended.)

My goal is to keep Audrey otherwise unopinionated. For example, Audrey
intentionally does nothing regarding authentication, authorization,
permissions, etc. A developer building on Audrey can make those decisions
as appropriate for their app and implement them using standard Pyramid
facilities [http://docs.pylonsproject.org/projects/pyramid/en/1.4-branch/narr/security.html].

Warning

Audrey is a pet project serving as a playground to explore some ideas. Too soon to tell whether it will mature or not.

	Introduction

	Resource Modelling

	Installation
	Prerequisites

	Setup Audrey

	Creating a new project

	Startup commands

	API
	audrey.resources
	object

	collection

	root

	file

	reference

	audrey.types

	audrey.views

	audrey.colanderutil

	audrey.dateutil

	audrey.sortutil

	audrey.exceptions

Introduction

Let’s say you just installed Audrey and used its starter scaffold to create
a new project (as described in Creating a new project). You’d have two
example object types (Person and Post) to play with.
(As you read this section, if you find yourself wondering things like
how the types and their schemas are defined, you may want to jump ahead to the Resource Modelling section.)

Let’s take a look around in a pshell session:

$ pshell development.ini#main
Python 2.7.3 (default, Nov 13 2012, 15:00:33)
[GCC 4.4.5] on linux2
Type "help" for more information.

Environment:
 app The WSGI application.
 registry Active Pyramid registry.
 request Active request object.
 root Root of the default resource tree.
 root_factory Default root factory used to create `root`.

>>> root
<myproject.resources.Root object at 0x9d35a6c>
>>> root.get_collection_names()
['people', 'posts']

OK. So we have a Root object with two collections named “people” and “posts”.
Let’s check out one of those:

>>> people = root['people']
>>> people
<myproject.resources.People object at 0xa26c04c>
>>> people.get_children()
[]

Look’s like there aren’t any people yet. So let’s create one:

>>> from myproject import resources
>>> person = resources.Person(request)
>>> print person
{'_created': None,
 '_etag': None,
 '_id': None,
 '_modified': None,
 'firstname': None,
 'lastname': None,
 'photo': None}

Kinda boring. But let’s see what would happen if we tried to save it (by
adding it to the people collection):

>>> people.add_child(person)
... traceback omitted ...
Invalid: {'firstname': u'Required', 'lastname': u'Required'}

That’s a colander.Invalid exception letting us know that schema
validation failed. Let’s set the required attributes and try again:

>>> person.firstname = 'Audrey'
>>> person.lastname = 'Horne'
>>> people.add_child(person)
>>> print person
{'_created': datetime.datetime(2012, 12, 24, 1, 52, 45, 281718, tzinfo=<UTC>),
 '_etag': '52779a9953bd01defd439bd29874c3d4',
 '_id': ObjectId('50d7b56dbf90af0e96bc8433'),
 '_modified': datetime.datetime(2012, 12, 24, 1, 52, 45, 281718, tzinfo=<UTC>),
 'firstname': 'Audrey',
 'lastname': 'Horne',
 'photo': None}

The object has been persisted in MongoDB and now has an ObjectId, creation and modification timestamps and an Etag. (It was also indexed in ElasticSearch.) Let’s check the children of the People collection again:

>>> people.get_children()
[<myproject.resources.Person object at 0xa26cbac>]

As sort of an aside, we can traverse to the new Person object by the string
version of its ID like this:

>>> root['people']['50d7b56dbf90af0e96bc8433']
<myproject.resources.Person object at 0xa1f4d6c>
>>> person.__name__
'50d7b56dbf90af0e96bc8433'
>>> person.__parent__
<myproject.resources.People object at 0xa26c04c>

Note

Using the ID as the __name__ is the behavior of the base Audrey Object and Collection types. There exist subclasses NamedObject and NamingCollection that allow for explicit control over naming. Whether you use one or the other depends on your use case. For this introduction, I opted to keep it minimal and use the base classes.

Let’s add a couple more Person objects to make things a little more interesting.
We can pass kwargs to the object constructor to initialize attributes:

>>> people.add_child(resources.Person(request, firstname='Laura', lastname='Palmer'))
>>> people.add_child(resources.Person(request, firstname='Dale', lastname='Cooper'))
>>> [child.get_title() for child in people.get_children()]
[u'Dale Cooper', u'Audrey Horne', u'Laura Palmer']

The order of the children is arbitrary. Let’s explicitly sort them:

>>> [child.get_title() for child in people.get_children(sort=[('_created',1)])]
[u'Audrey Horne', u'Dale Cooper', u'Laura Palmer']

Did you notice the photo attribute earlier? Let’s set a photo for Dale.
First let’s retrieve his object:

>>> obj = people.get_child({'firstname':'Dale'})
>>> print obj
{'_created': datetime.datetime(2012, 12, 24, 2, 10, 14, 856000, tzinfo=<UTC>),
 '_etag': u'a8ee673c5490be625bd720375add252f',
 '_id': ObjectId('50d7b986bf90af0e96bc8434'),
 '_modified': datetime.datetime(2012, 12, 24, 2, 10, 14, 856000, tzinfo=<UTC>),
 'firstname': u'Dale',
 'lastname': u'Cooper',
 'photo': None}

Now we’ll open a file, add it to Audrey’s GridFS, update the Person and then save it:

>>> with open("dale-cooper.jpg") as f:
... obj.photo = root.create_gridfs_file(f, "dale-cooper.jpg", "image/jpeg")
>>> obj.save()
>>> print obj
{'_created': datetime.datetime(2012, 12, 24, 2, 10, 14, 856000, tzinfo=<UTC>),
 '_etag': '080b9d79d888e5d6714acc8cfb07d6ae',
 '_id': ObjectId('50d7b986bf90af0e96bc8434'),
 '_modified': datetime.datetime(2013, 1, 3, 1, 7, 31, 134749, tzinfo=<UTC>),
 'firstname': u'Dale',
 'lastname': u'Cooper',
 'photo': <audrey.resources.file.File object at 0xaa2190c>}

photo is an instance of audrey.resources.file.File. This is simply a wrapper around the ObjectId of a GridFS file. To access the GridFS file (which can be read like a normal Python file and also has a few extra attributes like name and content_type), call get_gridfs_file():

>>> gf = obj.photo.get_gridfs_file(request)
>>> gf.name
u'dale-cooper.jpg'
>>> gf.length
66953
>>> gf.content_type
u'image/jpeg'

We’ve covered creating and updating objects. Now let’s delete one:

>>> obj = people.get_child({'firstname': 'Laura'})
>>> people.delete_child(obj)
>>> [child.get_title() for child in people.get_children()]
[u'Dale Cooper', u'Audrey Horne']

Note

Collection also has methods delete_child_by_id() and delete_child_by_name(). This introduction doesn’t try to demonstrate every method and parameter. Refer to the API section for more.

Now let’s switch our focus to the web api. (If you’re running locally, you can
explore the api with HAL-Browser by visiting http://127.0.0.1:6543/hal-browser/
in your web browser.) For our current purposes, I’ll use curl and Python’s super-handy json.tool:

$ curl http://127.0.0.1:6543/ | python -mjson.tool
{
 "_links": {
 "audrey:upload": {
 "href": "http://127.0.0.1:6543/@@upload"
 },
 "curie": {
 "href": "http://127.0.0.1:6543/relations/{rel}",
 "name": "audrey",
 "templated": true
 },
 "item": [
 {
 "href": "http://127.0.0.1:6543/people/{?sort}",
 "name": "people",
 "templated": true
 },
 {
 "href": "http://127.0.0.1:6543/posts/{?sort}",
 "name": "posts",
 "templated": true
 }
],
 "search": {
 "href": "http://127.0.0.1:6543/@@search?q={q}{&sort}{&collection*}",
 "templated": true
 },
 "self": {
 "href": "http://127.0.0.1:6543/"
 }
 }
}

Note

These are just the default views that Audrey provides. You can override and reconfigure to suit your needs, or ignore them entirely and create your own views from scratch.

Note

This view-related documentation needs to be updated to reflect the current state of the views. Everything described here will still work, but the responses may differ slightly. For example, listing views have new “embed” and “fields” options which didn’t appear in the templated urls described here. Try out http://127.0.0.1:6543/people?embed=1 or http://127.0.0.1:6543/people?embed=1&fields=firstname,lastname

This is a HAL+JSON document representing the root. Since the root has no
state of its own, the document just has a number of links keyed by link
relation (“rel”) names. Besides “self” which is obligatory for HAL, Audrey
tries to stick to relations from the IANA list [http://www.iana.org/assignments/link-relations/link-relations.xml].

