
Audit-Alembic
Release 0.2.0

Aug 03, 2017

Contents

1 Overview 1
1.1 Installation . 1
1.2 Getting started . 1
1.3 Full Documentation . 2
1.4 Development . 2

2 Installation 5

3 Usage 7

4 Reference 9
4.1 audit_alembic . 9

5 Contributing 11
5.1 Bug reports . 11
5.2 Documentation improvements . 11
5.3 Feature requests and feedback . 11
5.4 Development . 12

6 Authors 15

7 Changelog 17
7.1 0.2.0 (TBD) . 17
7.2 0.1.0 (2017-06-21) . 17

8 Acknowledgements 19

9 Indices and tables 21

Python Module Index 23

i

ii

CHAPTER 1

Overview

docs
tests

|

package

An Alembic plugin to keep records of upgrades and downgrades.

• Free software: MIT license

Installation

pip install Audit-Alembic

Getting started

Quickstart

Create an Alembic environment if you don’t already have one. Edit its env.py to include the following:

... imports ...
import audit_alembic
from myapp import version

if not audit_alembic.alembic_supports_callback():
raise audit_alembic.exc.AuditSetupError(

'This Alembic version does not have on_version_apply')

1

http://alembic.zzzcomputing.com/en/latest/tutorial.html

Audit-Alembic, Release 0.2.0

auditor = audit_alembic.Auditor.create(version)

def run_migrations_offline():
...
context.configure(

...
on_version_apply=auditor.listen,

)
...

def run_migrations_offline():
...
context.configure(

...
on_version_apply=auditor.listen

)
...

More involved

Auditor.create() is a factory method: it creates an Alembic history table for you and merely asks you to specify
your application version (though it allows much else to be customized as well). If you are already maintaining a table
you wish to add records to whenever an Alembic operation takes place, and you have a callable that creates a row for
that table, you can instantiate Auditor directly:

auditor = Auditor(HistoryTable, HistoryTable.alembic_version_applied)

In this case alembic_version_applied must return a dictionary that can serve as binds for an INSERT state-
ment on HistoryTable. It has the same signature as documented for Alembic’s on_version_apply hook.

Full Documentation

Once the 0.2.0 release is complete, the docs will be accessible here: https://Audit-Alembic.readthedocs.io/

Development

Status

The bulk of the test suite is complete and passing for Postgres, mysql, and SQLite. Travis does not appear to support
MSSQL or Oracle so test status for those DB backends is not known. If you find that it does not work for your backend,
pull requests to make it so will be happily accepted.

Please feel free to expand from there. See the issues for a list of known issues to work on.

Testing

To run basic tests:

2 Chapter 1. Overview

https://Audit-Alembic.readthedocs.io/

Audit-Alembic, Release 0.2.0

$ virtualenv venv && source venv/bin/activate
(venv) $ python setup.py install
(venv) $ pip install pytest psycopg2
(venv) $ pytest

To run all tests (i.e. py2 + py3, across all database drivers), run:

$ tox

See CONTRIBUTING.rst for more detail. Also see our Travis setup.

1.4. Development 3

https://travis-ci.org/jpassaro/Audit-Alembic

Audit-Alembic, Release 0.2.0

4 Chapter 1. Overview

CHAPTER 2

Installation

At the command line:

pip install Audit-Alembic

5

Audit-Alembic, Release 0.2.0

6 Chapter 2. Installation

CHAPTER 3

Usage

To use Audit-Alembic in a project:

import audit_alembic

7

Audit-Alembic, Release 0.2.0

8 Chapter 3. Usage

CHAPTER 4

Reference

audit_alembic

9

Audit-Alembic, Release 0.2.0

10 Chapter 4. Reference

CHAPTER 5

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

These suggestions are largely adapted from those provided by the cookiecutter template used for this project. I rewrote
a great deal, and I stand what I haven’t changed. Acknowledgment nonetheless is due to others who gave me something
to tweak.