Here we see “item” used to list the children of root (the “people” and “posts” collections). These urls are templated, in this case indicating that
you may use an optional “sort” parameter. In a moment, we’ll follow one of these links.

There’s also a link to a “search” endpoint (again with a URL template) and another to the “upload” endpoint. Since there was no IANA rel that seemed suitable for the upload endpoint (which as you may have guessed is a factory for uploading files into the system), Audrey uses a namespaced URI. Applying the “curie” template, “audrey:upload” expands to “http://127.0.0.1:6543/relations/upload”; visiting that url returns some HTML documentation of the endpoint including the expected request and response details.

Now let’s GET the “people” collection using the “sort” parameter to sort by creation time:

$ curl http://127.0.0.1:6543/people?sort=_created | python -mjson.tool
{
 "_factory": {
 "method": "POST",
 "schemas": [
 "person"
]
 },
 "_links": {
 "audrey:schema": [
 {
 "href": "http://127.0.0.1:6543/people/@@schema/person",
 "name": "person"
 }
],
 "collection": {
 "href": "http://127.0.0.1:6543/"
 },
 "curie": {
 "href": "http://127.0.0.1:6543/relations/{rel}",
 "name": "audrey",
 "templated": true
 },
 "item": [
 {
 "href": "http://127.0.0.1:6543/people/50d7b56dbf90af0e96bc8433/",
 "name": "50d7b56dbf90af0e96bc8433",
 "title": "Audrey Horne"
 },
 {
 "href": "http://127.0.0.1:6543/people/50d7b986bf90af0e96bc8434/",
 "name": "50d7b986bf90af0e96bc8434",
 "title": "Dale Cooper"
 }
],
 "self": {
 "href": "http://127.0.0.1:6543/people/?sort=_created"
 }
 },
 "_summary": {
 "batch": 1,
 "per_batch": 20,
 "sort": "_created",
 "total_batches": 1,
 "total_items": 2
 }
}

The Collection view has some similarities with the Root view.
Again we see the obligatory “self” link and a list of “item” links (this time
the items are the two Person instances we created earlier).
The “collection” rel is used to indicate a link to the container of the current
resource, which in this case is the root. Finally there’s a custom namespaced
“schema” rel. As the documentation at http://127.0.0.1:6543/relations/schema explains, the “schema” rel is a list of links to JSON Schema documents; there’s one such link for each object type that can be created in the current Collection.

We also see two custom properties: “_factory” and “_summary”.

The first identifies the HTTP method to be used to create new resources inside
the collection. Here it’s POST since People is a base Collection and assigns names automatically. If it was a NamingCollection, the method would be PUT indicating that clients should specify new resource names by doing a PUT to a new url (such as “/people/harry-truman”).

The “_summary” property contains some metadata about the current item listing. Here we see that there are 2 items total. Since the batch size is 20, there’s only one batch. If there were more than 20 people, the “item” link array would only include a batch of up to 20 and there may be links with the rel “next” and/or “prev” with the urls for the next and previous batches (as appropriate).

Now let’s follow the first “item” link:

$ curl http://127.0.0.1:6543/people/50d7b56dbf90af0e96bc8433/ | python -mjson.tool
{
 "_created": "2012-12-24T01:52:45.281000+00:00",
 "_etag": "52779a9953bd01defd439bd29874c3d4",
 "_id": {
 "ObjectId": "50d7b56dbf90af0e96bc8433"
 },
 "_links": {
 "audrey:file": [],
 "audrey:reference": [],
 "collection": {
 "href": "http://127.0.0.1:6543/people/"
 },
 "curie": {
 "href": "http://127.0.0.1:6543/relations/{rel}",
 "name": "audrey",
 "templated": true
 },
 "describedby": {
 "href": "http://127.0.0.1:6543/people/@@schema/person"
 },
 "self": {
 "href": "http://127.0.0.1:6543/people/50d7b56dbf90af0e96bc8433/"
 }
 },
 "_modified": "2012-12-24T01:52:45.281000+00:00",
 "_object_type": "person",
 "_title": "Audrey Horne",
 "firstname": "Audrey",
 "lastname": "Horne",
 "photo": null
}

Finally, something with some state data; here we see the schema properties “firstname”, “lastname” and “photo”, as well as various metadata properties which I’ve used the convention of starting with an underscore. Now let’s look at the ubiquitous links.

There’s “self” of course. The “collection” link refers to the current object’s container. The “describedby” link refers to a JSON Schema for the object. Finally there are two custom rels “file” and “reference”.

The “file” rel is used to indicate a list of links to (you guessed it) files referenced by this resource object. In this case, if “photo” wasn’t null there would be a link to the photo file. (Keep reading and we’ll upload a photo file and update this person to refer to it.)

The “reference” rel is used to indicate a list of links to other object resources referenced by this one. The Person type doesn’t have any reference attributes in its schema, so this will always be an empty list for this class.

Now let’s demonstrate POSTing a new Person:

$ curl -i -XPOST http://127.0.0.1:6543/people/ -d '{
 "_object_type": "person",
 "firstname": "Shelly",
 "lastname": "Johnson"
 }'

HTTP/1.1 201 Created
Content-Length: 2
Content-Type: application/json; charset=UTF-8
Date: Mon, 24 Dec 2012 18:25:35 GMT
Location: http://127.0.0.1:6543/people/50d89e1fbf90af0d7169df5d/
Server: waitress

{}

Cool... Audrey responds with the 201 Created success status and “Location” header with the URL of the new resource.

You might wonder what would happen if we tried to POST an invalid request.
First let’s try POSTing an empty JSON document:

$ curl -i -XPOST http://127.0.0.1:6543/people/ -d '{}'
HTTP/1.1 400 Bad Request
Content-Length: 45
Content-Type: application/json; charset=UTF-8
Date: Mon, 24 Dec 2012 18:27:34 GMT
Server: waitress

{"error": "Request is missing _object_type."}

Uh oh... we got 400 Bad Request and an error message in the body with the reason.
So now let’s POST a document that just contains an “_object_type”:

curl -i -XPOST http://127.0.0.1:6543/people/ -d '{"_object_type": "person"}'
HTTP/1.1 400 Bad Request
Content-Length: 92
Content-Type: application/json; charset=UTF-8
Date: Mon, 24 Dec 2012 18:27:57 GMT
Server: waitress

{"errors": {"lastname": "Required", "firstname": "Required"}, "error": "Validation failed."}

Another 400 error and another “error” message. Since this one’s a validation error, the JSON document in the response also includes an “errors” key with the field-specific errors (courtesy of colander).

Now let’s upload a photo:

$ curl -F file=@audrey.jpg http://127.0.0.1:6543/@@upload
{"file": [{"FileId": "50d8a64bbf90af0d7169df5e"}]}

The server creates a GridFS file in MongoDB for each file from the request
and responds with a JSON document containing a list of the file ObjectIds
for each parameter name from the request.

Let’s update Audrey Horne’s record with the new photo file:

$ curl -i -XPUT http://127.0.0.1:6543/people/50d7b56dbf90af0e96bc8433/ -d '{
 "_object_type": "person",
 "firstname": "Audrey",
 "lastname": "Horne",
 "photo": {"FileId": "50d8a64bbf90af0d7169df5e"}
 }'
HTTP/1.1 412 Precondition Failed
Content-Length: 75
Content-Type: application/json; charset=UTF-8
Date: Mon, 24 Dec 2012 20:04:37 GMT
Server: waitress

{"error": "Requests must supply If-Unmodified-Since and If-Match headers."}

What’s going on here? The views implement optimistic concurrency control [http://en.wikipedia.org/wiki/Optimistic_concurrency_control] in an effort to avoid silent data loss. PUT requests to update an existing resource and DELETE requests to remove an existing resource must include “If-Unmodified-Since” and “If-Match” headers whose values must match the “Last-Modified” and “Etag” headers from the response to a GET of that same resource. Let’s examine the response headers to get those two values:

$ curl -i http://127.0.0.1:6543/people/50d7b56dbf90af0e96bc8433/
HTTP/1.1 200 OK
Content-Length: 660
Content-Type: application/hal+json; charset=UTF-8
Date: Mon, 24 Dec 2012 20:13:42 GMT
Etag: "52779a9953bd01defd439bd29874c3d4"
Last-Modified: Mon, 24 Dec 2012 01:52:45 GMT
Server: waitress

{"_links": {"audrey:file": [], "self": {"href": "http://127.0.0.1:6543/people/50d7b56dbf90af0e96bc8433/"}, "collection": {"href": "http://127.0.0.1:6543/people/"}, "curie": {"href": "http://127.0.0.1:6543/relations/{rel}", "name": "audrey", "templated": true}, "audrey:reference": [], "describedby": {"href": "http://127.0.0.1:6543/people/@@schema/person"}}, "photo": null, "firstname": "Audrey", "lastname": "Horne", "_modified": "2012-12-24T01:52:45.281000+00:00", "_created": "2012-12-24T01:52:45.281000+00:00", "_title": "Audrey Horne", "_id": {"ObjectId": "50d7b56dbf90af0e96bc8433"}, "_etag": "52779a9953bd01defd439bd29874c3d4", "_object_type": "person"}

Now let’s try that PUT again with the two headers for OCC:

$ curl -i -H 'If-Unmodified-Since:Mon, 24 Dec 2012 01:52:45 GMT' \
-H 'If-Match:"52779a9953bd01defd439bd29874c3d4"' \
-XPUT http://127.0.0.1:6543/people/50d7b56dbf90af0e96bc8433/ -d '{
 "_object_type": "person",
 "firstname": "Audrey",
 "lastname": "Horne",
 "photo": {"FileId": "50d8a64bbf90af0d7169df5e"}
}'
HTTP/1.1 204 No Content
Content-Length: 0
Location: http://127.0.0.1:6543/people/50d7b56dbf90af0e96bc8433/
Content-Type: application/json; charset=UTF-8
Date: Mon, 24 Dec 2012 20:19:23 GMT
Server: waitress

Success! Let’s confirm the change by doing another GET:

$ curl http://127.0.0.1:6543/people/50d7b56dbf90af0e96bc8433/ | python -mjson.tool
{
 "_created": "2012-12-24T01:52:45.281000+00:00",
 "_etag": "3c418f678d1cb636fca4cadc599bf725",
 "_id": {
 "ObjectId": "50d7b56dbf90af0e96bc8433"
 },
 "_links": {
 "audrey:file": [
 {
 "href": "http://127.0.0.1:6543/people/50d7b56dbf90af0e96bc8433/@@download/50d8a64bbf90af0d7169df5e",
 "name": "50d8a64bbf90af0d7169df5e",
 "type": "image/jpeg"
 }
],
 "audrey:reference": [],
 "collection": {
 "href": "http://127.0.0.1:6543/people/"
 },
 "curie": {
 "href": "http://127.0.0.1:6543/relations/{rel}",
 "name": "audrey",
 "templated": true
 },
 "describedby": {
 "href": "http://127.0.0.1:6543/people/@@schema/person"
 },
 "self": {
 "href": "http://127.0.0.1:6543/people/50d7b56dbf90af0e96bc8433/"
 }
 },
 "_modified": "2012-12-24T20:19:23.660000+00:00",
 "_object_type": "person",
 "_title": "Audrey Horne",
 "firstname": "Audrey",
 "lastname": "Horne",
 "photo": {
 "FileId": "50d8a64bbf90af0d7169df5e"
 }
}

The “photo” is no longer null and the list of “file” links now
contains one item with type=”image/jpeg” and name=”50d8a64bbf90af0d7169df5e”.
A client could match up that name with the value of the photo FileId.

Try viewing the photo by hitting http://127.0.0.1:6543/people/50d7b56dbf90af0e96bc8433/@@download/50d8a64bbf90af0d7169df5e

You could also traverse to the photo attribute like so:
http://127.0.0.1:6543/people/50d7b56dbf90af0e96bc8433/photo

As our final stop before ending this introduction, let’s try out the most basic usage of the search api.
We’ll do a search for “dale”:

$ curl http://127.0.0.1:6543/@@search?q=dale | python -mjson.tool
{
 "_links": {
 "item": [
 {
 "href": "http://127.0.0.1:6543/people/50d7b986bf90af0e96bc8434/",
 "name": "people:50d7b986bf90af0e96bc8434",
 "title": "Dale Cooper"
 }
],
 "self": {
 "href": "http://127.0.0.1:6543/@@search?q=dale"
 }
 },
 "_summary": {
 "batch": 1,
 "collections": [],
 "per_batch": 20,
 "q": "dale",
 "sort": null,
 "total_batches": 1,
 "total_items": 1
 }
}

The search found Dale’s Person object. As you might guess, if there were lots of results they would be batched with “next” and “prev” links.

Well that wraps up this introduction. It didn’t cover everything, but hopefully it provided a sufficient taste.

Resource Modelling

Audrey provides some base resource classes for a developer to subclass
to model the objects specific to their application. The main classes
are:

1. audrey.resources.object.Object - This is the fundamental
building block of an Audrey application. Objects have methods to
save/load/remove themselves in MongoDB and index/reindex/unindex
themselves in ElasticSearch.

2. audrey.resources.collection.Collection - Collections are sets
of Objects. They correspond to MongoDB collections and have various methods
to access and manipulate their child objects.

3. audrey.resources.root.Root - Root is the container of
Collections and represents the root of your app. It also provides
various “global” services (such as search, cross-collection references
and file uploads/downloads).

As the application developer, you define your Object classes (using colander
to define the schema for each class), your Collection classes
(specifying which Object classes can be created in each Collection),
and a Root class (specifying the list of Collections).
Audrey then provides what I hope is a comfortable and Pythonic interface
that handles the boring, repetitve yet error-prone details of interacting
with MongoDB and ElasticSearch, validating your schemas, etc.

Note

The base Object and Collection classes don’t allow explicit control of the __name__ attribute used for traversal. For cases where you need such control, use the audrey.resources.object.NamedObject and audrey.resources.collection.NamingCollection classes instead.

After you create a new project using the audrey scaffold (as described
in Creating a new project), you’ll have a couple of example
Objects and Collections defined in the file resources.py inside
your package directory (which will be the same name as your project name,
but in lowercase). You’ll of course want to replace these examples with
your own Objects and Collections, and may even want to split the single
file up into a resources sub-package.

Let’s take a close look at the example resources.py file and see
how it subclasses the base Audrey classes. The file should have content
similar to the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

	import audrey
import colander

The following are just some example resource classes to get
you started using Audrey.

class Person(audrey.resources.object.Object):
 _object_type = "person"

 _schema = colander.SchemaNode(colander.Mapping())
 _schema.add(colander.SchemaNode(colander.String(), name='firstname'))
 _schema.add(colander.SchemaNode(colander.String(), name='lastname'))
 _schema.add(colander.SchemaNode(audrey.types.File(), name='photo',
 default=None, missing=None))

 def get_title(self):
 parts = []
 for att in ('firstname', 'lastname'):
 val = getattr(self, att, '')
 if val:
 parts.append(val)
 if parts:
 return " ".join(parts)
 else:
 return "Untitled"

class People(audrey.resources.collection.Collection):
 _collection_name = 'people'
 _object_classes = (Person,)

A deferred schema binding. Used to populate the missing attribute
of Post.dateline at runtime.
@colander.deferred
def deferred_datetime_now(node, kw):
 return audrey.dateutil.utcnow(zero_seconds=True)

class Post(audrey.resources.object.Object):
 _object_type = "post"

 _schema = colander.SchemaNode(colander.Mapping())
 _schema.add(colander.SchemaNode(colander.String(), name='title'))
 _schema.add(colander.SchemaNode(colander.DateTime(), name='dateline',
 missing=deferred_datetime_now))
 _schema.add(colander.SchemaNode(colander.String(), name='body',
 is_html=True))
 _schema.add(colander.SchemaNode(
 audrey.types.Reference(collection='people'),
 name='author', default=None, missing=None))

 @classmethod
 def get_class_schema(cls, request=None):
 return cls._schema.bind()

 def get_title(self):
 return getattr(self, 'title', None) or 'Untitled'

class Posts(audrey.resources.collection.Collection):
 _collection_name = 'posts'
 _object_classes = (Post,)

class Root(audrey.resources.root.Root):
 _collection_classes = (People, Posts,)

def root_factory(request): # pragma: no cover
 return Root(request)

Starting at line 7, a Person class is defined that subclasses audrey.resources.object.Object.

At line 8, the class attribute _object_type is overridden. The value of
this attribute should be a string that uniquely identifies the Object type
(within the context of your project). It’s used in many places as a key
to lookup a given Object class. There are no restrictions on the characters it may contain, so feel free to make it human-friendly (using spaces instead of underscores to separate words, for example).

In lines 10-14, the class attribute _schema is overridden. The value of
this attribute should be a colander schema representing the user-editable
attributes for the Object type (the sort of attributes that might
be shown as fields in an edit form). This is standard colander stuff, and
you can use all the colander types (including Mapping and Sequence).
Additionally Audrey defines a couple of its own colander types:

1. audrey.types.File - This type represents an uploaded file which
will be stored in the MongoDB GridFS. As an example, see line 15 where a
File attribute with the name photo is defined for the person type.