Bug reports

When reporting a bug please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Documentation improvements

Audit-Alembic could always use more documentation, whether as part of the official Audit-Alembic docs, in doc-
strings, or even on the web in blog posts, articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at gh-issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

11

https://github.com/ionelmc/cookiecutter-pylibrary
https://github.com/jpassaro/Audit-Alembic/issues
https://github.com/jpassaro/Audit-Alembic/issues

Audit-Alembic, Release 0.2.0

• Remember that I am just this guy, you know? If at all possible, please try implementing yourself; if it doesn’t
work, submit as a pull request and we’ll see what we can make out of it.

Development

To set up Audit-Alembic for local development:

1. Fork Audit-Alembic (look for the “Fork” button).

2. Clone your fork locally:

git clone git@github.com:your_name_here/Audit-Alembic.git

3. Create a branch for local development:

git checkout -b name-of-your-change

Now you can make your changes locally.

4. When you’re done making changes, make sure tests pass – see Testing.

5. Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

Please observe Tim Pope’s guidelines for a good commit message.

6. Submit a pull request through the GitHub website.

Testing

Testing is required – no patch will be accepted without tests that fail if implemented without the fix.

Trigger your virtual environment and install the test dependencies:

$ pip install flake8 # required for linting
$ pip install pytest mock # required for testing
$ pip install psycopg2 # enables running tests with postgresql
$ pip install mysql-python # enables running tests with mysql
$ pip install pytest-cov # enables coverage tracking

First run flake8 to ensure no facepalms. Please keep the library PEP8-compliant; deviations are likely to be nitpicked
in code review.

Now to run tests:

$ python setup.py install &&
$ pytest -k test_my_change # substitute the name of the new test you wrote
$ pytest --cov # runs all available tests

The above commands run the tests using SQLite and whatever version of python you’re running. The full test suite
runs several database drivers and several versions of python. You can get this running by just submitting a pull request
and Travis will do the rest. It’s nonetheless (gently) encouraged, and not all that difficult, to run them yourself before
submitting a pull request. It’s one easy way to assure yourself the change can be accepted.

12 Chapter 5. Contributing

https://github.com/jpassaro/Audit-Alembic
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

Audit-Alembic, Release 0.2.0

Database backends Running with SQLite is trivial, as we’ve seen. Running with postgresql or mysql requires a
working installation of the respective database and its respective Python driver (for the latter see the pip installs
above). The principles are pretty simple and ought to work with any SQL dialect that also works for Alembic
(e.g. Oracle, MSSQL), but no working examples are known other than those directly supported by Travis: sqlite,
postgresql, mysql.

Running tests on postgresql and mysql backends is nearly identical, so let’s say you want to run with postgresql.
As mentioned above, install a postgresql database if you don’t have one, and pip install psycopg2.

By default, when asked to run with postgresql or mysql, the test suite expects a database named test, usable
by a user named scott who has a password of tiger (run grep psql .travis.yml to see how travis
creates it, or grep mysql .travis.yml for the same with mysql). This default can be overridden if you
have your own configuration you want to work with. Either way, beware that the tests include DROP ALL
TABLES as a teardown command, so make sure the database you’re using, test or otherwise, contains no data
you need to preserve.

Running pytest with different backends To use the default setup, database test and user scott with password
tiger:

$ pytest --cov --db postgresql
$ pytest --cov --db mysql

Valid inputs for the --db option can be seen by running pytest --dbs= [sic]. (Please note, while config-
urations exist for mssql and oracle, the author has no access to those databases; if you are able to run tests on
these, please let me know what you find, pass or fail!)

To use a different DB configuration, use a SQLAlchemy URI string:

$ pytest --cov --dburi postgresql://scott:tiger@127.0.0.1:5432/test

The --dburi option can point to any database on any backend, as long as a SQLAlchemy Dialect for it can be
found on your system.

You can combine as many of these options as you like to run multiple backends in a single pytest invocation:

$ pytest --cov --db mysql --db postgresql --dburi sqlite:///my-file.db

tox tox is a standard tool used to run several distinct testing environments. It creates a new virtual environment for
each combination of Python interpreter and database backend it’s asked to run. It can be installed inside or
outside your own virtual environment.