2. audrey.types.Reference - This type represents a reference
to another Object (possibly in another collection).
As an example, see lines 46-48 where a Reference attribute with the name author is defined to allow a reference from the post type to the person type.

In lines 16-25, the method get_title() is overridden. This method should
return a string suitable for use as a human-friendly title of an Object
instance (as might be shown as the text in a link to the object).
If you don’t override this method, it will return the object’s __name__
by default. The implementation of Person.get_title() is a little long
since it tries to be flexible and handle cases where the “firstname” and “lastname” attributes may be missing. The implementation
of Post.get_title() at line 45 is a one-liner suitable for types that
have a single attribute that’s a natural fit for a title.

For a lot of object types, that’s all you’ll need to override.
It should go without saying that since these are just Python classes,
you’re free to override other methods and add your own to suit your
specific needs.

Moving on, lines 27-29 define a People class that subclasses audrey.resources.collection.Collection. This is pretty short and sweet.

Line 28 overrides the _collection_name class attribute. The value of this
attribute is a string that uniquely identifies the Collection within the content of your project. It’s used as a key/name to traverse from the root of the app
to a singleton instance of the Collection.

Line 29 overrides the _object_classes class attribute. The value of this attribute is a sequence of Object classes representing the types of Objects that may exist in the Collection. In this case, the People Collection is homogenous and only contains Person Objects. You can, however, define Collections that may contain multiple Object types (presumably with some common sub-schema). When creating Object types that will be in a non-homogenous Collection, be sure to set the audrey.resources.object.Object._save_object_type_to_mongo class attribute to True; otherwise the Collection will raise an exception while deserializing from MongoDB since it won’t be able to determine the correct Object class to construct.

Lines 31-61 define another Object type and another homogenous Collection. The Post class demonstrates overriding the audrey.resources.object.Object.get_class_schema() class method to do deferred schema binding at runtime.

Lines 63-64 define a Root class that subclasses audrey.resources.root.Root and overrides the _collection_classes class attribute. The value of this attribute is a sequence of Collection classes representing all the Collections in use in the app.

Lines 66-67 define a root_factory() function which returns an instance of Root for a request. This function is used by Audrey to configure the Pyramid application to find the traversal root.

If you haven’t read the Introduction section yet, you may want to now.
It demonstrates some of the functionality Audrey provides using the
Person and People classes defined here as examples.

You may also want to explore the API documentation to discover further functionality and details.

Installation

Note

I’m developing Audrey on Linux. I’m assuming that the instructions below would work just as well under OS X, but can’t say for sure. No idea about Windows.

Prerequisites

	Python 2.7 and virtualenv

If you don’t already have these, refer to the Pyramid docs for instructions [http://docs.pylonsproject.org/projects/pyramid/en/1.4-branch/narr/install.html].

	MongoDB

If you don’t already have a MongoDB server, install the latest production release from http://www.mongodb.org/downloads

If you just want to quickly try out Audrey, here’s a recipe for running a MongoDB server in the foreground under your non-root user account:

wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.0.6.tgz
tar xfz mongodb-linux-x86_64-2.0.6.tgz
ln -s mongodb-linux-x86_64-2.0.6 mongodb
cd mongodb
mkdir -p data
bin/mongod --dbpath=data --rest

	ElasticSearch (optional; full text and cross-collection search won’t work without it)

If you don’t already have an ElasticSearch server, install the latest production release from http://www.elasticsearch.org/download/

If you just want to quickly try out Audrey, here’s a recipe for running an ElasticSearch server in the foreground under your non-root user account:

wget http://download.elasticsearch.org/elasticsearch/elasticsearch/elasticsearch-0.20.2.tar.gz
tar xfz elasticsearch-0.20.2.tar.gz
ln -s elasticsearch-0.20.2 elasticsearch
cd elasticsearch
bin/plugin -install elasticsearch/elasticsearch-transport-thrift/1.4.0
bin/elasticsearch -f

Setup Audrey

	Create and activate a Python virtual environment. For example:

virtualenv myenv
cd myenv
source bin/activate

	Move or clone the Audrey directory from Github into myenv.
Then:

cd Audrey
python setup.py install

Wait patiently for all of the dependencies to download and install.

[FIXME: Upload Audrey to PyPI so you can just pip install it.]

Creating a new project

Audrey includes a scaffold to bootstrap a new project. Run it from the root directory of your virtualenv like this example:

cd $VIRTUAL_ENV
pcreate -s audrey MyProject
cd MyProject
python setup.py develop

As examples to get you started, myaudreyproject/resources.py defines two
object types (Person and Post) as well as two collections (People and Posts)
and a Root class to tie it all together. You will of course want to replace
these classes with your own app-specific types, but for now just refer to them
as you walk through the Resource Modelling section and see how everything fits together.

If you aren’t running MongoDB and ElasticSearch on default ports on localhost (as described in the Prerequisites section above), edit development.ini and adjust the connection settings mongo_uri, mongo_name, elastic_uri and elastic_name.

Startup commands

You can now use the usual Pyramid commands, such as these examples.

Start the web server:

pserve development.ini --reload

Start an interactive shell:

pshell development.ini#main

Run tests:

nosetests --cover-package=myproject --cover-erase --with-coverage --cover-html

API

audrey.resources

object

	
class audrey.resources.object.NamedObject(request, **kwargs)

	A subclass of Object that has an editable __name__
attribute.

	
get_nonschema_values()

	Get the names and values of “non-schema” attributes.

	Return type:	dictionary with the same keys as returned by Object.get_nonschema_values() plus:

	“__name__”: string or None

	
class audrey.resources.object.Object(request, **kwargs)

	Base class for objects that can be stored in MongoDB and
indexed in ElasticSearch.

Developers extending Audrey should create their own subclass(es) of
Object that:

	override class attribute _object_type; this string should
uniquely identify the Object type within the context of an Audrey
application

	override either the _schema class attributes or the
get_class_schema() class method.
Either way, get_class_schema() should return a colander schema for
the type.

	override get_title() to return a suitable title string for an
instance of the type.

If the type has some non-schema attributes that you store in Mongo,
override get_nonschema_values() and set_nonschema_values().
When overriding, be sure to call the superclass methods since the base
Object type uses these methods for metadata (_id, _created, etc).

If the type is to be part of a non-homogenous collection, override
the class attribute _save_object_type_to_mongo to True.
This is defaulted to False under the assumption that homogenous
collections are the norm, in which case storing the same _object_type
in every document is redundant.

If ElasticSearch indexing isn’t desired, override the class attribute _use_elastic to False.

	
dereference(reference)

	Return the object referred to by reference.

	Parameters:	reference (audrey.resources.reference.Reference or None) – a reference

	Return type:	Object or None

	
generate_etag()

	Compute an Etag based on the object’s schema values.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	
get_all_files()

	Returns a list of all the File objects that this object
refers to (via schema or non-schema attributes).

	Return type:	list of audrey.resources.file.File instances

	
get_all_referenced_objects()

	Returns a list of all the Objects that this object refers
to (via schema or non-schema attributes).

	Return type:	list of Object instances

	
get_all_references()

	Returns a list of all the Reference objects that this object
refers to (via schema or non-schema attributes).

	Return type:	list of audrey.resources.reference.Reference objects

	
get_all_values()

	Returns a dictionary of both schema and nonschema values.

	Return type:	dictionary

	
classmethod get_class_schema(request=None)

	Return a colander schema describing the user-editable
attributes for this Object type.

	Parameters:	request (pyramid.request.Request) – the current request, possibly None

	Return type:	colander.SchemaNode

Audrey makes use of the following custom SchemaNode kwargs
for colander.String nodes:

	include_in_text: boolean, defaults to True; if True, the value will be included in Elastic’s full text index.

	is_html: boolean, defaults to False; if True, the value will be stripped of html markup before being indexed in Elastic.

The default implementation of this method simply returns the
class attribute _schema.

If a request is passed, you may opt to use it to get access
to various interesting bits of data like the current user, a context
object, etc. You could use that to set default values, vocabulary
lists, etc. If you opt to customize the schema for each request,
be sure to start by creating a deepcopy of _schema, or
ditch the use of that class attribute altogether and construct
the schema inside this method.

	
get_dbref(include_database=False)

	Return a DBRef for this object.

	Parameters:	include_database (boolean) – Should the database name be included in the DBRef?

	Return type:	bson.dbref.DBRef

	
get_elastic_connection()

	Return a connection to the ElasticSearch server.
May return None if the class attribute _use_elastic
is False for this Object type or the Collection,
or if no ElasticSearch connection is configured for the app.

	Return type:	pyes.es.ES or None

	
get_elastic_doctype()

	Return the ElasticSearch document type for this object.

Note that Audrey uses Collection names as the Elastic doctype.
This is just a convenience method that returns the type
from the collection.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	
get_elastic_index_doc()

	Returns a dictionary representing this object suitable
for indexing in ElasticSearch.

	Return type:	dictionary

	
get_elastic_index_name()

	Return the name of the ElasticSearch index for this object.

Note that all objects in an Audrey app will use the same Elastic
index (the index name is analogous to a database name).
This is just a convenience method that returns the name from the root.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	
get_fulltext_to_index()

	Returns a string containing the “full text” for this object.

Text is found by walking over the schema values looking for
colander.String nodes that don’t have the attribute
include_in_text set to False. (If the attribute is missing,
it defaults to True.)

If the schema node has the attribute is_html set to True,
the text value will be stripped of HTML markup. (If the attribute
is missing, it defaults to False.)

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	
get_gridfs_file(file)

	Return the GridFS file referred to by file.

	Parameters:	file (audrey.resources.file.File or None) – a file

	Return type:	gridfs.grid_file.GridOut or None

	
get_mongo_collection()

	Return the MongoDB Collection that contains this object’s document.

	Return type:	pymongo.collection.Collection

	
get_mongo_save_doc()

	Returns a dictionary representing this object suitable
for saving in MongoDB.

	Return type:	dictionary

	
get_nonschema_values()

	Get the names and values of “non-schema” attributes.

	Return type:	dictionary with the keys:
	“_id”: ObjectId or None

	“_created”: datetime.datetime (UTC) or None

	“_modified”: datetime.datetime (UTC) or None

	“_etag”: string or None

	
get_schema()

	Return the colander schema for this Object type.

	Return type:	colander.SchemaNode

	
get_schema_names()

	Return the names of the top-level schema nodes.

	Return type:	list of strings

	
get_schema_values()

	Return a dictionary of this object’s schema names and values.

	Return type:	dictionary

	
get_title()

	Return a “title” for this object.
This should ideally be a human-friendly string such as might
be displayed as the text of a link to the object.

The default implementation boringly returns the object’s
__name__ or “Untitled”.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	
index()

	Index (or reindex) this object in ElasticSearch.

Note that this is a no-op when use of ElasticSearch is disabled
(for this Object, its collection or the app).

	
load_mongo_doc(doc)

	Update the object’s attribute values using values from doc.

Note that as appropriate, ObjectIds and DBRefs will be converted
to audrey.resources.reference.Reference or audrey.resources.file.File instances.

	Parameters:	doc (dictionary) – a MongoDB document (such as returned by pymongo.collection.Collection.find_one())

	
save(validate_schema=True, index=True, set_modified=True, set_etag=True)

	Save this object in MongoDB (and optionally ElasticSearch).

	Parameters:	
	validate_schema (boolean) – Should the colander schema be validated first? If True, may raise colander.Invalid.

	index (boolean) – Should the object be (re-)indexed in ElasticSearch?

	set_modified (boolean) – Should the object’s last modified timestamp (_modified) be updated?

	set_etag (boolean) – Should the object’s Etag be updated?

	
set_all_schema_values(**kwargs)

	Set attribute values from kwargs for all
top-level schema nodes. Schema nodes that are missing
in kwargs will be set to None.

	
set_nonschema_values(**kwargs)

	Set this instance’s non-schema values from kwargs.

	
set_schema_values(**kwargs)

	Set attribute values for the top-level schema nodes
present in kwargs.

	
unindex()

	Unindex this object in ElasticSearch.

	Return type:	integer

Returns the number of items affected (normally this will
be 1, but it may be 0 if use of ElasticSearch is disabled or
if the object wasn’t indexed to begin with).

	
validate_schema()

	Runs the instance’s schema attribute values
thru a serialize-deserialize roundtrip.
This will raise a colander.Invalid exception if the
schema fails to validate.
Otherwise it will have the effect of applying default and
missing values.

collection

	
class audrey.resources.collection.Collection(request)

	A set of Objects. Corresponds to a MongoDB Collection (and
an ElasticSearch “type”).

Developers extending Audrey should create their own subclass(es) of
Collection that:

	override class attribute _collection_name; this string is used
for traversal to a Collection from Root, as the name of the MongoDB
collection, and as the name of the ElasticSearch doctype.

	override either the _object_classes class attribute or
the get_object_classes() class method.
Either way, get_object_classes() should return
a sequence of the audrey.resources.object.Object classes
that can be stored in this collection.

If Mongo indexes are desired for the collection, override the class method
get_mongo_indexes().

If an ElasticSearch mapping is desired, override the class method get_elastic_mapping().

If ElasticSearch indexing isn’t desired, override the class attribute _use_elastic to False.

	
add_child(child, validate_schema=True)

	Add a child object to this collection.
Note that this will ultimately call the child’s audrey.resources.object.Object.save() method, persisting it in Mongo (and indexing in Elastic).
If validate_schema is True, a colander.Invalid exception may be raised if schema validation fails.

	Parameters:	
	child (audrey.resources.object.Object) – a child to be added to this collection

	validate_schema (boolean) – Should we validate the schema before adding the child?

	
clear_elastic()

	Delete all documents from Elastic for this Collection’s doctype.

	
construct_child_from_mongo_doc(doc)

	Given a MongoDB document (presumably from this collection),
construct and return an Object.

	Parameters:	doc (dictionary) – a MongoDB document (such as returned by pymongo.collection.Collection.find_one())

	Return type:	audrey.resources.object.Object

	
delete_child(child_obj)

	Remove a child object from this collection.

	Parameters:	child (audrey.resources.object.Object) – a child to be added to this collection

	
delete_child_by_id(id)

	Remove a child object (identified by the given id) from this collection.

	Parameters:	name (bson.objectid.ObjectId) – ID of the child to remove

	Return type:	integer indicating number of children removed. Should be 1 normally, but may be 0 if no child was found with the given id.

	
delete_child_by_name(name)

	Remove a child object (identified by the given name) from this collection.

	Parameters:	name (string [https://docs.python.org/2/library/string.html#module-string]) – name of the child to remove

	Return type:	integer indicating number of children removed. Should be 1 normally, but may be 0 if no child was found with the given name.

	
get_child(spec=None, sort=None, fields=None)

	Return the first child matching the query parms.

	Parameters:	
	spec (dictionary or None) – a MongoDB query spec (as used by pymongo.collection.Collection.find())

	sort (a list of (key, direction) tuples or None) – a MongoDB sort parameter

	fields (list of strings or dict with boolean values or None) – a list of field names to retrieve or None for all fields. May also be a dict to exclude fields (example: fields={'body':False}).

	Return type:	audrey.resources.object.Object or None

	
get_child_by_id(id, fields=None)

	Return the child object for the given id.

	Parameters:	
	id (bson.objectid.ObjectId) – an ObjectId

	fields (list of strings or dict with boolean values or None) – a list of field names to retrieve or None for all fields. May also be a dict to exclude fields (example: fields={'body':False}).

	Return type:	audrey.resources.object.Object class or None

	
get_child_by_name(name, fields=None)

	Return the child object for the given name.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – an object name

	fields (list of strings or dict with boolean values or None) – a list of field names to retrieve or None for all fields. May also be a dict to exclude fields (example: fields={'body':False}).

	Return type:	audrey.resources.object.Object class or None

	
get_child_names(spec=None, sort=None, skip=0, limit=0)

	Return the child names matching the query parameters.

	Parameters:	
	spec (dictionary or None) – a MongoDB query spec (as used by pymongo.collection.Collection.find())

	sort (a list of (key, direction) tuples or None) – a MongoDB sort parameter

	skip (integer) – number of documents to omit from start of result set

	limit (integer) – maximum number of children to return

	Return type:	a sequence of __name__ strings

	
get_child_names_and_total(spec=None, sort=None, skip=0, limit=0)

	Query for children and return the total number of matching children
and a list of the child names (or a batch of child names if the
limit parameter is non-zero).

	Parameters:	
	spec (dictionary or None) – a MongoDB query spec (as used by pymongo.collection.Collection.find())

	sort (a list of (key, direction) tuples or None) – a MongoDB sort parameter

	skip (integer) – number of documents to omit from start of result set

	limit (integer) – maximum number of children to return

	Return type:	dictionary with the keys:

	“total” - an integer indicating the total number of children matching the query spec

	“items” - a sequence of __name__ strings

	
get_children(spec=None, sort=None, skip=0, limit=0, fields=None)

	Return the children matching the query parameters.