Install tox using pip, and on your system install whatever extra interpreters you want to test with. (You should
test at a minimum with 2.7 and one of 3.4, 3.5, or 3.6. Whatever you’re unable to test, Travis will handle when
you create a pull request.)

Also install and set up whatever database servers you’ll be testing against. If you want want tox to use a
database configuration other than the default, export as follows:

$ export POSTGRESQL='--dburi postgresql://scott:tiger@127.0.0.1:5432/test'

The default list of environments is found in tox.ini or by running tox -l. You can adjust it by exporting
to TOXENV or using tox -e to specify environments. Again, what you’re unable to test yourself.

When the environment variables are set to your liking, run:

tox

It will run all the tests in all available environments and report on results. Furthermore, it will track coverage
automatically.

5.4. Development 13

Audit-Alembic, Release 0.2.0

To run just your test on all environments, run like this:

tox -- -k test_my_change

For more granular control on what tests tox runs, read its docs, and our tox.ini.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code, just submit the pull request.

When ready for merging, you should:

1. Create new tests covering your change, and use tox to assure yourself the change works.1. If you can write
one that fails without your patch, even better! If your patch includes new code and does not include a test, it
is unlikely to be accepted; if any tests fail in any Travis environment, they will have to be resolved before the
change is accepted.

2. Update documentation when there’s new API, functionality etc. Docstrings are usually the best way to do this.

3. Add a note to CHANGELOG.rst about the changes.

4. Add yourself to AUTHORS.rst.

Tips

To run a subset of tests:

tox -e envname -- py.test -k test_myfeature

Simple pytest -k test_myfeature will not work; the package must be installed first. tox does that for you.

To run all the test environments in parallel (you need to pip install detox):

detox

(Nota bene: the author has never done this.)

1 If you don’t have all the necessary python versions available locally you can rely on Travis - it will run the tests for each change you add in the
pull request.

14 Chapter 5. Contributing

https://travis-ci.org/jpassaro/Audit-Alembic/pull_requests

CHAPTER 6

Authors

• John Passaro

15

Audit-Alembic, Release 0.2.0

16 Chapter 6. Authors

CHAPTER 7

Changelog

0.2.0 (TBD)

Alpha release, pending a patch in alembic without which we cannot support stamps.

• Creates a listener for Alembic’s on_version_apply callback hook which records information from that
callback to a SQL table of the user’s choosing.

• Test setup making use of SQLAlchemy testing plugins and utilities and Alembic testing utilities.

• Support for running with –sql as well as online mode.

• Tests covering stamps, branches, and a couple of other complex use cases.

• Test setup to cover multiple DB backends. Known to work: SQLite, Postgresql, mysql.

0.1.0 (2017-06-21)

• First release on PyPI. (powered by cookiecutter-pylibrary)

17

https://github.com/ionelmc/cookiecutter-pylibrary

Audit-Alembic, Release 0.2.0

18 Chapter 7. Changelog

CHAPTER 8

Acknowledgements

Many thanks are of course due to Mike Bayer, the author of the amazing libraries SQLAlchemy and Alembic which
this present effort seeks to extend.

Zeconomy enabled the writing of this library and is one of its first adopters.

Thanks also to ionelmc, who wrote a template that vastly sped up the initial development process.

19

http://techspot.zzzeek.org
http://sqlalchemy.org
http://alembic.zzzcomputing.com
http://zeconomy.com
http://github.com/ionelmc
http://github.com/ionelmc/cookiecutter-pylibrary

Audit-Alembic, Release 0.2.0

20 Chapter 8. Acknowledgements

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

21

Audit-Alembic, Release 0.2.0

22 Chapter 9. Indices and tables

Python Module Index

a
audit_alembic, 9

23

Audit-Alembic, Release 0.2.0

24 Python Module Index

Index

A
audit_alembic (module), 9

25

	Overview
	Installation
	Getting started
	Full Documentation
	Development

	Installation
	Usage
	Reference
	audit_alembic

	Contributing
	Bug reports
	Documentation improvements
	Feature requests and feedback
	Development

	Authors
	Changelog
	0.2.0 (TBD)
	0.1.0 (2017-06-21)

	Acknowledgements
	Indices and tables
	Python Module Index