	Parameters:	
	spec (dictionary or None) – a MongoDB query spec (as used by pymongo.collection.Collection.find())

	sort (a list of (key, direction) tuples or None) – a MongoDB sort parameter

	skip (integer) – number of documents to omit from start of result set

	limit (integer) – maximum number of children to return

	fields (list of strings or dict with boolean values or None) – a list of field names to retrieve or None for all fields. May also be a dict to exclude fields (example: fields={'body':False}).

	Return type:	a sequence of audrey.resources.object.Object instances

	
get_children_and_total(spec=None, sort=None, skip=0, limit=0, fields=None)

	Query for children and return the total number of matching children
and a list of the children (or a batch of children if the limit
parameter is non-zero).

	Parameters:	
	spec (dictionary or None) – a MongoDB query spec (as used by pymongo.collection.Collection.find())

	sort (a list of (key, direction) tuples or None) – a MongoDB sort parameter

	skip (integer) – number of documents to omit from start of result set

	limit (integer) – maximum number of children to return

	fields (list of strings or dict with boolean values or None) – a list of field names to retrieve or None for all fields. May also be a dict to exclude fields (example: fields={'body':False}).

	Return type:	dictionary with the keys:

	“total” - an integer indicating the total number of children matching the query spec

	“items” - a sequence of audrey.resources.object.Object instances

	
get_children_lazily(spec=None, sort=None, fields=None)

	Return child objects matching the query parameters using a generator.
Great when you want to iterate over a potentially large number of children
and don’t want to load them all into memory at once.

	Parameters:	
	spec (dictionary or None) – a MongoDB query spec (as used by pymongo.collection.Collection.find())

	sort (a list of (key, direction) tuples or None) – a MongoDB sort parameter

	fields (list of strings or dict with boolean values or None) – a list of field names to retrieve or None for all fields. May also be a dict to exclude fields (example: fields={'body':False}).

	Return type:	a generator of audrey.resources.object.Object instances

	
get_elastic_connection()

	Return a connection to the ElasticSearch server.
May return None if the class attribute _use_elastic
is False, or if no ElasticSearch connection is configured for
the app.

	Return type:	pyes.es.ES or None

	
get_elastic_doctype()

	Return the ElasticSearch document type for this collection.

Note that Audrey uses the _collection_name as the doctype.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	
get_elastic_index_name()

	Return the name of the ElasticSearch index.

Note that all objects in an Audrey app will use the same Elastic
index (the index name is analogous to a database name).
This is just a convenience method that returns the name from the root.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	
classmethod get_elastic_mapping()

	Return a dictionary representing ElasticSearch mapping properties
for this collection.
Refer to http://www.elasticsearch.org/guide/reference/mapping/

	Return type:	dictionary

	
get_mongo_collection()

	Return the MongoDB Collection for this collection.

	Return type:	pymongo.collection.Collection

	
classmethod get_mongo_indexes()

	Return a list of data about the desired MongoDB indexes for this
collection. The first item of each tuple is the ensure_index
key_or_list parm. The second item of each tuple is a dictionary
that will be passed as kwargs.

	Return type:	sequence of two-item tuples, each with the two parameters to be passed to a call to pymongo.collection.Collection.ensure_index()

The default implementation returns an empty list, meaning that no indexes will be ensured.

	
get_object_class(object_type)

	Return the class that corresponds to the object_type string.

	Parameters:	object_type (string [https://docs.python.org/2/library/string.html#module-string]) – name of an object type

	Return type:	audrey.resources.object.Object class or None

	
classmethod get_object_classes()

	Returns a sequence of the Object classes that this Collection
manages.

	Return type:	sequence of audrey.resources.object.Object classes

	
get_object_types()

	Return the _object_types that this collection manages.

	Return type:	list of strings

	
has_child_with_id(id)

	Does this collection have a child with the given id?

	Parameters:	id (bson.objectid.ObjectId) – an ObjectId

	Return type:	boolean

	
has_child_with_name(name)

	Does this collection have a child with the given name?

	Parameters:	name (string [https://docs.python.org/2/library/string.html#module-string]) – an object name

	Return type:	boolean

	
reindex_all(clear=False)

	Reindex all this collection’s objects in Elastic.
Returns a count of the objects reindexed.

	Parameters:	clear (boolean) – Should we clear the index first?

	Return type:	integer

	
veto_add_child(child)

	Check whether the collection will allow the given child
to be added.
If there is some objection, return a string describing the objection.
Else return None to indicate the child is OK.

	Parameters:	child (audrey.resources.object.Object) – a child to be added to this collection

	Return type:	string or None

	
class audrey.resources.collection.NamingCollection(request)

	A subclass of Collection that allows control over the
__name__ attribute.

	
rename_child(name, newname, validate=True)

	Rename a child of this collection.
May raise a audrey.exceptions.Veto exception if
validate is True and the newname is vetoed.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – name of the child to rename

	newname (string [https://docs.python.org/2/library/string.html#module-string]) – new name for the child

	validate (boolean) – Should we validate the new name first?

	Return type:	integer indicating number of children renamed. Should be 1 normally, but may be 0 if newname == name.

	
validate_name_format(name)

	Is the given name in an acceptable format?
If so, return None. Otherwise return an error string
explaining the problem.

	Parameters:	name (string [https://docs.python.org/2/library/string.html#module-string]) – name of a child object

	Return type:	string or None

If you want to restrict the format of names (legal characters, etc)
override this method to check the name and return an error if needed.

Note that this method doesn’t have to test whether
the name is empty or already in use.

	
veto_child_name(name, unique=True)

	Check whether the collection will allow a child with the given
name to be added.
If there is some objection, return a string describing the objection.
Else return None to indicate the child name is OK.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – name of a child object

	unique (boolean) – Should we check that the name is unique (not already in use)?

	Return type:	string or None

root

	
class audrey.resources.root.Root(request)

	The root of the application (starting point for traversal) and container
of Collections.

Developers extending Audrey should create their own subclass of Root
that:

	overrides either the _collection_classes class attribute or
the get_collection_classes() class method. Either way, get_collection_classes() should return a sequence of audrey.resources.collection.Collection classes.

	
basic_fulltext_search(search_string='', collection_names=None, skip=0, limit=10, sort=None, highlight_fields=None, object_fields=None)

	A functional basic full text search.
Also a good example of using the other search methods.

All parms are optional. Calling the method without specifying any parms
queries for anything and everything.

	Parameters:	
	query (string [https://docs.python.org/2/library/string.html#module-string]) – a query string that may contain wildcards or boolean operators

	collection_names (list of strings, or None) – restrict search to specific Collections

	skip (integer) – number of results to omit from start of result set

	limit (integer) – maximum number of results to return

	sort (string or None) – a audrey.sortutil.SortSpec string; default sort is by relevance

	highlight_fields (list of strings, or None) – a list of Elastic mapping fields in which to highlight search_string matches. For example, to highlight matches in Audrey’s default full “text” field: ['text']

	object_fields – like fields param to audrey.resources.collection.Collection.get_children())

	Return type:	dictionary

Returns a dictionary like get_objects_and_highlights_for_raw_search_results() when highlight_fields. Otherwise returns a dictionary like get_objects_for_raw_search_results().

	
clear_elastic()

	Delete all documents from Elastic for all Collections.

	
create_gridfs_file(file, filename, mimetype, parents=None)

	Create a new GridFS file.

	Parameters:	
	file (a file-like object (providing a read() method) or a string) – file content/data

	filename (string [https://docs.python.org/2/library/string.html#module-string]) – a filename

	mimetype (string [https://docs.python.org/2/library/string.html#module-string]) – a mime-type

	parents (list of bson.dbref.DBRef instances, or None) – list of references to the Objects that “own” the file

	Return type:	audrey.resources.file.File

	
create_gridfs_file_from_fieldstorage(fieldstorage, parents=None)

	Create a new GridFS file from the given fieldstorage.

	Parameters:	
	fieldstorage (cgi.FieldStorage) – a FieldStorage (such as found in WebOb request.POST for each file upload)

	parents (list of bson.dbref.DBRef instances, or None) – list of references to the Objects that “own” the file

	Return type:	audrey.resources.file.File

	
get_collection(name)

	Return the Collection for the given name.
The returned Collection will have the Root object
as its traversal __parent__.

	Parameters:	name (string [https://docs.python.org/2/library/string.html#module-string]) – a collection name

	Return type:	audrey.resources.collection.Collection class or None

	
classmethod get_collection_classes()

	Returns a sequence of the Collection classes in this app.

	Return type:	sequence of audrey.resources.collection.Collection classes

	
get_collection_names()

	Get the names of the collections.

	Return type:	list of strings

	
get_collections()

	Get all the collections.

	Return type:	list of audrey.resources.collection.Collection instances

	
get_elastic_connection()

	Return a connection to the ElasticSearch server.
May return None if no ElasticSearch connection is configured
for the app.

	Return type:	pyes.es.ES or None

	
get_elastic_index_name()

	Return the name of the ElasticSearch index.

Note that all objects in an Audrey app will use the same Elastic
index (the index name is analogous to a database name).

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	
get_gridfs()

	Return the MongoDB GridFS for the app.

	Return type:	gridfs.GridFS

	
get_mongo_collection(coll_name)

	Return the collection identified by coll_name.

	Return type:	pymongo.collection.Collection

	
get_mongo_connection()

	Return a connection to the MongoDB server.

	Return type:	pymongo.connection.Connection

	
get_mongo_db()

	Return the MongoDB database for the app.

	Return type:	pymongo.database.Database

	
get_mongo_db_name()

	Return the name of the MongoDB database.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	
get_object_for_collection_and_id(collection_name, id, fields=None)

	Return the Object identified by the given collection_name
and id.

	Parameters:	
	collection_name (string [https://docs.python.org/2/library/string.html#module-string]) – name of a collection

	id (bson.objectid.ObjectId) – an ObjectId

	fields – like fields param to audrey.resources.collection.Collection.get_children())

	Return type:	audrey.resources.object.Object class or None

	
get_object_for_reference(reference, fields=None)

	Return the Object identified by the given reference.

	Parameters:	
	reference (audrey.resources.reference.Reference) – a reference

	fields – like fields param to audrey.resources.collection.Collection.get_children())

	Return type:	audrey.resources.object.Object class or None

	
get_objects_and_highlights_for_query(query=None, doc_types=None, object_fields=None, **query_parms)

	A convenience method that returns the result of calling
get_objects_and_highlights_for_raw_search_results()
on search_raw() with the given parameters.

	
get_objects_and_highlights_for_raw_search_results(results, object_fields=None)

	Given a pyes result dictionary (such as returned by
search_raw()) return a new dictionary with the keys:

	“total”: total number of matching hits

	“took”: search time in ms

	“items”: a list of dictionaries, each with the keys “object” and highlight”

	Parameters:	object_fields – like fields param to audrey.resources.collection.Collection.get_children())

	
get_objects_for_query(query=None, doc_types=None, object_fields=None, **query_parms)

	A convenience method that returns the result of calling
get_objects_for_raw_search_results()
on search_raw() with the given parameters.

	
get_objects_for_raw_search_results(results, object_fields=None)

	Given a pyes result dictionary (such as returned by
search_raw()) return a new dictionary with the keys:

	“total”: total number of matching hits

	“took”: search time in ms

	“items”: a list of audrey.resources.object.Object instances

	Parameters:	object_fields – like fields param to audrey.resources.collection.Collection.get_children())

	
reindex_all(clear=False)

	Reindex all documents in Elastic for all Collections.
Returns a count of the objects reindexed.

	Parameters:	clear (boolean) – Should we clear the index first?

	Return type:	integer

	
search_raw(query=None, doc_types=None, **query_parms)

	A thin wrapper around pyes.ES.search_raw()

	Parameters:	
	query – a pyes.query.Search or a pyes.query.Query or a custom dictionary of search parameters using the query DSL to be passed directly

	doc_types (list of strings or None) – which doc types to search

	query_parms – extra kwargs

	Return type:	dictionary

The returned dictionary is like that returned by pyes.ES.search_raw()

Keys are [‘hits’, ‘_shards’, ‘took’, ‘timed_out’].

result[‘took’] is the search time in ms

result[‘hits’] has the keys: [‘hits’, ‘total’, ‘max_score’]

result[‘hits’][‘total’] is total number of hits

result[‘hits’][‘hits’] is a list of hit dictionaries, each with the keys: [‘_score’, ‘_type’, ‘_id’, ‘_source’, ‘_index’, ‘highlight’]
Although if the fields kwarg is a list of field names (instead
of the default value None), instead of a ‘_source’ key, each hit will
have a ‘_fields’ key whose value is a dictionary of the requested fields.

The “highlight” key will only be present if the query has highlight
fields and there was a match in at least one of those fields.
In that case, the value of “highlight” will be dictionary of strings.
Each dictionary key is a field name and each string is an HTML fragment
where the matched term is in an tag.

	
serve_gridfs_file_for_id(id)

	Attempt to serve the GridFS file referred to by id.

	Parameters:	id (bson.objectid.ObjectId) – an ObjectId

	Return type:	pyramid.response.Response if a matching file was found in the GridFS, otherwise pyramid.httpexceptions.HTTPNotFound

Warning

The following sections are incomplete and poorly formatted.
Should improve as I continue to work on the docstrings in the source.

file

	
class audrey.resources.file.File(_id)

	Wrapper around a GridFS file.
Instances of Object use this File type for attributes
that refer to files in the GridFS.

	
get_gridfs_file(request)

	Returns an instance of gridfs.grid_file.GridOut
for the GridFS file that this File object refers to by ID.
If no match in GridFS is found, returns None.

	
serve(request)

	Serve the GridFS file referred to by this object.
Returns a pyramid.response.Response if a matching file was found in the GridFS.
Otherwise returns pyramid.httpexceptions.HTTPNotFound.

reference

	
class audrey.resources.reference.IdReference(collection, id)

	Just a little syntactic sugar around Reference
with serialize_id_only = True.

	
class audrey.resources.reference.Reference(collection, id, serialize_id_only=False)

	Represents a reference to a document in MongoDB.
Similar to Mongo’s standard DBRef, but has an option
to serialize only the ID, which can be more space/bandwidth
efficient when the reference will always be to the same
collection.

	
dereference(context)

	Return the Object this Reference refers to.
context can be any resource and is simply used to find the root
(which in turn is used to resolve the reference).

audrey.types

	
class audrey.types.File

	colander type representing an audrey.resources.file.File
Serializes to/from a dict with the key “FileId” whose value is a
string representation of the file’s ID in the GridFS.

	
class audrey.types.Reference(collection=None)

	colander type representing an audrey.resources.reference.Reference.

This type constructor accepts one argument:

	collection

	The name of the audrey.resources.collection.Collection
that this reference will always refer to.
May be None if this reference may refer to multiple collections.

When collection is None, the Reference is serialized to and
deserialized from a dict with the keys:
“ObjectId”
“collection”

When collection is not None, the dictionary will only
have the “ObjectId” key.

audrey.views

	
audrey.views.str_to_bool(s, default=None)

	Interpret the given string s as a boolean value.
default should be one of None, True, or False.

	
audrey.views.str_to_list(s, default=None)

	Interpret the given string s as a comma-delimited list
of strings.

audrey.colanderutil

	
class audrey.colanderutil.SchemaConverter

	Converts a colander schema to a JSON Schema (expressed
as a data structure consisting of primitive Python types,
suitable for serializing to JSON).

audrey.dateutil

	
audrey.dateutil.convert_naive_datetime(dt, tz_from, tz_to)

	Convert a naive datetime.datetime “dt” from one timezone to another.
tz_from and tz_to may be either pytz.timezone instances, or timezone strings.
Examples:
Convert UTC datetime to US/Eastern:
convert_datetime(datetime.datetime.utcnow(), pytz.utc, ‘US/Eastern’)

Convert US/Eastern datetime to UTC:
convert_datetime(datetime.datetime.now(), ‘US/Eastern’, pytz.utc)

Convert US/Eastern datetime to US/Pacific:
convert_datetime(datetime.datetime.now(), ‘US/Eastern’, ‘US/Pacific’)

	
audrey.dateutil.utcnow(zero_seconds=False)

	Returns a timezone aware version of utcnow.
(datetime.datetime.utcnow() returns a naive version.)
If zero_seconds, the datetime will be rounded down to the minute.

audrey.sortutil

	
class audrey.sortutil.SortSpec(sort_string=None)

	It seems that everything that supports sorting has a different
way of specifying the sort parameters.
SortSpec tries to be a generic way to specify sort parms, and
has methods to convert to sort specifications used by other
systems in Audrey (MongoDB and Elastic).

SortSpec’s preferred way to represent sort parms is as a
comma-delimited string. Each part of the string is a field name
optionally prefixed with a plus or minus sign. Minus indicates
descending order; plus (or the absence of a sign) indicates ascending.

Example: “foo,-bar” or “+foo,-bar”
both indicate primary sort by “foo” ascending
and secondary sort by “bar” descending.

Rationale: Strings are easy to sling around as HTTP query parameters
(compared for example to Mongo’s sequence of two-tuples).
This string format is as simple, concise and understandable
(even for normal folks) as I could come up with (contrast with
Elastic’s more verbose ”:desc” suffixes).

audrey.exceptions

	
exception audrey.exceptions.Veto(msg)

	May be raised when an attempt is made to do something that the app
doesn’t allow, such as adding an object to a folder with a name that’s
already in use.
Higher level code (such as views) may want to catch these Veto exceptions
and present them to end users in a friendly manner.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 audrey	

 	
 	
 audrey.colanderutil	

 	
 	
 audrey.dateutil	

 	
 	
 audrey.exceptions	

 	
 	
 audrey.resources.collection	

 	
 	
 audrey.resources.file	

 	
 	
 audrey.resources.object	

 	
 	
 audrey.resources.reference	

 	
 	
 audrey.resources.root	

 	
 	
 audrey.sortutil	

 	
 	
 audrey.types	

 	
 	
 audrey.views	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | N
 | O
 | R
 | S
 | U
 | V

A

 	
 	add_child() (audrey.resources.collection.Collection method)

 	audrey.colanderutil (module)

 	audrey.dateutil (module)

 	audrey.exceptions (module)

 	audrey.resources.collection (module)

 	audrey.resources.file (module)

 	
 	audrey.resources.object (module)

 	audrey.resources.reference (module)

 	audrey.resources.root (module)

 	audrey.sortutil (module)

 	audrey.types (module)

 	audrey.views (module)

B

 	
 	basic_fulltext_search() (audrey.resources.root.Root method)

C

 	
 	clear_elastic() (audrey.resources.collection.Collection method)

 	(audrey.resources.root.Root method)

 	Collection (class in audrey.resources.collection)

 	
 	construct_child_from_mongo_doc() (audrey.resources.collection.Collection method)

 	convert_naive_datetime() (in module audrey.dateutil)

 	create_gridfs_file() (audrey.resources.root.Root method)

 	create_gridfs_file_from_fieldstorage() (audrey.resources.root.Root method)

D

 	
 	delete_child() (audrey.resources.collection.Collection method)

 	delete_child_by_id() (audrey.resources.collection.Collection method)

 	
 	delete_child_by_name() (audrey.resources.collection.Collection method)

 	dereference() (audrey.resources.object.Object method)

 	(audrey.resources.reference.Reference method)

F

 	
 	File (class in audrey.resources.file)

 	(class in audrey.types)

G

 	
 	generate_etag() (audrey.resources.object.Object method)

 	get_all_files() (audrey.resources.object.Object method)

 	get_all_referenced_objects() (audrey.resources.object.Object method)

 	get_all_references() (audrey.resources.object.Object method)

 	get_all_values() (audrey.resources.object.Object method)

 	get_child() (audrey.resources.collection.Collection method)

 	get_child_by_id() (audrey.resources.collection.Collection method)

 	get_child_by_name() (audrey.resources.collection.Collection method)

 	get_child_names() (audrey.resources.collection.Collection method)

 	get_child_names_and_total() (audrey.resources.collection.Collection method)

 	get_children() (audrey.resources.collection.Collection method)

 	get_children_and_total() (audrey.resources.collection.Collection method)

 	get_children_lazily() (audrey.resources.collection.Collection method)

 	get_class_schema() (audrey.resources.object.Object class method)

 	get_collection() (audrey.resources.root.Root method)

 	get_collection_classes() (audrey.resources.root.Root class method)

 	get_collection_names() (audrey.resources.root.Root method)

 	get_collections() (audrey.resources.root.Root method)

 	get_dbref() (audrey.resources.object.Object method)

 	get_elastic_connection() (audrey.resources.collection.Collection method)

 	(audrey.resources.object.Object method)

 	(audrey.resources.root.Root method)

 	get_elastic_doctype() (audrey.resources.collection.Collection method)

 	(audrey.resources.object.Object method)

 	get_elastic_index_doc() (audrey.resources.object.Object method)

 	get_elastic_index_name() (audrey.resources.collection.Collection method)

 	(audrey.resources.object.Object method)

 	(audrey.resources.root.Root method)

 	
 	get_elastic_mapping() (audrey.resources.collection.Collection class method)

 	get_fulltext_to_index() (audrey.resources.object.Object method)

 	get_gridfs() (audrey.resources.root.Root method)

 	get_gridfs_file() (audrey.resources.file.File method)

 	(audrey.resources.object.Object method)

 	get_mongo_collection() (audrey.resources.collection.Collection method)

 	(audrey.resources.object.Object method)

 	(audrey.resources.root.Root method)

 	get_mongo_connection() (audrey.resources.root.Root method)

 	get_mongo_db() (audrey.resources.root.Root method)

 	get_mongo_db_name() (audrey.resources.root.Root method)

 	get_mongo_indexes() (audrey.resources.collection.Collection class method)

 	get_mongo_save_doc() (audrey.resources.object.Object method)

 	get_nonschema_values() (audrey.resources.object.NamedObject method)

 	(audrey.resources.object.Object method)

 	get_object_class() (audrey.resources.collection.Collection method)

 	get_object_classes() (audrey.resources.collection.Collection class method)

 	get_object_for_collection_and_id() (audrey.resources.root.Root method)

 	get_object_for_reference() (audrey.resources.root.Root method)

 	get_object_types() (audrey.resources.collection.Collection method)

 	get_objects_and_highlights_for_query() (audrey.resources.root.Root method)

 	get_objects_and_highlights_for_raw_search_results() (audrey.resources.root.Root method)

 	get_objects_for_query() (audrey.resources.root.Root method)

 	get_objects_for_raw_search_results() (audrey.resources.root.Root method)

 	get_schema() (audrey.resources.object.Object method)

 	get_schema_names() (audrey.resources.object.Object method)

 	get_schema_values() (audrey.resources.object.Object method)

 	get_title() (audrey.resources.object.Object method)

H

 	
 	has_child_with_id() (audrey.resources.collection.Collection method)

 	
 	has_child_with_name() (audrey.resources.collection.Collection method)

I

 	
 	IdReference (class in audrey.resources.reference)

 	
 	index() (audrey.resources.object.Object method)

L

 	
 	load_mongo_doc() (audrey.resources.object.Object method)

N

 	
 	NamedObject (class in audrey.resources.object)

 	
 	NamingCollection (class in audrey.resources.collection)

O

 	
 	Object (class in audrey.resources.object)

R

 	
 	Reference (class in audrey.resources.reference)

 	(class in audrey.types)

 	reindex_all() (audrey.resources.collection.Collection method)

 	(audrey.resources.root.Root method)

 	
 	rename_child() (audrey.resources.collection.NamingCollection method)

 	Root (class in audrey.resources.root)

S

 	
 	save() (audrey.resources.object.Object method)

 	SchemaConverter (class in audrey.colanderutil)

 	search_raw() (audrey.resources.root.Root method)

 	serve() (audrey.resources.file.File method)

 	serve_gridfs_file_for_id() (audrey.resources.root.Root method)

 	
 	set_all_schema_values() (audrey.resources.object.Object method)

 	set_nonschema_values() (audrey.resources.object.Object method)

 	set_schema_values() (audrey.resources.object.Object method)

 	SortSpec (class in audrey.sortutil)

 	str_to_bool() (in module audrey.views)

 	str_to_list() (in module audrey.views)

U

 	
 	unindex() (audrey.resources.object.Object method)

 	
 	utcnow() (in module audrey.dateutil)

V

 	
 	validate_name_format() (audrey.resources.collection.NamingCollection method)

 	validate_schema() (audrey.resources.object.Object method)

 	
 	Veto

 	veto_add_child() (audrey.resources.collection.Collection method)

 	veto_child_name() (audrey.resources.collection.NamingCollection method)

 _static/down.png

nav.xhtml

 Table of Contents

 		Audrey

 		Introduction

 		Resource Modelling

 		Installation

 		Prerequisites

 		Setup Audrey

 		Creating a new project

 		Startup commands

 		API

 		audrey.resources

 		object

 		collection

 		root

 		file

 		reference

 		audrey.types

 		audrey.views

 		audrey.colanderutil

 		audrey.dateutil

 		audrey.sortutil

 		audrey.exceptions

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/comment.png

_static/comment-close.png

_static/up.png

